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Abstract

In this thesis an overhearing mechanism for the content-centric network framework CCNx was
implemented. In content-centric networks communication is based on content names instead of
host identifiers. The implemented functionality overhears the network for multicast messages.
Each of the overheard message contains a forwarding information in form of a name-prefix. A
function extract this name-prefixes out of the messages and adds them to the local forwarding
table. This approach provides an opportunity to request new available data sources.

Afterwards this overhearing functionality was evaluated in terms of processing and en-
ergy overhead compared to the CCNx version with disabled overhearing. The evaluation was
done on resource constrained mesh nodes. In a first step the data throughput of CCNx was
compared with the results of Van Jacobson et. al. [1]. When running CCNx on a resource
constrained mesh node, the throughput is lower by factor 14.5 compared to the results of Van
Jacobson et. al. In a second step the multicast wireless throughput was evaluated with varying
parameters. By decreasing the message retransmission delay form 4 seconds to 0.25 seconds,
the multicast data throughput can be increased of 731%. At last, the energy consumption of a
mesh node with enabled and disabled overhearing was evaluated. Depending on the file size, the
overhead of the energy consumption with enabled overhearing is between 0.74% and 5.22%.
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Chapter 1

Introduction

1.1 Motivation

Computer networks were invented to enable access to shared resources. The location of the
resources were known, i.e., at which computers they are stored or available . During the years,
as the Internet became more popular, new services and content dissemination models appeared
growing around this host-to-host communication model. Nowadays the circumstances have
changed, the Internet has become a cloud for information and services. The average user is
not interested where the machine is located. He/She is interested in specific content, such
as youtube videos, flicker photos, news feeds, movie streams or music files. In his mind he
asks the Internet for content and gets a response from the network without knowing the exact
geographic location of the information. However, the architecture is still the same as in the
70’s. For the future networking that is not really feasible, the proliferation of mobile devices
such as netbooks, tablets and smart phones is increasing and there are more flexible approaches
required to enable dynamic mobile networking. In fact, today’s host-to-host communication is
not suitable for the future. To address this problem, a new networking approach was introduced
called content-centric networking. The CCNx project provides an open source implementation
of this content-centric networking approach. Instead of host identifiers, communication is
performed based on content names.

1.2 Tasks and Problem Formulation

At the moment, the CCNx open source framework is in its childhood. It provides only a few
services. An example for a missing service is the routing configuration, where the network paths
need to be set statically. Therefore, it is setup manually or by DHCP-like services configured
by humans [2]. In dynamic or opportunistic environments with many devices, it is nearly
impossible to do an appropriate set-up because communication partners will change frequently.

In CCNx, packets are routed based on their name-prefix and not based on host identifiers
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as in IP-networks. The main focus of the CCNx development points to wired Internet where
name-prefixes do not change often. At the moment, the forwarding tables will be populated
manually at start-up. During operation, no forwarding table updates are provided. This is not
feasible for mobile networks where connections and available content may change often. Due to
changing communication partners, FIB entries cannot be set up statically and messages need to
be transmitted by multicast. Information about available content can be obtained by overhearing
multicast communication. The tasks of this bachelor thesis are listed below:

• Implementation of an overhearing functionality to dynamically add new FIB entries based
on available content.

• Extending ADAM images with CCNx.

• Evaluation of wireless CCNx communication performance on mesh nodes. Determination
of optimal CCNx parameters.

• Evaluation of implemented overhearing functionality in terms of processing and energy
overhead.

1.3 Outline

The remainder of this report is structured as follows: In Chapter 2 we describe the content-centric
networking approach applied in the CCNx framework. Design and Implementation details of the
overhearing functionality are described in chapter 3. Chapter 4 describes the testbed setup and
presents our evaluation results. Finally, in chapter 5, we conclude our work and give an outlook
to future work.
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Chapter 2

Related Work

2.1 Networking Named Content

Content-centric networking (CCN)[1] is a new networking approach. In content-centric net-
works, routing is based on content names instead of host identifiers. There are two CCN packet
types, namely Interest and Data.

2.1.1 Interest and ContentObject

Figure 2.1: Shows the two basic message types in CCN, namely Interest and Data packet. A consumer
needs to express an Interest in a content name to receive corresponding data packets [1].

A consumer asks for content by broadcasting the Interests over all available faces. A face
can be considered as an interface in an IP-network. Each node that hears the Interest and having
data that satisfies it, can respond with a Data packet. Other nodes that do not have the requested
content forward incoming Interests over an existing forwarding entry. In this case, a new
entry will be included in the Pending Interest Table of the node. This table stores forwarded
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Interests for which the node does not received a response yet and are therefore pending. Data
is transmitted only in response to an Interest and consumes that Interest stored in the pending
Interest table. Received ContentOjbects are stored temporarily in the Content Store serving as
cache. With this solution no loops are possible, because each node without related pending
Interests will discard the incoming content.

A data file consists of many ContentObjects, and each of these objects is identified by
the segment number. This number describes the place of the object in the order of the requested
data. So, if one gets lost, it is possible to request that specific ContentObject again.

2.1.2 CCN Forwarding

The CCN processing is based on three basic components:

• Pending Interest Table (PIT)

• Forwarding Interest Base (FIB)

• Content Store (CS)

If an Interest is received, the CS is checked fist, whether a matching object is available. If not,
the PIT is considered if already similar Interest are pending. If there is already an entry in the
PIT, the Interest can be discarded because an answer is already pending. If there is no entry in
the PIT, the FIB holds information where to forward the Interest. If no information is available,
the Interest is discarded.

In this bachelor thesis, we focus on entries in the FIB.

2.1.3 Naming

Names are composed of multiple components structured in an hierarchical way. An individual
name is composed of a number of components. Each component is separated with a slash ”/”.
This delimiters are not part of the name. Figure 2.2 shows a name in the human readable as well
as the binary encoded from used in the framework. This strings are called name-prefixes.
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Figure 2.2: Example Data name [1]

2.1.4 CCN Faces

In CCN, connections to other hosts or applications are called faces. In case of applications, the
face corresponds to local Unix sockets, in case of hosts, it corresponds to UDP or TCP sockets.
Therefore, multiple faces can be supported over the same interface.

The forwarding of Interests in CCNx is based on the FIB. Every entry in the FIB con-
tains a prefix which directs Interests based on longest-prefix match on the specified faces. Every
entry is only valid for the specified lifetime and is removed afterwards.
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Figure 2.3: CCN forwarding engine model [1]

The forwarding engine model as shown in Figure 2.2 is handled by the CCNx daemon
(CCND) (see 2.2.1).

2.2 Project CCNx

CCNx[3] is an open source project providing an implementation of the content-centric network-
ing concept on top of a common IP network. This is the framework this thesis work with. The
framework is written in C and in Java. There are some main functions which are used in this
thesis which will be explained below.

2.2.1 CCNx Daemon

The CCNx daemon, called ccnd, is the central component of the CCNx implementation. It is
running on every host and it performs all processing and forwarding of received messages. The
typical configuration is to run one ccnd on each host. Applications running on the host will
communicate via local faces with the ccnd, which may redirect Interests to attached networks
based on the FIB configuration. The ccnd can be configured by environment variables. The ccnd
application can be used to configure the FIB.
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2.2.2 CCNDC

CCNDC is a utility to configure the FIB by adding or deleting static entries. FIB entries are
added by specifying the prefix and face information. A face is defined by host address, port
number, and transport protocol (UDP or TCP). In this work we only consider the UDP protocol.

2.2.3 CCNx key management

Integrity and authenticity in CCNx is ensured by signing every ContentObject with the private
key of the publisher. For verifying a signature, the Public Key of the signer must be known. The
public keys are stored under the prefix ccnx:/ccnx.com/Users. The first Interest of every
request is requesting the key of a user stored under this name space. So it must be ensured that
this prefix is stored as a forwarding entry in the FIB.

2.2.4 CCNx name-prefix entry

The nameprefix entry is a struct which stores all the data which is related to an ex-
isting name-prefix such as the associated face or associated forwarding information. A
nameprefix entry is built as a linked list, each new entry is added as a child from an-
other entry. All name-prefix entries are stored in a hash table which is keyed by name-prefix
length. For more information, have a look at nameprefix entry Struct Reference[4].

2.2.5 CCNx Flags

CCNx uses many different flags for internal face (see 2.1.4) and message processing. In principle
the CCNx flags describes a state or a specific setting of an arbitrary CCNx functionality such as
a face or a message. Below a short description of the flags which are used within this thesis:

• CCN FACE LOCAL
Face is mapped to a local application.

• CCN FACE MCAST
Defines whether a face is mapped to a multicast address.

• CCN FORW ACTIVE
Activates the forwarding entry, so that messages can be propagated over this entry.

More information about specific flags can be found at the CCNx Face Management and Regis-
tration Protocol manpage[5]

2.2.6 Pipelining

The pipeline size defines the number of segments that can be concurrently requested.
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Chapter 3

Design and Implementation

3.1 Design

In this work setup Forwarding Interest Base (FIB) entries dynamically by overhearing multicast
content transmissions. This functionality is directly integrated in the CCND. Thus, we focus on
the manipulation of the FIB.

3.1.1 Overhearing

Overhearing is the passive activity of a network participant listening to the communication
between two other participants. Using a multicast Face is the only way to perform overhearing
with CCNx.

To receive multicast messages, every node needs to register at least one multicast Face
with a multicast IP address. This is required since the registration of a multicast Face opens an
UDP socket that listens for messages from that address. We assume that all hosts use the same
port for the multicast Face. At startup, no information about available prefixes is available and
therefore, a prefix has to be registered to open the multicast socket.

