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This bachelor thesis designs, implements, and evaluates video content de-
livery in mobile networks using Multi-Access Edge Computing (MEC). We
provide a Video Streaming Service on the network edge, which resides close
to a typical evolved Node B (eNB) of the Long Term Evolution (LTE) mobile
network. The Video Streaming Service delivers video content towards mo-
bile video consumers. Using a Radio Network Information Service (RNIS),
we equip the Video Streaming Service with information about the momen-
tary state of wireless channels. Using this information, the Video Stream-
ing Service serves a video towards a mobile user with quality matching her
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gorithm, which improves the state of the art Dynamic Adaptive Streaming
over HTTP (DASH) by providing a better quality of video streaming expe-
rienced by the mobile video consumer. A real experiment performed in a
Long Term Evolution (LTE) femto-cell scenario proves that our new algo-
rithm indeed improves the video quality in terms of video representations
delivered, buffers established, and adaptation frequency experienced for dif-
ferent adaptation algorithms in DASH.
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Chapter 1

Introduction

According to Cisco [1], global IP traffic will account for 82% of all consumer
traffic by 2021. Cisco also predicts that the Video-on-Demand (VoD) traffic
will nearly double by 2021. Moreover, the traffic from wireless and mobile
devices will account for more than 63% of total IP traffic in the Internet then.
This means that the infrastructure of Mobile Network Operators (MNOs)
has to support video delivery. Furthermore, the video delivery rates have
to adapt to the network capacity (e.g., congestion) and the state of air inter-
faces (e.g., channel quality, interference, etc.) to provide the best Quality of
Experience (QoE) to the consumer.

1.1 Overview

There is an on-going European Telecommunications Standards Institute
(ETSI) Multi-Access Edge Computing (MEC) [2] (c.f., Chapter 2) initiative
that can change the ecosystem of future mobile networks also in video de-
livery. Please notice that in September 2016, ETSI Mobile Edge Computing
group changed its name from Mobile Edge Computing to Multi-Access Edge
Computing. MEC extends intelligence at the network edge through comput-
ing and storage facilities deployed in the close vicinity of the Radio Access
Network (c.f., Chapter 2). The MEC architecture (c.f., Chapter 3) is character-
ized by ultra-low latency high bandwidth as well as real-time access to radio
network information. It provides a platform for Mobile Edge (ME) services
(c.f., Chapter 3), which are often time critical applications having large data
rates or high computation demands.
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This thesis studies the video delivery in future mobile networks equipped
with Multi-Access Edge Computing (MEC). We provide a MEC-based rec-
ommendation system for video delivery in such networks. In our work, the
video service personalizes and limits the available video qualities using the
momentary channel conditions experienced by the Users Equipment (UE). To
this end, we observe the channel of every user by using a MEC Radio Net-
work Information Service (RNIS) (c.f., Chapters 3) and compute the per-user
radio channel capacity using novel Fourier-based traffic analysis (c.f., Chap-
ter 4). We, then, dynamically present different video qualities towards the
video consumer matching the users link capacity and radio connectivity (c.f.,
Chapters 5 and 6). The source code for the video service as well as the mod-
ified components and configurations of the mobile network are provided in
the Appendices (c.f., Appendices A and B).

1.2 Contributions

The goal of this thesis is to provide, evaluate, and implement an adapta-
tion algorithm for a video service that runs as an application on the ME. The
video service assesses the momentary quality of the radio signal, reported
by the UE, as well as the capacity of the wireless link between the UE and
the base station. It provides the user with an adapted set of video qualities.
The video service should work in a coexisting way with regular Adaptive
Bitrate Streaming (c.f., Chapter 2) and adaptation mechanisms at the client.
We compare it to a regular video delivery schemes that use momentary buffer
fill level or experienced throughput at the client as a mechanism to define the
appropriate video quality (c.f., Chapter. 2). We demonstrate that our video
service results in a faster and better adaptation of the optimal video quality
and therefore provide a better video quality to the user. We also improve
the subjective QoE to the user by limiting the disruptions through providing
the lower video quality, when a user is moving away, which should allow
for a better anticipation of worse radio signal conditions and, thus, prevent
the video stream from low buffer levels and possible stalls in spite of user
mobility.
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1.3 Thesis Structure

This work has the following organization. First, we present an overview
of current mobile networks, describe MEC, and explain an idea behind the
Adaptive Bitrate Streaming (ABR) video delivery using Dynamic Adaptive
Streaming over Hypertext Transfer Protocol (HTTP) in Chapter 2. Second,
we discuss the high level architecture and general concept of video deliv-
ery with MEC, and present an actual setup of the proposed architecture (c.f.,
Chapter 3). Third, we present a study of DASH traffic profiles and develop a
novel MEC-assisted adaptation algorithm for controlling the available video
qualities in DASH video streaming using Fourier-based traffic analysis (c.f.,
Chapter 4). Fourth, we design an experiment on MEC-assisted video deliv-
ery (c.f., Chapter 5). Fifth, we evaluate the algorithm developed in a real-
world femto-cell scenario (c.f., Chapter 6). Finally, we conclude and suggest
ideas for further research in Chapter 7.
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Chapter 2

State of the Art

In the following sections, we present the architecture of cellular communi-
cation systems and the state-of-the-art of video delivery in mobile networks.
First, the Long Term Evolution Network (LTE) is described in Sec. 2.1. Sec-
ond, we elaborate on Multi-Access Edge Computing (MEC) in Sec. 2.2. Fi-
nally, we present Dynamic Adaptive Streaming over HTTP (DASH) and an
overview of the current research in Sec. 2.3.

2.1 Mobile Telecommunication and Long Term

Evolution (LTE)

This section explains the building elements of the LTE mobile network. The
LTE/4G network consists of two main building blocks:

• The Radio Access Network (RAN) provides the wireless radio connec-
tion between the mobile devices and a base station.

• The Evolved Packet Core (EPC) or also System Architecture Evolution
(SAE) is responsible for connecting mobile devices to packet networks
such as the Internet.

We distinguish the following components of the minimal LTE network:

In the LTE RAN:

• User equipment (UE): UE is a communicating device (e.g., smart
phone, tablets, laptop with mobile network interface); it is also referred
to as the LTE mobile terminal. Each UE carries a Universal Subscriber
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Identity Module (USIM), which is a separate entity placed on a remov-
able smart card. The USIM is used for the identification, authenti-
cation, and provides security keys, which protect radio transmissions
over RAN.

• Evolved Node B (eNB): eNB sends and receives the radio signal and
connects the mobile terminal with the Core Network (CN). It allows for
various signaling functions, such as the Radio Network Control (RNC)
or Radio Resource Control (RRC), and is also responsible for the reli-
able delivery of data packets through the air towards several mobile
terminals at the same time.

In the LTE EPC:

• Home Subscription Server (HSS): HSS is a database server, which is
maintained centrally at the MNO that contains the information about
all mobile users subscribed to the network. It stores subscriber profiles,
e.g., access to services, roaming access in other networks, etc.

• Mobility Management Entity (MME): MME is a central control-plane
node responsible for signaling, i.e., authentication, authorization, and
mobility management.

• Serving Gateway (S-GW): The S-GW is responsible for user-plane
management. It transports user traffic between mobile terminals to-
wards external networks; it connects the RAN and P-GW. S-GW is also
a mobility anchor for user terminals.

• Packet Data Network Gateway (P-GW): The PDN-GW or short P-GW
is the edge router between the CN and external data networks (not op-
erated by the MNO). A P-GW allocates IP addresses to UEs as well as
performs traffic filtering and routing. The P-GW/S-GW use the GTP-
based S1-U data-plane protocol that matches the IP data flows of users
with GTP tunnels to deliver packets towards mobile terminals.

In this work, we refer to the S-GW and P-GW as to one entity and call it
Serving/Packet Gateway (S/PGW). Fig. 2.1 depicts the LTE architecture and
shows the relation between the involved and discussed components.
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HSS

Internet

MME

eNB

SPGW

UE

RAN EPC

FIGURE 2.1: A simplified LTE system.

For a more in-depth discussion of the LTE functionality, please refer to [3]
and [4]. In the following section, we describe the architecture of ETSI Multi-
Access Edge Computing (MEC) allowing for video optimization that takes
into account the state of user air interfaces.

2.2 Multi-Access Edge Computing (MEC)

The European Telecommunications Standards Institute (ETSI) defines a
Multi-Access Edge Computing (MEC) network ecosystem, which enriches
the network edge (i.e., the close vicinity of RAN) with cloud-computing ca-
pabilities [5, 2]. It offers application developers and content providers an
environment of ultra-low latency and high bandwidth as well as real-time
access to radio network information. Therefore, MEC dramatically improves
the Quality of Service (QoS) and Quality of Experience (QoE) received by
mobile subscribers. ETSI foresees various use-cases such as video analytics,
location services, Internet-of-Things, data caching, and augmented reality.
ETSI mostly focuses on MEC video transcoding or content optimization for
end-users [5], which requires a large number of computing resources at the
MEC platform processing the video. MEC platforms of the future (i.e., pri-
vate clouds of a small size) will possess sparser resources comparing to regu-
lar cloud operators, so heavy operations on such infrastructures shall not be
executed.

The vision of ETSI MEC [5, 2] employs the concepts of Network Function
Virtualization (NFV) and Software Defined Networking (SDN) [6, 7]. There
is a general consensus that MEC applications will be provisioned as Virtual
Network Functions (VNFs) owned by third parties (i.e., not necessarily the
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MNO) or vertical providers (e.g., caching, video delivery, augmented real-
ity) [5]. The traffic will be managed by the unified control plane leverag-
ing SDN [8, 9]. As an example, Schiller et al. [6] present an open-source
NFV/SDN-based MEC platform providing application and traffic manage-
ment in 4G/5G systems. The authors prove an appropriate operation of their
platform through two use-cases (i.e., content caching and public safety). A
UE communicates with VNF-based Mobile Edge Applications instantiated
on the MEC cloud. The SDN-based control plane provides the mobile traf-
fic directly from UEs towards MEC applications avoiding the CN. MEC ap-
plications can be aware of the state of the air interface (e.g, capacity, con-
gestion, radio signal quality, etc.) through the RNIS implemented on top of
MEC [5, 7]. This allows for many optimization problems taking into account
RAN awareness. Several works concentrate on the scope of RAN manage-
ment and programmability, which is being used to alter the system state ac-
cording to arbitrary objective functions [10, 11].

In the following section, we describe Dynamic Adaptive Streaming over
HTTP (DASH).

2.3 Dynamic Adaptive Streaming over HTTP

(DASH)

Dynamic Adaptive Streaming over HTTP (DASH), also known as 3GPP-
DASH or MPEG-DASH, is a popular standard for video streaming over the
Internet allowing for improved user experience in the presence of variable
network conditions, due to Adaptive Bitrate Streaming (ABR) of the video
content. It has become the standard of video streaming and most big video
platforms and services, such as YouTube and Netflix use it [12].

2.3.1 DASH Advanced Video Coding (AVC)

DASH uses partitioned multimedia files, which are delivered over HTTP.
Besides the conventional Hyper Text Transfer Protocol (HTTP), DASH con-
sists of two main components, which are the Media Presentation Descrip-
tion (MPD) file and video segments residing on a HTTP server, i.e., a video
server.
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• Media Presentation Description (MPD): MPD is a XML manifest de-
scribing various characteristics of the video content such as the avail-
ability of the stream, different representations, encoding scheme, seg-
ment duration, and resource identifiers.

• Segments: The entire video content is segmented into segments of a
predefined duration (e.g., 2 seconds, 5 seconds, 10 seconds). Each of
these segments contains efficiently coded media data, according to or
aligned with common media formats, such as MP4. The segments can
be encoded with different bit rates and, therefore, provide multiple rep-
resentations of the same media file. As the segments are all of the same
duration, the client can change the representation at any given time in
the video stream by downloading the next consecutive segment of any
quality, i.e., higher and lower qualities.

The regular procedure in DASH is organized as follows. In a first step the
client requests the MPD file from the video server. The MPD file contains
information about the stream; the available representations, their average bit
rate and resource identifiers of the segments in given representations. Then,
the client requests each segment individually through the unique resource
identifier using a simple HTTP GET request (c.f., Fig. 2.2). At the beginning,
the player may be downloading a few segments of lower quality consecu-
tively (c.f., Fig. 2.2 segments in light blue) in order to fill the buffer. The
video player then starts displaying the video and the remaining segments
are continuously fetched from the video server. The client also adapts the
video quality (c.f., Fig. 2.2 each color is representing a distinct video quality),
while streaming the video depending on different metrics, such as the buffer
level, the experienced throughput while downloading the last segment, or
CPU usage. This is completely up to the implementation of the video player
at the client.

DASH provides an enhanced Quality of Experience (QoE), as it dynamically
adapts the video quality using the adaptation algorithm on the client side;
it also maintains an appropriate buffer fill level to avoid a stall of the video
stream. Operating with a low buffer fill level, when only a few upcoming
segments are cached on the client, leads to a high risk of not receiving the
required portion of the video stream on time in the case of changing net-
work conditions. When the buffer drops down to 0, the client is forced to
stop displaying the video, rebuffer, i.e., download a few segments that re-
fill the buffer, and continue with displaying the video after a short break.
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client 

streaming

MPD file
server containing the

video segments

lowest 

representation

highest 

representation

single segments

FIGURE 2.2: A simplified illustration of the DASH procedure.

Notice that a non-continuous video stream provided to the user negatively
impacts the QoE. Naturally, there is a trade-off between the buffer level
and the representation provided, i.e., a lower representation will generally
cause a higher buffer level and, thus, continuous and smooth video stream.
The research methods on video adaptation suggest us to use the maximal
video quality guaranteeing a buffer fill level that minimizes the chance of re-
buffering so that the client can continuously stream a video of high quality
(c.f., Sec. 2.3.4).

For a more technical description of DASH AVC, please consider the full tech-
nical specification [13] of the 3GPP.

2.3.2 DASH Scalable Video Coding (SVC)

It is worth noting that there exist different kinds of video encodings and this
work focuses on video delivery with DASH Advanced Video Coding (AVC).
Many projects, especially the ones with improved caching strategies, work
with DASH Scalable Video Coding (SVC) [14]. The key difference between
these two DASH types is that in DASH SVC, the representations are encoded
in a layered and dependent way. In order to display a segment of quality
n + 1, we need to possess the same frame of quality n (meaning all quali-
ties lower than n + 1). The client then needs to decode the video frame from
multiple files one by one, which leads to higher workload. The main advan-
tage is that if the frame of quality n + 1 is not delivered on time at the client,
the player can still play the video of quality n. However, due to the decod-
ing of multiple files, this could results in a higher resource utilization at the
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UE. Thus, DASH SVC can be considered less mobile friendly, while sparse
resources are available on mobile devices.

2.3.3 DASH Server and Network Assisted (SAND)

In DASH AVC as well as DASH SVC, service providers have a little control
over the client behavior. It is, therefore, difficult to offer a consistent quality
of service. Furthermore, if there is a network failure or the network is recon-
figured, outdated resources in MPD files result in misdirected and unsuccess-
ful segment requests. In order to counteract such drawbacks of client-driven
DASH, the Moving Picture Experts Group (MPEG) proposed an extension to
DASH called Server and Network Assisted DASH (SAND) [15].

The DASH SAND architecture [16] provides a set of well-defined SAND
messages that allow for the exchange of client and server-side information
through the network. The standard provides four categories of network el-
ements. The network is separated into clients, servers, DASH aware net-
work elements (DANEs), and regular network elements (RNE). In the DASH
SAND architecture, DANEs and DASH clients can exchange message be-
tween each other. Furthermore, DANEs themselves can exchange informa-
tion about the current status. The messages can be of different types, such
as metrics, status, parameter enhancing delivery or parameter enhancing re-
ception, and are well defined in the DASH SAND specification [16]. The
DANEs can, thus, share information about the QoS they provide, e.g., cached
segments, guaranteed bitrate, maximum bitrate. Similarly the DASH client
shares information about its requirements for the best QoE, e.g., deadlines
and accepted alternatives for the next DASH segment or maximum round
trip time (RTT). The new architecture of DASH SAND should compensate
for the limitations of the client-controlled DASH. Furthermore, it provides a
concept with a context aware network that allows for better QoS and QoE of
DASH.

However, as the DASH SAND architecture is still in the early stages of the
development and fairly used, we decided to work with DASH AVC, which
has proven to be one of the most popular ABR streaming techniques in the
Internet.
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2.3.4 Video Adaptation Mechanisms

In our work, we only use DASH AVC, which is described in Section 2.3.1.
DASH AVC uses a simple operation model, which requires a complex adap-
tation mechanism at the client. Thus, let us now survey the video adaptation
algorithms implemented in the video player. In the following sections, we
discuss the two most important video adaptation algorithms, which are also
implemented in the GPAC Project on Advanced Content (GPAC; a recursive
acronym). MP4Client1. The GPAC MP4Client is of great importance for this
work, while we use it in our experiments (c.f., Sec 3.9) as a video player.

There are two main categories of video adaptation algorithms, which are
buffer-based and throughput-based. A comparison between the most rele-
vant algorithms can be found in the work of Karagkioules et al. [17]. Accord-
ing to their comparative case, the buffer-based adaptations tend to outper-
form other adaptation algorithms in mobile networks. However, they state
that a robust adaption mechanism for high QoE under variable network con-
ditions, as experienced in mobile networks does not exist yet.

