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Abstract

This master thesis aims to provide the technical requirements, design, and

implementation for the live migration of an Evolved Node B (eNodeB) in

Long Term Evolution (LTE) Mobile Networks. We use the OpenAirInter-

face (OAI) implementation of an LTE network to carry out our research. We

focused on the eNodeB, which provides the Radio Access Network (RAN)

in a containerized environment using Docker and the necessary steps that

are required to perform a live migration of the container among physical

machines. We show the challenges of successfully performing a live eNodeB

container migration, as well as the current limitations of migration tools.

Our evaluation shows that running the eNodeB inside a Docker container

or directly on the machine has significant impact on the performance of the

application.
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Chapter 1

Introduction

1.1 Overview

Due to the increasing number of mobile users worldwide, there has been a continuous

rise in the demand for wireless data use, primarily due to an increasing number of 3G

and 4G mobile phones [2, 3]. It is believed that by 2021, an estimated 10 billion devices

could be connected to mobile networks all over the world [4]. This implies a growing

pressure on Mobile (Virtual) Network Operators (M(V)NO) to provide better services

whilst keeping their CAPital and OPerating EXpenses (CAPEX/OPEX) low. It has

become evident that keeping up with increasing demand will require mobile network

operators to find new ways of increasing network capacity while also improving their

service offerings in terms of the Quality of Service (QoS) and system capacity [2].

The management of IT infrastructures, platforms, and applications in the Everything

as a Service (XaaS) manner allows for the significant cost reduction in terms of CAPEX

and OPEX. For example, no upfront investment is required as resources are traded

on-demand, thus zero-CAPEX; no risk of ill-estimated CAPEX versus revenue estima-

tions since resources and thus infrastructures, platforms as well as applications scale

continuously up, etc. When the XaaS operational model is applied to the telecommuni-

cations industry, the significant benefits of the XaaS model can counter the effect of the

ever-decreasing Average Revenue Per User (ARPU) in the telco ecosystem. Cloud com-

puting and virtualization have stood out as two important technologies that can be used

to create new opportunities that will meet the MNOs goals. Cloud computing enables

ubiquitous and on-demand access to a shared pool of scalable computational resources

(i.e. processing, networking and storage), while virtualization techniques such as Net-

work Function Virtualization (NFV) and Software Defined Networking (SDN) both use

1
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network abstraction to virtualize network functions and enable network programming

and intelligence.

The emergence of the Central/Cloud Radio Access Network (C-RAN/Cloud-RAN) as

an advanced mobile network architecture that can be deployed to leverage features such

as network slicing, statistical multiplexing, energy efficiency, and higher capacity, has

provided one possible way to meet this challenge [4]. C-RAN systems replace traditional

Base Stations (BS) where distributed (passive) radio elements, such as the Remote

Radio Head (RRH), are connected to a centralized baseband processing pool. In C-

RAN systems, the baseband processing pool is located at a remote location (i.e. a Data

Center), whilst the front-end entity, RRH, are located at sites that are closer to users [5].

Centralized baseband processing brings about several advantage such as: lower energy

consumption costs due to the reduced number of sites, easy software upgrades and

maintenance, as well as performance improvements for multi-cell signal processing (due

to increased spectral efficiency from joint spatio-temporal processing of radio signals) [6]

1.2 Motivation

The transition from Fourth-generation (4G) networks, to Fifth-generation (5G) net-

works, is likely to see an increase in the uses and applications of cloud computing and

similar virtualization-like techniques, in the mobile telecommunications industry.

Already, current developments [7] have shown it is possible to virtualize and deploy

parts of a mobile network, on General purpose Processors (GPPs). Such a deployment

is likely to prove cost effective for MNOs as they can centralize baseband processing and

improve their service offerings. Using cloud computing and virtualization, we can run

the EPC and RAN on GPPs rather than expensive hardware. They also provide us with

a means to scale and share computational resources based on the needs of the mobile

network, and ensure the mobile network can handle different cell variations by applying

techniques such as load balancing.

With this thesis, we aim to deliver a cloudified Long Term Evolution (LTE) mobile

telephony infrastructure. We also look to address the issue of load balancing for handling

different cell variations by performing a live migration of a container running a RAN

service. Our RAN is deployed as a real-time service which offers direct access to real-time

radio information (i.e. radio status, network statistics) for low-latency, high bandwidth

services deployed at the network edge [7], and therefore it is important that the migration

of such a service does not have a significant impact on the users that are connected to

it (i.e. negligible network down time during migration).
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We believe that performing a live migration of a containerized RAN service will bring

us a step closer to having a fully cloudified LTE network that can handle various cell

loads and other instances of poor network performance.

1.3 Goal

The goal of this thesis is to provide the technical requirements, design decisions, and

implementation details of the live eNodeB container migration in Long Term Evolution

(LTE) Mobile Networks. The eNodeB which provides a radio access network will be

deployed in a cloud setup as a containerized application. Our eNodeB is a real-time

application that is placed within a Docker 1 container that we look to migrate towards

another physical machine. For this migration to be successful, all states of the eNB

application before the migration has taken place, need to be maintained after the mi-

gration has occurred (i.e. reestablishment of the connection to the core (EPC), and

maintaining connection and service information about mobile devices). We believe that

by doing this, we can show a way to handle load balancing in cloud data centers.

1.4 Contributions

The main contributions of this thesis can be summarized as follows:

• A cloudified RAN setup: We provide a fully operational RAN network that

is deployed in a containerized environment. We use virtualization-like techniques

such as Docker to containerize the Radio Access Network (eNodeB), opening up

the possibility for the application to be migrated between machines.

• Challenges of Live Migration: To the best of our knowledge, there hasn’t been

many attempts to live migrate a containerized eNodeB using a Next Generation

Fronthaul Architecture (NGFI), in real time as most attempts have been carried

out in simulated environments. Our work looks at the challenges in doing this using

a real-time implementation of an LTE system. We explain a key shortcoming in the

open-source migration tool we use, Checkpoint and Restore in Userspace (CRIU),

and the effect it has on our goal of performing a live migration. We also point out

that look into how the MME responds to interruptions from the connection to the

UE when the eNodeB is down for a short while.

1https://www.docker.com/
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• Evaluation of containerized eNodeB We compare the performance of the

network when the eNodeB is running inside a container as compared to the host.

We also look at how the network performs when there’s a disruption in the running

of the service (i.e. when the eNodeB is shut down and restore after a period of

time). Through our performance analysis of the eNodeB application, we show

that providing an eNB service as a container does has a significant impact on its

performance compared to running it directly on the physical machine in terms of

throughput.

1.5 Thesis Structure

In this chapter, we motivated the need for live migration of the eNB to enable load

balancing in data centers and introduced other related concepts, the rest of this thesis is

organized into 6 chapters. In Chapter 2, we provide a background analysis and present

work related to the aims of this thesis, where we explain the concepts, such as Next

Generation Fronthaul Interface architecture that our work is based on. In the third

chapter we focus on the architecture of our work and explain the technical requirements

and design needed to achieve our setup. In chapter 4 we talk about the implementation

of our setup. We focus on our efforts to achieve the migration the eNodeB and how

we try to use CRIU to achieve this. In Chapter 5 we evaluate our work and present

results from the experiments we conducted and our assessment of the eNodeB and UE.

We conclude in Chapter 6 and look to possible future work that could improve on our

work.
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Chapter 2

Related Work

2.1 Introduction

The Long Term Evolution (LTE) Mobile Network is the basis on which our work is

built on, hence we present the significant components of this network such as the differ-

ent interfaces, channels, and protocols that permit communication between the various

components of the network. We look at the types of handovers availble, and how the

handover procedure is done in LTE. We present the developments to RAN deployments,

such as Cloud RAN and Next Generation Fronthaul Interface (NGFI), that are meant

provide MNOs better services and increase network capacity, as well the challenges these

new deployments bring. Finally, we briefly describe Software Defined Radios and their

use in our work.

2.2 Long Term Evolution

The Long Term Evolution (LTE) network is currently one of the most advanced mobile

telecommunications technology. It provides high-speed data and voice capabilities and

outperforms the previous generation GSM network. It is also one of the most widely

deployed mobile network infrastructures across the world, serving billions of users world-

wide. The LTE network provides Internet Protocol (IP) connectivity between User

Equipment (UE) and a Packet Data Network (PDN), such as the internet, without sig-

nificant disruption to the end users connectivity during mobility. It offers faster data

transmission than previous networks, lower latency, and higher reliability and robustness

against unforeseen failures.