When processing incoming content, additional functionality is required. First, the con-
tent names need to be processed and the prefixes need to be extracted. Second, the extracted
prefixes need to be added to the FIB so that received Interest can be forwarded to the corre-
sponding content source.

To ensure efficient processing, several issues need to be considered and are discussed
below.

3.1.2 Messages

In this work, we only process overheard ContentObjects but no overheard Interest messages.
ContentObjects can only be overheard if a content source is available. On the contrary, overheard
Interests only indicate a local Interest which may not be necessarily satisfied.
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3.1.3 Entry Lifetime

In mobile networks, hosts may move individually resulting in different connectivity patterns.
Forwarding Interests based on outdated information may result in unnecessary transmissions.
Therefore, overheard content information may only be valid within a certain lifetime. This life-
time may be short when receiving an individual object but can be increased with every received
ContentObject.

3.1.4 Entry Name and FIB Size

In order to ensure efficient forwarding, the FIB size of dynamic added name-prefix entries should
be limited. Otherwise, it may grow indefinitely. There are two strategies to fulfil this task:

1. Reduce the prefix length to receive a more general prefix

2. Limit the number of FIB entries of the FIB for prefixes which are added by overhearing

The procedure for reducing the prefix length works as follows:
Let us assume that the name-prefix ccnx:/parc.com/data/local/test is already registered at Face
2. A new incoming ContentObject with the name-prefix ccnx:/parc.com/data/local/test2 arrives
at Face 2. Both of them have the same prefix except for the last component. Instead of creating
a new forwarding entry, we update the available prefix by replacing the old name-prefix with a
new one which consists the common components of the incoming and the available prefix. The
newly created prefix has the name ccnx:/parc.com/data/local.

FIB size limitation can be done by an accounting function which is implemented in the
CCNx daemon. This function should not have an influence on user-configured forwarding rules.
Thus, it must still be possible to add forwarding entries manually.

3.1.5 Processing Optimization

The number of data packets that are transmitted depends not only on the mobility but also on
the content size. Large content files may require more data packets than small files. It may
be inefficient and time consuming to perform the FIB update for every received ContentObject.
Therefore, we apply this operation only to the first and every nth received data packet. By
performing a modulo operation on the segment number, no additional state information needs
to be remembered. The parameter n can be configured at start up. For example, if a node gets
many ContentObjects from a source, it means that this connection is stable, thus, the parameter
n can be increased.

3.1.6 Permanent Forwarding of Local Requests

Even in the presence of dynamic FIB population, some prefixes to data source may not be
registered, because no overheard information is received. Without any additional measures,
if a local application is looking for content, the Interest will not be forwarded and cannot be
found until another host transmits this data. Therefore, to enable communication, Interests from
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local applications need to be forwarded, e.g., via the multicast Face. These Interests will pull
data from neighbouring nodes if available.

3.1.7 Impact of Overhearing to Network Behaviour

This section describes overhearing in a CCNx network while using multicast. Below, we demon-
strate a sample scenario where overhearing helps to forward Interests to another in six steps.

Figure 3.1: Scenario without overhearing ContentObjects. Interest and ContentObjects are transmitted
over Face 1 / IEEE 802.11a, respectively Face 2 / IEEE 802.2

Figure 3.1 illustrates content retrieval without the overhearing functionality i.e., as in orig-
inal CCNx implementation would work. The figure contains five nodes. This sample network
consists of two different network types. The left, blue ellipse indicates an IEEE 802.11n network
and comprises nodes 1, 2 and 3. All nodes have prefixes registered for face 1. The yellow ellipse
indicates an IEEE 802.3 network which is configured at nodes 3, 4, and 5 as face 2. Node 3
has an interface in both networks which serves as potential forwarder between those networks.
Node 2 runs a repository with ContentObjects.
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Figure 3.2: Scenario with overhearing ContentObjects. Interest and ContentObjects were transmitted
over IEEE 802.11a

Figure 3.2 illustrates content retrieval with enabled overhearing functionality. The topology
is the same as in Figure 3.1. Furthermore, this Figure illustrates the additional functionality that
is caused by overhearing. In the following example, this functionality is marked in italics.

• Step 1: Node 1 (red circle) asks for content ccnx:/ccnx.com/data1 and sends In-
terests out over multicast Face 1. Node 2 and node 3 receives the Interests.

• Step 2: Because node 2 has the content for the request in his repo, it sends ContentObjects
for data1 back over multicast Face 1.

• Step 3: Node 1 and node 3 (green circle) receive the ContentObjects. Node 3 stores
the ContentObjects in the CS (content store) for a period of time. If node 3 has enabled
overhearing functionality, it adds the ContentObjects name-prefix ccnx:/ccnx.com/data1,
to be reachable via face 1, to the FIB.

• Step 4: After a while, node 4 (blue circle) asks for ccnx:/ccnx.com/data1 which
node 2 has in its repository. It sends out the Interests over multicast face 2 which node 3
and node 4 receive.

• Step 5: Meanwhile, node 3 may stored other ContentObjects in its CS. Thus, probably
not every ContentObject from data1 will be in its CS or data becomes stale. That means
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node 3 can not answer directly to nodes 5 request. If overhearing is enabled, node 3 has
the forwarding entry for this Interest in its FIB. Thus, it can forward the Interest into the
blue network, otherwise, with disabled overhearing, it discards the incoming Interest and
Node 3 gets no data.

• Step 6: As mentioned in step 5, if node 3 has overhearing functionality enabled it forwards
the incoming Interest of node 4 to the blue network. In this network, node 2 receives the
Interest and forwards the requested data over multicast face 1. This data receives node 3
which finally forwards it to the yellow network where node 4 receives the requested data.
If overhearing is enabled, node 4 and node 5 do add the ContentObject name-prefix to its
FIB.

3.1.8 Implementation Layer

The whole processing should happen directly in the CCNx daemon. With that approach, we can
simply extend the existing code by the overhearing capability. The overhearing functionality
can be implemented at the same place where ContentObjects are already processed. The same
applies for the processing of Interest messages from local applications. By that, it is possible
to perform all the message processing at the same place exploiting already applied processing
steps.

3.1.9 Conclusion

Enabling dynamic FIB entries require overhearing of ContentObjects. Multiple aspects need to
be addressed such as the processing of incoming overheard ContentObjects and the forwarding
of local Interests to support communication in case of lacking content transmissions. Additional
properties are required to limit the processing and storage overhead. This includes the length of
the name-prefix, the maximum FIB size, the entry lifetime and granularity of processing received
ContentObjects.

3.2 Implementation

Since the design will be implemented on resource constrained mesh nodes, all functions of this
thesis were written in C. For implementing the overhearing functions, the CCN daemon had to
be supplemented by additional code.

This chapter gives an overview of the overhearing implementation. The ex-
isting functions process incoming content, to support overhearing, and
process incoming interest, to guarantee the forwarding of Interests from local
applications, were extended with a few lines of codes. All important functionality is included
within these two functions. The implementations are explained by work flows. We refer to the
steps in the flow chart by the corresponding numbers in brackets. We give an overview over
the main components but more implementation details can be found in appendix 7.3. If a new
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function occurs in the explanation of the overhearing functionality, a reference guides to the
section where it is explained.

3.2.1 Overhearing ContentObject

The CCN daemon (see subsection 2.2.1) provides a function for processing incoming ContentO-
bjects called process incoming content. This function processes incoming data and en-
codes it to a ContentObject. Therefore, we implement the overhearing functionality at the same
place. Thus, no additional message parsing is necessary and the ContentObject library can be
reused. Figure 3.3 shows the overhearing functionality of process incoming content as
a flow chart. In the following, the steps will be explained.

14



Figure 3.3: Flow chart of overhearing process from an incoming ContentObject in pro-
cess incoming content
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1 if((face->flags & CCN_FACE_LOCAL) == 0 && (face->flags &
CCN_FACE_MCAST) > 0 && ((get_segment_nr(content))%
CONTENT_ADD_FREQUENCY)==1)

2 {
3 struct register_data *reg_info= malloc(sizeof(*

reg_info));
4 if(nameprefix_match(h, reg_info, content->key, comps,

content->ncomps-1, face->faceid, 0)>-1){
5 autoreg_prefix_content(h, reg_info, face->

faceid, content, comps);
6 }
7 free(reg_info);
8 }

Listing 3.1: overharing implementation in process incoming content

When a ContentObject arrives at a CCNx-node (step 1), the CCN daemon calls the
process incoming content function (step 2). The incoming ContentObject is encoded
in a message and, therefore, needs message parsing. The additional functionality developed
within this thesis starts right after the parsing which allowing us to directly access all values of
the ContentObject.

We perform the processing of incoming content only if certain conditions are met. Firstly,
the content needs to be received from a non-local face since content from a local repository
is already registered (step 3). Secondly, only multicast faces are considered (step 4), since to
receive content over point-to-point links, hosts would need to transmit Interest to well-known
hosts in first place. Thirdly, only the first and every nth segment is processed (step 5). This
differentiation is performed within the function get segment nr (see appendix 7.7 for more
information). Line number 1 in code listing 3.1 shows how the conditions are implemented.
If all conditions are met, the CCN daemon creates a new reg info. This struct holds the
expiration and component information for registering a new name-prefix. We will use this
struct in a later step. The complete struct definition can be found in appendix 7.2.3. After
allocating that struct, the nameprefix match function will be called (step 6). This is the
main function required for the overhearing functionality. The function nameprefix match
checks if a forwarding entry is already registered in the FIB, processes name limitations such as
prefix cut and the maximum number of FIB entries (see Section 3.1.4). Additionally, it updates
the expiration time of a forwarding entry if it is already registered. More detailed information
regarding the modification and implementation of nameprefix match can be found in
appendix 7.3.1. Depending on the return values of this function, different processing directions
are selected (step 7).