Throughput-Based Video Adaptation

In throughput-based adaptation, the video quality is determined using the
experienced throughput downloading the previous segment and the adver-
tised bit rates of the different representations in the MPD file. At the begin-
ning, the lowest representation quality is used.

Moreover, two different switching strategies can then be distinguished, i.e.,
aggressive and passive switching. In passive switching, the adaptation oc-
curs stepwise; the client switches from the current representation to another
one, which has only a slightly higher bit rate (i.e., a representation that the
guarantees the lowest bit rate increase is selected in the following step). In
contrast, aggressive switching almost immediately adapts to the best possi-
ble representation having the closest bit rate to the momentarily experienced
channel capacity.

GPAC MP4Client implements throughput-based adaptation, buffer-based
adaptation, and other switching algorithms (c.f., dash_client.c subsystem

1The MP4Client is developed as part of the GPAC multimedia open source project:
https://gpac.wp.imt.fr/

https://gpac.wp.imt.fr/
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in the GPAC MP4Client source code). Algorithm 1 presents a simpli-
fied description of a throughput-based adaptation implemented in GPAC
MP4Client. The throughput-based adaptation, dash_do_rate_adapta-

tion_legacy_rate, switches the video quality based on the previously ex-
perienced throughput (i.e., the throughout experienced during the down-
load phase of the last segment) and the advertised bit rates in the MPD file.
GPAC distinguishes between aggressive and passive switching strategies.
The client decides whether a higher video quality should be requested. On
the one hand, if the client decides to increase the video quality (i.e., the expe-
rienced download rate is higher than the required bit rate of a currently used
representation), the client selects the highest or next higher representation
that the network can handle depending on the aggressive or passive switch-
ing strategy respectively. On the other hand, if the bandwidth is smaller than
the bit rate required by the current representation, the client immediately se-
lects the highest video representation having a smaller or equal bitrate to the
experienced throughput.

Buffer-Based Video Adaptation

Buffer-based video adaptation adds another decision making layer, as it uses
the buffer fill level as the indication of the video quality. The client keeps
track of the minimum and maximum buffer fill levels experienced during
the reception of the current video stream. The buffer-based adaptation uses
the observed buffer fill level as an indication on how to adapt the quality of
the video stream. On the one hand, if the algorithm experiences minimum
buffer levels, it goes down with the video quality and switches to lower rep-
resentations. On the other hand, it waits with going up with the video quality
until the buffer level surpasses a threshold (e.g., a fraction of the maximum
observed buffer level). Optimally, the buffer level shall not decrease dur-
ing the downstream of the segment, i.e., the refill process should be always
faster than the use of the buffer. A simplified version of the buffer-based
adaptation algorithm implemented in the GPAC MP4Client is described in
Algorithm 2.

The buffer-based adaptation algorithm basically distinguishes three differ-
ent cases (c.f., Algorithm 2). First the buffer can be too low, and we need to
pro-actively go down with the video quality, as we risk running out of video
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Algorithm 1 Throughput-based adaptation implemented in MP4Client

1: procedure DO RATE ADAPTATION RATE BASED(dl_rate, go_up, aggres-
sive_switching)

2: . The experienced download rate in bits per sec, a boolean variable
go_up; default true and aggressive_switching; default true

3:
4: R = set of all available representations advertised in the MPD file
5: current_rep← the current representation
6: new_rep← null
7:
8: . If the current representation requires a higher bandwidth than

available
9: go_up = dl_rate < current_rep.bitrate ? f alse : true

10:
11: if go_up then
12: if aggressive_switching then
13: for each rep ∈ R do
14: if rep.bitrate >= new_rep.bitrate ∧ rep.bitrate <= dl_rate

then
15: new_rep = rep
16: else
17: for each rep ∈ R do
18: if rep.bitrate >= current_rep.bitrate ∧ rep.bitrate <=

dl_rate ∧ rep.bitrate <= new_rep.bitrate then
19: new_representation = rep
20: if new_rep = null then
21: new_rep← lowest available representation
22: else
23: for each rep ∈ R do
24: if rep.bitrate <= dl_rate ∧ rep.bitrate >= new_rep.bitrate then
25: new_rep = rep

return new_rep
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Algorithm 2 Buffer-based adaptation as implemented in the MP4Client

1: procedure DO RATE ADAPTATION BUFFER BASED(dl_rate, go_up, aggres-
sive_switching)

2: . The experienced download rate in bits per sec, a boolean variable
go_up; default false and aggressive_switching; default false

3:
4: go_up = dl_rate > current_rep.bitrate ? true : false
5: bu f _high_threshold← 2/3 of the max. observed buffer level
6: bu f _low_threshold← the min. observed buffer level
7: bu f _curr ← the current buffer level
8: occ← difference between the buffer level after and before the

download of the last segment
9: if bu f _curr < bu f _low_threshold then

10: DO RATE ADAPATATION RATE BASED(dl_rate-10, false,
aggressive_switching)

11: else if bu f _curr > bu f _high_threshold ∧ occ > 0 then
12: DO RATE ADAPTATION RATE BASED(dl_rate, true,

aggressive_switching)
13: else
14: keep the current representation

segments and, thus, stalling the video. Second, the buffer can be above a cer-
tain level and we managed to fill the buffer during the download of the last
segment, so we can securely go up with the video quality without risking a
stall. The appropriate representation is then selected, by using the previously
discussed throughput-based adaptation (c.f., Algorithm 1) with the provided
parameters. Third, the buffer level is somewhere in between the two thresh-
olds, which means that we should keep the current representation.

Due to the introduction of the buffer level in the decision making process,
buffer-based algorithms tend to have fewer changes in the video qualities
and provide a better QoE to the user.

In the following subsection, we survey the state of the art of DASH video
delivery in mobile networks equipped with SDN, NFV, and MEC.

2.3.5 DASH improved by SDN and MEC

Han et al. [18] designed an MP-DASH algorithm, which explores the concept
of multi-homing. The authors use Multipath TCP (MP-TCP) to improve the
definition of video streaming experienced on a User Equipment (UE) hav-
ing both WiFi and mobile network interfaces (4G/5G). A deadline scheduler
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is developed taking into account interface preference and delay tolerant na-
ture of the video traffic. MP-DASH reduces the use of the mobile network
interface by 99% and the UE battery consumption by up to 85% with little
video quality degradation when compared to the off-the-shelf implementa-
tion of the Multipath TCP (MP-TCP). Xu et al. [19], developed a novel Quality
Aware adaptive Concurrent Multipath Transfer solution (CMT-QA), which
explores multi-homing SCTP transmissions in heterogeneous networks. The
aim is to improve the quality of video streaming and best-effort data trans-
missions through an appropriate path quality assessment, an algorithm dis-
tributing data over paths, and a novel acknowledgment mechanism.

There are several different approaches improving the video delivery in net-
works studied through simulations [20, 21, 22, 23]. Cetinkaya et al. [20]
uses SVC-DASH and Software Defined Networking (SDN) to improve video
streaming. The authors suggest routing video flows through the underlying
infrastructure taking into consideration the capacity of the backhaul network
and a bit rate of particular flows registered in the system. The controller al-
locating flows to the infrastructure does not exchange information with the
video server, but instead analyzes the flow information reported by the SDN
switches through OpenFlow [24].
Li et al. [21] propose a Mobile Edge Computing (MEC) approach to improve
fairness and overall video definition among UEs sharing the same channel.
An Integer Linear Program (ILP) has been developed to select appropriate
video representation (data rates) for video consumers. They use a dynami-
cally generated MPD file at the MEC server to adapt the bitrate to momentary
network conditions. When a MEC infrastructure discovers potential conges-
tion, the MPD file is updated and higher bit rates are removed. The clients,
therefore, move to lower bit-rates overcoming congestion.
Lai et al. [22] propose a method for improved video delivery in heteroge-
neous networks with SDN. They use two modes of operation called buffer-
ing and streaming modes. In the buffering mode, the client is able to buffer
video representations of good quality. The authors propose two methods for
scaling video representations up and down. When the buffering mode is un-
able to refill the buffer that drops to 0, the buffering mode is abandoned, and
the streaming mode is used. In the streaming mode, the authors use a poly-
nomial bandwidth estimation to select the most appropriate representation.
Fajardo et al. [23] propose a network assisted HTTP streaming mechanism
based on MEC. Their mechanism is able to adapt DASH streams to different
channel conditions of users based on periodical measurements of Channel
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Quality Indicators (CQIs) and adaptation algorithms matching experienced
CQIs to video definitions. The main parts of their system are: the DASH
manager adapting content towards end-users, the DASH cache to handle
previously retrieved segments, and the RAN monitoring module, which is
fed by the channel state information (CSI) established by means of CQI re-
ported by UE at the eNB within the LTE system.
Foukas et al. [11] prove a similar approach in a real-experiment by using
FlexRAN. In their use-case, CQIs statistics reported by a UE are gathered at
the FlexRAN controller. A DASH-based video streaming server uses infor-
mation gathered at the controller to match the CQIs to video representations
(i.e., bitrates). It then provides the UE with an appropriate video definition
matching the momentary channel conditions.

Novelties in Comparison to the State of the Art

Although a lot of research has already been performed in the field of DASH
video delivery, our work significantly differs from existing solutions. In con-
trast to Fajardo et al. [23], who introduces a DASH manager operating at the
level of the eNB scheduler, we do not interact with the radio scheduler and
focus only on passive RAN observations (i.e., the information about through-
put and radio quality metrics received from RNIS). We, therefore, only in-
troduce a video service that takes into account the status of the radio link
belonging to a given UE. Also, in contrast to Foukas et al. [11], we do not
use Channel Quality Indicators (CQIs, c.f., Sec. 4.2), which depend on hard-
ware, vendor, and environmental specifics, but instead, we use experienced
throughout and received signal power as the radio quality measure. Fur-
thermore, we perform our experiments using a real radio equipment, i.e., we
do evaluate our findings in simulations, while [25] uses an emulation of the
network (i.e., Mininet2).

2http://mininet.org/
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Chapter 3

Architecture and Implementation
of the Adaptive Video Delivery

This chapter presents an overview of the architecture and the implementa-
tion of the MEC platform and the video delivery, including the video server
and client. First, we provide the high level architecture of the MEC platform
in Sec. 3.1 and then discuss the interaction and information flow between
these components in Sec. 3.2. Second, we introduce the implementation of
our MEC platform (c.f., Sec. 3.4) and provide details about the modifications
of necessary third party components (c.f., Sec 3.6). Third, we describe and ex-
plain the provisioning of the video service on the MEC platform (c.f., Sec. 3.8)
and the use of the video client (c.f., Sec. 3.9).

3.1 High Level Architecture

The high level architecture of our network follows the ETSI MEC [2] model.
It consists of a base station providing radio access network (RAN), a MEC
cloud, and a core network (CN). As in the regular LTE, the RAN provides
a radio signal towards the UEs and connects them to the CN of the MNO.
The UEs benefit from the connection to the Internet through the CN (c.f.,
Fig.3.1).

A Software Defined Radio Access Network (SD-RAN) platform provides a
global view of the radio network status and manages radio resources among
eNBs [10]. The SD-RAN platform is, therefore, acting as an RNIS [5], a service
providing authorized applications with low-level, real-time, radio network
information, which can be used by MEC applications (Apps) to calculate de-
rived secondary information (e.g., location of the UE can be derived from the
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FIGURE 3.1: A depiction of the system architecture.

power information through a trilateration process [26]). Furthermore, as the
MEC cloud is installed very close to the RAN, the traffic can avoid the CN
and directly access MEC Apps. Therefore, the MEC Apps benefit from the
close vicinity of the eNB and, thus, the UE experiences low latency, which
is crucial for low-delay tolerant applications. MEC Apps instantiated on the
MEC cloud receive traffic directly from the user plane (e.g., video service)
or other MEC related services (e.g., SD-RAN platform), dealing with radio
control and management planes. Moreover, MEC Apps can exchange infor-
mation between one another, or create advanced application chains. MEC
Apps are typically hosted as VNFs on top of abstracted virtual infrastruc-
tures controlled by Virtual Infrastructure Managers (VIMs).

3.2 Information Flow

The streaming process and information flow between the system elements is
illustrated in Fig. 3.2. Initially, the UE starts the information cycle by initiat-
ing the video streaming form the video server residing at the ME cloud. The
user is given an initial MPD file, which contains all available representations.
The video player requests the segments of a given quality, based on its lo-
cal adaptation algorithms. The requested segments are sent from the video
server over the network and the established radio link between the eNB and
the UE to the user. The RNIS registers the traffic occurrence as well as the
momentary network status (e.g., signal quality at the UE) and provides this
information to the video service, in which the statistics are processed and
used for the video-stream adaptation (i.e., to restrict or expand video quali-
ties) of the UE’s personal MPD file. Finally, the UE refreshes its personalized
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MPD file and continues streaming using the qualities provided in the dynam-
ically generated MPD file. This information flow, between the components
involved in the video streaming, can be understood as a continuous cycle,
which is maintained as long as the video is playing or the user terminates the
stream.

Provides a 
personalized 
MPD file for 

every user

Streaming the 
video according 

to the 
periodically 

updated MPD 
file

Receives radio 
link stats and 
provides them 

to the video 
service

Programmable 

SD-RAN platform

 

User Equipment

Video Service

FIGURE 3.2: Illustration of information flow between the main
components in our video service architecture.

3.3 Statistics Distribution from the SD-RAN Con-

troller

As the communication between the base station and the video service (ME
App) is of great importance, we present a general approach for accessing
statistics obtained from the SD-RAN controller. This work uses a simple
nested request-response model, c.f., Fig. 3.3, in which an ME App accesses
the statistics through the northbound application interface (API) of the con-
troller. Typically, the northbound API of the SD-RAN controller is used for
communication purposes between the controller and higher-level modules,
i.e., services or applications. To receive radio information, the SD-RAN con-
troller requests the statistics from the eNB through the southbound API used
to communicate with the network components (e.g., eNB). It then processes
the results and finally responds to the requests of the ME App trough the
northbound interface.

This scheme could be easily extended to the publish/subscribe model, in
which the ME App is periodically provided with the RAN information about
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UEs momentarily connected to the MEC video service. However, we mainly
concentrate on video delivery, and do not develop elastic Pub/Sub systems
for flexible information dissemination. Therefore, the SD-RAN controller is
directly used in our design.

ME App
SD RAN

controller
eNB

request statistic about UE-eNB 

link through northbound API
1.

2.

request the most current 

statistics from the eNB through 

southbound API

3.
responds with current statistics 

about UE-eNB connection
4.

ME App receives the 

information and processes it

FIGURE 3.3: Request-response model between the ME App and
the SD-RAN platform.

3.4 Platform Implementation

The platform developed in this work (c.f., Fig. 3.4) is based on previous work
of the CDS group [6]. We work with a fully cloudified core network, i.e.,
all the components of the mobile network, except the eNB, are fully virtual-
ized. The mobile network follows the current 4G mobile telecommunication
standards and uses the OpenAirInterface (OAI) [27, 28], which implements
HSS, MME, and S/PGW of the minimal LTE CN and the eNB for RAN. The
configuration files of these components are included in Appendix A.2. OAI
provides the LTE mobile network and the OpenAirInterface Base Band Unit
(BBU), which processes and provides the radio signal through radio equip-
ment (i.e., the USRP B210 board1). The setup provides an LTE Frequency
Division Duplex (FDD) transmission in band 7 (2.5 GHz/2.6 GHz) using 5
MHz channels and the Single-Input Single-Output (SISO) mode. To receive
the LTE signal, we use a smartphone Moto 22, which connects to the mobile
network.

As SD-RAN, we use FlexRAN [11], which extends OAI with a flexible SD-
RAN solution. FlexRAN also provides an interface to get information about

1https://www.ettus.com/product/details/UB210-KIT
2https://www.motorola.com/us/products/moto-z-play-gen-2



3.5. Provisioning of the LTE Network 23

the RAN and, thus, implements an RNIS-like service, which allows us to ob-
tain information about the current network status (e.g., radio signal quality
or channel usage). FlexRAN consists of an agent co-located with the OAI
BBU, which is implemented in the OAI feature-68-enb-agent3 branch and
the external SD-RAN controller develop-uplink4 branch. In our setup, the
FlexRAN controller module as well as the video service are instantiated on
the OpenStack-based MEC cloud and are running on Ubuntu virtual ma-
chines (c.f., Fig. 3.4). The traffic at the network edge is managed by the Open
vSwitch (OVS) [29], which is part of OpenStack and forwards traffic towards
the CN or MEC Apps according to a flow table [6]. The OVS switch handles
IP traffic between the UE, MEC Apps, and the Internet accordingly.

USRP B210

radio equipment

eNB

130.92.65.83

FlexRAN agent

OpenAirInterface

(BBU)

RAN

Moto 2 

smartphone

LTE Core Network

MME

130.92.70.163

S/PGW

130.92.70.164

HSS

130.92.70.162
FlexRAN

controller

130.92.70.169

Video Server

130.92.70.138

OpenStack

MEC Cloud Internet

FIGURE 3.4: The MEC platform setup, consisting of the RAN,
MEC cloud and LTE Core Network.