6
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The LTE mobile network architecture is comprised of three components: (i) Evolved

Packet Core (EPC): which connects user equipment with the internet or a mobile

network operators network, (ii) Radio Access Network (RAN): which handles wire-

less radio connections between user equipment and the base station(s), and (iii) User

Equipment (UE): which is essentially any device that sends and receives radio signals

and can be used to access the internet.

2.2.1 Evolved Packet Core (EPC)

As previously explained, the EPC provides UEs with a way to connect to the internet or

to an MNO/MVNOs network. The EPC has 5 components that enable it to achieve this:

Home Subscriber System, Mobility Management Entity, Serving and Packet Gateways,

and the Policy Control and Charging Rules Function.

• Home Subscriber Server (HSS): The HSS is a database that contains user-

related and subscriber-related information. The server also provides support func-

tions in mobility management, call and session setup, user authentication and

access authorization, and is primarily hosted by the mobile network provider. The

HSS is able to communicate with the Mobility Management Entity over the s6a

interface.

• Mobility Management Entity (MME): The Serving Gateway deals with the

User Plane. It is used to transport IP data traffic between the UE and external

networks, and serves the UE by routing incoming and outgoing IP packets. The

S-GW becomes an anchor point when the UE moves from one base station to

another (i.e. in the case of a handover), and it is logically connected to another

gateway known as the Packet Data Network Gateway (PDN-GW). It is the point

of interconnect between the radio-side and the Evolved Packet Core.

• Serving Gateway (S GW): The Packet Data Network is the point that connects

the EPC with external IP networks such as the internet and is essentially a route

between the two entities. The PDN-GW performs tasks such as IP address/prefix

allocation, as well as policy control and charging. Since the interface of the Serv-

ing Gateway is based on the GPRS Tunnelling Protocol (GTP-U), the PDN-GW

matches IP data flows towards external networks.

• Packet Data Network Gateway (PDN GW): The MME deals with the con-

trol plane. It is responsible for handling signalling related to mobility and security

for the Evolved Universal Terrestrial Radio Access Network (E-UTRAN). It is

also responsible for the tracking and paging of the UE in idle mode, where the
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UE doesnt have an established Radio Resource Control (RRC) connection and

is unknown to the network at the cell level. It is the termination point of the

Non-Access Stratum (NAS).

• Policy Control and Charging Rules Function (PCRF): The PCRF is a node

in the EPC that is in charge of policy control and decision making within the core.

It controls the flow-based charging functionalities in the Policy Control Enforce-

ment Function (PCEF) which resides inside the Packet Data Network Gateway

(P-DN). The PCRF handles the Quality of Service (QoS) (i.e. bit rates) author-

itzation, and determines how the PCEF will treat certain data flows to ensure they

are in accordance with the user’s subscription profile [8].

2.2.2 Radio Access Network (RAN)

The Radio Access Network is used to provide wireless radio connection between mobile

devices and the Base Station (BS), and is mainly made up of the evolved Node B

(eNodeB).

• Evolved Node B (eNodeB): An eNodeB provides the radio interfaces for com-

munication in LTE and allows User Equipment to wirelessly connect to the LTE

network. It’s main purpose is to perform typical functions of a Base Station by

providing Radio Resource Management functions such as dynamic resource al-

location, eNodeB provisioning, eNB measurement configuration, radio admission

control, connection mobility, radio bearer control and inter-cell interference coor-

dination. The eNodeB contains a Baseband Processing Unit (BBU) that processes

(baseband) signals, and it can be connected to one or more Remote Radio Units.

The eNB is typically connected to the MME for control-plane communication, and

to the S & PDN gateways for control-plane and user-plane data transmissions. The

eNodeB communicates with the MME and the S-GW over the S1-MME and S1-

U interfaces, respectively. This element is also responsible for deciding whether

handovers are required. The decision to perform a handover is typically based on

measurements sent by the UE, and the eNodeB is responsible for implementing

this handover.

2.2.3 User Equipment

A User Equipment is essentially any device that can be used by an end-user for com-

munication. Examples of common UE include: Mobile Phones, and personal computers

with mobile broadband adapters (such as a USB dongle).
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• User Equipment (UE): The User Equipment typically refers to mobile devices

which can be used to connect users to subscription services such as data and voice

call, by connecting users to a Base Station (BS). A UE can be identified by either

its unique International Mobile Station Equipment Identity (IMEI), or by the use

of a Universal Subscriber Identity Module (USIM) which can be physically inserted

in the UE and can also be used for authentication, security, and protection of radio

transmission between the UE and another RAN component known as the Evolved

Node B.

Figure 2.1: General LTE architecture

For the purpose of this thesis we refer to the S-GW and PDN-GW as a single component

called the Serving Packet Gateway (SPGW). In the EPC implementation we use, the

PCRF is not included as a component of the Core Network. Figure 2.1 is an example of

the general LTE architecture1, including the key components and sub-components that

have been mentioned (for a more comprehensive look at the interfaces used to facilitate

communication between the EPC components and the UTRAN, see [8]).

2.2.4 Channels, Interfaces and Protocols

In this section we describe the channels, interfaces and protocols that allow different

elements of the network to communicate with each other. Figure 2.2 shows the protocol

structure that allows the UE to communicate with the eNodeB and the MME. Note

that since the communication between the UE and eNodeB is done over an air interface,

LTE-Uu, it is different from the other links as it handles radio transmissions and related

details.

1https://www.researchgate.net/figure/LTE-Network-architecture fig1 318502441
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Figure 2.2: Control Plane Structure in LTE

2.2.4.1 LTE-Uu Interface

The LTE-Uu interface protocols are divided into two types: user-plane protocols and

control-plane protocols which handle tasks such as the request of the service, control of

transmission resources and inter/intra eNodeB handovers [9].

• L1 (Layer 1): This is a physical layer. It monitors the downlink (DL) quality

and alerts the RRC of any potential problems. [10]

• MAC (Medium Access Control): This layer performs multiplexing and de-

multiplexing for the uplink and downlink directions respectively. It also controls

scheduling of different logical channels.

• RLC (Radio Link Layer): Handles the delivery of data and it’s duplicate de-

tection. Can also perform segmentation and concatenation of sent data units.

• PDCP (Packet Data Convergence Protocol): Encrypts IP packets and per-

forms header compression to improve effeciency of over the air transmission. Used

to transfer User and Control plane packets to and from upper layers in the stack-

/structure.

• RRC (Radio Resource Control): Used to signal exchange between UE and

eNodeB entity (i.e. in the case of handovers).

• NAS (Non Access Spectrum): This protocol supports mobility management

functionality and user plane bearer activation in LTE. It also handles ciphering and

integrity protection of NAS signals. NAS signalling occurs between UE and the

MME, with the eNodeB relaying the messages between the entities, not processing

them.
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2.2.4.2 S1-MME Interface

This is a signalling interface which is used to support functions and procedures that occur

between the eNodeB and the MME. Below we give brief descriptions of each protocol.

• L1 (Layer 1): Physical layer which connects the eNodeB and MME together and

can be implemented with fixed cabling such as optical fibre.

• L2 (Layer 2): Supports any data link layer protocol, such a MAC, using Ethernet.

• IP (Internet Protocol): In this interface, IP is used to route signalling and user

data messages through the EPC.

• SCTP (Stream Control Transmission Protocol): This protocol is used in

the control plane and guarantees the delivery of control or signalling messages

between the eNodeB and the MME.[11]. It’s main features include: association

setup, and reliable data delivery.

• S1-AP (S1-Application Part): The S1-AP is the control signalling protocol

between the eNodeB and the MME. It fulfils S1 functions such as paging, NAS

signaling transport function, error reporting and UE context release.

2.2.4.3 S1-U Interface

This interface is used for communication between the eNodeB and the S GW/PDN GW.

It is implements the bottom two layers (L1 and L2) in the S1-MME interface but has

two other interfaces: GTP-U and UDP.

• GTP-U (GPRS Tunneling Protocol User plane): The GTP-U tunnel is

used to carry IP packets through the core network.

• UDP (User Datagram Protocol): In LTE UDP has the task of carrying sig-

nalling messages between specified endpoints.

2.2.4.4 X2 Interface

The X2 interface is used to tunnel user packet data between eNodeBs. It handles

load/interference related functions, handovers and influences radio resource management

processes in real time. The interface is composed of the control plane and user plane.

The control plane (X2-CP) prepares and performs handovers between eNodeBs, while the
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user plane (X2-U) is needed for downlink forwarding during a handover. The transport

layer of X2-CP is built on SCTP, which functions on top of IP, and UDP on top of IP

for X2-U.