• In case of -1, no overhearing needs to be performed since the name-prefix is already
registered and no prefix cut is necessary (step 10).

• In case of 0, a new forwarding entry is registered using the registration data in the
reg info struct. In this case, the whole name-prefix of a overheard ContentObject is
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registered.

• A positive return value n indicates the number of components that have to be registered in
the reg info struct.

Afterwards, the forwarding entry will be registered to a specific face. This will be done by
calling autoreg prefix content (step 8). This function processes the information from
the struct reg info and registers the overheard name-prefix from an incoming ContentObject.
More detailed information is available in appendix 7.3.3. After these steps, the new overheard
name-prefix is registered as a new forwarding entry, enabling Interests to be transmitted over it.
At last, we free allocate memory from reg info (step 9).

Below we show a list of all new implemented functions and flags which must be used
for overhearing ContentObjects:

• The flags which are required to decide if an incoming ContentObject should be pro-
cessed, can found in Section 2.2.5.

• nameprefix match, this function checks if a name-prefix entry already exists, per-
forms prefix cuts and handles entry expirations. More details in appendix 7.3.1

• get segment nr, this function performs the selection of every nth segment for pro-
cessing. More details in appendix 7.3.2

• autoreg prefix content, this function registers the overheard ContentObject
name-prefix to the FIB. More details in appendix 7.3.3

3.2.2 Processing of Interests from Local Applications

The next task is to implement a way for adding Interests from local Applications to the
FIB. In Section 3.1.6, we explained that all Interests coming from local applications
must be propagated. Incoming Interests will be parsed and processed in the function
process incoming interest. All received Interests have to pass this function being
received either from remote hosts or local applications. This is where we implement the
functionality of permanently forwarding of local Interests.

Figure 3.4 shows the flow chart for propagating all Interests from local applications. In
the following explanation, each step from the flow chart is referenced by numbers in brackets.
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Figure 3.4: Flow chart of process overhearing of an incoming Interest
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Listing 3.2 shows the new implemented part in process incoming interest. In the
next paragraphs, the permanent forwarding of local Interests process will be explained by this
listing and the flow chart.

1 if(face->faceid>0 && (face->flags & CCN_FACE_LOCAL)!=0 &&
check_free_slots(h)>-1 && has_undesired_markers(msg, comps, pi->
prefix_comps) > -1 && nameprefix_match(h, NULL, msg, comps, pi->
prefix_comps, face->faceid, 1) >-1){

2 struct face *test_face;
3 update_dyntable(h, msg, comps, pi->prefix_comps);
4 for (hashtb_start(h->faces_by_fd, e); e->data != NULL

; hashtb_next(e)){
5 test_face = e->data;
6 if(test_face->flags & CCN_FACE_MCAST){
7 res = ccnd_reg_prefix(h, msg, comps,

pi->prefix_comps, test_face->
faceid, 0x3, SET_PREFIX_EXPIRATION
);

8 }
9 }
10 hashtb_end(e);
11 if(res<0){
12 ccnd_msg(h, "error could not registration

prefix", res);
13 }
14 }

Listing 3.2: forwarding handling in process incoming interest

Upon the arrival of a received Interest (step 1), the CCN daemon calls
process incoming interest (step 2). To permanently forwarding of local Inter-
ests, process incoming interest had to be extended by the code lines of listing 3.2. A
FIB entry is automatically created if certain conditions are met. Firstly, we need to determine
if an Interest comes from local application or from another host (step 3). This condition can
be checked with the flag CCN FACE LOCAL as shown in the code listing 3.2. If this flag is
set, the Interest comes from a local application and should be forwarded on the multicast face,
if no other face is specified. Secondly, we have to check the function check free slots
(step 4). This function limits the number of dynamically added forwarding entries to the FIB
as explained in subsection 3.1.4. More detailed implementation descriptions of this function
can be found in appendix 7.3.4. The maximum number of forwarding entries that can be added
to the FIB based on overhearing is stored in a separate data structure called dyn add. If the
maximum number is reached, the overhearing functionality is disabled until there is new space
in the dyn add table, e.g. if an overheard forwarding entry is expired. Details about this struct
can be found in appendix 7.2.2.

Additional to regular Interests for content, there are internal Interests that do not request
content but are used for control and command purposes such as face creation or storing
content to the local repository. A detailed list of used control messages can be found at the
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CCNx documentation page[7]. The function has undesired markers checks for such
Interests and returns a negative integer if this is the case. Such Interests must not be registered
dynamically and are ignored (step 5). Implementation details of this function can be found in
appendix 7.4.5)

Then, the Interest prefix is further processed in the nameprefix match function which was
already introduced in Section 3.2.1 (step 6). Called with an Interest, nameprefix match has
two possible return values:

• Zero, if no forwarding entry is available and the Interest name-prefix must be registered.

• Minus one, if a forwarding entry is already registered and no additional actions are re-
quired. (step 9).

As shown by the code listing 3.2, the if clause is not entered if nameprefix match
returns a negative value. If all conditions are met, the register process takes place. First, the
dyntable is updated over the function update dyn table (step 7). The dyntable
table contains all name-prefixes which were registered by overhearing and allows a faster
access to the FIB. More detailed information about this struct is available in appendix 7.2.1.
The function update dyn table adds the name-prefix information of the incoming In-
terest to the dyntable. A detailed explanation of this function is available in appendix
7.3.5. After updating the table, the incoming Interest will be registered on each available
multicast face (step 8). A prefix cut is not necessary for registering an Interest name-prefix,
because the entry will be added only for the lifetime of an Interest. If no data comes
back, the entry expires. If data comes back, it will be processed as a ContentObject and
the created FIB entry will be updated as described in Section 3.2.1. The Interest name-prefix
is registered by the ccnd reg prefix function which is already provided by CCNx (step 10).

Below is a list of all new implemented functions and flags which are used for permanently
forwarding Interests from local applications:

• nameprefix match checks for available forwarding entry and updates expiration time
of FIB entries. For more information see appendix 7.3.1.

• update dyntable saves the overheard name-prefix in the dyntable. For more infor-
mation see appendix 7.3.5.

• check free slots, checks if it is possible to add one more name-prefix by overhear-
ing. See details in appendix 7.3.4.

• has undesired markers checks if the incoming Interest is a protocol message from
a local application. For more information see appendix 7.4.5.

• Flags: CCN FACE LOCAL, CCN FACE MCAST, these flags are used to indicate local or
multicast faces. Section 2.2.5 explains it in detail.

• Values: SET PREFIX EXPIRATION which is used in nameprefix match. For more
information see appendix 7.1.
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3.2.3 Summary

There are many factors which must be considered during the implementation of the overhearing
capability. The implementation is divided into two parts. The first one is the handling of
incoming ContentObjects, the second one is the handling of outgoing internal Interests. When
overhearing ContentObjects, we have to ensure that only content from the multicast face is
registered. Content from local repositories is registered independently by local registration
operations. Overhearing of ContentObjects enables hosts to learn available content sources.
Furthermore, the overhearing mechanism provides an option, to add selected ContentObjects by
using the modulo function of the segment number of an ContentObject. Additionally, a prefix
shortener has been implemented which compares existing prefixes with new incoming prefixes
for common components. After this process optimisation part, we implemented a function
which does register the new prefix entry to the FIB and setting additionally an expiration time.
The expiration time will be automatically updated and increased, if the same data appears
multiple time in the network. With this approach, we can ensure that ContentObject prefixes
which are more frequently used stay longer in the FIB. Also forwarding entries which are
not refreshed for a certain time period will expire automatically. Furthermore, the number of
forwarding entries that can be added is limited. The dyntable stores the information whether
the CCN daemon is allowed to register another entry to the FIB.

By overhearing Interests from local applications, we ensure that it can be forwarded,
even if there is no available forwarding entry. With this approach, every application can always
probe the environment to check the availability of content. This is important in situations
without communication activity in which no content can be overheard. Of course, this works
only if a multicast face is available since we do not know where to forward the Interest
otherwise. In the unicast case, we know the other host and the FIB can be configured manually.
Interest prefixes from local applications will be added for a short time into the FIB if there is no
matching forwarding entry available. If a ContentObject returns back, the entry will be updated,
if not, the entry will expire. There are some internal Interests which should not be forwarded,
such as communication messages. We implemented a function which identifies and ignores
these Interests in terms of overhearing.
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Chapter 4

Evaluation

The chapter is structured into three sections. In Section 4.1, the hardware node configuration for
both parts is explained. In Section 4.3, the topology and evaluation results of the performance
tests are shown. In Section 4.4, we describe the power evaluations. All evaluation was done
based on CCNx version 0.6, which was the latest version at time of the evaluation.

4.1 Hardware and Node Configuration

The implementation was evaluated on PCEngines Alix 3d nodes [8]. The nodes were running
the ADAM operating system which is described below (see 4.2). For installing CCNx with
ADAM, additional changes were necessary. The detailed manual to set up an Alix-Node with
CCNx can be found in appendix 6.

The configuration of CCNx, such as the definition of forwarding entries, can be auto-
mated by the configuration file ccnx.conf. These entries are registered during the start of the
CCN daemon ccnd. To support multicast overhearing, CCNx needs a face including the
multicast address. Thus, a multicast face must be configured at start up. The CCNx multicast
address assigned by IANA is 224.0.23.170. Any port can be used for multicast except
9695 which is the unicast port. UDP is used as transport protocol since there is no need to build
up sessions to specific hosts. At start-up, the ccnd.conf must contain the following command to
add the multicast face:

1 add ccnx:/ccnx.org/Users udp 224.0.23.170 59695

The prefix ccnx:/ccnx.org/Users is required to find the keys of potential communication
partners. Currently, the keys of all CCNx users are stored under the same prefix. Furthermore,
it is required to register at least one multicast face in order to listen to traffic from that face.