3.5 Provisioning of the LTE Network

In order to provision the LTE network, we need to start the entire OAI EPC
as well as the FlexRAN controller module and the eNB respectively. As the
EPC is fully cloudified, the installation process is fully managed and orches-
trated by Juju5,6, a tool that manages software in the cloud environment.
To start the EPC, we launch each module individually (i.e., HSS, MME, and
S/PGW), which requires us to execute the following commands on OAI HSS,
OAI MME, and OAI S/PGW respectively:

• HSS: /srv/openair-cn/scripts/run_hss

• MME: /srv/openair-cn/scripts/run_mme

• S/PGW: /srv/openair-cn/scripts/run_spgw

3https://gitlab.eurecom.fr/oai/openairinterface5g/tree/feature-68-enb-agent
4https://gitlab.eurecom.fr/flexran/flexran-rtc/tree/develop-uplink
5https://jujucharms.com/
6https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OAIonJuJu
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The configuration of each component of the EPC (c.f., Appendix A.2) and
the changes the S/PGW (c.f., Appendix B.1) are provided in the appendix.
Before starting the eNB, we need to start the FlexRAN controller. The rea-
son for this is that the eNB contains the FlexRAN agent that connects and
registers with the controller. The instructions to build and run the FlexRAN
controller and the eNB, i.e. FlexRAN agent, are provided in the appendix
(c.f., Appendix A.1).

When the CN and RAN components are up and running, we can use any LTE
band 7-compatible UE. Having a USIM registered in the HSS database, we at-
tach and connect the UE to the cloudified mobile network. Furthermore, we
can request statistics about the eNB and its connected UEs from FlexRAN
using the RESTful API at http://130.92.70.169:9999/stats_manager/all.
A request towards the API is handled by the FlexRAN agent at the eNB,
(c.f., openair2/ENB_APP/flexran_agent_handler.c) that responds with ap-
propriate information. A detailed description of communication between
the OAI-eNB and FlexRAN is provided in subsequent Sec. 3.7.

3.6 Modifications to the Components of the Mo-

bile Network

In order to derive the statistics about the network status, such as radio signal
quality at the UE or status of uplink and downlink shared channels, from the
SD-RAN platform (c.f., Sec. 3.4), we need to understand the communication
between the SD-RAN controller (i.e., FlexRAN controller) and the SD-RAN
agent (i.e., FlexRAN agent). We, therefore, discuss the implementation of
the communication between the eNB and, furthermore, explain the modifi-
cations of the source files (c.f., Appendix B.2, B.3, B.4) to provide statistics
according to our needs.
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3.7 Communication between FlexRAN agent and

server

The communication between FlexRAN server (i.e., SD-RAN controller) and
agent (i.e., OAI-eNB) is based upon protocol buffers7, which allow for an
efficient mechanism exchanging serialized data structures. We can, thus, ex-
tend the existing communication between the FlexRAN server and agent to
include information about the RAN. To this end, we define a new protocol
buffer (protobuf) message, describing data structures that will be serialized
and exchanged in the network. To this end, we create a new message (c.f.,
Listing 3.1) in stats_common.proto, which needs to be defined at both ends
(i.e., the FlexRAN controller and agent). The new message is part of the UE
status report (c.f., stats_messages.proto). We are free to include as many
values and nested messages in our message as we want. In order to request
the newly created message from the eNB, we need to set an appropriate flag
at the FlexRAN controller (c.f., stats_manager.cc) to signal that our message
will be transported through the network.

LISTING 3.1: The implemented protobuf message in

stats_common.proto.

1 message flex_dl_video_stats {

2 optional int32 rsrp_value = 1;

3 optional int32 rsrq_value = 2;

4 optional uint32 cqi_value = 3;

5 optional uint64 num_total_bytes = 4;

6 optional uint64 num_acks = 5;

7 optional uint64 num_nacks = 6;

8 optional uint32 mcs_value = 7;

9 optional uint64 timestamp = 8;

10 }

In the second step, we fill the corresponding fields of the message. This ac-
tion takes place at the eNB and is implemented in the FlexRAN agent, (c.f.,
openair2/ENB_APP/flexran_agent_mac.c). Our message (c.f., Listing 3.1)
provides statistics about the UE-eNB link status including Reference Signal
Received Power (RSRP), Reference Signal Received Quality (RSRQ), Channel
Quality Index (CQI), and Coding Modulation Scheme (MCS), which reflect

7https://developers.google.com/protocol-buffers/
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the signal quality and the coding efficiency, but also the number of total bytes
sent on the shared downlink channel as well as the number of acknowledged
and unacknowledged data chunks reported by Hybrid Automatic Repeat re-
Quest (HARQ) on the link layer [30].

Interaction between ME App - FlexRAN - OAI-eNB

Fig. 3.5 illustrates how the ME App, the FlexRAN controller, and the OAI-
eNB interact. It explains the basic functionality of a ME App requesting the
available statistics about the connected UEs and the eNB. It follows the struc-
ture outlined in Sec. 3.3.

The ME App originates an HTTP request (1) towards the northbound API
of the FlexRAN controller. FlexRAN controller provides an interface to in-
teract with the FlexRAN agent and, therefore, controls the eNB. The Pis-
tache8 server provides the REST framework of the FlexRAN controller and
handles the request in (2.1). The request is processed at the northbound
API (c.f., north_api/stats_manager_calls.cc) and the appropriate statis-
tics are requested from the FlexRAN agent by creating the correspond-
ing protobuf message (c.f., app/stats_manager.cc). The message is sent
over the southbound API (2.3) from the FlexRAN server to the FlexRAN
agent (c.f., core/request_manager.cc) residing at the eNB. The message is
then received and handled at the eNB (3) by a corresponding handler (c.f.,
openair2/ENB_APP/flexran_agent_handler.c), which fills out a response
message using information about the state of the LTE Medium Access Con-
trol (MAC) layer of the UE and eNB. The information about MAC are gath-
ered at the eNB through corresponding modules (c.f., openair2/ENB_APP/-
CONTROL_MODULES/MAC/flexran_agent_mac.c). The message is then again
sent through the network (4) back to FlexRAN. Finally, the returned result
is provided to the ME App (5) as an HTTP response presenting the statistics
in either plain text or JavaScript Object Notation (JSON).

In the last step, the ME Application can parse and process the statistics for
further use, e.g. restricting the available video qualities for video stream-
ing.

8http://pistache.io/
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FIGURE 3.5: A sequence diagram describing the procedure of
interactions for a UE statistics request.

3.8 Adaptive Video Service

In order to provide Adaptive Bitrate (ABR) video content to the user, we de-
ploy a video server at the network edge within the ME cloud that supports
DASH. The video server runs Ubuntu 16.04 LTS and a regular Apache/2.4
web server. We encode a video in different qualities to provide multiple rep-
resentations according to the DASH standard.

3.8.1 Preparation of the Video

In order to find the appropriate qualities for the video encoding (i.e., bitrates),
we assess the channel capacity between the UE and the video server using
iperf -c on the UE and iperf -s on the video server. In our case, this pro-
cess returns the maximum channel capacity of 8.33 Mbps.

remo@ubuntu:~$ iperf -c 130.92.70.138

------------------------------------------------------------

Client connecting to 130.92.70.138, TCP port 5001

TCP window size: 85.0 KByte (default)

------------------------------------------------------------

[ 3] local 172.16.0.2 port 55630 connected with

130.92.70.138 port 5001

[ ID] Interval Transfer Bandwidth

[ 3] 0.0-10.1 sec 10.0 MBytes 8.33 Mbits/sec
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We identify the bottleneck of the mobile network, which is the wireless chan-
nel between UE and eNB, since all other wired Gigabit Ethernet connections
provide a much higher bandwidth.

Given the maximum available bandwidth between the UE and video
service, we can now encode the video using different bitrates. To fully
saturate the link, a video with a bitrate of around 8 Mbps is necessary.
We choose a freely available UHD video from Goddard Media Studios
(GMS) [31], which has the initial bitrate of 39.9 Mbps. Using the guide
from Bitmovin [32], we transcode the video using the h2649 codec (i.e., a
popular video compression standard) with ten distinct bitrates (c.f., Ta-
ble 3.1). For the x264 transcoding, the command x264 –output OUTPUT.264

–fps 60 –preset slow –bitrate BITRATE –vbv-maxrate 2*BITRATE

–vbv-bufsize 4*BITRATE –min-keyint SEGMENT_DURATION –keyint

SEGMENT_DURATION –scenecut 0 –no-scenecut –pass 1 –video-filter

"resize:width=WIDTH,height=HEIGHT" INPUT.mp4 (variables in capital
letters) is used. After that, the raw h264 video data is encapsulated in a
container, such as mp410.

TABLE 3.1: The different representations and bit rates of the
encoded video.

ID Resolution Specified max. bitrate min. bandwidth
[px × px] [kbps] [kbps]

1 320×180 50 54.994
2 320×180 100 105.412
3 320×180 500 509.222
4 640×360 800 811.818
5 640×360 1’000 1’014.234
6 640×360 1’500 1’520.707
7 1280×720 2’000 2’012.579
8 1280×720 4’000 4’011.958
9 1280×720 6’000 6’016.341

10 1280×720 8’000 8’024.380

Finally, we prepare the video for adaptive streaming (i.e., the DASH
protocol) with the MP4Box11 multimedia packager to “dashify” the
video content, i.e., segmentation of the video and creation of a DASH
manifest file. The command used to generate DASH files of segment

9http://www.itu.int/rec/T-REC-H.264
10https://mpeg.chiariglione.org/standards/mpeg-4
11https://gpac.wp.imt.fr/
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duration ts ms from different video representations is: MP4Box -dash ts

-frag ts -rap -out DASHFILE.mpd -profile live VIDEO_QUALITY#1.mp4

VIDEO_QUALITY#2.mp4 ....

3.8.2 Adaptation to Current Network Status

The DASH protocol is normally developed for dynamic adaptive streaming
with adaptation control at the client side (c.f., Sec. 2.3). As the client is not
aware of the momentary link-layer/physical-layer information, it can only
adapt the video quality using measured data on the client, i.e., the experi-
enced throughput and the buffer fill level. This information does not allow
us to construct an optimal adaptation mechanism for video streaming in mo-
bile networks.

Since the DASH standard allows for dynamical MPD files, the video server
can change and update the MPD file when required. We, therefore, provide
a Python script that parses the data received from RNIS and dynamically
updates the MPD file according to the information from RNIS link-specific
observations. We discuss these observations in Chapter 4 and present an
MEC adaptation mechanism for DASH in Section 4.3. To run the video ser-
vice and periodically check for radio network information and update the
user’s MPD file, the command python main.py -f RNIS_URL -m MPD_input

-s MPD_OUTPUT -i Interval is used. Here, the option -f provides the URL
of RNIS (the FlexRAN message are discussed in Sec. 3.7), -m and -s provide
the location of the original and modified MPD file, and -i specifies is the time
between the measurements/MPD file updates.

3.9 Video Client

As a video client, we use the open-source MP4Client12 client, which runs on
a laptop connected to a smartphone (i.e., WiFi LTE tethering). To periodi-
cally refresh the MPD file at the client, there are two possible options [25].
First, we can use the dynamic type of the MPD file on the server and specify
the minimumUpdatePeriod [13]. This is an option used frequently in the case
of live streams, in which the available representations may change and the

12https://gpac.wp.imt.fr/
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client needs to be informed about the changes. Second, we can change the
implementation to force the client to refresh the MPD file periodically with-
out altering the MPD type, i.e., refresh static MPD files. We opted for the
latter option (i.e., we do not use live streams, but regular Video On Demand
(VOD) streams). We therefore modified the MP4Client (c.f., dash_client.c)
to refresh an MPD file every 5 seconds (c.f., Appendix B.6). In both cases, the
client is forced to periodically request a dynamically updated MPD file (with
a specified update period). The client continues streaming a video according
to representations advertised in the most recently received MPD file.
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Chapter 4

Analysis of Video Streaming in
Mobile Networks

In this Chapter, we study traffic patterns of DASH video delivery (c.f.,
Sec. 4.1) with variable radio signal quality caused by user mobility (c.f.,
Sec. 4.2). To gather the traffic statistics, we use a real deployment of the archi-
tecture discussed in Chapter 3. The aforementioned traffic statistics are the
key to the development of a novel MEC-assisted context aware video deliv-
ery provided later on in Sec. 4.3.

4.1 Analysis of Traffic Profiles

In the following sections, we study traffic profiles (i.e., traffic patters) in mo-
bile networks during the video delivery (c.f., Sec. 4.1.1) and elaborate on the
notion, calculation, and evaluation of the margin (i.e., idle time) between the
delivery of individual video segments in DASH-AVC (c.f., Secs. 4.1.2, 4.1.3
and 4.1.4).

4.1.1 Observations in Traffic Patterns

We assume that the video streaming is the most dominant traffic for a user,
i.e., other applications utilize only a small fraction of bandwidth on the mo-
bile device at the same time. Moreover, there should be only one video
stream per user. This may seem like a strong restriction, however, watching
multiple video streams is rare, and mobile users typically use one application
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at a time. Therefore, the background traffic from other applications, such as
instant messengers, email, social media or games, can be neglected.

In our initial measurements, using the setup as discussed in Sec. 3.4, we ob-
serve a specific periodical pattern (c.f., Fig. 4.1b), which is typical for video
delivery with DASH using buffer-based adaptation algorithms [33, 11, 18].
The traffic requested by the client appears approximately as a periodical rect-
angle function. Fig. 4.1b shows that the channel is periodically occupied and
idle with a certain frequency. This is caused by a periodical re-fill of the
video buffer at the client side. When the buffer level decreases below a cer-
tain threshold, a new segment is requested by the client. The periodicity of
traffic peaks (i.e., rectangles) in the experienced goodput is approximately
equal to the segment duration (e.g., 2 seconds) as the client consumes the
video content in real time. For example, a 2 second segment is consumed
within 2 seconds (c.f., Fig. 4.1b). Therefore after these two seconds, a new
segment is again needed by the client.

Figs. 4.1a and 4.1b, obtained from the the statistics of the SD-RAN platform
(c.f., Sec. 3.4), as well as related traffic plots reported by Augustin et al. [34],
clearly show that the DASH video pattern, c.f., Fig. 4.1b, can be distinguished
from best-effort downlink/uplink transmission, c.f., Fig 4.1a, which often
causes an approximately constant traffic pattern limited by the channel ca-
pacity. Fig. 4.1a shows the download of a large file using wget over the mo-
bile network.
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FIGURE 4.1: The throughput of best-effort (e.g., wget) (a)
and video transmission (e.g., DASH) (b) can be clearly distin-

guished

We also notice that the throughput amplitude of peaks increases, c.f.,
Fig. 4.1b, when the client changes to a higher representation/bitrate of the
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video. For these segments of higher video quality, the throughput reaches
the channel capacity and the rectangle-like peaks start spanning longer time
ranges, as it takes a longer amount of time, to download a segment of a larger
size. Furthermore we notice that longer transmissions more efficiently use
the channel due to the TCP adaptation to the channel capacity through slow
start and congestion avoidance phases [35].

Our main idea is to use the distance (i.e., idle-time) between individual
peaks on the downstream, to measure the momentary channel capacity for
the video transmission. The passive buffer-based algorithm in DASH (c.f.,
Sec. 2.3.4) gradually loads the link with higher video representations, until
the peaks disappear and a constant traffic profile is reached. In such a case,
the momentary channel capacity of the radio link is achieved and the link is
fully saturated.

4.1.2 Definition of a Margin between Segments

We introduce a notion of the margin tM, which defines the minimal idle-time
on the down-stream between every two consecutive segments requested by
the client. Its purpose is to evaluate the link utilization and, thus, give us an
idea of how to control the video quality for a given user. In order to provide
smooth continuous video streams, our margin should not be too large. Thus,
causing the client to request small segments of poor quality that quickly ar-
rive and result in poor channel utilization (i.e., long idle time). It should not
be too small either, causing the client to fully saturate the channel with large
segments. Roughly speaking, an acceptable interval of the margin between
every two consecutive segments should be maintained in order to allow for
unexpected variances in the channel capacity, e.g., due to mobility of users,
noise, and interference.

4.1.3 Discrete Fourier Transform of Throughput

We use a Fourier transform (FT) [36, 37] of traffic profiles, to derive an appro-
priate length of the margin. It is the most important indication of the channel
utilization that controls the video quality provided to the user.
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A Note about the Fourier Transform

A FT is used to transform data sequences from the time domain to the fre-
quency domain. It allows for any integrable function a : R 7→ C to be repre-
sented as a combination of sinusoids localized at different frequencies f [37]:
A : R 7→ C. In our use-case, we have a discrete signal about the through-
put and can thus use a Discrete Fourier Transform (DFT), which maps a pe-
riodic sequence of samples a = (a0, a1, ..., aj..., aN−1), where j is an integer
∈ (0, N − 1) and N is the number of samples in the sequence, to another
discrete sequence of frequency coefficients Ak, where k ∈ (0, N − 1).

Ak =
N−1

∑
j=0

e−2πi jk
N aj, (4.1)

which can be inverted to the original sampling sequence:

aj =
1
N

N−1

∑
k=0

e2πi jk
N Ak. (4.2)

Roughly speaking, Aj displays the amount of sinusoidal behavior at the fre-
quency j

N f of signal a, where f is the sampling frequency.

4.1.4 Evaluation of the Margin

Let us now look at a generic example that explains the notion of the margin
in video delivery. We assume that our signal (traffic pattern) is determined
by the video segment duration and the periodical request of segments. We
therefore work with the time-scale introduced by the video segment duration
(ts). For example, for a video segment of duration equal to ts = 2 seconds,
the natural frequency of the periodical behavior in the traffic profile is equal
to fs = 0.5 Hz.