2.2.4.5 Channels

In LTE, data and control information is encoded down from the MAC layer to the

physical layer (L1) and decoded back from physical layer to the MAC layer to serve

both transport and control channels [12]. The main channels are used in downlink (DL)

and uplink (UL) to carry data, messages in the protocol stack. Some examples of such

channels are listed below:

Downlink (DL)

• Physical Broadcast Channel (PBCH): This channels carries system informa-

tion for UEs that need to access the LTE network,

• Physical Downlink Control Channel (PDCCH): The PDDCH is responsible

for scheduling information (such as paging and downlink resource scheduling)

• Physical Downlink Shared Channel (PDSCH): This channel carries UE-

specific data (such as the DL payload)

Uplink (UL)

• Physical Random Access Channel (PRACH): A physical channel that is

used for random access functions, such as the initiation of a data transfer [13].

• Physical Uplink Shared Channel (PUSCH): This is the uplink counter part

of the PDSCH mentioned above.

• Physical Uplink Control Channel (PUCCH): Handles the Hybrid Auto-

mated Repeat ReQuest (HARQ) ACK/NACK in the network [13].

2.3 Handovers in LTE

As stated in Section 2.2, one of the key features of LTE is the ability to afford users

free mobility without significant disruption to their connectivity to the internet. One

of the ways this is done is through handovers of the UE. There are two main types of

handovers: intra-eNodeB handover and inter-eNodeB handover. A third type of
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handovers (inter Radio Access Networks: inter-RAT) exist, but that’s beyond the scope

of this thesis.

• Inter-LTE Handover(using X2/S1): Occurs when UE handover is between

two cells/eNodeBs connected to the same MME, hence the X2 or S1 interfaces can

be used to control this handover.

• Inter-LTE Handover(without X2): Here, the handover over is between two

MMEs/S GWs as the source and target cells are located in different networks,

which the the X2 interface cannot deal with.

• Intra-LTE Handover: In this case the source and target cell, between which the

UE(s) will be handed over, reside within the same LTE network. In such a case,

the X2 interface is the interface between the two eNodeBs and the EPC is not

explicitly involved in the handover as the release of resources is activated by the

source eNodeB. If the X2 interface is unavailable the S1 interface provides a way

for the handover to occur, when the source and target eNodeB belong to the same

MME/S GW.

The handover procedure is mainly executed in three steps/phases:

• preparation phase: During this phase the decisions about the need for a cell

change and resource reservation are made;

• execution phase: In this second stage, the mobile connection to the target eNB

entity is established;

• completion phase: In the final stage, the establishment of final bearers are

configured and old resources are released.

Figure 2.3 below gives a more detailed explanation of the handover procedure, as well as

the functions/requests (i.e. X2 Handover requests, HO admission and resource setup)

that are executed before, during and after the handover has occurred.

2.4 Virtual Radio Access Networks (vRAN)

The virtualization of the Radio Access Network has emerged as a possible solution for

MNOs to improve their services, while keeping costs down. This involves decoupling the

software that controls the access network from the underlying hardware, allowing for

fast upgrades and scaling to meet varying network traffic demands, the deployment of
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Figure 2.3: X2 Handover procedure in LTE/LTE-A Networks [1]

new services automatically, as well as the ability to centralize and pool various resources

together. Virtual RANs consume significantly less power than traditional Radio Access

Networks that are provided by Base Stations as a result of this abstraction. With Virtual

(Centralized) RAN, Baseband Units are not deployed along with physical Base Stations

at a remote location, they are decoupled and moved to a centralized processing pool that

includes other BBUs. Remote Radio Heads still remain at their current locations in the

network (i.e. at Physical locations). Centralized BBU pooling and processing of radio

signals could lead to more sophisticated joint spatiotemporal processing of the signals,

and possibly improve spectral efficiency [2]. VRANs also support advanced features

of LTE-A, such as Coordinated MultiPoint Operation (CoMP)[14] and enhanced Inter-

Cell Interference Coordination (eICIC), which are considered important features in small

cell deployments [2]. Having a central location that can cater to many different users

also benefits MNOs as they can offer better Service Level Agreements (SLAs), as the

processing pool is closer to users and therefore the response time for services is shorter

if the requested data has already been cached at the processing pool [2].
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2.4.1 Cloud Radio Access Networks

Recent developments have seen cloud services being transformed from monolithic archi-

tectures towards a microservice oriented architecture in which services are a collection of

microservices running/executing some set of functions [15] [16]. The microservice archi-

tecture brings better benefits in the cloud computing paradigm such as maintainability,

flexibility, scalability and reduced complexity. As a single microservice can be deployed,

scaled and operated independently of the whole service, this makes it very flexible in

regards to the geographic distribution of computational tasks [17]. The microservice ar-

chitecture also support the ETSI NFV architecture2, where a Virtual Network Function,

such as eNodeB/RAN, can be considered a service.

RAN-as-a-Service (RANaaS) is seen as a possibly new cloud computing paradigm, in

which a radio access network is delivered as a pay as you go service that has been

instantiated on top of a cloud infrastructure [3], giving us a Cloudified Radio Access

Network (Cloud RAN).

Effectively, Cloud RAN takes the concept of Virtual/Central RAN deployments and

adapts them for the cloud computing paradigm and other virtualization-like tools. This

has the advantage of giving MNOs even better opportunities for scalability and resource

allocation, as it can support multi-layer, ultra-dense operations in many different de-

ployment scenarios [18]. The Cloud RAN architecture also allows for the use of Network

Function Virtualization (NFV) and Software Defined Networking (SDN) techniques, and

can take advantage of data center processing capabilities such as coordination, central-

ization and virtualization in mobile networks[19]. It is also believed that the adaptation

and development of Cloud RANs are set to play an important role in the upcoming Fifth

Generation (5G) mobile networks. Cloudification of the radio access network means a

move away from specific expensive hardware to more general purpose computing plat-

forms, as well as other benefits including: load balancing and rapid deployment and

service provisioning. Deploying RAN into the cloud is not a particularly new concept,

however [20] showed that such a setup could save up to 71% in terms of power consump-

tion.

2.4.2 Next Generation Fronthaul Interface

Recent developments in Central RAN have focused on redefining the current architecture

of Central RAN deployments. In current C-RAN deployments, in-phase and quadrature

(I/Q) samples are carried from the BBU to the RRH, which places very high bandwidth

2https://portal.etsi.org/NFV/NFV White Paper 5G.pdf
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requirements on the fronthaul transport network [3]. Such a architecture will likely

struggle to meet scalability and performance requirements of future mobile networks,

such as the upcoming Fifth Generation (5G) mobile network [3].

The Next Generation Fronthaul Interface (NGFI) is an architecture proposed by China

Mobile [20], that focuses on splitting the radio stack between two main components,

namely the BBU and the RRH, and therefore redefining the positioning of the eNodeB

stack components (e.g. physical layer (PHY) Reception (RX)/transmission (TX)) be-

tween the BBU/RRH. The two components can be connected to each other through

Ethernet or IP interfaces. In this architecture, the BBU is redefined as the Remote

Cloud Center (RCC), and resides in a Cloud (Data) Center with multiple other BBUs.

The RRH is redefined as the Radio Remote System. This architecture allows for point-

to-multipoint connections between RCC and RRH, and for a third component called the

Radio Aggregator Unit (RAU), to control multiple RRHs that may be operating in dif-

ferent bands and with different coverages. Figure 2.23 shows how the eNodeB protocol

stack is split using this architecture.

Figure 2.4: NGFI based C-RAN architecture with protocol splits

3http://www.eurecom.fr/en/publication/5079/download/comsys-publi-5079.pdf
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The functional split established by the NGFI architecture makes Central RAN deploy-

ment more flexible. There are 2 methods on how to perform this split: IF5, IF4.

• IF5/IF4.5: This split is similar to the traditional RRH-BBU interface, and trans-

ports baseband time domain I/Q samples between the BBU and RRH. The I/Q

samples are exchanged between the RCC and RRH as Ethernet samples across the

fronthaul link. [21]

• IF4: The IF4 split is done at the input (RX) and output (TX) of the OFDM

symbol generator (i.e. frequency domain signals), and transports transmitted or

received resource elements in usable channel bandwidth. Specifically, the RCC

and RRH swap I/Q samples across the fronthaul link. With this split, the RRHs

are responsible for some of the lower PHY layer processing, namely Fast Fourier

Transform (FFT) and Inverse Fourier Transform (IFFT). A-law compression is

also applied to the I/Q data that is transported across the Ethernet fronthaul

links. This is done to reduce the fronthaul link capacity requirement to 28% of the

time-domain I/Q split case. Therefore an RRH with a bandwidth of 20MHz, can

be provisioned using a 1 Gbps link between RRH and RCC. [21]

2.5 OpenAirInterface

OpenAirInterface4 (OAI) is an open source software project that implements 3GPP

technology on general purpose computing hardware. It is the first open source software

based implementation of an LTE system which contains the full protocol stack of the

3GPP standard, which includes the Evolved Universal Terrestrial Radio Access Network

(E-UTRAN) and the Evolved Packet Core (EPC), as well as the User Equipment (UE).