4.2 Adam

ADAM[6] is an acronym for Administration and Deployment of Adhoc Mesh networks. Costly
on-site node repairs in wireless mesh networks (WMNs) can be required due to misconfigu-
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ration, corrupt software updates, or unavailability during updates. ADAM is a management
framework that guarantees accessibility of individual nodes in these situations. ADAM uses a
decentralised distribution mechanism and self-healing mechanisms for safe configuration and
software updates. In order to implement the ADAM management and self-healing mechanisms,
an easy-to-learn and extendable build system for a small footprint embedded Linux distribution
for WMNs has been developed. In this thesis, the self-healing and management function was
not used.

4.3 Performance Evaluation

In this section, the topology and the evaluation results of the performance evaluation such as
throughput and overhead are presented. Firstly in subsection 4.3.1, we introduce the topology.
Afterwards we describe three performance test scenarios in subsections 4.3.3, 4.3.4 and 4.3.5.
First, we want to evaluate the most appropriate parameters for the IEEE 802.11a unicast and
multicast transmission on Mesh-Nodes (Alix 3d nodes). This is done in subsections 4.3.3 and
4.3.4. Afterwards, when the parameters are known, we evaluate the overhead between the orig-
inal CCNx version 0.6 and the thesis implementation using CCNx version 0.6. This is shown in
subsection 4.3.5.

4.3.1 Topology

The test topology was built with three Alix nodes and a workstation. The used devices are listed
below.

• three Alix nodes running with CCNx version 0.6

• Linksys WRT54G switch

• Control Station

Figure 4.1 illustrates the topology structure. Furthermore it shows the assigned frequencies and
the used IP address configuration. The used network interfaces are listed in table 4.1. For the
evaluation RTS/CTS was disabled.
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Figure 4.1: Testbed topology, performance tests

Network name Standard
Adhoc network 1 IEEE 802.11a
Adhoc network 2 IEEE 802.11a
Fast Ethernet network 3 IEEE 802.3

Table 4.1: Network interfaces, test environment

4.3.2 Evaluation Results

The main focus was set on the following points:

• Comparing the throughput of Alix nodes with a high-performance workstation and the
results of the initial CCNx experiments performed by Van Jacobson et. al. [1].

• Finding optimal transfer parameters such as pipeline size, segment size or Interest lifetime
to increase wireless throughput.

• Measuring the processing overhead of the working overhearing functionality compared to
the original CCNx version 0.6.

To evaluate the throughput, we used the function ccncat which is an available CCNx file
transfer application. There were two different network technologies used, IEEE 802.3 which is
used in the Van Jacobson et. al. paper and IEEE 802.11a. In order to automate the evaluations,
a bash script was written. It is available in appendix 7.5.
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All illustrated figures in this section use whisker bars which display minimum, 0.25 quantile,
median, 0.75 quantile, and maximum.

4.3.3 Wired Unicast Transmission

The first scenario measures the IEEE 802.3 unicast throughput of an Alix-Node and a worksta-
tion. The test parameters are shown in table 4.2. The hardware specifications of the workstation
are shown in table 4.3 and the specifications of the Alix-Node are shown in appendix 6 listed in
table 6.1. The intent of this test was to evaluate how fast Alix nodes can process CCNx traffic.
We tested the throughput for file sizes of 1MB, 2MB, 5MB, and 10MB, each using a segment
size of 4096 bytes. We compared the gathered information with results from Van Jacobson et.
al.[1]

Test case Standard Pipeline size Segmentsize Filesize Test runs
unicast wired IEEE 802.3 16 4096 bytes 1MB - 10MB 100

Table 4.2: IEEE 802.3 evaluation settings, for each file and segment size combination 100 test runs were
done. The pipeline size was set to 16 according to the Van Jacobson et. al.[1] paper.

OS CPU RAM Motherboard
Kubuntu 11.10 Intel i5-2400 (3.10 GHz) 8096MB DDR3 Asus P8Z68-VLX

Table 4.3: Hardware specification of the used workstation.

Figure 4.2: Throughput of CCNx version 0.6 for Alix node and workstation compared with the results
from Van Jacobson et. al. paper. Van Jacobson et. al. tested only for transmissions of 6MB files.

The test results are shown in Figure 4.2. The y-axis shows the throughput in kilobytes per
seconds (kBps) on a logarithmic scale. The x-axis displays the selected file size. As one can see,
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the throughput from Alix node to Alix node is at around 600 kBps with segment size of 4096
bytes. Van Jacobson et. al.[1] measured a throughput of around 8700 kBps. Thus, the throughput
is lower by factor 14.5. The throughput of the workstation is for small file sizes around 6400
kBps and for bigger files approximates the throughput of about 8600 kBps. Thus, the results
of the workstation are similar to results of Van Jacobson et. al.[1]. The Alix nodes are much
slower because the processing power of the embedded processor CPU is limited and therefore,
content processing and signature verification take more time. As comparison, we also measured
the throughput of an Alix node for a TCP connection using netcat [9] instead of CCNx. The
average throughput over all file sizes is around 11500 kBps. This illustrates the large processing
overhead of CCNx. Mesh nodes with higher processing power or hardware-based signature
verification may lead to higher CCNx throughputs.

4.3.4 Wireless Transmission with Varying Parameters

After learning the capabilities of the hardware, we observed the throughput of wireless commu-
nication. In this second test scenario, we measured the impact of increasing the pipeline size in
unicast and multicast IEEE 802.11a transmissions. The selected parameters are listed in table
4.4. In the CCNx framework, the maximum pipeline size is limited to 16. Pipeline sizes larger
than 16 do not result in any performance gains in IEEE 802.3 transmissions (see Van Jacobson
et. al. [1]). For the IEEE 802.11a throughput measurements, we disabled this limitation and
allowed larger pipeline sizes. The problem, especially with multicast IEEE 802.11a, is that with
a pipeline size of 16 and the default parameters, the throughput reaches only values of around
45kBps. One reason are the additional delays for collision avoidance before transmitting Inter-
ests or sending ConentObjects back. To synchronize with multiple recipients, these delays are
higher than in unicast. Therefore, it needs more time until a node receives an answer from an In-
terest which results in a bandwidth reduction. Van Jacobson et. al. [1] tested the throughput for
IEEE 802.3. Thus, the used pipeline size may not be appropriate for IEEE 802.11a transmission.

Test case Standard Pipeline size Block size File size Test runs
unicast wireless IEEE 802.11a 4 - 1024 1024 - 4096 bytes 2MB 100
multicast wireless IEEE 802.11a 4 - 16384 1024 - 4096 bytes 2MB 100

Table 4.4: IEEE 802.11a test case: figure out best pipeline size

In this test scenario, we transferred three test files of 2MB with segment size of 1024,
2048, 4096 bytes from one Alix node to another. The maximum segment size on the wireless
interface was 2274 bytes. This means segment sizes of 2048 and 4096 bytes result in packet
segmentations of the underlying IP layer. For multicast transmissions, we measured the
throughput for pipeline sizes from 4 to 16384 and in the unicast scenario from 4 to 1024
pipelines. Each file and pipeline size combination was evaluated by 100 runs. In this scenario,
we used the original CCNx version 0.6 framework.
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Figure 4.3: Throughput of 802.11a multicast ccnx0.6 with different pipeline sizes

Figure 4.3 illustrates the impact to multicast transmission of an Alix node communicating
via 802.11a, when increasing the pipeline size. The y-axis shows the throughput in kBps. The
x-axis shows the used pipeline size. The green line has a segment size of 4096 bytes, the
blue one a segment size of 2048 bytes, and the red one a segment size of 1024 bytes. Bigger
segment sizes, e.g., 4096 bytes, are more efficient for file transmissions than smaller e.g.,
1024 bytes. This is because the overhead of the CCNx messages, including name-prefixes and
signatures, is smaller for larger segment sizes and fewer packets are required. This results also
in a lower processing overhead due to fewer signature verifications. Even if on lower layers,
the packet must be fragmented, bigger segment sizes are better and result in higher throughput.
Furthermore, Figure 4.3 illustrates, that until a pipeline size of 512 packets the throughput
increases for all three segment sizes. For pipeline sizes larger than 512 we get no additional
performance gain. If we compare the results with the recommended pipeline size of 16 for
the IEEE 802.3 transmission, we can increase the throughput from 45kBps (16 pipelines) to
182kBps (512 pipelines) for a 2MB file.

To evaluate the disadvantages of large pipeline sizes, we measured the transmitted Inter-
est and received ContentObjects at the requester. Figure 4.4 illustrates the transmitted Interests
and received ContentObjects for 50 test runs to transfer a 5MB file with 4096 bytes segment
size using different pipeline sizes. The y-axis shows the number of transmitted Interests and
received ContentObjects. The x-axis shows the used pipeline size. As we can see, the number
of transmitted Interests increases very fast with increasing the pipeline size. The received
ContentObjects of the requester are constant up to a pipeline size of 256 but increases with
pipeline sizes of 512 or more as well.
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Figure 4.4: Transmitted Interests and received ContentObjects for different pipeline sizes.