Figs. 4.2a and 4.2b show periodical rectangle-shaped video throughput pat-
terns and a corresponding FFT of the traffic profiles for different video qual-
ities, i.e., each color relates to another representation. The rectangle-shaped
traffic represented with continues green bars, dashed red bars, and blue dot-
ted bars originates due to representations utilizing a channel in a low, mod-
erate, and high manner respectively.
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FIGURE 4.2: (a) shows a sample throughput of different repre-
sentations and (b) shows the corresponding FFT of aforemen-

tioned traffic profiles.

If the traffic of the video delivery is at full capacity and roughly constant,
we suspect that the link is overloaded. The margin value is equal to 0 and,
therefore, below our minimal acceptable values. Such traffic only contains
one peak at 0 Hz in the frequency domain (c.f., Fig. 4.3 the blue representa-
tion). In such a case, we could lower the provided video quality to decrease
the link utilization.

However, if the traffic periodicity is at a high level (c.f., Fig. 4.3 green repre-
sentation), the margin is large, so the link may not be fully utilized, and we
can still improve the quality of the video presented to the user by choosing a
more traffic thirsty representation (e.g., the red representation).

In the frequency domain, the periodical rectangle pattern (c.f., Figs. 4.2a
and 4.2b) contains B[0 Hz] = C ts−tM

ts
traffic at 0 Hz. The video band-

width for higher harmonics n
ts

, where n is an integer, is equal to B[± n
ts
] =

C
nπ sin(nπ ts−tM

ts
) [38] pp. 257. One can verify that for small tM values, i.e.,

tM → 0+, B[ 1
ts
]/B[0 Hz] = 0. Similarly for large tM values, i.e., tM → t−s ,

B[ 1
ts
]/B[0 Hz] = 1. Therefore, the fraction B[ 1

ts
]/B[0 Hz] resides between 0

and 1 for low and high values of the margin between two consecutive video
segments on the downstream respectively.

We believe that the link should operate in a balance between the constant
and periodical traffic (i.e., short margin), we evaluate the margin through the
ratio between the amount of traffic occurring at 1

ts
Hz, where ts denotes the

segment duration, and 0 Hz (i.e., the amount of constant traffic).

To obtain the ratio of traffic B[ 1
ts
]/B[0 Hz], we use the Fast Fourier Transform

(FFT) [39], which transforms discrete traffic patterns in the time domain into
the frequency domain and requires O(N log N) operations with respect to
the number of samples.
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FIGURE 4.3: Figure (a) shows the FFT of best-effort transmis-
sion (b) the FFT for video transmission, c.f. Fig. 4.1 which

presents the traffic profile.

Fig. 4.3a shows the FFT obtained from an example download operation of a
file through the HTTP protocol, i.e., constant traffic. In our example, the FFT
confirms that almost all traffic occurs at 0 Hz indicating a constant function.
Comparing that to a DASH video streaming example in Fig. 4.3b (with ts =
2 seconds), we see a certain amount of traffic at 0 Hz followed by another
smaller peak at fs =

1
2 Hz = 0.5 Hz. As indicated in the previous paragraph,

we use the ratio between the two peaks (amount of traffic at these two fre-
quencies), as the indication of the margin.

According to the Shannon-Nyquist [40] theorem, in order to detect such a
signal, the sampling frequency of traffic shall not be lower than fmin = 2 · fs,
where fs denotes the signal frequency, which in our case corresponds to 1

ts
.

As we operate with sampling frequencies of around 10 Hz, there is no risk of
oversampling. This is due to the fact that the periodicity of a discrete packet-
based transmission will be discovered with sampling rates of around 1000
Hz. For example, if a UE is exchanging packets of size 1500 B = 12000 bits
with throughput of 12 Mbps, data packets will be received at a frequency
of 1000 Hz. Sampling with frequencies higher than this upper bound could
cause the FFT to shift the traffic pattern in the frequency domain from 0 Hz
to around 1000 Hz, as we would have a much higher resolution. In such a
case, our method using the B[ 1

ts
]/B[0 Hz] ratio would stop working. Very

high samplings rates of around 1000 Hz should be therefore avoided due to
the risk of oversampling.
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4.2 Observation of Radio Quality Indicators

We would like to also incorporate the link quality in our algorithm. There
are values reported by the UE used by the eNB to determine the radio qual-
ity and select the modulation and coding scheme (MCS) for the downlink
and uplink channel. Thus radio quality measurements determine the coding
rate, which then affect the maximum achievable throughput for a user. These
measurements thus give us an idea on how good the radio signal connection
between the eNB and UE is and what video quality shall be provided in the
wireless channel.

A brief explanation of the different measured values can be found below. For
a more in depth discussion of the LTE technology, consider [41].

• Reference Signal Received Power (RSRP) is defined as the linear av-
erage over the power contributions (in [W]) of the resource elements
(REs) that carry cell-specific reference signals within the considered
measurement frequency bandwidth [42]. In other words, it represents
the average power received from a single reference signal. It is typically
in a range between −44 dbm and −140 dBm.

• Reference Signal Received Quality (RSRQ) is defined as the ratio
N×RSRP

RSSI , where N is the number of resource blocks (RBs) of the LTE car-
rier RSSI measurement bandwidth. The measurements in the numera-
tor and denominator shall be performed over the same set of resource
blocks [42]. In other words, it measures the signal to interference ratio
on the LTE reference signals and is in the range between −3 dB and
−20 dB

• Receive Signal Strength Indicator (RSSI) is the wide-band received
power within the relevant channel bandwidth [42].

• Channel Quality Index (CQI) is computed by the UE and reported on
the uplink channel to the eNB. It indicates the modulation and coding
rate, which can be handled by the device in the momentary state and
is related to the signal to noise / interference ratio. It is mapped to a
range between 0 and 15.

• Modulation and Coding Scheme (MCS): Depending on the CQI re-
ported by the UE, the eNB selects the MCS, which determines the mod-
ulation and spectral efficiency, essentially determining the maximum
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throughput between the UE and eNB.

TABLE 4.1: The radio signal quality according to the measure-
ment of RSRP and RSRQ

RSRQ [dB] RSRP [dBm]

Signal Quality

Excellent > -5 > -84
Good -6 to -10 -85 to -102
Fair -11 to -15 -103 to -111
Poor < -15 < -112

In our initial measurements, we found that RSRP is the most reliable met-
ric that is used in LTE handovers [43] (c.f., Fig. 4.4). We decided that RSRP
matches our needs as a good and valid indication of channel quality that
could control the video transmission, i.e., scaling the video representations
up and down. In order to to this, we use a simple threshold mechanism
degrading video quality if a heavy drop in the measured RSRP was lately
detected. However, other mechanisms such as restricting certain video qual-
ities completely depending on the RSRP values, e.g., in poor radio signal
conditions could be considered. It could, however, waste resources avoiding
streaming of high quality representations. Unlike other contributions [23, 11],
we do not use CQIs to assess the channel capacity. The problem of matching
CQIs to channel capacity depends on technology, frequency, environment,
vendor, radio scheduling, and hardware. Therefore, it is not feasible to derive
exact tables matching CQIs and the desired rate of video delivery in a mobile
system. Moreover, the use of CQIs does not apply to congested networks,
in which the data-rate is limited by the system capacity (e.g., the number of
available PRBs was reached).
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FIGURE 4.4: The results from different test runs comparing the
RSRP (a), RSRQ (b), MCS (c) and CQI (d)
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4.3 Algorithm for Restricting Video Qualities in

DASH

In previous sections of this Chapter, we elaborated on properties of DASH-
based video delivery in mobile networks (c.f., Sec. 4.1 and Sec. 4.2). This
section now describes an algorithm that processes information obtained from
RNIS and controlling the video quality provided towards end-users.

Algorithm 3 Simplified algorithm that is based on radio link utilization and
received radio signal power.

1: procedure MAIN LOOP(T, i) . Duration T of video and interval i of
sampling

2:
3: t← 0 . Counter variable running from 0 to T/i
4: x ← segment duration
5: delay← time period (e.g., 1 sec)
6: maxΓ ← max tolerated RSRP drop (e.g., 5)
7: min∆ ← min margin (e.g., 0.04)
8: max∆ ← max margin (e.g., 0.4)
9:

10: . As long as the video is playing
11: while t <= T

i do
12: St = getStats() . Get stats from RNIS
13:
14: if St.rsrp− S

t− delay
i

.rsrp > maxΓ then

15: Video representation scale down; (c.f., Fig. 4.5a)
16:
17: . Run a FFT over the last sampled data with rate i
18: fft = runFFT(

St− x
i
.throughput, St− x

i +1.throughput, ...,
St.throughput, i)

19:
20: fft0 = fft.0
21: fft 1

x
= fft. 1

x
22:

23: if
fft 1

x
fft0

>= max∆ then
24: Video representation scale up; (c.f., Fig. 4.5b)

25: if
fft 1

x
fft0

<= min∆ then
26: Video representation scale down; (c.f., Fig. 4.5a)
27:
28: t = t + 1
29: sleep(i)
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Algorithm 3 is a novel algorithm, which controls the available video quali-
ties for a user over time. To summarize, it limits the available video repre-
sentations, if the RSRP decreases more than maxΓ, a heuristically determined
threshold, in a given time interval or the margin between the transmission
of two segments is below a predefined threshold min∆ indicating that the
radio link is overloaded and the video quality should be decreased. It also
increases the video quality, if the margin is above a certain threshold max∆

meaning that the link is idle. If any of the above mentioned conditions is
fulfilled, then the users MPD file is modified according to a "scale-down"
or "scale-up" action. In the scale-up operation, the lowest available video
quality is replaced with the next higher, not yet included video quality (c.f.,
Fig. 4.5b). Similarly, scale-down refers to the process of replacing the highest
video representation with the next lower one available (c.f., Fig. 4.5a).
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FIGURE 4.5: The concept of going down (a) and up (b) with
available video qualities.

Please note, that in Fig. 4.5 the representations in the MPD file refer to video
qualities and bitrates required by corresponding representations in an as-
cending order, i.e., #1 ≺ #2 ≺ #3 . . . and the lowest quality is provided by
representation #1.

In our measurements, we identified all the aforementioned thresholds
heuristically (c.f., Sec. 5.1).

Potentially, machine learning approaches could be used as well to control
the quality of the video definition. These approaches, however, are out
of the scope of this work, but could be considered in future research (c.f.,
Sec. 7.2).
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Chapter 5

Experiment Design and Target
Values

This Chapter provides an overview of the setup, explains the motivation of
our experiments (c.f., Sec. 5.1), and discusses the measured and calculated
values (c.f., Sec. 5.2).

5.1 Experiment Design

In our experiments, we work in a real-world radio scenario using a setup as
presented in Sec. 3.4. We establish an OpenAirInterface-based [27] LTE eNB
providing cellular coverage in LTE FDD Band7 (2.5 GHz / 2.6 GHz) span-
ning an office space. We evaluate a femto-cell scenario (e.g., an office space,
train station, etc.) as a user moves inside a building and the eNB antenna
output power is small and equal to 10 dBm1. At the moment, due to setup
limitations, the eNB and video service are only handling one user, but we
expect to apply our work without any changes to multi-user scenarios. We
do not expect interactions between our algorithm and the radio scheduler, as
the eNB establishes the shared channel for every user independently using
an arbitrary scheduling algorithm [44] operating at the granularity of the LTE
Transmission Time Interval (TTI), which is 1 ms in the case of LTE FDD, and,
thus, shall not introduce periodicity at the level of video segment durations.
Furthermore, we believe that our work is equally well applicable in macro-
cells, i.e., when the radio coverage is provided by an antenna of higher power
(e.g., BTS) over a larger area, while our technique shall not be influenced by
the scale of the setup.

1A typical WiFi Access Point provides an output transmission power of 15 dBm.
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In the experiment a notebook is provided with Internet access through tether-
ing (i.e., the smart phone provides WiFi signal for the notebook). The smart
phone itself is connected to the mobile network and receives the LTE sig-
nal from the eNB (c.f., Table 5.1). The UE, i.e., smart phone, is then moving
during 90 seconds inside an office and a hallway according to a predefined
moving pattern (c.f., Fig. 5.1). At the same time the video is streamed on
the notebook from the video service, which resides in the ME cloud, and the
RNIS is regularly assessing the channel occupancy / quality.

TABLE 5.1: The specification of the devices involved in our ex-
periment.

Device CPU RAM Usage

Farnsworth i7-4790 CPU @
3.60GHz

32 GB running OAI-eNB

Dell R530
servers

48 Intel Xeon @
2.5 GHz

192 GB running the OAI-EPC,
FlexRAN and the video
service

Moto G22 1.2 GHz 1 GB used to connect to the eNB
HP Pavil-
ion

i7-720QM CPU
@ 1.6 GHz

8 GB tethered to the phone,
streaming a video from the
video server using MP4Client

The movement of the user is depicted in Fig. 5.1. We stay at point A at 0 to
15 s, move from A to point B in 5 s, stay in point B between 20 and 35 s, and
move from B to C in 6 s. Then, we stay in C between 41 and 60 s, before
we go back to B again and stay there between 66 and 90 s. At each point
we experience different radio signal levels and qualities, so that on the way
between A to C, and C to B, we experience decreasing and increasing signal
levels (c.f., Table 5.2) respectively.

Finally, we use two different client-side adaptation algorithms (i.e.,
throughput- and buffer-based).

i) We run an experiment for edge DASH streaming, in which the video server
is instantiated on the MEC cloud, provides a static MPD file without any
adaptations from the MEC SD-RAN controller. We will call it regular DASH,
even though the video server resides at the mobile edge.

ii) We also examine MEC-assisted DASH streaming, in which the video
server, again residing at the mobile edge, periodically updates the MPD file
according to the algorithm specified in Sec. 4.3. The algorithm uses the infor-
mation delivered by the MEC SD-RAN controller. For simplicity, we use the
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platform
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Network

Video 

Server

RAN

Internet

Office

Hallway

FIGURE 5.1: The movement of the user in the femto-cell, simu-
lating various radio signal conditions.

TABLE 5.2: Description of the different points and experienced
signal quality and throughput.

Point Description Average
RSRP

Average
RSRQ

Max.
Through-
put

A Starting point and closest
point to the base station, pro-
vides the best signal quality.

-86 dBm -9 dB 9 Mb/s

B The intermediate point, as the
signal is blocked by some ob-
stacle (e.g. walls) we received
a lower signal strength and
also a lower signal quality.

-103 dBm -7 dB 8 Mb/s

C The furthest point from the an-
tenna, provided the lowest sig-
nal quality and strength.

-112 dBm -9 db 6.5 Mb/s

notion regular DASH to refer to regular throughput- and buffer-based DASH
streaming, where, however, the video server is already residing in the MEC
cloud, and MEC DASH to refer to our improvements using the novel MEC-
assisted approach presented in this work.

In our algorithm (c.f., Sec. 4.3), we use the following set of parameters:
delay = 1 s and maxΓ = 5 for the RSRP degradation and max∆ = 0.4,
min∆ = 0.04 for the margin settings. We use the DASH video mentioned
in Sec. 3.8 with segment duration of 2 seconds each. Please consult Chapter 4
for a more detailed explanation of radio quality variations and the required
margin parameters in DASH-video delivery.
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Due to a high variance of DASH streaming, we compare the average values
of our target values on a statistical basis (c.f., Sec. 5.2) for a series of ten mea-
surements for each streaming technique. Please note, that our measurements
and comparison is very challenging, as we compare two methods of video
delivery residing very close to the user (i.e., network edge).

5.2 Target Values for the Evaluation

Our target is to improve the video quality provided to the user. In static
networks of constant bandwidth and latency, there is no problem of provid-
ing a smooth, continuous stream of high quality video segments. However,
in mobile situations, we expect the varying network conditions, highly de-
pending on the radio signal quality received by the user. As the target values
for our measurements, we identify the video quality presented to the user
(i.e., representation with respect to Table 3.1) as well as the buffer fill level
(i.e., the pre-fetched video content available at the client for a couple of sub-
sequent seconds), which influences on how much the stream is vulnerable to
a stall. These two values together present an objective measurement of the
video quality provided, which highly impacts on the user perceived Quality
of Experience (QoE).

In the evaluation of our work, we consider the Adaptability (A) and Adapta-
tion Frequency (AF) as defined by Karagkioules et al. [33] (c.f., Equations 5.1
and 5.2).

A =
1
K

K

∑
i=1

Ri

min(RN, Ci)
(5.1)

In Eq. 5.1, Ci denotes the average throughput available to the client, Ri stands
for the bit rate of the i-th segment and RN is the bit rate of the lowest repre-
sentation, i.e., lowest video quality. In optimal video delivery using an opti-
mal bit rate, A should be 1. Generally speaking, A values above 1 represent
too aggressive algorithms demanding too much throughput over-saturating
the link, while values below 1 represent too passive algorithms, which sub-
optimally utilize the channel capacity.
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AF =
∑K−1

i=1 (1− δRiRi+1)

K
(5.2)

In Eq. 5.2, δ is the Kronecker delta, which returns 1 if Ri = Ri+1 and 0 oth-
erwise; K is the total number of streamed segments. This value shows how
often the algorithm changes the video definition providing a variable video
quality towards end-users, which may negatively impact on the QoE. AF re-
sides close to 0 for optimal solutions. Values close to 1 are received for very
poor solutions.
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Chapter 6

Results

In this Chapter, we discuss the results of our measurements. Our exper-
iments are performed on a setup presented in Sec. 5.1. We discuss and
compare the state-of-the art adaptation algorithms against our MEC-assisted
adaptation techniques. First, we present results of each adaptation algorithm
running 10 times on a statistical basis. Second, we compare performance of
different algorithms using statistical analysis.