The OAI platform provides a way to build and customize an LTE RAN5 (eNB + UE) and

EPC6 (HSS + MME + SPGW) on general purpose commodity x86-based computers to

test multiple network configurations, as well as monitor the performance of the network

and mobile devices in real time. The receiver and transceiver functions of a typical

Base Station (eNodeB) are realized via an SDR card (i.e. ExpressMIMO2, USRP, and

LimeSDR [22]) that is connected to a host computer for baseband processing.

OAI has two key features: (1) Real-time experimentation (2) Emulation. For the purpose

of this thesis we use real-time experimentation to carry out all of our work. The details

on the other features of the platform as well as our implementation are given below.

4https://www.openairinterface.org/
5https://gitlab.eurecom.fr/oai/openairinterface5g
6https://github.com/OPENAIRINTERFACE/openair-cn



CHAPTER 2. RELATED WORK 18

2.5.1 OAI eNodeB

The OAI eNodeB implements the MAC layer which provides the Hybrid Automatic Re-

peat ReQuest (HARQ) and introduces short deadlines for processing of received signals

in the PHY layer. As a result of this deadline, every piece of information received by

the eNodeB has to be acknowledged to the transmitter. If this information isn’t ac-

knowledged by the receiver a retransmission request has to be sent. Typically, in FDD

the retransmission time is 8ms, which essentially means that for every subframe N that

is processed, the acknowledgment (ACK) or negative acknowledgment (NACK) of the

subframe has to be sent at subframe N+4 and decoded by the transmitter before sub-

frame N+8 is processed [3]. Based on the received ACK/NACK, the transmitter decides

which piece of information to send, whether new data in the case of an ACK or missing

data in the case of a NACK.

Table 2.1 below summarizes the key features of OAI in the current release:

Supported Releases Rel-8.6, part of Rel-10

Duplexing modes FDD, TDD

Carrier bandwidths 5, 10 and 20 MHz

Tx modes 1 (SISO), 2, 4, 5 and 6
(MIMO 2x2)

DL channels PSS, SSS, PBCH,
PCFICH, PHICH,

PDCCH, PDSCH, PMCH

Multi-RRU support Over air synch b/w multi
RRU in TDD

UL channels PRACH, PUSCH,
PUCCH (format

1/1a/1b), SRS, DRS

HARQ Support

Table 2.1: Main OAI Features

OAI’s eNodeB contains the full protocol stack ( physical (PHY), Medium Access Control

(MAC), Radio Link Control (RLC), and Radio Resource Control (RRC) and Packet

Data Convergence Protocol (PDCP) layers), and it can be configured for both Time

Division Duplex (TDD) and Frequency Division Duplex (FDD). Currently, the OAI

eNodeB is able to operate at 3 channel bandwidths: 5MHz, 10MHz, and 20MHz and

can theoretically achieve throughput of up 70 Mbps on the DL and 35 Mbps on the UL.

The channels, interfaces and protocols mentioned in 2.2.4 are all implemented in OAI
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as means of communication between the eNodeB and the UE and the eNodeB and the

MME/S GW.

For an even more comprehensive look at the OpenAirInterface platform and its current

development refer to [22].

2.6 Software Defined Radio (SDR)

Software Defined Radios (SDRs) are essentially any radios in which some or all physical

layer functions are software defined. Centralized RAN and Cloud RAN can therefore

be considered as SDR Systems running on general purpose IT platforms and the cloud,

respectively. Typical SDRs have two components: Software and Hardware, where the

software component handles functions such as signal processing, while the hardware

component consists of the radio front-end (i.e. SDR cards like the ETTUS USRP, Lime

SDR, Blade RF and ExpressMIMO2). The radio front-end is primarily used to transmit

and receive radio signals and can run on dedicated hardware platforms such as General

Purpose Processors (GPPs) or other general purpose computing platforms (x86). In this

thesis we use a USRP B210 board (via UHD) for our setup.
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Chapter 3

Radio Access Network

Architecture

3.1 Introduction

Based on the related work and the OAI platform described in Chapters 2 and 3, we

describe the design of our main architecture (which is based on NGFI) in this section.

The architecture and design of our setup is born from the aim of creating a Cloudified

Radio Access Network (containerized eNodeB) in order to fulfill our aim of a live migra-

tion. Containerization is a tool that can be used to take full advantage of the benefits

of cloud paradigm, and achieve RAN as a Service (RANaaS). There are different tools

and platforms we used in our setup, including: Docker, Pipework, Open vSwitch, and

CRIU. To enable unfiltered communication and access between the container eNodeB

and the bridge we created to direct traffic to and from the EPC, we needed to bind

our container to the bridge. In this chapter, we explain how Docker networks failed to

provide this functionality and how we use the Pipework tool to overcome this challenge.

Meeting the hard processing deadlines (e.g. HARQ) in LTE is one of the challenges of

running BBU processing on GPPs, to account for this we made some modifications to

the hosts and configure them for real time performance, we describe this in section 4.4.

3.2 General Architecture

Our RAN setup runs on 3 machines, where each machine hosts a different component

of the radio network: eNB, RRH and UE (USB dongle). The EPC we use and it’s

components are hosted on machine in a different location at the Communication and

21
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Distributed Systems building. Figure 3.1 depicts how we replicate the NGFI architecture

proposed by [3], which splits the Base Station functionality between the BBU and the

RRH. This setup has the advantage of reducing the fronthaul data requirements, which

is important for such a deployment as explained in the previous chapter. Table 3.1 shows

the hardware specifications of our 3 host machines.

Figure 3.1 shows the USRP B210 board connected to the telmat duplexer radio (band

7), using SMA cables, and the antenna.

Figure 3.1: USRP B210, Telmat Duplexer Radio and Antenna configured at the RRU

Figure 3.2: Central RAN architecture
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Host

Farnsworth (eNodeB) Silverter (RRU) Host 3 (UE)

Item Value Value Value

Hardware
CPU

Intel Core i7-4790 CPU @

3.60GHz, 32GB RAM
Intel Core i7-3770 @ 3.40GHz, 16GB RAM Intel Core i5-2400 @ 3.1 GHz, 8GB RAM

USRP N/A Ettus Research USRP B210 N/A

Software
OS

64-bit Ubuntu 16.04 LTS with

low-latency kernel 4.15.0

64-bit Ubuntu 16.04 LTS with

low-latency kernel 4.4.0

64-bit Ubuntu 16.04 LTS with

generic kernel 4.14.24

OAI Master Branch (v1.0.0) Master Branch (v1.0.0) N/A

Parameters

Duplex mode FDD

Transmission mode TM1(SISO)

Carrier frequency 2.6/2.7 GHz (band7)

Cyclic Prefix: Normal

System bandwidths: 5 MHz, 10 MHz, 20 MHz

Modulation schemes: QPSK,16-QAM,64-QAM

Table 3.1: Cloud-RAN System: Host Specifications

3.3 Containerization

As mentioned 2.4.1, Cloud RAN will enable MNOs to provide better, improved services,

and increase the capacity of their networks. In this paradigm we deploy the RAN as a

Service (RANaaS), which is made up of a host or microservices that carry out different

functions and operate in a containerized or virtualized environment (such as Docker of

Kernel Virtual Machines (KVM)). With this in mind, we deploy our OAI eNodeB in a

container delivering it as a service that can take advantage of the benefits mentioned in

chapter 2. Specifically, we use Docker as the containerization tool to deliver this service.

3.3.1 Docker

Our background research showed that there have already been efforts to use virtualiza-

tion/containerization tools such as KVM LXC, and Docker to containerize an eNB/BBU

application. [3] compared the BBU processing budget of a GPP platform on the Down-

link and Uplink for different virtualized environments. Their work showed that while the

average processing times where close for their chosen virtualized environments, Docker

and KVM had higher time variations compared to GPP and LCX, and even moreso

when there was an increase in the PRB and Modulation Coding Scheme (MCS) used

by the BBU. However for our work we do not necessarily consider the effects of these

results. Also note that containers like Docker are built on modern kernel features (i.e.

cgroups, namespace, and chroot) which is very important for ensuring the host scheduler

can meet real time deadlines. [3]

Placing the eNodeB application inside of a Docker container means we can improve

the provision of the RAN service by making it more scalable to meet various levels of

demands. Containerizing the eNodeB also allows us to achieve our aim of migrating the



CHAPTER 3. RADIO ACCESS NETWORK ARCHITECTURE 24

eNodeB between physical machines, as Docker provides us with an experimental feature

to do this.