Table 4.5 lists the number of transmitted Interests of a unicast and a multicast transmission
using different pipeline sizes. When using the same pipeline size of 16 for both, unicast and
multicast, the difference in transmitted Interests is minimal. To request a 5MB file, a multicast
transmission requires approximatively 6% more Interests than a unicast transmission. This is be-
cause by using unicast, the retransmission is done on the MAC-layer without noticing by CCNx,
in multicast it is done by CCNx on the application layer after an Interest timeout. Furthermore,
the min-max deviation of the transmitted Interests is very small in unicast, this is another in-
dication that the retransmission is done on the MACLayer. However, the multicast throughput
that can be achieved with the same pipeline size of 16 and the same parameters is much lower
than in unicast. Increasing the pipeline size to higher values increases the throughput but at the
cost of more collisions and Interests retransmissions. If we compare multicast transmission with
16 pipelines to multicast transmission with 512 pipelines, the overhead of transmitted Interests
is around 75% for the same file size. Although, this value is high, it still resulted in higher
throughput but in scenarios with more nodes, the collision rate may increase resulting in more
retransmissions and lower overall throughput.

unicast 16 multicast 16 multicast 512
sent Interests 1295 1369 2390
relative deviation 0.10% 1.33% 15.56%
Kilo Bytes per second 606.64 44.96 182.04

Table 4.5: Number of transmitted Interests using unicast/multicast transmission, relative min-max devi-
ation and throughput in kBps

Figure 4.5 shows the impact of increasing the pipeline size in the unicast case. In contrast to
multicast, there is no performance gain by increasing the pipeline size to values larger than 16.
With a pipeline size of 32 or larger, CCNx gets seq gap error messages during the transmission
indicating that packets were dropped. The larger the pipeline size the more often seq gap prob-
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lems occur and consequently, the throughput collapses. With multicast transmission, seq gap
never occurred in our evaluations.

Figure 4.5: Throughput of 802.11a unicast ccnx0.6 with different pipeline sizes

As illustrated in Figure 4.3 and Figure 4.5 the min-max deviation of unicast is in most cases
lower than the min-max deviation of multicast and the throughput is much higher. A reason
is that IEE802.11a multicast has no MAC-acknowledgement (ACK) in contrast to unicast.
Thus, a multicast transmitter does not know if the packet arrives to the requester or not. In
unicast, the retransmission of collided packets is done on the MAC-layer and the higher layered
CCNx does not recognize the packet as lost and does not schedule a retransmission. In CCNx,
a receiver reexpresses an Interest after an Interest timeout. This retransmission is performed
on the CCNLayer which is currently implemented on the application layer. Therefore, in
multicast communication, the Interest retransmission takes more time compared to unicast
MAC layer retransmissions. During the waiting time, no data can be transmitted resulting in
longer transmission times. Additionally the backoff time of multicast is by default much longer,
since it cannot be adapted based on collisions as with unicast.

Therefore, multicast transmission results in very low throughput. Increasing the pipeline
to larger values increases the throughput but at the cost of large transmission overheads and
collisions. Another strategy is to reduce the CCN delay until retransmitting an Interest.

Every Interest has an Interest lifetime, which defines the time an Interest is valid in the
PIT. If the lifetime expires, the Interest can be re expressed. The Interest timeout has therefore
an impact on the retransmission of Interests. In CCNx, the Interest lifetime is set by default to 4
seconds. In unicast transmission where the retransmission is done on the MAC-layer, 4 seconds
may be a good choice. However, multicast transmissions are slowing down due to this large
retransmission delay. After each collision, it gets a huge delay. Therefore, we evaluate different
Interest timeouts lower than 4 seconds.
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Figure 4.6 shows the behaviour of CCNx by adapting the Interest lifetime. The x-axis
denotes the throughput in kBps. The y-axis shows the pipeline size. We evaluate a pipelined
transfer of a 2MB file with four different Interest lifetimes of 4.0, 1.0, 0.5, and 0.25 seconds
indicated by the four coloured lines. When using Interest lifetimes of 1 second or less, pipeline
sizes larger than 16 result in no performance gain. This seems to be the limit for efficient CCN
transmission as already observed for wired communication in Van Jacobson et. al. [1]. The
black line of Figure 4.6 shows the throughput when using the default Interest lifetime of 4
seconds. Here, in contrast to the other lines, the throughput increases by using larger pipeline
sizes than 16. The reason for this, is the higher number of Interests that can be transmitted until
a timeout has been detected. These concurrent Interests may retrieve content that is then stored
in the content store of the requester. Not all of them will result in a collision. After the timeout
is detected, only the Interest that timed out needs to be retransmitted and subsequent Interests
can then be satisfied from pre-fetched content in the requester’s content store. This results in
considerably higher throughput however at the expense of large transmission overheads. The
performance gain due to decreasing the Interest lifetime is approximatively 79% or from 182.04
kBps with pipeline size of 512 and 4 seconds lifetime to 325.6kBps with pipeline size of 16 and
0.25s lifetime.

Figure 4.6: Throughput of a 2MB file, with different Interest lifetimes.

Our results showed that a higher throughput can be achieved for Interest lifetimes smaller
than 1 seconds and a pipeline size of 16. Therefore, we evaluate the transmission overhead of
all four Interest lifetimes using a pipeline size of 16 in the following.

Figure 4.7 illustrates the number of transmitted Interest and received ContentObjects and
as well as the number of duplicated ContentObjects for different Interest lifetimes. The x-axis
denotes the Interest lifetime in seconds. The left y-axis indicates the number of transmitted
Interests and received ContentObjects. The right y-axis shows the number of received dupli-
cated ContentObjects. If there are too many duplicated ContentObjects, the chosen Interest
lifetime is too short since the CCN daemon will reexpress the Interest before the corresponding

31



ContentObject can be received. There are no duplicated ContentObjects for Interest lifetimes
longer or equal to 0.5 seconds. When using Interest lifetimes of 0.25 seconds, we receive
at most 30 duplicated ContentObjects. This value was only reached once in our evaluations
and corresponds to an overhead of 2.34%. Therefore, in the remainder of this work, we use
an Interest lifetime of 0.25 seconds since it results in a higher throughput of 48%, i.e. from
219.27kBps to 325.6kBps, compared to an Interest lifetime of 0.5 seconds. This is still about
45% lower than unicast throughput but already two simultaneous requesters will result in faster
transmissions. Future implementations may use an adaptive mechanism to control the Interest
lifetime based on the number of duplicated ContentObjects, number of transmitted Interests,
and the throughput.

Figure 4.7

4.3.5 Overhead of Implementation

In this subsection, we evaluate the overhead of the working overhearing functionality compared
to the original implementation. We set the pipeline size to a fixed value and compare the addi-
tional time the implementation needs for the transmission of different file sizes.

Test case Interest lifetime Pipeline size Blocksize Filesize Test runs
multicast wireless 0.25s 16 4096 bytes 0.25MB - 10MB 50

Table 4.6: IEEE 802.11a test case: measuring the difference in throughput of original CCNx and thesis
implementation with overhearing functionality

Table 4.6 shows the configuration of the test scenario. In this scenario, we used file sizes
of 0.25MB, 0.5MB, 1MB, 2MB, 5MB, and 10MB each with a segment size of 4096 bytes. In
subsection 3.1.5, we described a process optimization by using the modulo function. In this test
scenario we processed every 20th ContentObject. We choose this low value as performance
baseline. For higher modulo values, the overhearing overhead obviously becomes smaller.
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Additionally, the maximum number of dynamically added forwarding entries was set to 10.
However, during the tests the maximum number was never reached, because we transmitted only
one file. The intent of this test was to investigate the processing overhead of the overhearing
functionality by comparing the throughputs which decrease with increasing processing efforts.

Figure 4.8: CCNx with enabled overhearing versus CCNx with disabled overhearing

Figure 4.8 shows the results when comparing the original CCNx implementation with the
thesis implementation comprising the overhearing functionality. The transmission was per-
formed by multicast communication. The y-axis shows the throughput in kBps, the x-axis shows
the different file sizes. As expected, the throughput is lower with applied overhearing function-
ality compared to the original implementation due to a higher processing overhead. Table 4.7
shows the difference in percent. As one can see CCNx 0.6 with overhearing functionality is
between 0.02% (10MB file size) and 9.23% (0.25MB file size) slower.

4096 bytes
0.25MB 8.45%
0.5MB 4.89%
1.0MB 1.35%
2.0MB 1.89%
5.0MB 0.62%
10.0MB 0.02%

Table 4.7: Throughput overhead of CCNx 0.6 with enabled overhearing compared to CCNx 0.6 with no
overhearing functionality for different file sizes with 4096 bytes segment size
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4.4 Power Evaluation

In this section, we introduce the test topology and discuss the evaluation results of the power
evaluation for an Alix node in different roles, i.e. content source, receiver, or listener. Firstly, in
subsection 4.4.1, we introduce the topology. Secondly, in subsection 4.4.2, the evaluation results
are discussed.

4.4.1 Power Evaluation Topology

Figure 4.9 illustrates the topology structure including the assigned frequencies and the used IP
address configuration similar to Section 4.3. The power of the Alix nodes was measured using
the Rigol digital multimeter [13]. The settings for the Rigol digital multimeter are listed in table
4.8.

Measure Direct Current Intensity (DCI)
Range 10 Ampere
Sampling rate 100Sa/s
File size 5MB
Test runs 50

Table 4.8: Test settings for Rigol digital multimeter

Figure 4.9: Test bed topology, power tests
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4.4.2 Evaluation Results

In this subsection, we measure the power consumption of an Ali node running with CCNx using
multicast communication. We compare the unmodified CCNx implementation with the imple-
mentation which has the additional overhearing functionality. Three node roles were defined:

1. content source: the power consumption in Watt to transmit data from the local repository
is measured.

2. requester: the power consumption in Watt to request and receive data from a node is
measured.

3. listener: the power consumption in Watt to overhear data from the environment without
requesting it and if the overhearing functionality is enabled, adding the name-prefix entry
as a new forwarding entry to the FIB.

For comparison, the power consumption of an Ali node with a running CCNx which does
not receive or transmit any data was measured. This is called the idle mode.