6.1 Experiments with Buffer-Based DASH

In the subsequent sections, we present the results obtained by the buffer-
based adaptation algorithm as described in Sec. 2.3.4. We expect that the
buffer-based adaptation provides a reasonable buffer fill level combined with
a passive (i.e., not aggressive) request for segments of extended video defini-
tions.

6.1.1 Regular Buffer-Based DASH

In this section we discuss the results from buffer-based DASH. Although,
the video server resides at the network edge, we call this regular buffer-
based DASH, as we do not take the mobile edge capabilities into account.
Fig. 6.1a shows the quality of received segments against the segment num-
ber and Fig. 6.1b illustrates the buffer fill level against time. Notice that video
segment length is equal to 2 seconds. Therefore, the time in an experiment
roughly translates to segment number according to t = segment number · 2 s.
First, we notice that the progression in video quality provided is similar in
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all experiments until segment #20. Please notice that due to a passive buffer-
based adaptation, we only experience a step-by-step increase of the video
quality. After, we experience a huge variance in the video quality as well
as buffer fill level in individual measurements (c.f., Fig. 6.1). The necessary
bandwidth is still large enough when moving between points A and B. We,
therefore, keep the buffer fill at a steady level up to 35 seconds (c.f., Fig. 6.1b),
but the video quality constantly increases up to segment #25 (c.f., Fig. 6.1a).
However, when the video quality becomes good enough, i.e., saturating the
link, we witness a steep decline of the buffer fill level, when moving towards
location C with bad reception (c.f., Fig. 6.1b between 40 and 60 seconds). As
the buffer level decreases, we become more prone to a video stall, and the
client begins to reduce the video quality (c.f., Fig. 6.1a from segment #30 on)
to quickly refill the buffer. Finally, between 60 and 70 seconds, we move back
towards point B and the signal quality increases. The buffer level is then
quickly refilled and kept at a stable level.
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FIGURE 6.1: (a) shows the requested segment quality against
the segment number and (b) illustrates the buffer fill level over

time for each experiment in buffer-based DASH.

Figs. 6.2a-6.2d show the measured channel quality and throughput over time.
Again, each color represents one measurement. We can see that all measure-
ments of RSRP values stick together (c.f., Fig. 6.2a), while other signal quality
indicators, such as RSRQ or CQI vary a lot (c.f., Figs. 6.2b and 6.2c). This cor-
responds to the findings of our first measurements, where we observed the
behavior of the signal quality indicators for a a given moving pattern (c.f. 4.4).
Furthermore, in Fig. 6.2d, the individual periodical throughput peaks (c.f.,
Sec. 4.1) are clearly visible.

Table 6.1 provides a summary of the experiment showing the most important
metrics captured with their minimum, average, and maximum values for all
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FIGURE 6.2: (a) shows the RSRP, (b) the RSRQ, (c) the CQI
value, and (d) shows the average throughput over time respec-

tively.

of 10 buffer-based DASH experiments. The upper half of the table provides
values obtained from the GPAC MP4Client video player, while the lower half
contains values obtained from the SD-RAN FlexRAN platform.

TABLE 6.1: The results obtained by regular, buffer-based
DASH.

minimum average maximum

Representation [ID] 1 6 10
Buffer size [ms] 1966 10332 15825
Adaptability 0.3158 0.4071 0.6545
Adaption Frequency 0.2 0.2753 0.3272
RSRP [dBm] -120 -101 -79
RSRQ [dB] -13 -7 -4
CQI 4 13 15
MCS 4 25 28
Throughput [B/s] 0 579980 2025937
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6.1.2 MEC-Assisted DASH

In the subsequent sections, we study the buffer-based adaptation algorithm
using our MEC-assisted algorithm (c.f., Sec. 4.3) with and without the con-
sideration of the radio signal quality, but we always consider the margin (c.f.,
Algorithm 3).

MEC-Assisted DASH with Margin and Signal Consideration

We repeat the same experiment 10 times (c.f., Sec. 6.1.1) , but this time, we
study our novel MEC-assisted approach using the margin and signal quality
as an indication that helps us to control available representations. Again, we
plot the representation and buffer fill level against segment number and time
respectively (c.f., Fig. 6.3). We observe that the variance between individual
measurements increases. However, sometimes, we experience lower video
qualities (c.f., Fig. 6.3a, e.g., red line seg. #15). The video quality generally
tends to improve faster (c.f., Fig. 6.3a) than in the case of regular DASH (c.f.,
Fig. 6.1a). In Fig. 6.3b, we also notice an almost empty buffer throughout an
extended period of time compared to the previous measurements in regular
buffer-based DASH (c.f., Fig. 6.1b). Furthermore, the buffer fill level shows
a high variance compared to regular buffer-based DASH (c.f., Figs. 6.3b and
6.1b). It is not possible to compare individual experiments directly, so we
average them to allow for a fair comparison (c.f., Sec. 6.1.3).
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FIGURE 6.3: (a) shows the received qualities of each segment
and (b) the buffer fill level over time.

Considering signal qualities and throughput measured, c.f., Fig 6.4, we again
notice a similar pattern in link-related values (c.f., Sec. 6.1.1), i.e., de-/in-
creasing power-related profiles depending on the position of the user and
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also the DASH specific traffic pattern (c.f., Sec. 4.1, which is enforced by the
algorithm keeping an appropriate buffer level.
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FIGURE 6.4: (a) shows the RSRP, (b) the RSRQ, (c) the CQI
value, and (d) the average throughput over time respectively.

TABLE 6.2: The results obtained by MEC-assisted, buffer-based
DASH.

minimum average maximum

Representation [ID] 1 7 10
Buffer size [ms] 1966 9539 15857
Adaptability 0.4 0.4603 0.5472
Adaption Frequency 0.1923 0.2213 0.2641
RSRP [dBm] -121 -101 -79
RSRQ [dB] -12 -7 -4
CQI 4 13 15
MCS 4 25 28
Throughput [B/s] 0 734374 1966767
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MEC-Assisted DASH with Margin Consideration Only

As before (c.f., Sec. 6.1.2), we run the same experiment 10 times with a buffer-
based client adaptation. This time, we use the MEC-assisted algorithm (c.f.,
Algorithm 3) with the margin consideration, but we do not rely on the sig-
nal quality condition (c.f., Algorithm 3 line 14-15) to adapt available video
qualities towards the client. We keep the same parameter values in all exper-
iments. However, this time maxΓ and delay, used to indicate the maximum
derivation of the signal quality, are ignored, as they are not considered by the
studied algorithm.

Fig. 6.5a shows that the video stream experiences less variances in the quality
of video segments compared to MEC-assisted DASH with margin and signal
consideration (c.f., Fig. 6.3a from segment #10 to #28). However, the buffer
fill level in the MEC-assisted DASH with margin consideration only, suffers
from network overload (c.f., Fig. 6.5b) as the algorithm provides video rep-
resentations above the network capacity and, thus, leads to low buffer fill
levels and possible stalls (c.f., Fig. 6.5b between 40 and 80 seconds).
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FIGURE 6.5: (a) displays segment quality against segment num-
ber and (b) the buffer fill level over time in MEC-assisted DASH

with margin consideration only.

Again, measurements of the signal quality are provided in Fig. 6.6. Most
of individual experiments show a big variance. However, the received RSRP
values tend to stick closely together. Furthermore, Fig. 6.6d shows a fully sat-
urated link. Thus, the video service provides too high video qualities during
the experiment (except the beginning).



6.1. Experiments with Buffer-Based DASH 55

0 20 40 60 80
time [s]

120

110

100

90

80

sig
na

l p
ow

er
 [d

Bm
]

(a)

0 20 40 60 80
time [s]

18

16

14

12

10

8

6

4

sig
na

l q
ua

lit
y 

[d
B]

(b)

0 20 40 60 80
time [s]

2

4

6

8

10

12

14

ch
an

ne
l q

ua
lit

y 
in

de
x 

(C
QI

)

(c)

0 20 40 60 80
time [s]

0

250

500

750

1000

1250

1500

1750

2000

th
ro

ug
hp

ut
 [K

B/
s]

(d)

FIGURE 6.6: (a) displays the RSRP, (b) the RSRQ, (c) the CQI
value, and (d) the average throughput over time respectively.

6.1.3 Comparison of Regular DASH and MEC-Assisted

DASH using Buffer-Based Adaptation Technique

As the variance of individual measurements is very high in terms of video
quality and buffer fill level, we use the statistical average over 10 measure-
ments to make a fair comparison between buffer-based DASH with and
without the assistance of MEC. Fig. 6.7a shows the average representation
against the segment number, while Fig. 6.7b illustrates the buffer fill level
over time.

We can clearly see the improvement provided by MEC-assisted DASH deliv-
ering the extended video quality in the first segments (c.f., Fig. 6.7a between
segment #10-#20), which results in a faster adaptation to the network capac-
ity in the beginning than for regular, passive DASH. However, MEC-assisted
DASH then experiences a lower buffer level, which equals to 50% of the
buffer level experienced by regular DASH, c.f., Fig. 6.7b between 25-40 sec-
onds, which happens when the UE stays in B or moves from B to C and when
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a medium/poor signal quality occurs. As a result, MEC-assisted DASH with
signal consideration pro-actively decreases the video quality and, thus, keeps
the buffer level stable or even increases it from 40 seconds onwards (c.f.,
Fig. 6.7b). While both, regular DASH and MEC-assisted DASH with mar-
gin consideration only (i.e., without taking RSRP into account) fail to antic-
ipate the decreasing radio signal conditions and, thus, continue to deliver
segments of high quality for a longer period of time, MEC-assisted DASH
with margin and signal consideration can (on average) keep the buffer at a
higher level (c.f. Fig 6.7b between 50 and 70 seconds). Using MEC-assisted
DASH, we not only keep the buffer at a reasonable fill-level during the mo-
bility phases (c.f., Fig. 6.7b between 20-60 seconds) but keep the video quality
at a more stable level (c.f., Fig. 6.7a segment #25-#40), resulting in a less ag-
gressive adaptation (c.f., Sec. 6.3). Thus, over the entire experiment, we can
provide a better video quality and QoE to the user in comparison to the reg-
ular DASH.
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FIGURE 6.7: The average segment quality (a) and buffer fill
level (b) from the different adaptation techniques using buffer-

based streaming.

Fig. 6.8 displays similar average RSRP values, but different traffic patterns
depending on the adaptation algorithm considered. Please notice that the ex-
periment titled “MEC DASH margin only”, i.e. without taking into account
RSRP values, c.f., Fig 6.14a, turquoise line, was carried out at a different mo-
ment than other experiments, so the signal profile differs. We were unable
to tune the setup to receive the same signal profile as before. This can be ex-
plained by the position of the eNB antenna or other environmental factors.
For example, the antenna could slightly change the position in comparison to
previous experiments (c.f., Fig. 5.1) and, thus, we experience a less powerful
signal at same points. However, our “MEC DASH margin only” experiment
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does not consider signal qualities and, therefore, the impact of the decreased
received power shall be minimal.

Furthermore, in Fig. 6.14b, the peaks in the traffic pattern are less visible,
as the delivery of the segments in the different experiments may be a little
shifted, due to different download speeds and segment qualities and, thus,
result in a wider peak.

We witness differences among the considered adaptation algorithms. Reg-
ular DASH and MEC-assisted DASH provide similar traffic profiles except
of transmission beginnings (i.e., the reception of a few first segments in the
video streaming). “MEC DASH with margin only” always provides a too
high video quality and, thus, saturates the link (c.f., Fig. 6.14b). We suspect
that the over-provisioning of video quality could be prevented by using dif-
ferent parameters in our algorithm (c.f., Algorithm 3). However, no tests
were performed in this particular research direction.
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FIGURE 6.8: The averaged values for the signal quality (a)
and throughput (b) measurements obtained by each individual

adaptation algorithm using buffer-based streaming.

6.2 Experiments with Throughput-Based

DASH

Again, we perform the same experiment (c.f., Sec. 6.1.1 and 6.1.2) for
throughput-based adaptation. We studied regular state-of-the-art DASH and
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our novel MEC DASH approach. As Karagkioules et al. [17] suggest, we ex-
pect a much more volatile video quality for throughput-based DASH. Fur-
thermore, the video quality may be oscillating around the optimal quality
and the buffer fill level shall be low values. This adaptation algorithm could
have a negative effect on the perceived QoE, but we also compare it against
our MEC-assisted adaptation.

6.2.1 Regular Throughput-Based DASH

Fig 6.9a shows the video quality against segment number and Fig. 6.9b dis-
plays the buffer fill level against time. We immediately notice that the video
quality is much more volatile, changing rapidly, and maintaining constant
values for only a few segments. Furthermore, we notice that the buffer
is almost never filled completely, and we, therefore, experience stalls, c.f.,
Fig. 6.9b, e.g., blue line between 40 and 70 seconds. We also notice that the
drop in the buffer level is clearly correlated with mobility in our experiments,
i.e., the buffer decreases mostly when a UE moves towards points of worse
reception and increases when moving towards regions of better radio signal
quality (c.f., Fig. 6.9b at 20, 40 and 65 seconds).
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FIGURE 6.9: (a) shows the requested segment quality against
the segment number and (b) displays the buffer fill level over

time for each experiments in throughput-based DASH.

Figs. 6.10a-6.10d show the radio signal quality and throughput as reported
by FlexRAN. We notice that the signal quality is very similar for all measure-
ments; the plots may be a little bit different, i.e., shifted, as we do not move
exactly at the same time or stay at exact same positions. As in previous ex-
periments (c.f., Sec. 6.1.1 and 6.1.2), Figs. 6.10a-6.10d provide a good insight
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on the received signal quality. Fig. 6.10a shows the average throughput in a
0.1 seconds interval. We can clearly see that the traffic increases quickly at
the the beginning and looks similar to our MEC-DASH approach with the
buffer-based adaptation (c.f., Figs. 6.4d and 6.10d). Furthermore, the peaks
of the individual segment requests are no longer visible and the margin be-
tween them almost disappear, which indicate that we momentarily overload
the channel.
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FIGURE 6.10: (a) displays the RSRP, (b) the RSRQ, (c) the CQI
value and (d) the average throughput over time respectively.
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TABLE 6.3: The results obtained by regular, throughput-based
DASH.

minimum average maximum

Representation [ID] 1 8 10
Buffer size [ms] 0 6710 15122
Adaptability 0.36 0.6591 0.88
Adaption Frequency 0.3272 0.4539 0.58
RSRP [dBm] -119 -101 -80
RSRQ [dB] -12 -8 -4
CQI 4 13 15
MCS 4 25 28
Throughput [B/s] 0 833391 2065702

6.2.2 MEC-Assisted DASH with Margin and Signal Consid-

eration

Fig. 6.11a shows the video quality of the individual segments and Fig. 6.11b
displays the buffer fill level over time. Undoubtedly, we find that the video
quality is much less volatile and more stable (c.f., Figs. 6.9a and 6.11a). Fur-
thermore, on average, we experience a good video quality, and as we do
not over-provision video quality, the buffer level is kept at a significantly
higher level. Overall, the video quality and quality of experience is satisfy-
ing for the user, as in none of the experiments, we get close to stalling the
video; the video streams continuously in a quality above representation #5
(c.f., Fig. 6.11a). It is, however, noticeable that we always experience a drop
of about 50% in the buffer level, as we are moving away from the eNB, c.f.,
Fig. 6.11b upon a move between points B and C at around 40 seconds as well
as between points C and B shortly after 60 seconds. However, due to the
enforcement of the margin and the consideration of the signal quality in the
MEC-assisted adaptation, we can increase the overall video quality.

In Figs. 6.12a-6.12c, we display the changes of the signal quality over time.
Again (c.f., Sec. 6.1.1 and 6.1.2), we witness that the performance of the RSRP
value (c.f., Fig. 6.12a) provides the best estimation of the signal quality. We
notice that in Fig. 6.12d, the individual traffic peaks are much more visible.
This indicates that, indeed, our margin is kept at the reasonable level and the
video service does not overload the link with a too high video quality.
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FIGURE 6.11: (a) displays the representation of the individual
segments and (b) shows the buffer fill level over time.
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FIGURE 6.12: (a) shows the development of the RSRP, (b) of the
RSRQ and (c) the CQI value over time respectively. (d) shows

the average throughput over a 0.1 seconds interval.
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TABLE 6.4: The results obtained by MEC-assisted, throughput-
based DASH.

minimum average maximum

Representation [ID] 1 8 10
Buffer size [ms] 1966 11080 15587
Adaptability 0.3725 0.5001 0.5961
Adaption Frequency 0.1296 0.2025 0.2692
RSRP [dBm] -121 -101 -79
RSRQ [dB] -12 -8 -4
CQI 2 13 15
MCS 1 24 28
Throughput [B/s] 0 871253 2045224
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6.2.3 Comparison of Regular DASH and MEC-Assisted

DASH using Throughput-Based Adaptation Tech-

nique

Again (c.f., Sec. 6.1.1 and 6.1.2), we use the statistical average over 10 individ-
ual measurements to compare throughput-based DASH against throughput-
based MEC-assisted DASH. In Fig. 6.13a, we display the average representa-
tion quality against segment number and in Fig. 6.13b we show the buffer fill
level against time. Fig. 6.13b shows that upon mobility (from 15-60 seconds),
MEC-assisted DASH provides a buffer level, which is about twice as large as
in regular throughput-based DASH. At the same time, we limit the number
of representation changes and keep the video quality at an appropriate level
(between representations #7 and #9). It becomes clear that the MEC-assisted
DASH approach provides a better context aware streaming algorithm and,
thus, improves the overall quality provided to the user.