In general, containers are more efficient for computing as they do not require a vir-

tualization layer, compared to other virtualization platforms (such as Kernel Virtual

Machines) and they provide direct access to the underlying host machines resources.

Containers can also be migrated between machines with small overhead, unlike Kernel

Virtual Machines (KVMs), which suffer from virtualization overhead, which is critical

for a real-time applications like the eNodeB.

To be able to use non-standard Docker functions like checkpoint and restore, we set the

Docker daemon to experimental mode.

3.4 Host Modifications

To ensure the containerized eNodeB process is able to meet the various processing and

scheduling deadlines, such as those imposed by the Hybrid Automatic Repeat reQuest

(HARQ) mentioned in 2.5.1, We give the eNodeB real-time prioritization using the

Linux’s chrt command: chrt -p -rr 1, where p is the process id of the eNodeB.

To improve the performance of the hosts where the containers are running (RCC and

RRU) even further, we use a userspace governor scaling policy and set the frequency scal-

ing of the machines to their maximum (3.9GHz @ Silvester and 3.60GHz @ Farnsworth)

capacity. This ensures frame and subframe processing meet the strict deadlines.

3.5 Networking

Careful consideration was given to our networking setup. We needed to ensure the

related components could communicate with each other and that the traffic between our

eNodeB and EPC was . We mention those below and justify their use in our setup. We

also look at the limitations that they pose and how we overcome them.

It allows for the on-demand establishment of virtual switches among Windows or Linux

operating systems. On the north-bound interface, the switch uses OpenFlow to commu-

nicate with the controller. It supports various matching rules at different levels of the IP

stack as well as many actions (e.g., modification of addresses; tunneling, encapsulation,

decapsulation in GRE, VxLAN, etc.) that allow for advanced traffic engineering
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3.5.1 Open vSwitch

To direct and control traffic between components in our setup, we use a open-source dis-

tributed multi-layer SDN virtual switch called Open vSwitch (OVS)[23]. OVS provides

a switching stack for virtualization environments and supports multiple interfaces and

protocols including TCP, SCTP, UDP, and GTP. It is able to support many matching

rules at all various levels of the IP stack. It can also be used for modification of addresses,

tunneling, encapsulation and decapsulation in GRE, etc, which allows for advanced traf-

fic engineering [24]. The virtual switch can also support transparent distribution across

a range of physical servers, which means it can be used to connect Virtual Machines or

containers between different hosts and across multiple networks. Traffic management

is handle by flow table, and in our setup OVS is primarily used to handle communica-

tion between the eNodeB and the EPC. We also use it to handle the IP traffic that is

exchanged between the UE and the EPC.

The following commands show how we create an OVS bridge at our RCC, and bind a

Physical Network Interface Card (NIC) on the host machine to our bridge:

$ ovs-vsctl add-br ovs-br

$ ovs-vsctl add-port ovs-br em1

It should be noted that ordinarily binding the NIC to the bridge does not ensure that all

traffic is passed to the bridge. To solve this we place the physical network interface in

promiscuous mode which ensures that all traffic that is passed to the NIC is forwarded

to the bridge and hence any traffic that our host receives from the EPC is accessible to

the eNodeB that is connected to the OVS bridge.

3.5.2 Container Networking

Using Docker, we were able to create a macvlan bridge network and set the subnet and

gateway that it operates in. We place this bridge on top of OVS bridge to enable it

to communicate with the switch. However, during our setup we discovered that the

bridge network didn’t allow for direct communication between the container and the

underlying host (or bridge), and so we are unable to ping the host from inside the

container and vice-versa. This is due to the fact that macvlan networks do not allow us

to ping or communicate with the default namespace IP address, as the traffic is explicitly

filtered by the kernel modules to offer the containers additional isolation and security

from the underlying host. To navigate this, we use an opensource Software Defined

Networking (SDN) tool called Pipework. Pipework is networking tool for Linux (&
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Docker) containers1. Pipework enables us to connect containers in complex scenarios

and is a viable alternative to docker bridge networking. It can be used to create or

configure network interfaces and bind containers to them, even when they’re running.

The tool uses cgroups and namespaces and work with plain containers. Using Pipework,

we are able to bind our containers directly onto the previously created OVS bridge and

assign them an IP address on this bridge which corresponds to one of the 3 addresses

that the MME at the EPC accepts (130.92.65.68 and 130.92.65.69 and 130.92.65.83).

This allowed us to communicate directly with the different components of our cloudified

EPC, as well as the underlying host. We use the following Pipework command to bind

our container to the OvS bridge:

$ pipework ovs-br $CONTAINERID 130.92.65.69/24

As our setup is based on the NGFI, our RRH host and eNodeB host were connected

via a 10Gbps Ethernet cable. To provide communication between the eNodeB container

and the RRH host we looked to bind the container to a NIC that detected the cable,

however Pipework was unable to do this, as it seemingly can only bind a container to

a single physical interface. We solved this by using a docker network and setting the

appropriate NIC to it. This way we were able to communicate with the RRH host from

inside the container.

The following command show how we created this new network, place it on the appro-

priate NIC (p1p1) and connect the container to it:

$docker network create -d macvlan

--subnet=10.0.5.0/24

--gateway=10.0.5.1

-o parent=p1p1 ethnet

$docker network connect ethnet $CONTAINERID

3.6 Checkpoint and Restore in Userspace

Checkpoint and Restore in Userspace (CRIU) is an open-source tool that can be used to

achieve the migration of processes between different hosts without a significant amount

of downtime. CRIU works by freezing a running application and checkpointing it’s

state to the disk. The data that has been saved on the disk can be used to restore

1https://github.com/jpetazzo/pipework
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the application back to it’s previous state on the same host, or alternatively, a different

host. Another important feature of CRIU is it’s ability to preserve network connections

across different hosts by dumping active connections (i.e. TCP, UDP) and restoring

them later, meaning that user connections are not dropped after the migration process.

In Chapter 4 we explain how we used CRIU to dump the a containerized eNodeB as

well as an eNodeB running directly on the host/GPP.
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Chapter 4

Cloud RAN Implementation and

Live Migration

4.1 Introduction

We were able to implement the Cloud RAN using our setup. However, before attempting

a live container migration, we decided to first study the behaviour of the eNodeB, and

network at large, when the eNodeB is stopped and restored on the same host after a

short period. Based on our initial observations, we noticed that the eNodeB crashed

when it was stopped/paused for a period of time and hence the connection to the MME

was lost. This also caused the connection to the UE to go down instantaneously too.

In this section we talk about the modifications (see Appendix A) we applied to the OAI

code to ensure that it doesn’t crash immediately after the lte-softmodem(that starts the

eNodeB) process is stopped. First we show how we instantiate our RAN and the EPC

to deliver a cloudified/virtualized network, including commands to reproduce it based

on our architecture. Then we motivate the need for live migration. Next we talk about

the procedures required for a live migration in general and the challenges (and solutions)

we had trying to perform a dump of the eNodeB process running on the host as well as

in the container.

4.2 OAI eNodeB Implementation

To run the OAI eNodeB on our host systems (RCC and RRU), we download the required

resources from the git repository1, and we used the master branch (v1.0.0). We install

1https://gitlab.eurecom.fr/oai/openairinterface5g
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the appropriate packages and drivers and build the eNodeBs on both hosts using the

following commands:

$./build_oai -I

$./build_oai -t ETHERNET -c --eNB

$./build_oai -w USRP -c --eNB

Here, the -I tag tells the build script to install all required packages, the -t tag sets

Ethernet as the transport protocol, and the -w tag specifies which hardware to is being

used for the radio frequency board (i.e. USRP in our case).

We make use of the cloudified EPC that had already been deployed on the open-source,

cloud computing platform, OpenStack. The 3 main components of the EPC ( MME,

HSS, and SPGW) are run as Virtual Network Functions. Juju charms 2 are used to

deploy and manage this cloudified EPC, as they can be used to scale the network based

on demand and available resources. We instantiate each EPC component using the

following commands:

• HSS: ./srv/openair-cn/scripts/run hss

• MME: ./srv/openair-cn/scripts/run mme

• SPGW:./srv/openair-cn/scripts/run spgw

With the EPC up and running, we can now instantiate our RAN service. As previously

mentioned our setup follows the NGFI architecture, so our RAN implementation is made

up of an eNodeB (started using the lte-softmodem) process at the RCC (where baseband

processing occurs), and another one at the RRU (where the USRP board is located),

with the two hosts link via a 10Gbps Ethernet cable. We start the lte-softmodem on

the two hosts using the following commands:

• RCC: ./lte-softmodem -O rcc.band7.tm1.if4p5.50prb.conf

• RRH: ./lte-softmodem -O rru.oaisim.conf

The configuration files can be found in Appendix A.