Figure 4.10 shows the power measurements for every node role. The x-axis shows the
four different modes, each of it for the original CCNx version 0.6 (red) and for the overhearing
functionality implemented in the scope of this thesis (blue). The y-axis shows the power
consumption in Watt. The black intervals on the top of each bar denote the standard deviation.
In idle mode, both versions (original CCNx and CCNx with thesis implementation) have an
equal power consumption. The content source has the highest energy consumption since it
needs to fetch the already signed ContentObjects from the repository and transmits it over the
wireless medium. The power consumption of the requester is only slightly lower, because it
needs to transmit Interests and verifies the signatures of the received ContentObjects. A listener
has a lower power consumption, because no Interests are transmitted and no signatures need to
be verified. However, the listener still needs to process and parses all received content names.

Table 4.9 shows the median power consumption in Watt for the node roles. The power
consumption of the original CCNx implementation was set as reference to 100%. The overhead
for a requester is on average only 1.27% and increases for a passive listener to about 4.58%.
The higher overhead of the passive listener compared to the requester is due to the new
implemented overhearing mechanism. The functions which register the overheard data need
processing capacities and this leads to higher energy consumption in contrast to the case without
overhearing in which the listener only put the incoming ContentObjects temporary into the local
content store.
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Figure 4.10: Power consumption of an Alix node with CCNx version 0.6 running during data transfer
and idle. For the data transfer, IEEE 802.11a was used.

Idle Requester Content source Listener
CCNx 0.6 multicast, 3.57W 4.59W 4.73W 4.57W
overhearing enabled 100.00% 101.27% 100.13% 104.58%
CCNx 0.6 multicast, 3.57W 4.54W 4.72W 4.37W
overhearing disabled 100.00% 100.00% 100.00% 100.00%

Table 4.9: Median power consumption in Watt for different scenarios of CCNx 0.6 with thesis imple-
mentation and CCNx 0.6 original.

To evaluate the extra energy consumption in Joule to transfer an entire file, we took the re-
sults from the node roles defined above. As mentioned in subsection 4.4.1, these results were
measured for a 5MB file. To get the energy consumption, we took the median value of the
power consumption evaluation and multiplied it with the transmission time in seconds of the
corresponding file transfer. Figure 4.11 illustrates the extra energy consumption for transfer-
ring a 5MB file in Joule using the CCNx version 0.6 with overhearing compared to the original
CCNx version 0.6. The x-axis shows the nodes role. The y-axis shows the power consump-
tion in Joule. The values correspond to the transmission of a 5MB file using multicast. A file
transfer has with enabled overhearing a longer duration than with disabled, therefore, to have
the same time interval, which allows a fair comparison, the faster node switch after a success-
ful transmission into the idle mode. This additional energy consumption is added to the faster
nodes total consumption. The content source consumes with enabled overhearing functionality
approximative as much energy as with disabled overhearing functionality. This is because the
content source does not process own ContentObjects, thus, it needs same energy as with dis-
abled overhearing. The requester instead needs 1.88% more energy with enabled overhearing
due to the additional processing and the registering of incoming ContentObjects. The listener
has with 5.22% the largest difference between enabled and disabled overhearing functionality.
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With enabled overhearing the listener changes from a passive to a more active role where it adds
overheard ContentObjects to the FIB. Thus, the energy for the processing is much higher as with
disabled overhearing where the listener only puts the incoming ContentObjects temporary into
the content store.

Figure 4.11: Extra power consumption of thesis implementation compared with original CCNx version
0.6 for transferring a 5MB file. The nodes change to idle mode after finishing transmission.

4.4.3 Multi- vs Unicast Energy Consumption

We measured the power consumption of an unicast transmission and show the results in table
4.10. Table 4.11 shows the energy in Joule the multicast transmission requires compared to
unicast transmission for different file sizes. Furthermore, this table lists relative additional power
consumption of multicast compared to unicast in percent. The expected energy consumption for
different file sizes was calculated based on the average transmission times in Section 4.3.5 and
the power consumption in Watt for a multicast transmission listed in table 4.9 respectively for
an unicast transmission listed in table 4.10. We observed in subsection 4.3.4 that the multicast
throughput is lower than the unicast. Therefore, the unicast node switches, after finishing
the transmission, into the idle mode until the multicast transmission is finished. For a fair
evaluation, the energy consumption of the node within this time period was added to the total
energy consumption of the unicast transmission.

As expected consumes a multicast transmission more energy than a unicast transmission.
This is due to the lower throughput of multicast. The overhead for the requester is for all
file sizes approximatively 10%, for the content source the overhead is for small file sizes
41% which decreases to 28% for large files. Thus, from the aspect of energy consumption,
multicast has an advantage compared to unicast if there are at least 2 requester nodes for the
same data. In multicast communication the overhead of listeners that are not participating in
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the communication is higher but they gain information of available content and can receive it
without efforts.

Idle Requester Content source Listener
CCNx 0.6 unicast 3.57W 4.69W 3.76W not possible

Table 4.10: Median power consumption of unicast in Watt for different scenarios of CCNx 0.6.

Requester Content source
Joule relative Joule relative

unicast multicast in % unicast multicast in %
0.25MB 4.09 4.45 9% 3.59 5.05 41%
0.50MB 7.30 7.94 9% 6.42 8.69 35%
1.00MB 13.73 14.93 9% 12.06 15.78 31%
2.00MB 26.12 28.27 8% 22.86 29.99 31%
5.00MB 64.29 69.33 8% 56.11 72.64 29%
10.00MB 127.67 136.39 7% 110.58 142.03 28%

Table 4.11: Energy consumption in Joule using unicast/multicast transmission for transmitting different
file sizes. After finishing transmission, the nodes change to the idle mode. The relative values show the
energy overhead of a multicast transmission compared to unicast transmission for a given file size.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

Configuring mobile networks with static unicast IP addresses is not feasible. A possible solution
to avoid this static unicast IP addresses is to use a multicast address. Thus, mobile devices do
not need to know other network participants’ address to request data. This thesis has examined
how to extend the forwarding table (FIB) of the CCNx framework with overhearing multicast
traffic. The evaluation was done on Alix nodes running CCNx version 0.6, which was the
latest version at the time of the evaluation. Firstly, to gain an idea how fast these nodes can
process CCNx traffic, the reached IEEE 802.3 unicast throughput was compared with the result
of Van Jacobson et. al [1]. It results that the transmission rates of Van Jacobson are higher by
factor 14.5 compared to resource limited Alix nodes. This is due to the low CPU capacity of
the Alix nodes. Secondly multicast transfer rates were tested. By increasing the pipeline sizes
from 16 to 512, the rates reached approximatively 34% of the unicast transfer rates, however
at the expense of 75% more Interest transmissions due to collisions and Interest timeouts. By
decreasing the Interest lifetime from 4 seconds to 0.25 seconds, the multicast throughput can
be increased of 731%. Compared to unicast, multicast reaches a throughput of approximatively
59% with same pipeline size and without increasing the number of transmitted Interests. The
reasons for the slower transfer rates of multicast are i) the lack of acknowledgements and ii) the
retransmission delay in case of collisions due to retransmissions on a higher layer and iii) the
larger back off times. An adaptive mechanism to adjust the Interest timeout based on number of
incoming duplicated ContentObjects and number of retransmissions could increase the transfer
rates. Thirdly the overhearing overhead was evaluated. Compared with the CCNx version 0.6
the time overhead was between 0.02% and 9.23%. Finally, the power consumption of CCNx
on Alix nodes was evaluated. Compared with disabled overhearing, an Alix nodes consumes,
with enabled overhearing, between 0.74% (content source) and 5.22% (listener) more energy
for transmitting a 5MB file. Compared to unicast communication a requester requires 7%-9%
additional energy for multicast communication. A content source requires 28% - 41% additional
power for multicast communication compared to unicast.

On one hand, the higher multicast transmission time and energy overhead compared to
unicast communication seem to render multicast overhearing useless. However, if the transfer
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rates of multicast can be increased, e.g., by shorter Interest lifetime delays, the energy and
time overhead can be reduced significantly. On the other hand, when two or more network
participants need the same data, multicast has an advantage to unicast. A further advantage with
multicast is, the other network participants get content information by overhearing which may
be used by routing mechanisms. However, power saving mechanisms need to be developed to
reduce the energy consumption of passive listeners.

5.2 Future Work

As discussed in chapter 4 multicast transmission over IEEE 802.11 is very slow. With some
optimization we reached transfer rates of around 340kBps. For some applications e.g. video
streaming, business software or video conferences, such transfer rates are too slow. Optimization
of the the IEEE 802.11 MAC procedure for multicast transmissions could increase the multicast
throughput. At the moment, the MAC procedure is optimized for unicast communication.

Another task is to reduce the processing overhead of the overhearing functionality. This
could be done by allowing higher values for the modulo function that manages which next
incoming ContentObjects will pass the overhearing process. An approach could be an adaptive
mechanism based on the size of the incoming file, if this information is available.

At the moment the lifetime of a FIB entry depends on the number of processed overheard
ContentObjects. For each overheard and processed ContentObject grows the entry lifetime of
the corresponding prefix entry by the same static value. This may result in large expiration
values for large files and small expire values for small files. However, the entry lifetime should
be based on content availability and not content size. This is inaccurate in case of mobility
and e.g., if the large file is transmitted only once the related entry stays for a long time in the FIB.

Adapting the Interest lifetime is a good way to increase the multicast transmission speed.
At the moment the Interest lifetime has to be set manually in the source code. Implementing an
adaptive mechanism which decides the Interest lifetime based on the ContentObject response
time and the received duplicated ContentObjects may increase the throughput in dynamic
environments.