Comparing the averaged signal power value, c.f., Fig. 6.14a, we see that the
experiments were performed in an almost identical setup and that there is a
small variance in the signal power received by the user. Please also consider
Figs. 6.14b and 6.13a. Until segment #10, both algorithms display similar per-
formance, which is reflected in Fig. 6.14b, as comparable average throughput
until t=20 seconds. Then, the MEC DASH algorithm provides slightly less
throughput from 20 up to 60 seconds, which corresponds to segments be-
tween #10 and #30 in Fig. 6.13a.
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FIGURE 6.13: A statistical comparison of our MEC-assisted im-
plementation and the regular rate-based implementation.
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We also notice that the throughput-based adaptation immediately provides
the user with very high video quality without the establishment of an appro-
priate buffer level. This is a huge difference in comparison to the buffer-based
adaptation (c.f., Sec. 6.1).
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FIGURE 6.14: The averaged values of the signal quality (a) and
throughput (b) measurements of each individual adaptation al-

gorithm using rate-based streaming.

6.3 Discussion

In previous sections (c.f., Secs. 6.1.1– 6.2.2), we showed the results from our
measurements and compared regular buffer-/throughput-based adaptation
algorithms against our novel MEC-assisted video delivery scheme with re-
spect to the video quality and buffer fill level provided.

Let us now have a closer look at the Adaptability (A) and Adaptation Fre-
quency (AF) of different algorithms (c.f., Sec. 5.2). Figs. 6.15a and 6.15b
show the average Adaptability and the average Adaptation Frequency of
each measured adaptation algorithm with the min/max deviation.

Again, we notice a very large variance between the individual measure-
ments, i.e., the min/max deviation is very large (c.f., Fig. 6.15). As we limit
the available video qualities towards the end-user, the MEC-assisted DASH
tends to provide a lower AF (c.f., Fig. 6.15b), i.e., fewer changes in qual-
ity are done, and at the same time, we also limit the deviation between the
individual measurements. This means that using MEC in both buffer- and
throughput-based DASH, we can provide a user with a video stream of a
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more consistent quality. This is obviously an improvement of the QoE ex-
perienced by users. Regarding A, c.f., Fig. 6.15a, we need to distinguish
between buffer- and throughput-based adaptation. Compared to regular
buffer-based adaptation, in throughput-based adaptation, we can benefit
from a faster adaptation to high quality and, thus, load the link more ap-
propriately, which, on average, provides a slightly higher adaptability. As
we see, in throughput-based MEC-assisted adaptation, we generally tend to
be more cautious, i.e., we do not overload the link, and keep the margin.
Thus, we do not tend to use the entire link capacity, which results in a lower
A value (c.f., Fig. 6.15a).
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FIGURE 6.15: The five algorithms considered compared in
terms of Adaptation Frequency (AF) and Adaptability (A).

Although the variation in individual measurements is high, our algorithms
improve the statistical quality of the video stream as demonstrated by differ-
ent key performance indicators (e.g., segment quality, buffer fill level, adap-
tation frequency). Our improvements are highly visible in the case of video
streaming with throughput-based adaptation, while the video stream dis-
plays much better performance in experiments, in which the MEC-assisted
adaptation is deployed.
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Chapter 7

Conclusions

7.1 Summary

As indicated by Karagkioules et al. [33], the development of a robust algo-
rithm that provides high video qualities under varying conditions experi-
enced in mobile networks is still a major research challenge.

In our work on video delivery in mobile networks, we combine radio net-
work information to improve certain characteristics of mobile video stream-
ing in regular state-of-the-art DASH AVC. In a proof of concept implemen-
tation, we developed a MEC platform hosting a video service relying on a
server-side adaptation technique, which matches the momentary radio link
quality with a desirable video quality. We conducted several real-world ex-
periments in a femto-cell scenario testing the algorithm developed.

In our experiments we observed different behaviors depending on the video
adaptation mechanism used at the client. The results showed that on av-
erage MEC-assisted DASH improved the overall delivered video quality,
no matter which client-side adaptation (e.g., buffer-, throughput-based) was
used. We observed a better average video quality and at the same time ex-
perienced fewer changes in quality (lower adaptation frequency) and an ex-
tended buffer fill-level. Our results, therefore, suggest that a RAN aware
video service can, indeed, improve the video quality provided towards the
user in mobile networks.
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7.2 Future Work

In future research, we would like to evaluate the optimal parameters of our
algorithm, i.e., to determine the minimum and maximum thresholds to pro-
vide lower and higher video quality respectively and the optimal periodicity
of downloading the dynamic MPD file, which may be segment-duration de-
pendent. Moreover, we plan to evaluate different adaptation strategies at the
video server restricting the available video qualities.

Furthermore, we plan to include Artificial Intelligence (AI) to detect the traf-
fic pattern/segment duration in traffic carrying multiple video-streams. We
also want to use the information on mobility prediction to anticipate the user
location and signal quality.
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Appendix A

Software Configuration

A.1 Commands to build and run the FlexRAN

controller and eNB

To build and run the FlexRAN controller module, we used the following
commands:

Build: ./build_flexran_rtc.sh

Run: ./run_flexran_rtc.sh

To build and run the eNB, with the co located FlexRAN agent, the commands
are as follows:

Build: ./build_oai -a -c -C –eNB -w USRP

Run: ./lte-softmodem -O enb.band7.tm1.25PRB.usrpb210.conf -S

–ulsch-max-errors 100000

Where enb.band7.tm1.25PRB.usrpb210.conf references to the configuration
file of the OAI-eNB, c.f., Appendix A.3.

A.2 Configuration Files of the OAI Core Net-

work

LISTING A.1: Configuration file of HSS

1 ####################################################################
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2 # Licensed to the OpenAirInterface (OAI) Software Alliance under

one or more

3 # contributor license agreements. See the NOTICE file distributed

with

4 # this work for additional information regarding copyright

ownership.

5 # The OpenAirInterface Software Alliance licenses this file to You

under

6 # the Apache License, Version 2.0 (the "License"); you may not

use this file

7 # except in compliance with the License.

8 # You may obtain a copy of the License at

9 #

10 # http://www.apache.org/licenses/LICENSE-2.0

11 #

12 # Unless required by applicable law or agreed to in writing,

software

13 # distributed under the License is distributed on an "AS IS" BASIS,

14 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

15 # See the License for the specific language governing permissions

and

16 # limitations under the License.

17 #-------------------------------------------------------------------

18 # For more information about the OpenAirInterface (OAI) Software

Alliance:

19 # contact@openairinterface.org

20 ####################################################################

21 HSS :

22 {

23 ## MySQL mandatory options

24 MYSQL_server = "127.0.0.1"; # HSS S6a bind address

25 MYSQL_user = "@MYSQL_user@"; # Database server login

26 MYSQL_pass = "@MYSQL_pass@"; # Database server password

27 MYSQL_db = "oai_db"; # Your database name

28

29 ## HSS options

30 OPERATOR_key = "1006020f0a478bf6b699f15c062e42b3"; # OP key

matching your database

31 #OPERATOR_key = "11111111111111111111111111111111"; # OP key

matching your database
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32

33 RANDOM = "true"; # True random

or only pseudo random (for subscriber vector generation)

34

35 ## Freediameter options

36 FD_conf = "/usr/local/etc/oai/freeDiameter/hss_fd.conf";

37 };

LISTING A.2: Configuration file of S/PGW

1 ####################################################################

2 # Licensed to the OpenAirInterface (OAI) Software Alliance under

one or more

3 # contributor license agreements. See the NOTICE file distributed

with

4 # this work for additional information regarding copyright

ownership.

5 # The OpenAirInterface Software Alliance licenses this file to You

under

6 # the Apache License, Version 2.0 (the "License"); you may not

use this file

7 # except in compliance with the License.

8 # You may obtain a copy of the License at

9 #

10 # http://www.apache.org/licenses/LICENSE-2.0

11 #

12 # Unless required by applicable law or agreed to in writing,

software

13 # distributed under the License is distributed on an "AS IS" BASIS,

14 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

15 # See the License for the specific language governing permissions

and

16 # limitations under the License.

17 #-------------------------------------------------------------------

18 # For more information about the OpenAirInterface (OAI) Software

Alliance:

19 # contact@openairinterface.org

20 ####################################################################

21 S-GW :

22 {
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23 NETWORK_INTERFACES :

24 {

25 # S-GW binded interface for S11 communication (GTPV2-C),

if none selected the ITTI message interface is used

26 SGW_INTERFACE_NAME_FOR_S11 = "ens3";

# STRING, interface name, YOUR NETWORK CONFIG

HERE

27 SGW_IPV4_ADDRESS_FOR_S11 =

"130.92.70.164/24"; # STRING, CIDR, YOUR NETWORK

CONFIG HERE

28

29 # S-GW binded interface for S1-U communication (GTPV1-U)

can be ethernet interface, virtual ethernet interface, we don’t

advise wireless interfaces

30 SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP = "ens3";

# STRING, interface name, YOUR NETWORK CONFIG

HERE, USE "lo" if S-GW run on eNB host

31 SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP =

"130.92.70.164/24"; # STRING, CIDR, YOUR NETWORK

CONFIG HERE

32 SGW_IPV4_PORT_FOR_S1U_S12_S4_UP = 2152;

# INTEGER, port number, PREFER NOT CHANGE UNLESS

YOU KNOW WHAT YOU ARE DOING

33

34 # S-GW binded interface for S5 or S8 communication, not

implemented, so leave it to none

35 SGW_INTERFACE_NAME_FOR_S5_S8_UP = "none";

# STRING, interface name, DO NOT CHANGE (NOT

IMPLEMENTED YET)

36 SGW_IPV4_ADDRESS_FOR_S5_S8_UP = "0.0.0.0/24";

# STRING, CIDR, DO NOT CHANGE (NOT IMPLEMENTED YET)

37 };

38

39 INTERTASK_INTERFACE :

40 {

41 # max queue size per task

42 ITTI_QUEUE_SIZE = 2000000;

# INTEGER

43 };

44

45 LOGGING :
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46 {

47 # OUTPUT choice in { "CONSOLE", "SYSLOG", ‘path to file‘",

"‘IPv4@‘:‘TCP port num‘"}

48 # ‘path to file‘ must start with ’.’ or ’/’

49 # if TCP stream choice, then you can easily dump the

traffic on the remote or local host: nc -l ‘TCP port num‘ >

received.txt

50 OUTPUT = "CONSOLE";

# see 3 lines above

51 #OUTPUT = "SYSLOG";

# see 4 lines above

52 #OUTPUT = "/tmp/spgw.log";

# see 5 lines above

53 #OUTPUT = "127.0.0.1:5656";

# see 6 lines above

54

55 # THREAD_SAFE choice in { "yes", "no" } means use of

thread safe intermediate buffer then a single thread pick each

message log one

56 # by one to flush it to the chosen output

57 THREAD_SAFE = "no";

58

59 # COLOR choice in { "yes", "no" } means use of ANSI

styling codes or no

60 COLOR = "yes";

61

62 # Log level choice in { "EMERGENCY", "ALERT", "CRITICAL",

"ERROR", "WARNING", "NOTICE", "INFO", "DEBUG", "TRACE"}

63 UDP_LOG_LEVEL = "TRACE";

64 GTPV1U_LOG_LEVEL = "TRACE";

65 GTPV2C_LOG_LEVEL = "TRACE";

66 SPGW_APP_LOG_LEVEL = "TRACE";

67 S11_LOG_LEVEL = "TRACE";

68 };

69 };

70

71 P-GW =

72 {

73 NETWORK_INTERFACES :

74 {
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75 # P-GW binded interface for S5 or S8 communication, not

implemented, so leave it to none

76 PGW_INTERFACE_NAME_FOR_S5_S8 = "none";

# STRING, interface name, DO NOT CHANGE (NOT

IMPLEMENTED YET)

77

78 # P-GW binded interface for SGI (egress/ingress internet

traffic)

79 PGW_INTERFACE_NAME_FOR_SGI = "ens3";

# STRING, YOUR NETWORK CONFIG HERE

80 PGW_MASQUERADE_SGI = "yes";

# STRING, {"yes", "no"}. YOUR NETWORK CONFIG

HERE, will do NAT for you if you put "yes".

81 UE_TCP_MSS_CLAMPING = "no";

# STRING, {"yes", "no"}.

82 };

83

84 # Pool of UE assigned IP addresses

85 # Do not make IP pools overlap

86 # first IPv4 address X.Y.Z.1 is reserved for GTP network

device on SPGW

87 # Normally no more than 16 pools allowed, but since recent GTP

kernel module use, only one pool allowed (TODO).

88 IP_ADDRESS_POOL :

89 {

90 IPV4_LIST = (

91 "172.16.0.0/12"

# STRING, CIDR, YOUR NETWORK CONFIG HERE.

92 );

93 };

94

95 # DNS address communicated to UEs

96 DEFAULT_DNS_IPV4_ADDRESS = "130.92.9.52";

# YOUR NETWORK CONFIG HERE

97 DEFAULT_DNS_SEC_IPV4_ADDRESS = "130.92.9.53";

# YOUR NETWORK CONFIG HERE

98

99 # Non standard feature, normally should be set to "no", but

you may need to set to yes for UE that do not explicitly

request a PDN address through NAS signalling
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100 FORCE_PUSH_PROTOCOL_CONFIGURATION_OPTIONS = "yes";

# STRING, {"yes", "no"}.

101 UE_MTU = 1428

# INTEGER

102 };

LISTING A.3: Configuration file of MME

1 ####################################################################

2 # Licensed to the OpenAirInterface (OAI) Software Alliance under

one or more

3 # contributor license agreements. See the NOTICE file distributed

with

4 # this work for additional information regarding copyright

ownership.

5 # The OpenAirInterface Software Alliance licenses this file to You

under

6 # the Apache License, Version 2.0 (the "License"); you may not

use this file

7 # except in compliance with the License.

8 # You may obtain a copy of the License at

9 #

10 # http://www.apache.org/licenses/LICENSE-2.0

11 #

12 # Unless required by applicable law or agreed to in writing,

software

13 # distributed under the License is distributed on an "AS IS" BASIS,

14 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

15 # See the License for the specific language governing permissions

and

16 # limitations under the License.

17 #-------------------------------------------------------------------

18 # For more information about the OpenAirInterface (OAI) Software

Alliance:

19 # contact@openairinterface.org

20 ####################################################################

21

22 MME :

23 {
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24 REALM = "openair4G.eur";

# YOUR REALM HERE

25 PID_DIRECTORY = "/var/run";

26 # Define the limits of the system in terms of served eNB and

served UE.

27 # When the limits will be reached, overload procedure will

take place.

28 MAXENB = 10;

# power of 2

29 MAXUE = 10;

# power of 2

30 RELATIVE_CAPACITY = 10;

31

32 EMERGENCY_ATTACH_SUPPORTED = "no";

33 UNAUTHENTICATED_IMSI_SUPPORTED = "no";

34

35 # EPS network feature support

36 EPS_NETWORK_FEATURE_SUPPORT_IMS_VOICE_OVER_PS_SESSION_IN_S1

= "no"; # DO NOT CHANGE

37

EPS_NETWORK_FEATURE_SUPPORT_EMERGENCY_BEARER_SERVICES_IN_S1_MODE

= "no"; # DO NOT CHANGE

38 EPS_NETWORK_FEATURE_SUPPORT_LOCATION_SERVICES_VIA_EPC

= "no"; # DO NOT CHANGE

39 EPS_NETWORK_FEATURE_SUPPORT_EXTENDED_SERVICE_REQUEST

= "no"; # DO NOT CHANGE

40

41 # Display statistics about whole system (expressed in seconds)

42 MME_STATISTIC_TIMER = 10;

43

44 IP_CAPABILITY = "IPV4V6";

# UNUSED, TODO

45

46

47 INTERTASK_INTERFACE :

48 {

49 # max queue size per task

50 ITTI_QUEUE_SIZE = 2000000;

51 };

52

53 S6A :
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54 {

55 S6A_CONF =

"/usr/local/etc/oai/freeDiameter/mme_fd.conf"; # YOUR MME

freeDiameter config file path

56 HSS_HOSTNAME = "oai-hss-0";

# THE HSS HOSTNAME

57 };

58

59 # ------- SCTP definitions

60 SCTP :

61 {

62 # Number of streams to use in input/output

63 SCTP_INSTREAMS = 8;

64 SCTP_OUTSTREAMS = 8;

65 };

66

67 # ------- S1AP definitions

68 S1AP :

69 {

70 # outcome drop timer value (seconds)

71 S1AP_OUTCOME_TIMER = 10;

72 };

73

74 # ------- MME served GUMMEIs

75 # MME code DEFAULT size = 8 bits

76 # MME GROUP ID size = 16 bits

77 GUMMEI_LIST = (

78 {MCC="208"; MNC="95"; MME_GID="4" ; MME_CODE="1"; }

# YOUR GUMMEI CONFIG HERE

79 );

80

81 # ------- MME served TAIs

82 # TA (mcc.mnc:tracking area code) DEFAULT = 208.34:1

83 # max values = 999.999:65535

84 # maximum of 16 TAIs, comma separated

85 # !!! Actually use only one PLMN

86 TAI_LIST = (

87 {MCC="208"; MNC="95"; TAC="1"; }

# YOUR TAI CONFIG HERE

88 );

89
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90

91 NAS :

92 {

93 # 3GPP TS 33.401 section 7.2.4.3 Procedures for NAS

algorithm selection

94 # decreasing preference goes from left to right

95 ORDERED_SUPPORTED_INTEGRITY_ALGORITHM_LIST = [ "EIA2" ,

"EIA1" , "EIA0" ];

96 ORDERED_SUPPORTED_CIPHERING_ALGORITHM_LIST = [ "EEA0" ,

"EEA1" , "EEA2" ];

97

98 # EMM TIMERS

99 # T3402 start:

100 # At attach failure and the attempt counter is equal to 5.