2https://jaas.ai/
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4.3 Live Migration

Live Migration is the process of moving applications or processes (e.g. services) running

on a machine from one host to another, with the aim of minimal disruption to the users

that are using that application or service. It can be used to solve two problems that are

often experienced in data centers - system maintenance and load balancing. In the case

of system maintenance, the downtime that a server undergoes can prove costly, especially

when its running mission critical applications, such as a RAN, that are being used by

many users. While load balancing is usually applied when a host system is overloaded

which leads to a fall in the performance of the processes running on it. There a number

of uses cases where the live migration of the eNodeB would be critical, including: video

streaming, gaming, virtual reality applications, industrial automation, remote medical

procedures, and autonomous driving.

Typically, the Source Node (Figure 4.1) is the where the process/service to be migrated

is placed before the migration and the Destination Node is where the container will

resume the process/service after migration. As Figure 4.1 shows, the live migration

process is a 5-step procedure:

• Freeze: The application/service is frozen by the migration tool at the source node

and blocks memory, processes, file systems and network connections

• Get the state: The current state of the memory, processes, file systems and

network connections of the application or service are saved as an image or as

pages.

• Copy the state: The saved imaged containing information about the application

state is copied onto the destination node.

• Restore: The applications processes, file system and network connections are then

restored on the destination node based on the information from copied image.

• Unfreeze: The application is then unfrozen at the destination node and runs as

normal.

4.4 Live Migration in LTE

The role of the RAN in LTE systems means that it should be readily available (i.e. fault

tolerant), and offer a continuously high level of performance (to maintain the end-user’s
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Figure 4.1: General Live Process Migration

experience). Deploying the RAN into the cloud means we can take advantage of features

such as load balancing that is offered by the infrastructure, to essentially protect the

eNodeB in cases where the cloud instance or host it’s running on cannot provide the

desired availability or performance.

The idea of migrating network resources to perform load balancing is not a particularly

new concept in mobile network systems. As mentioned in Section 2.3, the X2 and S1

interfaces are used to perform the handover of UEs for intra-LTE handovers, when an

eNodeB cell is overloaded and a nearby eNodeB has fewer users. This often requires the

cooperation and synchronization of the source and target eNodeBs (using X2), and at

times the reconfiguration of the UE (e.g. inter-LTE handovers with no X2 interface).

The migration of eNodeBs to carry out load balancing is, to the best of our knowledge,

a relatively novel concept that could have applications in future mobile networks.

Figure 4.2 shows a simple diagram on how a container can be migrated between two

hosts using Docker api and the CRIU feature either by the user or by the use of an

orchestration tool.

4.5 Challenges in Live Migration

Despite the obvious benefits that would come with a successful eNodeB live migration,

there are some challenges to carrying it out. Ideally we would like to have a seamless

migration of the containerized eNodeB between hosts without the end-user experienc-

ing little to no interruptions. However, as [25] show, migration of the PUSCH stack

introduces a service disruption time of several seconds when using VMware or KVM,

and for real-time services (such as video streaming) the maximum interruption time in
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Figure 4.2: Container Migration with CRIU

a handover is 300ms, which means the eNB must be migrated within this time for the

user to not experience a significant degradation of the service.

4.5.1 CRIU Live Migration

CRIU’s Live Migration procedure can be effectively realized in three steps: Checkpoint

(Dump), Copy (or pre-copy) and Restore. Figure 4.3 show how this process is achieved

between the source host and destination in CRIU. In our implementation, we use a

shared file system (NFS) between the source and target host, and therefore don’t need

the copy phase. This allows us to reduce the downtime of the service as copying the file

from one location to the another could further unwanted delays. Our NFS configurations

on the RCC and RRU can be found in Appendix A

4.5.2 Checkpoint and Restore

We use CRIU to attempt a checkpoint the eNodeB process running directly on the host

machine. The following commands can be used to perform a dump (more on this in

section) of the eNodeB running on the host or in a container. The dump saves the

process states, and other related information (such as number of threads, sockets, etc)

into image files (memory pages) and gives the information in a log file, dump.log. The

dump log has over 9000 outputs, hence we do not provide it in this thesis.

Host: $criu dump -v4 -o dump.log -t $PID --shell-job

--images-dir=/hostDumps && echo OK
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Figure 4.3: Container Migration Procedure with CRIU

Container: $docker checkpoint create eNodeBContainer checkpoint1

--checkpoint-dir=/dockerCheckpoints

Once all the required images have been copied and the states saved, the process/container

could be restored on either the RCC or the RRU using the following commands:

$ criu restore -d -vvv -o dump.log && echo OK

$ docker start --checkpoint checkpoint1 eNodeBContainer

4.6 Observations on CRIU

During checkpointing, we found out that CRIU does not currently support linux-kernel

SCTP (lk-sctp) sockets, so were unable to complete a full dump of the eNodeB appli-

cation and it’s connections which we require for the process restoration. We looked to

modify CRIU to support SCTP. Having studied how CRIU checkpoints other sockets

used by the eNodeB, we looked to implement the same functions for SCTP sockets,

however this was ultimately unsuccessful. We considered an alternative solution which

was to replace the current linux SCTP with a Userspace SCTP 3 (usrsctp) implemen-

tation that allows encapsulated SCTP packets via UDP datagrams (a protocol CRIU

3https://github.com/sctplab/usrsctp
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supports), but we realized that this was not possible due to the fact the lk-sctp is one

of the modules/packages OpenvSwitch depends on, so we could not offload it without

affecting how OvS behaves. We therefore decided to use CRIU’s dump function to in-

stead evaluate the behaviour and performance of the eNodeB, and the network setup at

large, when the eNodeB is down momentarily. Our observations and evaluation of the

network setup is detailed in the next chapter.

4.7 Towards Live Migration

Live migrating a containerized eNodeB was the original goal of this thesis, but as we

show in this section being able to checkpoint and resume the eNodeB doesnt guarantee

that the service will run normally, and provide the user with the consistent access to the

network service in real time.

To evaluate our setup, we looked at how the network handles common network scenarios.

One of the benefits of LTE systems is the ability to provide users with consistent mobile

connections even in times of mobility. We wanted to observe how our network setup

handles users being disconnected for a period of time (approximately 2 minutes) and

coming back into range of the cell, in real time. This time interval was chosen to allow

the network to detect the UE is no longer available in the cell and disconnect it from the

EPC as well as allow the eNodeB to perform other radio resource control/management

related tasks. To test this, we connected the UE to the EPC and maintained a stable

connection for a period of 5 minutes. We then disconnected the UE from the network

for 2 minutes. During this time the UE is detached from the EPC, although the EPC

shows the it remains attached/registered. After 2 minutes we switch on our UE and

try to reconnect to the network. The eNodeB is able to pick up the UE and reconnect

it to the EPC, however in this instance the UE is given a new ID or Radio Network

Temporary Identifier (RNTI) value. This shows that our setup works in such a case.

Live container migration causes the network setup to be down for a period of time.

We decided to analyse the behaviour/response of the network in a similar situation

to a live eNodeB container migration. To this end, we observed the changes in the

network when the eNodeB service is disrupted for a short period of time (less than

1s). Checkpointing the eNodeB container affects the eNodeB process running inside,

as CRIU pauses the application to collect the latest information about the state and

connections of eNodeB into image files, which can be used to restore the container later.

As the time between checkpoint and restore needed to be as short as possible, we opted

to resume the container as soon as the checkpointing process was completed (using the

–leave-running tag).
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From our observations, we could see that the eNodeB-MME connection is immediately

resumed upon restoration. The output from the MME shows that this short disrup-

tion doesn’t trigger any events at the MME (this is not the case when the eNodeB is

unavailable for extended periods, or shut down). However, the connection between the

OAI eNodeB and the UE is impacted by this disruption. The OAI eNodeB has a lo-

cal counter that counts how many frames and subframes have been processed since the

establishment of the eNodeB and radio unit connection. When the eNodeB process is

disrupted, the reception and transmission (RX/TX) threads that process the LTE frames

and subframes are also stopped. However, since we are following the NGFI architecture

the RRH is still on and continues to communicate with the UE over the air interface

during this downtime. Restoring the eNodeB resumes the RX/TX thread, however, at

this point in time the local frame and subframe counter, which continues where it left

off, and the frames and subframes received from the radio fronthaul differ, which causes

an error in the eNodeB process. To fix this, we modify the OAI code (Appendix B.1).