A further open issue is the prefix-cut. Let us assume that a node has configured two
faces. The FIB contains the forwarding entry ccnx:/ccnx.org/example for face
1 and face 2. On face 1 the name-prefix ccnx:/ccnx.org/example was formed
by the name-prefix cut between the prefixes ccnx:/ccnx.org/example/ex1 and
ccnx:/ccnx.org/example/ex2. On face 2 the same name-prefix was formed
by the name-prefix cut between the prefixes ccnx:/ccnx.org/example/ex3 and
ccnx:/ccnx.org/example/ex4. If that node requests the data source ex2, it sends the
Interests over face 1 and face 2. Without the prefix-cut, the Interests would have been sent only
over face 1. Thus, a more sophisticated approach for the prefix cut is needed.
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Chapter 6

Technical Appendix

6.1 Overview

Firstly follows a ALIX3D2 hardware specification. Those boards were using in the evaluation.
Afterwards an overview over the necessary changes of the image-builder, which are indispens-
able for a successful installation of the CCNx framework on the board.

6.2 Hardware

Table 6.1 shows the specifications of the ALIX3D2 board.

Features Specification
CPU 500 MHz AMD Geode LX800
DRAM 256 MB DDR DRAM
Storage CompactFlash socket
Power DC jack or passive POE, min. 7V to max. 20V
LED three
Expansion 2 miniPCI slots, LPC bus
Connectivity 1 Ethernet channel (Via VT6105M 10/100)
I/O DB9 seral port, dual USB
Board size 100 x 160 mm - same as WRAP.2E
Firmware tiny BIOS

Table 6.1: Specifications and features of ALIX3D2 board

Additionally on every miniPCI slot is a Wistron DNMA92 802.11 a/b/g/n miniPCI radio.

6.3 Setup ALIX-Node

There are some necessary changes and updates for installing CCNx on an ADAM[6] system.
A short overview for using CCNx with ADAM is given below. The svn-common packet must
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be installed on the computer to check out the corresponding repository. First of all checkout
the image-builder[14] and switch to the newly created image-builder folder. Next, the following
changes have to be done:

• Adding the buildscript ”ccnx.sh” which is needed for building the ccnx framework on the
node. It is possible to take the existing source code from the standard repository. The
better way is to download the latest of CCNx version from the CCNx [3] website. Change
to the location of the downloaded CCNx version and build a new distribution (with make
distfile) e.g.,

make distfile VERSION=0.1beta

That command crates a new CCNx package named ccnx-0.1beta.tar.gz. Do not forget
calculating the sha1sum from the new generated packet. After that put the CCNx package
into the desired source location of your image-builder and rename the necessary values
(VERSION, SHA1SUM, URL) in the ccnx.sh build script (see listing below).

1 #!/bin/bash
2

3 ##################################################
4 . ${BUILDDIR}/buildscripts/functions
5

6 VERSION="0.4b-webj"
7 SHA1SUM="75e38e647e74cf06232a5041bc869a82b43d9073"
8 URL="http://ba.darky.ch/webj"
9 FALLBACK="http://ba.darky.ch/webj"

10 BUILD_DEPS="toolchain"
11 ##################################################
12

13 download_gz ccnx &&
14

15 cd ${BUILDDIR} &&
16 tar -xzvf ${SRCDIR}/ccnx-${VERSION}.tar.gz &&
17 cd ccnx-${VERSION}/csrc &&
18 export INSTALL_BASE="${INSTALLDIR}"
19 CC="${CC} -Os -fPIC" ./configure &&
20 make &&
21 make DESTDIR=${INSTALLDIR} install &&
22

23 cd ${BUILDDIR} &&
24 rm -rf ccnx-${VERSION}

• CCNx needs openssl rc2 support. In the trunk version, the openssl.sh script ignores the
rc2 support. Without rc2 support, the CCNx security mechanisms (encryption an decryp-
tion) will not work. Thus, it will be not possible to start the CCN-daemon on the node.
Removing no-rc2 string in the openssl.sh script is the only thing to do for having the
support.
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1 if [ "${BOARDARCH}" = "arm" ] ; then
2 ./Configure linux-generic32 -DL_ENDIAN --prefix=/ --

openssldir=/etc/ssl no-idea no-md2 no-mdc2 no-rc2 no-
rc5 no-sha0 no-smime no-rmd160 no-aes192 no-ripemd no
-camellia no-ans1 no-krb5 no-ec no-err no-hw shared
zlib-dynamic no-engines no-sse2 no-perlasm

3 else
4 ./Configure linux-embedded-${BOARDARCH} --prefix=/ --

openssldir=/etc/ssl no-idea no-md2 no-mdc2 no-rc2 no-
rc5 no-sha0 no-smime no-rmd160 no-aes192 no-ripemd no
-camellia no-ans1 no-krb5 no-ec no-err no-hw shared
zlib-dynamic no-engines no-sse2 no-perlasm

5 fi

Listing 6.1: oppenssl.sh without CCNx

1 if [ "${BOARDARCH}" = "arm" ] ; then
2 ./Configure linux-generic32 -DL_ENDIAN --prefix=/ --

openssldir=/etc/ssl no-idea no-md2 no-mdc2 no-rc2 no-
rc5 no-sha0 no-smime no-rmd160 no-aes192 no-ripemd no
-camellia no-ans1 no-krb5 no-ec no-err no-hw shared
zlib-dynamic no-engines no-sse2 no-perlasm

3 else
4 ./Configure linux-embedded-${BOARDARCH} --prefix=/ --

openssldir=/etc/ssl no-idea no-md2 no-mdc2 no-rc5 no-
sha0 no-smime no-rmd160 no-aes192 no-ripemd no-
camellia no-ans1 no-krb5 no-ec no-err no-hw shared
zlib-dynamic no-engines no-sse2 no-perlasm

5 fi

Listing 6.2: oppenssl.sh with CCNx

• For using CCNx on the node, install expad as well. It must be added to the buildprofile.
The expad buildscript is already available.

• For using IEEE 802.11[15] 5 GHz frequencies it needs a pached version of the linux.sh
packet. See linux-3.2-pached.sh in /buildscripts/packages for further information.

Once this changes are done, it is easy to setup the alix-node with CCNx support. Follow the
instructions of README.built and README.alix where is explained how to flash the image.

6.4 Start CCNx on the Node

There are two ways to connect with a running the Alix-Node:

• SSH: to set up a SSH connection the node has to be connected with an Ethernet cable to a
network. Afterwards the command interface of the node can be invoked by the following
command: ssh root@ip-address.
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• Minicom: minicom is a connection software which allows to access an Alix-Node without
a working IP-configuration. The node is connected by an USB-Cable to a workstation. To
connect the Alix-Node over minicom the following steps are todo:

– Install minicom with apt-get install minicom

– Configure minicom with minicom -s and choose Serial port setup

– Choose A and exchange /dev/tty8 through /dev/ttyUSB0

– Save changes and restart minicom

After successfully accessing the node, the following steps are to do:

• Start the ccninitkeystore command. This command will create the keys for the
security mechanisms of ccnx. If there is no rc2 support on the node, it will fail and CCNx
will not work.

• To add multicast communication support, it is necessary to add a new IP route to the
routing table. For using multicast with CCNx, type

ip route add multicast address/subnet dev device

e.g.

ip route add 224.0.23.170/32 dev wlan0

Note, without this configuration the CCN daemon will not be able to add multicast faces.
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Chapter 7

Appendix

7.1 CCNx values

For the thesis implementation some new values were created:

• CONTENT ADD FREQUENCY
It is a environment variable which describes how frequent a ContentObject will be pro-
cessed.

• MAX PREFIXES
This is the value which contains the maximum name-prefixes which can be added with
overhearing as forwarding entry into the FIB. Default value is 10. It is an environment
variable.

• SET PREFIX EXPIRATION
This constant contains the number of additional seconds a forwarding entry is valid, if an
new content arrives over an existing forwarding entry.

7.2 Structs

This section gives a short overview of the structs which were used during the implementation of
the overhearing functionality.

1 struct register_data{
2 int expire;
3 int newcomps;
4 };

Listing 7.1: struct register data

7.2.1 Struct dyn add

This struct holds every necessary information to each dynamically added forwarding entry. Fur-
thermore dyn add stores information over left free space for adding more forwarding entries
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dynamically. The value next slot points to the next free dyn entry 7.3. This struct is used
for a faster access to the FIB.

1 struct dyn_add{
2 int next_slot;
3 struct dyn_entry **dyn;
4 };

Listing 7.2: struct dyn add

7.2.2 Struct dyn entry

The struct dyn entry contains information about one specific name-prefix. The struct contains
the following variables:

• key: the ccnb-encoded name-prefix

• length: the number of letters the ccnb-encoded name-prefix has.

• ncomps: the number of components the stored name-prefix has.

1 struct dyn_entry {
2 unsigned char *key;
3 int length;
4 int ncomps;
5 };

Listing 7.3: struct dyn entry

7.2.3 Struct register data

This struct is relevant for the updating process after a prefix cut 7.1 was necessary. It contains
two values (see listing 7.4):

• expire: the time in seconds which a forwarding entry has left until it expires.

• newcomps: the number of new components which has to be registered.

1 struct register_data{
2 int expire;
3 int newcomps;
4 };

Listing 7.4: struct register data
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7.3 Functions

This section describes the functions which are mentioned in the sections 3.2.1 and 3.2.2. The
intent of each functions is described in a separated subsection.

7.3.1 nameprefix match

1 int nameprefix_match(struct ccnd_handle *h, struct register_data *
reg_info, const unsigned char *msg, struct ccn_indexbuf *comps,
int newcomps, int incom_face, int is_interest)

Listing 7.5: header of nameprefix match

The function nameprefix match is the key function for registering overheard name-
prefixes. It manages the whole registering process of the overhearing process.