101 # At tracking area updating failure and the attempt

counter is equal to 5.

102 # T3402 stop:

103 # ATTACH REQUEST sent, TRACKING AREA REQUEST sent.

104 # On expiry:

105 # Initiation of the attach procedure, if still required or

TAU procedure

106 # attached for emergency bearer services.

107 T3402 = 1

# in minutes (default is 12 minutes)

108 # T3412 start:

109 # In EMM-REGISTERED, when EMM-CONNECTED mode is left.

110 # T3412 stop:

111 # When entering state EMM-DEREGISTERED or when entering

EMM-CONNECTED mode.

112 # On expiry:

113 # Initiation of the periodic TAU procedure if the UE is

not attached for

114 # emergency bearer services. Implicit detach from network

if the UE is

115 # attached for emergency bearer services.

116 T3412 = 54

# in minutes (default is 54 minutes, network

dependent)

117 # T3422 start: DETACH REQUEST sent

118 # T3422 stop: DETACH ACCEPT received
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119 # ON THE 1st, 2nd, 3rd, 4th EXPIRY: Retransmission of

DETACH REQUEST

120 T3422 = 6

# in seconds (default is 6s)

121

122 # T3450 start:

123 # ATTACH ACCEPT sent, TRACKING AREA UPDATE ACCEPT sent

with GUTI, TRACKING AREA UPDATE ACCEPT sent with TMSI,

124 # GUTI REALLOCATION COMMAND sent

125 # T3450 stop:

126 # ATTACH COMPLETE received, TRACKING AREA UPDATE COMPLETE

received, GUTI REALLOCATION COMPLETE received

127 # ON THE 1st, 2nd, 3rd, 4th EXPIRY: Retransmission of the

same message type

128 T3450 = 6

# in seconds (default is 6s)

129

130 # T3460 start: AUTHENTICATION REQUEST sent, SECURITY MODE

COMMAND sent

131 # T3460 stop:

132 # AUTHENTICATION RESPONSE received, AUTHENTICATION FAILURE

received,

133 # SECURITY MODE COMPLETE received, SECURITY MODE REJECT

received

134 # ON THE 1st, 2nd, 3rd, 4th EXPIRY: Retransmission of the

same message type

135 T3460 = 6

# in seconds (default is 6s)

136

137 # T3470 start: IDENTITY REQUEST sent

138 # T3470 stop: IDENTITY RESPONSE received

139 # ON THE 1st, 2nd, 3rd, 4th EXPIRY: Retransmission of

IDENTITY REQUEST

140 T3470 = 6

# in seconds (default is 6s)

141

142 # ESM TIMERS

143 T3485 = 8

# UNUSED in seconds (default is 8s)

144 T3486 = 8

# UNUSED in seconds (default is 8s)
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145 T3489 = 4

# UNUSED in seconds (default is 4s)

146 T3495 = 8

# UNUSED in seconds (default is 8s)

147 };

148

149 NETWORK_INTERFACES :

150 {

151 # MME binded interface for S1-C or S1-MME communication

(S1AP), can be ethernet interface, virtual ethernet interface,

we don’t advise wireless interfaces

152 MME_INTERFACE_NAME_FOR_S1_MME = "ens3";

# YOUR NETWORK CONFIG HERE

153 MME_IPV4_ADDRESS_FOR_S1_MME =

"192.168.0.116/24"; # YOUR NETWORK CONFIG HERE

154

155 # MME binded interface for S11 communication (GTPV2-C)

156 MME_INTERFACE_NAME_FOR_S11_MME = "ens3";

# YOUR NETWORK CONFIG HERE

157 MME_IPV4_ADDRESS_FOR_S11_MME =

"192.168.0.116/24"; # YOUR NETWORK CONFIG HERE

158 MME_PORT_FOR_S11_MME = 2123;

# YOUR NETWORK CONFIG HERE

159 };

160

161 LOGGING :

162 {

163 # OUTPUT choice in { "CONSOLE"}

164 # ‘path to file‘ must start with ’.’ or ’/’

165 # if TCP stream choice, then you can easily dump the

traffic on the remote or local host: nc -l ‘TCP port num‘ >

received.txt

166 OUTPUT = "CONSOLE";

167 #OUTPUT = "CONSOLE";

168 #OUTPUT = "CONSOLE";

169 #OUTPUT = "CONSOLE";

170

171 # THREAD_SAFE choice in { "yes", "no" } means use of

thread safe intermediate buffer then a single thread pick each

message log one

172 # by one to flush it to the chosen output
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173 THREAD_SAFE = "yes";

174

175 # COLOR choice in { "yes", "no" } means use of ANSI

styling codes or no

176 COLOR = "yes";

177

178 # Log level choice in { "EMERGENCY", "ALERT", "CRITICAL",

"ERROR", "WARNING", "NOTICE", "INFO", "DEBUG", "TRACE"}

179 SCTP_LOG_LEVEL = "TRACE";

180 S11_LOG_LEVEL = "TRACE";

181 GTPV2C_LOG_LEVEL = "TRACE";

182 UDP_LOG_LEVEL = "TRACE";

183 S1AP_LOG_LEVEL = "TRACE";

184 NAS_LOG_LEVEL = "TRACE";

185 MME_APP_LOG_LEVEL = "TRACE";

186 S6A_LOG_LEVEL = "TRACE";

187 UTIL_LOG_LEVEL = "TRACE";

188 MSC_LOG_LEVEL = "ERROR";

189 ITTI_LOG_LEVEL = "ERROR";

190 MME_SCENARIO_PLAYER_LOG_LEVEL = "TRACE";

191

192 # ASN1 VERBOSITY: none, info, annoying

193 # for S1AP protocol

194 ASN1_VERBOSITY = "none";

195 };

196 TESTING :

197 {

198 # file should be copied here from source tree by following

command: run_mme --install-mme-files ...

199 SCENARIO_FILE =

"/usr/local/share/oai/test/mme/no_regression.xml";

200 };

201 };

202

203 S-GW :

204 {

205 # S-GW binded interface for S11 communication (GTPV2-C), if

none selected the ITTI message interface is used

206 SGW_IPV4_ADDRESS_FOR_S11 = "130.92.70.164/24";

# YOUR NETWORK CONFIG HERE

207
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208 };

A.3 Configuration Files of the eNB

LISTING A.4: Configuration of the eNB,

enb.band7.tm1.25PRB.usrpb210.conf

1 Active_eNBs = ( "eNB_Eurecom_LTEBox");

2 # Asn1_verbosity, choice in: none, info, annoying

3 Asn1_verbosity = "none";

4

5 eNBs =

6 (

7 {

8 ////////// Identification parameters:

9 eNB_ID = 0xe00;

10

11 cell_type = "CELL_MACRO_ENB";

12

13 eNB_name = "eNB_Eurecom_LTEBox";

14

15 // Tracking area code, 0x0000 and 0xfffe are reserved values

16 tracking_area_code = "1";

17

18 mobile_country_code = "208";

19

20 mobile_network_code = "95";

21

22 ////////// Physical parameters:

23

24 component_carriers = (

25 {

26 node_function =

"eNodeB_3GPP";

27 node_timing =

"synch_to_ext_device";

28 node_synch_ref = 0;

29 frame_type = "FDD";

30 tdd_config = 3;
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31 tdd_config_s = 0;

32 prefix_type = "NORMAL";

33 eutra_band = 7;

34 downlink_frequency = 2660000000L;

35 uplink_frequency_offset = -120000000;

36 Nid_cell = 0;

37 N_RB_DL = 25;

38 Nid_cell_mbsfn = 0;

39 nb_antenna_ports = 1;

40 nb_antennas_tx = 1;

41 nb_antennas_rx = 1;

42 tx_gain = 90;

43 rx_gain = 125;

44 prach_root = 0;

45 prach_config_index = 0;

46 prach_high_speed = "DISABLE";

47 prach_zero_correlation = 1;

48 prach_freq_offset = 2;

49 pucch_delta_shift = 1;

50 pucch_nRB_CQI = 1;

51 pucch_nCS_AN = 0;

52 pucch_n1_AN = 32;

53 pdsch_referenceSignalPower = -24;

54 pdsch_p_b = 0;

55 pusch_n_SB = 1;

56 pusch_enable64QAM = "DISABLE";

57 pusch_hoppingMode =

"interSubFrame";

58 pusch_hoppingOffset = 0;

59 pusch_groupHoppingEnabled = "ENABLE";

60 pusch_groupAssignment = 0;

61 pusch_sequenceHoppingEnabled = "DISABLE";

62 pusch_nDMRS1 = 1;

63 phich_duration =

"NORMAL";

64 phich_resource =

"ONESIXTH";

65 srs_enable =

"DISABLE";

66 /* srs_BandwidthConfig =;

67 srs_SubframeConfig =;
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68 srs_ackNackST =;

69 srs_MaxUpPts =;*/

70

71 pusch_p0_Nominal = -96;

72 pusch_alpha = "AL1";

73 pucch_p0_Nominal = -104;

74 msg3_delta_Preamble = 6;

75 pucch_deltaF_Format1 =

"deltaF2";

76 pucch_deltaF_Format1b =

"deltaF3";

77 pucch_deltaF_Format2 =

"deltaF0";

78 pucch_deltaF_Format2a =

"deltaF0";

79 pucch_deltaF_Format2b = "deltaF0";

80

81 rach_numberOfRA_Preambles = 64;

82 rach_preamblesGroupAConfig =

"DISABLE";

83 /*

84 rach_sizeOfRA_PreamblesGroupA = ;

85 rach_messageSizeGroupA = ;

86 rach_messagePowerOffsetGroupB = ;

87 */

88 rach_powerRampingStep = 4;

89 rach_preambleInitialReceivedTargetPower = -104;

90 rach_preambleTransMax = 10;

91 rach_raResponseWindowSize = 10;

92 rach_macContentionResolutionTimer = 48;

93 rach_maxHARQ_Msg3Tx = 4;

94

95 pcch_default_PagingCycle = 128;

96 pcch_nB =

"oneT";

97 bcch_modificationPeriodCoeff = 2;

98 ue_TimersAndConstants_t300 = 1000;

99 ue_TimersAndConstants_t301 = 1000;

100 ue_TimersAndConstants_t310 = 1000;

101 ue_TimersAndConstants_t311 = 10000;

102 ue_TimersAndConstants_n310 = 20;
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103 ue_TimersAndConstants_n311 = 1;

104

105 ue_TransmissionMode = 1;

106 }

107 );

108

109 srb1_parameters :

110 {

111 # timer_poll_retransmit = (ms) [5, 10, 15, 20,... 250,

300, 350, ... 500]

112 timer_poll_retransmit = 80;

113

114 # timer_reordering = (ms) [0,5, ... 100, 110, 120, ...

,200]

115 timer_reordering = 35;

116

117 # timer_reordering = (ms) [0,5, ... 250, 300, 350, ...

,500]

118 timer_status_prohibit = 0;

119

120 # poll_pdu = [4, 8, 16, 32 , 64, 128, 256,

infinity(>10000)]

121 poll_pdu = 4;

122

123 # poll_byte = (kB) [25, 50, 75, 100, 125, 250, 375, 500,

750, 1000, 1250, 1500, 2000, 3000, infinity(>10000)]

124 poll_byte = 99999;

125

126 # max_retx_threshold = [1, 2, 3, 4 , 6, 8, 16, 32]

127 max_retx_threshold = 4;

128 }

129

130 # ------- SCTP definitions

131 SCTP :

132 {

133 # Number of streams to use in input/output

134 SCTP_INSTREAMS = 2;

135 SCTP_OUTSTREAMS = 2;

136 };

137

138 ////////// MME parameters:
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139 mme_ip_address = (

140 { ipv4 = "130.92.70.163";

141 ipv6 = "192:168:30::17";

142 active = "yes";

143 preference = "ipv4"; }

144 );

145 NETWORK_INTERFACES :

146 {

147 ENB_INTERFACE_NAME_FOR_S1_MME = "em1";

148 ENB_IPV4_ADDRESS_FOR_S1_MME =

"130.92.182.38/24";

149

150 ENB_INTERFACE_NAME_FOR_S1U = "em1";

151 ENB_IPV4_ADDRESS_FOR_S1U =

"130.92.182.38/24";

152 ENB_PORT_FOR_S1U = 2152; # Spec

2152

153 };

154

155 NETWORK_CONTROLLER :

156 {

157 FLEXRAN_AGENT_INTERFACE_NAME = "em1";

158 FLEXRAN_AGENT_IPV4_ADDRESS = "130.92.70.169";

159 FLEXRAN_AGENT_PORT = 2210;

160 FLEXRAN_AGENT_CACHE =

"/mnt/oai_agent_cache";

161 };

162

163

164 log_config :

165 {

166 global_log_level ="info";

167 global_log_verbosity ="medium";

168 hw_log_level ="info";

169 hw_log_verbosity ="medium";

170 phy_log_level ="info";

171 phy_log_verbosity ="medium";

172 mac_log_level ="info";

173 mac_log_verbosity ="high";

174 rlc_log_level ="info";

175 rlc_log_verbosity ="medium";
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176 pdcp_log_level ="info";

177 pdcp_log_verbosity ="medium";

178 rrc_log_level ="info";

179 rrc_log_verbosity ="medium";

180 };

181 }

182 );
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Appendix B

Software Modifications and
Implementation of the Video
Service

B.1 Modification to the OAI-S/PGW

Since the S/PGW is running running on OpenStack and OpenStack is using
floating IP addresses, to which the S/PGW cannot bind. So we also had to
address a change in the S/PGW, so that, it can bind to the local addresses.

LISTING B.1: Modified to bind to IP address of lo-

cal computer instead of floating IPv4 address in /src/ud-

p/udp_primitives_server.c of OAI CN

1 addr.sin_port = htons (port);

2 - addr.sin_addr.s_addr = inet_addr (address);

3 + // addr.sin_addr.s_addr = inet_addr (address);

4 +

5 + addr.sin_addr.s_addr = inet_addr ("0.0.0.0");

B.2 Extensions at the OAI-eNB and FlexRAN

LISTING B.2: The new message implemented in

stats_common.proto at the eNB and FlexRAN

1 +message flex_dl_video_stats {

2 + optional int32 rsrp_value = 1;
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3 + optional int32 rsrq_value = 2;

4 + optional uint32 cqi_value = 3;

5 + optional uint64 num_total_bytes = 4;

6 + optional uint64 num_acks = 5;

7 + optional uint64 num_nacks = 6;

8 + optional uint32 mcs_value = 7;

9 + optional uint64 timestamp = 8;

10 }

LISTING B.3: The new message needs to be included in

the request message in /stats_messages.proto at the eNB and

FlexRAN

1 optional flex_rrc_measurements rrc_measurements = 10;

2 + optional flex_dl_video_stats video_stats = 11;

3

4 ...

5

6 FLUST_UL_CQI = 64;

7 + FLUST_DL_VIDEO_STATS = 128;

B.3 Modifications to FlexRAN

LISTING B.4: Request the new stats from the eNB in FlexRAN,

src/app/stats_manager.cc

1 ue_flags |= protocol::FLUST_UL_CQI;

2 - // ue_flags |= protocol::FLUST_RRC_MEASUREMENTS;

3 + ue_flags |= protocol::FLUST_RRC_MEASUREMENTS;

4 + ue_flags |= protocol::FLUST_DL_VIDEO_STATS;

LISTING B.5: Add new route to FlexRAN only providing our

statistics, src/north_api/stats_manager_calls.cc

1 response.send(Pistache::Http::Code::Ok, resp);

2 + } else if (stats_type.compare("video_stats") == 0) {

3 + resp = stats_app->mac_config_to_string();

4 + resp = resp.substr(resp.find("video_stats"), resp.find("Harq

status")-resp.find("video_stats"));

5 + response.send(Pistache::Http::Code::Ok, resp);
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B.4 Modifications to the OAI-eNB

LISTING B.6: Fill the new mes-

sage with appropriate information ope-

nair2/ENB_APP/CONTROL_MODULES/MAC/flexran_agent_mac.c

1 +#include <time.h>

2 +#include "RRC/LITE/MESSAGES/asn1_msg.h"

3 +#include "../RRC/flexran_agent_rrc.h"

4 ...