Our patch sets the local frame and subframe counter to correspond with the underlying

frame and subframe number received from the radio (Appendix B.1). This ensures that

the eNodeB doesn’t crash immediately upon being restored.

To better motivate the need for the local counter frame/subframe counter implemented

in the eNodeB, it is important to look at how timing/synchronization affects the connec-

tion between the UE and RRU/eNodeB. Before the UE and the eNodeB can be initially

connected, they have to be time-synchronized (e.g. LTE/radio frame timing). When

the two components are synchronized in this way, the PRACH, which is responsible for

requesting uplink resources, can begin to request for such resources which allows the UE

to be selected for uplink transmissions [26]. When the eNodeB is momentarily stopped,

this breaks the synchronization, causing the radio connection between the eNodeB and

UE to be lost. As a result of the lost radio connection between the components, the eN-

odeB initiates a UEContextReleaseRequest which allows the eNodeB to request for the

MME to release the UE-associated logical S1 connection due to E-UTRAN generated

reasons (e.g. lost connection with UE), at which point the UE is removed from the list

of actively connected devices in the core network.

As the UE is now disconnected from the network, it sends periodic Traffic Area Update

(TAU) requests, via the NAS protocol, to the MME to let it know that it is available.

The UE controls this procedure using the periodic TAU timer (T3412). The value of the

timer is initially sent by the network to the UE upon initial attachment in an ATTACH

ACCEPT message or a TRACKING AREA UPDATE ACCEPT message. After the

eNodeB has been dumped and resumed, the UE goes from EMM CONNECTED to

EMM IDLE mode, where an EMM is the Evolve Packet System Mobility Management

layer controlled by the NAS layer and that tracks the UEs in the network. In this state
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the T3412 timer is reset and started with it’s initial value. We deduce that due to the

change in the state of the UE which triggers this difference in TAU timer, the MME

rejects any periodic TAU request that is received and therefore the UE is unable to

connect to the MME and re-establish it’s connection to the internet.

In the experiments we performed, we left the eNodeB running after a checkpoint. We

noticed that after approximately one hour of the UE trying to make a connection with

the MME, the connection between the two components is re-established ad the UE has

access to the internet again. By tracing the actions of the network, we see that the

UE is re-attached to the MME/core network as a new UE (based on new user context,

and new RNTI). Hence, we can conclude that it takes a long time before the EPC is

able to accept UE attachments requests due to disruption of the service and the lack of

synchronization in the network. A live migration would not have been possible if the

EPC was not able to accept new connections from the same (or different) UEs, based

on our tried experiments.
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Chapter 5

Evaluation

5.1 Introduction

We evaluate the performance of our setup by measuring the throughput whilst the

eNodeB resides in the container and directly on the host (GPP).

To evaluate our network setup, we used a stationary UE that was attached to one of the

computers in our setup and connect are able to connect the UE to the EPC and internet

through the eNodeB via the RRU/RRH. The figures from our evaluation are based on

such a setup. The RCC (eNodeB), RRU, and UE are all in the same room, and as such

the UE is close to the RRU during all our experiments. The EPC that is used for our

work is located in the server on the third floor on the Communication and Distributed

Systems building at the University of Bern (Room B in Figure 5.1).

In terms of video streaming, We noticed that our network setup did not perform as

well when the eNodeB was running in the container as on the host. We were able to

stream videos in high quality from the UE and were able to download rather large files

(100 MB) when the eNodeB ran directly on the host, but when deployed in a container,

the eNodeB would often crash upon such heavy usage. The video quality on the UE

was also poorer when using a containerized eNodeB. Based on this, we would say that

the challenges to meet the strict time requirements in LTE play a part in the poorer

performance of the network in a containerized environment as such an environment

brings it’s own processing overheads.

39
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Figure 5.1: Network setup with stationary UE

5.2 Throughput

During the time the eNodeB and UE were connected, we measured the throughput of

the network using different Personal Resource Blocks provided by the configuration of

the eNodeB. Our results showed that the throughput of the UE whilst the eNodeB was

running in the docker container, was not significantly worse than when running it was

running on bare metal (directly on host). Note that for each bandwidth measurement

we take only the maximum recorded value of each experiment we performed.

Figure 5.2: Throughput on Host

As can be seen in Figure 5.2 we were able to achieve a maximum throughput of up to

17Mbps for download speed and 10Mbps for upload speed when using 100 PRBs and

running on the host. With the same configuration we were only able to get 6Mbps
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DL and 3Mbps UL. These results were collected from the speedtest1 website. This

performance is consistent with what we would expect and have seen in the literature,

where the downlink is often almost twice as much as the uplink. From our results we

Figure 5.3: Throughput on Docker container

can conclude that OAI performs considerably better when running directly on the host,

compared to running on the container.

In Appendix C, we show the running logs of the eNodeB and MME at the different points

in the network such as: Connection establishment between the eNodeB and RRU, UE

connection to EPC via RAN (eNodeB), registration of the UE with the MME, and the

output of the eNodeB and MME when the eNodeB has been checkpointed.

1https://www.speedtest.net/
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Chapter 6

Conclusion

In this thesis we provided the technical requirements, design and implementation details

on how to we implemented a cloudified RAN.

In chapter 2 we presented a background on LTE mobile networks, and looked at related

technologies such as Virtual Radio Access Networks (Cloud-RAN) and Next Generation

Fronthaul Interfaces, and the benefits they bring in terms of keeping expenses down,

while also improving the network’s service in terms of scalability and reliability. We also

briefly looked at the LTE software platform on which our work is based. Finally, we

explained Software Defined Radios and their used in our setup.

In Chapter 3 We presented the architecture of our Cloud RAN implementation as well

as the modifications that needed to be made to ensure our hosts could meet the strict

processing deadlines involved in LTE networks. We talked about the used of container-

ization to cloudify our RAN and how we setup the networking between the container and

the host to be able to have unfiltered communication with the EPC from the container.

Finally, we laid the ground work for the subsequent chapter by briefly introducing the

CRIU, the migration tool we intended to use to live migrate the containerized eNodeB.

Chapter 4 focused on our efforts to perform the live migration of the container. We

explained how we setup the eNodeB inside the container. We then looked at the live

migration procedure in general, and how CRIU can be used to perform live migration.

Finally, we document the challenges of performing a live container migration in real time.

We describe the behaviour of the LTE network in certain scenarios, and the patch we

implemented to ensure that the eNodeB service doesn’t die immediately after it has been

checkpointed. We showed that whilst our patch achieves it’s aim, the behaviour of the

network after the eNodeB has been temporarily unavailable means that a live migration

of the containerized eNodeB is not yet feasible, due in part to the strict LTE subframe
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and frame processing deadlines, and the network needing time to re-synchronize and

reconnect UEs.

We evaluated and compared the performance of our RAN setup when running inside a

container and on the host in Chapter 5. We showed that our results are consistent with

what would be expected when the RAN is deployed in those two environments. Finally

we present a evaluation scenario

From our analysis, the disruption of the eNodeB service that would occur in the case of

a live migration is not the primary cause of network failure. The MME and S GW play

significant roles in how the UE is reconnected after the service is resumed. We deduce

that the OAI EPC implementation is unable to cater to live eNodeB container migrations

in real time, even though there have been some successes in simulated environments.

The performance of a live eNodeB container migration between hosts did not occur as we

intended, but nevertheless the details we presented could contribute to eventually being

able to achieve this problem and carry out the migration successfully. Firstly, a means

to checkpoint and restore linux SCTP sockets that works with Open vSwitch is needed

before the eNodeB can be fully dumped. Secondly, a way to ensure the downtime of

the eNodeB is as minimal as possible will also provide a way to successfully migrate the

container without breaking any LTE timing restrictions. We posit that once these are

solved, it would be possible to successfully checkpoint and ensure that the UE remains

unaffected when it is restored.

To keep up with the theme of cloud computing, we believe that manually migrating the

eNodeB between hosts is inefficient. In large scale deployments of the RAN in the cloud,

a more efficient (and potentially quicker) way would be to use an orchestration system

that could automatically detect what machine to migrate the container to, and when

the best to perform a migration of the eNodeB service is.

6.0.1 Future Work

Future work would focus on understanding in detail how the EPC handles different use

case scenarios in real time that could occur as a result of network deployment in virtual

environments such as the cloud. OAI is currently able to handle handovers using the

X2 interface described in this thesis. In a handover the UE is temporarily disconnected

from the source eNodeB (typically milliseconds) and handed over to the target eNodeB.