First nameprefix match checks if in the FIB a forwarding rule already exists for an
incoming name-prefix. As well it updates the expiration time 3.1.3 of a forwarding rule if
it is below an certain value. For new registrations the function writes all the needed values
into the struct register data 7.4. This struct contains the information which will be used
for registering an new forwarding entry into the FIB. Furthermore nameprefix match
handles the prefix cut functionality which was described in section 3.1.4. For reusing code, the
function is constructed in two parts, the first one handles Interest messages, the second part
ContentObjects.

Matching ContentObjects in nameprefix match

Overheard ContentObjects are processed in project incoming content. If the over-
hearing functionality is implemented, the nameprefix match function will be called with
a message (Interest or ContentObject). In this case it is a ContentObject. The first thing
nameprefix match checks, is whether the struct dyn add 7.2.2 contains already the
name-prefix (longest prefix match) of the incoming ContentObject. It compares the name-prefix
components from the incoming ContentObject with the name-prefix components of the already
dynamically added entries. If it gets a match, nameprefix match stores the number of
matching components and the number of components from the existing forwarding entry as an
integer in the values newcomps respectively oldcomps (see listing 7.6 line number 13 and
14).

The intent of newcomps and oldcomps is explained in the next paragraph.

1 for(i=0;i<MAX_PREFIXES;i++){
2 res=1;
3 if(h->dyn_add==NULL){
4 ccnd_msg(h, "error dyn_add is not inizialized");
5 }
6 if(h->dyn_add->dyn[i]==NULL)

47



7 continue;
8 compmsg = h->dyn_add->dyn[i]->key;
9 if(compmsg != NULL){

10 for(j=newcomps;j>1;j--){
11 res = memcmp((msg+base), compmsg,

comps->buf[j]-base);
12 if(res==0){
13 newcomps=j;
14 oldcomps=h->dyn_add->dyn[i]->

ncomps;
15 break;
16 }
17 }
18 }

Listing 7.6: check for a matching name-prefix in function nameprefix match

The function nameprefix match looks, after getting a name-prefix match, for the
related nameprefix entry (npe) 2.2.4 in the name-prefix table. The name-prefix table is a
hash table which stores all npes.

Once we figured out the npe, a name-prefix cut has to be done (the code is available in the
appendix 7.4.1). In a CCNx network there are many data objects which having common compo-
nents, such as ccnx:/parc.com/data/file1 and ccnx:/parc.com/data/file2.
Instead of storing both of them as a forwarding entry, simply combine the first and the second
to ccnx:/parc.com/data. With this possibility a lot of entries are not necessary and that
will increases the routing performance. On the other hand it decreases accuracy of the routing
because it may route a Interest over a face which will not have the related content.

Figure 7.1 illustrates the work flow of a prefix-cut. Firstly the function nameprefix match
determines the size of the two temporary variables oldcomps and newcomps. Secondly
nameprefix match compares the size of this two variables. If the value of oldcomps
greater than the value of newcomps is this an indication that the new incoming content
name-prefix has common components with an available forwarding entry and it is possible to
merge this two prefixes to a shorter one. In that case, the common name components will be
stored in the register data struct. The already stored longer name-prefix will be replaced
through the new shorter name-prefix. If the value of oldcompsis shorter than the value of
newcomps, the entry lifetime of the already existing name-prefix will be updated. If the
incoming name-prefix has no matching forwarding entry, it will be registered as a new entry
into the FIB. Thus, no prefix cut processing is necessary.
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Figure 7.1: Flow chart of prefix cut, it shows how a name-prefix of an incoming ContentObject will
be shortened in the nameprefix match function. The value oldcomps contains the number of
components which the already registered matching name-prefix has, the value newcomps contains the
number of component matches which has the incoming name-prefix with the already registered name-
prefix.

After name-prefix cut, the function nameprefix match has three possible return values:

• -1, if nothing has to be done, means nameprefix match has done the name-prefix
entry (npe) update, or no free slot is available 7.3.4.

• 0, if a new name-prefix must be registered. The necessary registration values are stored in
the struct register data 7.2.3.

• greater than 0, if a name-prefix cut has to be registered. As well the necessary update
values are stored in the struct register data.
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Matching Interests in nameprefix match

If the function nameprefix match is called with an Interest, the work flow is nearly the same
as for a ContentObject. The difference is that the name-prefix cut is not necessary for an Interest.
We simply register a new entry for a short period of time. So it is possible to forward Interests.
Thus there are only two possible return values:

• -1, if nothing has to be done, means the forwarding update was done by
name prefix match

• 0, if a new entry has to be registered.

7.3.2 Function get segment number

This function figures out the segment number 2.1.1 of a given ContentObject. As explained in
Section 3.1.5 it may be beneficial not to process every ContentObject in the same way. There-
fore, we use the extracted segment number and calculate the modulo.

1 int get_segment_nr(struct content_entry *content){
2

3 int i;
4 char *pos;
5 struct ccn_charbuf *c;
6 int start;
7 int stop;
8 int length;
9 int res;

10 c = ccn_charbuf_create();
11

12 ccn_uri_append(c, content->key, content->size, 1);
13

14 if(res<0){
15 return 0;
16 }
17 pos = strstr(ccn_charbuf_as_string(c), "%00%");
18

19 if(pos==NULL)
20 return 0;
21

22 start = pos - ccn_charbuf_as_string(c)+4;
23 stop = start;
24 for(i=0; c->buf[start+i]!=’/’;i++){
25 stop++;
26 if(i>=c->length){
27 return -1;
28 }
29 }
30 length = stop-start;
31
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32 if(stop==start){
33 ccn_charbuf_destroy(&c);
34 return 0;
35 }
36

37 char segment[length+2];
38 memset(segment,’\0’,sizeof(segment));
39

40 for(i=0;i<length;i++){
41 segment[i]=c->buf[start+i];
42 }
43 res = strtol(segment, NULL, 16);
44 ccn_charbuf_destroy(&c);
45 return res;
46 }

Listing 7.7: listing for function nameprefix match

For understanding how get segment number extracting the segment number out of an
ContentObject we must understand some key-points. We know from the Section Related Work,
that a messages naming is built hierarchically. Each backslash defines a new component.
However each component is ccnb-encoded, thus it is not possible to read out a specific part
from a single component. CCNB is a custom binary encoding format for XML to meet
specific needs of CCNx. So, first the components must be parsed into an ascii representation.
The ccn uri append function from CCNx (line 12 in listing 7.7) , provides exactly that
functionality.

To get out the segment-number, decoding ccnb was the only tricky part to do. Behind
that, the result is stored in an ccn charbuf in which the name-prefix is represented in
ascii (see ccn charbuf *c in listing 7.7, line 12). With this representation, each segment
number follows after an %00% sign. For finding this marker, some string operations are
needed. Eventually get segment nr returns the segment number which is related to the
ContentObject.

7.3.3 Function autoreg prefix content

The function autoreg prefix content connects the registering function from CCNx
with the gained data from the overhearing functionality.

The implementation of autoreg prefix content is visible in appendix 7.4.3.
First follows the initialisation, in this part the needed flags will be setted up. The
default flags are CCN FORW ACTIVE and CCN FORW CHILD INHERIT. Thereafter
autoreg prefix content distinguish between register a totally new name-prefix or
register shorter version of an existing prefix. The data for the registration process are available
in the struct reg info (see 7.2.3). With this information a name-prefix can be registered. The
return values are:
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• zero, if everything is great

• minus one, if something failed

7.3.4 Function check free slot

As described in Section 3.1.4 it is not good to register too many overheard name-prefixes to
the FIB. The struct dyn add 7.2.2 contains all dynamically added name-prefixes. It has also a
value which points to the next free slot where a new registered name-prefix can be stored. The
function check free slot finds the next free slot in the dyn add struct and stores the array
index of it in the next slot integer from dyn add struct. Code is available in appendix 7.4.4.

7.3.5 Function update dyntable

1 void update_dyntable(struct ccnd_handle *h, unsigned char *key,
struct ccn_indexbuf *comps, int ncomps)

2 }

Listing 7.8: update dyntable function

As described in Section 3.1.4, it is bad to have a to big FIB. So update dyntable 7.8
updates after each successful registration the dyn add 7.2.2 table. Which means it creates a
new name-prefix entry and sets the necessary variables.

There are two name-prefix cases to distinguish:

1. A specific name-prefix length is given, this case occurs when a successfully prefix cut was
done.

2. A new name-prefix was registered.

In the first of this two cases, only some components of the name-prefix will be registered. In the
second version all components of the name-prefix will be registered. The registration process
itself is the same.

Each name-prefix which was dynamically added to the FIB occupies a free slot. For the
name-prefixes which were added with overhearing, only a limited number of slots available
(see 3.1.4). The value next slot (see listing 7.4.2) stores an integer which points to the next
available array index (slot) of the dyn add table 7.2. Each of this slots contains a dyn entry
7.2.2. So for adding a new name-prefix update dyntable writes all available information
into the specific slot.

7.4 Code Listings

With respect to the environment, the code listings are only available in electronic format. In the
following subsections the edited and newly implemented functions are declared.
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7.4.1 Function nameprefix match

/src/ccnx/csrc/ccnd/ccnd.c

7.4.2 Function update dyn table

/src/ccnx/csrc/ccnd/ccnd.c

7.4.3 Function autoreg prefix content

/src/ccnx/csrc/ccnd/ccnd.c

7.4.4 Function check free slot

/src/ccnx/csrc/ccnd/ccnd.c

7.4.5 Function has undesired markers

/src/ccnx/csrc/ccnd/ccnd.c

7.4.6 Structs

/src/ccnx/csrc/ccnd/ccnd private.h

7.5 Scripts

In this section we declare the scripts we used for the node setup and the evaluation.

7.5.1 Evaluation Scripts

/experiments/scripts/evaluation/

7.5.2 Scripts to Initialize Alix node

/experiments/scripts/setup/
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