5

6 ue_report[i]->rrc_measurements =

rrc_measurement_report;

7 }

8

9 + if (report_config->ue_report_type[i].ue_report_flags &

PROTOCOL__FLEX_UE_STATS_TYPE__FLUST_DL_VIDEO_STATS){

10 + Protocol__FlexDlVideoStats * video_stats;

11 + video_stats = malloc(sizeof(Protocol__FlexDlVideoStats));

12 + protocol__flex_dl_video_stats__init(video_stats);

13 + if(rrc_stats[0] != 0){

14 + video_stats->rsrp_value = rrc_stats[0];

15 + video_stats->has_rsrp_value = 1;

16 + }

17 + if(rrc_stats[1] != 0){

18 + video_stats->rsrq_value = rrc_stats[1];

19 + video_stats->has_rsrq_value = 1;

20 + }

21 + video_stats->cqi_value = flexran_get_ue_wcqi (enb_id, i);

22 + video_stats->has_cqi_value = 1;

23 + video_stats->num_total_bytes =

flexran_get_ue_num_total_bytes(enb_id, i);

24 + video_stats->has_num_total_bytes = 1;

25 + video_stats->num_acks = flexran_get_num_acks();

26 + video_stats->has_num_acks = 1;

27 + video_stats->num_nacks = flexran_get_num_nacks();

28 + video_stats->has_num_nacks = 1;

29 + video_stats->mcs_value =

flexran_get_ue_dlsch_mcs1(enb_id, i);

30 + video_stats->has_mcs_value = 1;

31 + video_stats->timestamp = (int)time(NULL);
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32 + video_stats->has_timestamp = 1;

33 +

34 + ue_report[i]->video_stats = video_stats;

35 +

36 }

LISTING B.7: Extensions to the RAN API ope-

nair2/ENB_APP/flexran_agent_ran_api.c

1

2 #include "flexran_agent_ran_api.h"

3 +#include "flexran_agent_extern.h"

4 +uint64_t num_acks = 0;

5 +uint64_t num_nacks = 0;

6

7 ...

8 return ((UE_list_t *)

enb_ue[mod_id])->UE_template[UE_PCCID(mod_id,ue_id)][ue_id].phr_info;

9 }

10

11 +uint8_t flexran_get_ue_dlsch_mcs1(mid_t mod_id, mid_t ue_id){

12 + LTE_eNB_UE_stats *eNB_UE_stats = NULL;

13 + eNB_UE_stats = mac_xface->get_eNB_UE_stats(mod_id, 0,

UE_RNTI(mod_id, ue_id));

14 + return eNB_UE_stats->dlsch_mcs1;

15 +}

16 +

17 +uint8_t flexran_get_ue_dlsch_mcs2(mid_t mod_id, mid_t ue_id){

18 + LTE_eNB_UE_stats *eNB_UE_stats = NULL;

19 + eNB_UE_stats = mac_xface->get_eNB_UE_stats(mod_id, 0,

UE_RNTI(mod_id, ue_id));

20 + return eNB_UE_stats->dlsch_mcs2;

21

22 +uint64_t flexran_get_ue_num_total_bytes(mid_t mod_id, mid_t

ue_id){

23 + for(int k = 0; k < 8; k++){

24 + if(harq_pid_round[ue_id][k] == 0){

25 + num_acks += 1;

26 + }else{

27 + num_nacks += 1;

28 + }
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29 + }

30 + return ((UE_list_t *) enb_ue[mod_id])->

31 eNB_UE_stats[UE_PCCID(mod_id,ue_id)][ue_id].total_pdu_bytes;

32 +}

33

34 +uint64_t flexran_get_num_acks(){

35 + return num_acks;

36 +}

37 +uint64_t flexran_get_num_nacks(){

38 + return num_nacks;

39 +}

LISTING B.8: Extensions to the

/ENB_APP/CONTROL_MODULES/RRC/flexran_agent_rrc.c,

store the measured value in shared global variable

1 #include "log.h"

2

3 +extern float rrc_stats[2];

4

5 ...

6

7 rrc_measurements->pcell_rsrq =

(measResults->measResultPCell.rsrqResult)/2 - 20;

8 rrc_measurements->has_pcell_rsrq = 1 ;

9 + rrc_stats[0] = rrc_measurements->pcell_rsrp;

10 + rrc_stats[1] = rrc_measurements->pcell_rsrq;

B.5 Video Service Implementation

The video service presents a Python script, that is running during the video
delivery on the video server and adapts to the current network status.

LISTING B.9: Flexran.py, a script reading and storing the stats

obtained from FlexRAN

1 import numpy as np

2 import urllib2

3

4 class Flexran(object):
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5

6 def __init__(self, source=None):

7 self.source = source

8 self.cqi = []

9 self.rsrp = []

10 self.rsrq = []

11 self.mcs = []

12 self.num_bytes = []

13 self.num_acks = []

14 self.num_nacks = []

15 self.timestamps = []

16 self.throughputs = []

17

18 @property

19 def cqi(self):

20 return self.__cqi

21

22 @cqi.setter

23 def cqi(self, cqi):

24 self.__cqi = cqi

25

26 @property

27 def rsrp(self):

28 return self.__rsrp

29

30 @rsrp.setter

31 def rsrp(self, rsrp):

32 self.__rsrp = rsrp

33

34 @property

35 def rsrq(self):

36 return self.__rsrq

37

38 @rsrq.setter

39 def rsrq(self, rsrq):

40 self.__rsrq = rsrq

41

42 @property

43 def mcs(self):

44 return self.__mcs

45
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46 @mcs.setter

47 def mcs(self, mcs):

48 self.__mcs = mcs

49

50 @property

51 def num_bytes(self):

52 return self.__num_bytes

53

54 @num_bytes.setter

55 def num_bytes(self, num_bytes):

56 self.__num_bytes = num_bytes

57

58 @property

59 def num_acks(self):

60 return self.__num_acks

61

62 @num_acks.setter

63 def num_acks(self, num_acks):

64 self.__num_acks = num_acks

65

66 @property

67 def num_nacks(self):

68 return self.__num_nacks

69

70 @num_nacks.setter

71 def num_nacks(self, num_nacks):

72 self.__num_nacks = num_nacks

73

74 @property

75 def timestamps(self):

76 return self.__timestamps

77

78 @timestamps.setter

79 def timestamps(self, timestamps):

80 self.__timestamps = timestamps

81

82 @property

83 def throughputs(self):

84 return self.__throughputs

85

86 @throughputs.setter
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87 def throughputs(self, throughputs):

88 self.__throughputs = throughputs

89

90 @property

91 def source(self):

92 return self.__source

93

94 @source.setter

95 def source(self, source):

96 self.__source = source

97

98 def update(self):

99 try:

100 # Connect and read the data from FlexRAN

101 data = urllib2.urlopen(self.source).read()

102 stats = Flexran.parse(data)

103

104 self.cqi.append(stats[0])

105 self.rsrp.append(stats[1])

106 self.rsrq.append(stats[2])

107 self.mcs.append(stats[3])

108 self.num_bytes.append(stats[4])

109 self.num_acks.append(stats[5])

110 self.num_nacks.append(stats[6])

111 self.timestamps.append(stats[7])

112

113

114 if(len(self.timestamps) >= 2):

115 # Calculate differences

116 num_bytes_sent = self.num_bytes[-1] -

self.num_bytes[-2]

117 num_acks_ = self.num_acks[-1] - self.num_acks[-2]

118 num_nacks_ = self.num_nacks[-1] - self.num_nacks[-2]

119 time = self.timestamps[-1] - self.timestamps[-2]

120

121 # Convert ms to s

122 if(self.timestamps[-1] > 10**10):

123 time = time/1000.0

124

125 # If nothing is sent we would have

126 # division by 0, so set it to 1
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127 if(num_acks_ == 0):

128 num_acks_ = 1

129

130 # Set first throughput to 0, as we

131 # can only calculate the throughput

132 # if we have two values

133 if(len(self.timestamps) == 2):

134 self.throughputs.append(0)

135

136 # Calculate the throughput

137 self.throughputs.append(1. * num_bytes_sent *

num_acks_ / (num_acks_+num_nacks_) / time)

138

139 except urllib2.HTTPError as e:

140 raise Exception(’Some flexran error, check the flexran

service: ’ + str(type(e)) + ’ and message: ’ + e.message)

141

142 except Exception as e:

143 raise Exception(’Some other issue: ’ + str(type(e)) + ’

with message ’ + e.message)

144

145 # Parse the JSON data

146 @staticmethod

147 def parse(string):

148 args = string.split("\n")

149 args = [arg for arg in args if ":" in arg]

150 cqi = rsrp = rsrq = mcs = num_bytes = num_acks = num_nacks =

timestamp = None

151

152 for arg in args:

153 if "cqi" in arg:

154 cqi = int(arg.split(":")[1].strip())

155 elif "rsrp" in arg:

156 rsrp = int(arg.split(":")[1].strip())

157 elif "rsrq" in arg:

158 rsrq = int(arg.split(":")[1].strip())

159 elif "mcs" in arg:

160 mcs = int(arg.split(":")[1].strip())

161 elif "total_bytes" in arg:

162 num_bytes = int(arg.split(":")[1].strip())

163 elif "num_acks" in arg:
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164 num_acks = int(arg.split(":")[1].strip())

165 elif "num_nacks" in arg:

166 num_nacks = int(arg.split(":")[1].strip())

167 elif "timestamp" in arg:

168 timestamp = int(arg.split(":")[1].strip())

169

170 return cqi, rsrp, rsrq, mcs, num_bytes, num_acks, num_nacks,

timestamp

LISTING B.10: main.py, a script running on the video server,

updating the MPD file

1 from argparse import ArgumentParser

2 from lxml import etree

3 from Flexran import Flexran

4 import time, sys, traceback, copy

5 import scipy.fftpack

6 import numpy as np

7

8 def main():

9

10 # Parsing the following arguments

11 parser = ArgumentParser()

12 parser.add_argument("-f", "--flexran", dest="flexran",

help="specifiy the webpage for flexran stats (url)",

metavar="FLEXRAN", required="TRUE")

13 parser.add_argument("-m", "--mpd-file", dest="mpd_file",

help="specifiy the MPD source file (path)", metavar="MPD_IN",

required="TRUE")

14 parser.add_argument("-s", "--save-file", dest="save_file",

help="specifiy the MPD save file (name of the manifest)",

metavar="MPD_OUT", required="TRUE")

15 parser.add_argument("-i", "--interval", dest="interval",

help="specifiy the interval at which we update the MPD file (in

sec)", type=float)

16

17 args = parser.parse_args()

18 flexran_page = args.flexran

19 mpd_input = args.mpd_file

20 mpd_output = args.save_file

21 interval = args.interval
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22 available_representations = None

23

24 # Instantiate a FlexRAN agent, that subscribes to

25 # the source / RNIS information page of the UE

26 flexran_agent = Flexran(source=flexran_page)

27

28 # If no interval is given use 1 second

29 if(interval == None):

30 interval = 1

31

32 # fetch the first stats

33 flexran_agent.update()

34 counter = 1

35

36 # experiment duration 90[s]

37 duration = 90

38

39 # enter the main loop

40 try:

41 # as long as we the experiment is running

42 while True and counter < duration/interval:

43 time.sleep(interval)

44 flexran_agent.update()

45 counter += 1

46 adapatation_algorithm(mpd_input, mpd_output,

flexran_agent, interval)

47

48 sys.exit(0)

49

50 # exit by Ctrl + C

51 except KeyboardInterrupt:

52 print("Video service was terminated \n")

53 sys.exit(0)

54

55

56 # exit by exception

57 except Exception:

58 traceback.print_exc(file=sys.stdout)

59 sys.exit(1)

60



100
Appendix B. Software Modifications and Implementation of the Video

Service

61 def adapatation_algorithm(mpd_input, mpd_output, flexran,

interval):

62

63 # Get relevant information about UE <-> eNB channel

64 throughput = flexran.throughputs

65 rsrp = flexran.rsrp

66 rsrq = flexran.rsrq

67

68 # t_s defines the segment size of the DASH video

69 t_s = 2

70

71 # Every time a segment is sent over the network

72 # we do adapt the available representations using FFT

73 if(len(throughput)%(t_s/interval) == 0):

74

75 # Use FFT over the last recorded stats

76 yf = np.fft.rfft(throughput[-1*int(t_s/interval):])

77 yf = np.absolute(yf)

78 xf = np.fft.rfftfreq(int(t_s/interval),interval)

79

80 # Use the relation between the peak at 0 Hz and 1/t_s Hz

81 # where t_s denotes the segment size of the DASH video

82 if(yf[1]/yf[0] >= 0.9):

83 print("Security margin too big")

84 remove_lowest_representation(mpd_input, mpd_output)

85 remove_lowest_representation(mpd_input, mpd_output)

86 elif(yf[1]/yf[0] >= 0.4):

87 print("Security margin too big")

88 remove_lowest_representation(mpd_input, mpd_output)

89 elif(yf[1]/yf[0] <= 0.04):

90 print("Security margin too small")

91 remove_highest_representation(mpd_input, mpd_output)

92

93 # Restrict available representations if the RSRP value dropped

drastically

94 # in the last second

95 if(len(rsrp) >= 1/interval):

96 if(rsrp[-1]-rsrp[-1*int(1/interval)] <= -5):

97 print("Anticipated drop in radio link quality")

98 remove_highest_representation(mpd_input, mpd_output)

99
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100

101 # Removes the current highest representation in the MPD Output file

102 # and replaces it with the next lower representation available from

103 # the MPD Input file.

104 def remove_highest_representation(mpd_input, mpd_output):

105

106 tree = etree.parse(mpd_output)

107 representations = tree.xpath("//*[local-name() =

’Representation’]")

108

109 # Get the IDs of the currently available representations

110 avail_idxs = list(map(int, map(lambda rep: rep.get("id"),

representations)))

111 # Current max. representation id

112 current_max_id = max(avail_idxs)

113 # Index of ALL the current max. representation ids

114 current_max_idx = np.where(np.array(avail_idxs) ==

max(avail_idxs))

115

116 # Parse the original MPD file

117 tree2 = etree.parse(mpd_input)

118 all_representations = tree2.xpath("//*[local-name() =

’Representation’]")

119 # Get all available representations from the original MPD file

120 avail_idxs = list(map(int, map(lambda rep: rep.get("id"),

all_representations)))

121

122 # Check that current max. representation is not already the

lowest one

123 if(current_max_id != 1):

124

125 # Get the index of the next lower representation

126 idx = avail_idxs.index(current_max_id - 1)

127

128 # Replace all occurences of the highest representations

129 # with the next lower representation

130 for max_idx in current_max_idx[0]:

131 max_representation = representations[np.int(max_idx)]

132 parent = max_representation.getparent()

133 parent.remove(max_representation)
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134 lower_representation =

copy.deepcopy(all_representations[idx])

135 #max_representation.attrib[’id’] = id

136 parent.append(lower_representation)

137

138 # Nothing happens if we only present the lowest

139 # representation.

140 elif(current_max_id == 1):

141 return

142

143 # Update the dynamically updated MPD Output file

144 f = open(mpd_output, ’w’)

145 f.write(etree.tostring(tree, xml_declaration=True,

pretty_print=True))

146 f.close()

147

148 return

149

150 # Removes the current lowest representation in the MPD Output file

151 # and replaces it with the next higher representation available

from

152 # the MPD Input file.

153 def remove_lowest_representation(mpd_input, mpd_output):

154

155 tree = etree.parse(mpd_output)

156 representations = tree.xpath("//*[local-name() =

’Representation’]")

157

158 # Get the IDs of the currently available representations

159 avail_idxs = list(map(int, map(lambda rep: rep.get("id"),

representations)))

160 # Current min. representation id

161 current_min_id = min(avail_idxs)

162 # Index of ALL the current min. representation ids

163 current_min_idx = np.where(np.array(avail_idxs) ==

min(avail_idxs))

164

165 tree2 = etree.parse(mpd_input)

166 all_representations = tree2.xpath("//*[local-name() =

’Representation’]")
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167 avail_idxs = list(map(int, map(lambda rep: rep.get("id"),

all_representations)))

168

169 # Make sure we are not already providing the highest available

representation

170 max_id = max(avail_idxs)

171 if(current_min_id != max_id):

172 # Get the idx of the next higher representation

173 idx = avail_idxs.index(current_min_id + 1)

174

175 # Replace all occurences of the lowest representations

176 # with the next higher representation

177 for min_idx in current_min_idx[0]:

178 min_representation = representations[np.int(min_idx)]

179 parent = min_representation.getparent()

180 parent.remove(min_representation)

181 lower_representation =

copy.deepcopy(all_representations[idx])

182 #max_representation.attrib[’id’] = id

183 parent.append(lower_representation)

184

185 # Nothing happens if we only present the highest

186 # representation.

187 elif(current_min_id == max_id):

188 return

189

190 # Update the dynamically updated MPD Output file

191 f = open(mpd_output, ’w’)

192 f.write(etree.tostring(tree, xml_declaration=True,

pretty_print=True))

193 f.close()

194

195 return

196

197 if __name__ == "__main__":

198 main()

B.6 Modifications to the MP4Client
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LISTING B.11: Modifications to the client, to dynamically re-

fresh the MPD file, in /src/media_tools/dash_client.c

1

2 while (!dash->mpd_stop_request) {

3 u32 timer = gf_sys_clock() - dash->last_update_time;

4 + dash->mpd->minimum_update_period = 5000;
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