Similarly, a live eNodeB migration performs the same procedure and we expect therefore

that the network should reconnect the UE as is the case in a handover. In other words,

the UE is not supposed to notice this change in operation of the eNodeBs. For a live
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migration to be successful the migration procedure would have to adhere to extremely

strict time requirements in LTE (due to arrival of subframes every millisecond, HARQ,

etc). Most migration tools take several milliseconds, and from our observations we have

seen that even just a second of the RAN being unavailable leads to a non-convergence of

the operation of the network. We posit that a true real-time live migration of the RAN

might not be feasible unless: (1) container/Virtual Machine migrations can occur in

the milliseconds range, allowing for the network to stay synchronized, or (2) modifying

the network (EPC and RAN) to deal with disruptions in the eNodeB service during a

live migration, i.e. allowing registered/attached UEs to create new uplink transmissions

with the MME/S GW, despite the temporary disconnection.



Appendix A

Software and NFS Configuration

A.1 Configuration file of the eNodeB at the RCC

1

2 Active_eNBs = ( "eNB -Eurecom -LTEBox");

3 # Asn1_verbosity , choice in: none , info , annoying

4 Asn1_verbosity = "none";

5

6 eNBs =

7 (

8 {

9 # real_time choice in {hard , rt -preempt , no}

10 real_time = "no";

11 // //////// Identification parameters:

12 eNB_ID = 0xe00;

13 cell_type = "CELL_MACRO_ENB";

14 eNB_name = "eNB -Eurecom -LTEBox";

15 // Tracking area code , 0x0000 and 0xfffe are reserved values

16 tracking_area_code = 1;

17 plmn_list = ( { mcc = 208; mnc = 95; mnc_length = 2; } );

18 tr_s_preference = "local_mac"

19

20 // //////// Physical parameters:

21 component_carriers = (

22 {

23 node_function = "NGFI_RCC_IF4p5";

24 node_timing = "synch_to_ext_device";

25 node_synch_ref = 0;

26 frame_type = "FDD";

27 tdd_config = 3;

28 tdd_config_s = 0;

29 prefix_type = "NORMAL";

46
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30 eutra_band = 7;

31 downlink_frequency = 2685000000L;

32 uplink_frequency_offset = -120000000;

33 Nid_cell = 0;

34 N_RB_DL = 100;

35 Nid_cell_mbsfn = 0;

36 nb_antenna_ports = 1;

37 nb_antennas_tx = 1;

38 nb_antennas_rx = 1;

39 tx_gain = 90;

40 rx_gain = 125;

41 pbch_repetition = "FALSE";

42 prach_root = 0;

43 prach_config_index = 0;

44 prach_high_speed = "DISABLE";

45 prach_zero_correlation = 1;

46 prach_freq_offset = 2;

47 pucch_delta_shift = 1;

48 pucch_nRB_CQI = 0;

49 pucch_nCS_AN = 0;

50 pucch_n1_AN = 0;

51 pdsch_referenceSignalPower = -27;

52 pdsch_p_b = 0;

53 pusch_n_SB = 1;

54 pusch_enable64QAM = "DISABLE";

55 pusch_hoppingMode = "interSubFrame

";

56 pusch_hoppingOffset = 0;

57 pusch_groupHoppingEnabled = "ENABLE";

58 pusch_groupAssignment = 0;

59 pusch_sequenceHoppingEnabled = "DISABLE";

60 pusch_nDMRS1 = 1;

61 phich_duration = "NORMAL";

62 phich_resource = "ONESIXTH";

63 srs_enable = "DISABLE";

64 ....

65 pusch_p0_Nominal = -96;

66 pusch_alpha = "AL1";

67 pucch_p0_Nominal = -104;

68 msg3_delta_Preamble = 6;

69 pucch_deltaF_Format1 = "deltaF2";

70 pucch_deltaF_Format1b = "deltaF3";

71 pucch_deltaF_Format2 = "deltaF0";

72 pucch_deltaF_Format2a = "deltaF0";

73 pucch_deltaF_Format2b = "deltaF0";

74 rach_numberOfRA_Preambles = 64;

75 rach_preamblesGroupAConfig = "DISABLE";

76 ....
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77 rach_powerRampingStep = 4;

78 rach_preambleInitialReceivedTargetPower = -108;

79 rach_preambleTransMax = 10;

80 rach_raResponseWindowSize = 10;

81 rach_macContentionResolutionTimer = 48;

82 rach_maxHARQ_Msg3Tx = 4;

83 pcch_default_PagingCycle = 128;

84 pcch_nB = "oneT";

85 ....

86 }

87 );

88 ....

89 # ------- SCTP definitions

90 SCTP :

91 {

92 # Number of streams to use in input/output

93 SCTP_INSTREAMS = 2;

94 SCTP_OUTSTREAMS = 2;

95 };

96

97 // //////// MME parameters:

98 mme_ip_address = ( { ipv4 = "130.92.70.163";

99 ipv6 = "192:168:30::17";

100 active = "yes";

101 preference = "ipv4";

102 }

103 );

104 enable_measurement_reports = "no";

105 ///X2

106 enable_x2 = "no";

107 t_reloc_prep = 1000; /* unit: millisecond */

108 tx2_reloc_overall = 2000; /* unit: millisecond */

109

110 NETWORK_INTERFACES :

111 {

112 ENB_INTERFACE_NAME_FOR_S1_MME = "eth0";

113 ENB_IPV4_ADDRESS_FOR_S1_MME = "130.92.65.69/24";

114 ENB_INTERFACE_NAME_FOR_S1U = "eth0";

115 ENB_IPV4_ADDRESS_FOR_S1U = "130.92.65.69/24";

116 ENB_PORT_FOR_S1U = 2152; # Spec 2152

117 ENB_IPV4_ADDRESS_FOR_X2C = "130.92.65.69/24";

118 ENB_PORT_FOR_X2C = 36422; # Spec 36422

119 };

120 }

121 );

122 ....

123 RUs = (

124 {



APPENDIX A. SOFTWARE AND NFS CONFIGURATION 49

125 local_if_name = "eth1";

126 remote_address = "10.0.5.4";

127 local_address = "10.0.5.2";

128 local_portc = 50000;

129 remote_portc = 50000;

130 local_portd = 50001;

131 remote_portd = 50001;

132 local_rf = "no"

133 tr_preference = "udp_if4p5"

134 nb_tx = 1

135 nb_rx = 1

136 att_tx = 0

137 att_rx = 0;

138 eNB_instances = [0];

139 is_slave = "no"

140 }

141 );

142 THREAD_STRUCT = (

143 {

144 #three config for level of parallelism "PARALLEL_SINGLE_THREAD", "

PARALLEL_RU_L1_SPLIT", or "PARALLEL_RU_L1_TRX_SPLIT"

145 parallel_config = "PARALLEL_RU_L1_TRX_SPLIT";

146 #two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"

147 worker_config = "WORKER_ENABLE";

148 }

149 );

150 ....

Listing A.1: rcc.band7.tm1.if4p5.50PRB.conf

A.2 Configuration file of the Radio at the RRU

1

2 RUs = (

3 {

4 local_if_name = "p1p2";

5 remote_address = "10.0.5.2"

6 local_address = "10.0.5.4";

7 local_portc = 50000;

8 remote_portc = 50000;

9 local_portd = 50001;

10 remote_portd = 50001;

11 local_rf = "yes"

12 tr_preference = "udp_if4p5";

13 nb_tx = 2;

14 nb_rx = 2;
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15 max_pdschReferenceSignalPower = -27;

16 max_rxgain = 125;

17 bands = [7 ,13];

18 is_slave = "no";

19 }

20 );

21

22 THREAD_STRUCT = (

23 {

24 #three config for level of parallelism "PARALLEL_SINGLE_THREAD", "

PARALLEL_RU_L1_SPLIT", or "PARALLEL_RU_L1_TRX_SPLIT"

25 parallel_config = "PARALLEL_SINGLE_THREAD";

26 #two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"

27 worker_config = "WORKER_ENABLE";

28 }

29 );

30

31 log_config = {

32 global_log_level ="info";

33 global_log_verbosity ="medium";

34 hw_log_level ="info";

35 hw_log_verbosity ="medium";

36 phy_log_level ="info";

37 phy_log_verbosity ="medium";

38 mac_log_level ="info";

39 mac_log_verbosity ="high";

40 rlc_log_level ="info";

41 rlc_log_verbosity ="medium";

42 pdcp_log_level ="info";

43 pdcp_log_verbosity ="medium";

44 rrc_log_level ="info";

45 rrc_log_verbosity ="medium";

46 };

Listing A.2: rru.oaisim.conf

A.3 NFS Configuraton

1 $ sudo apt -get update

2 $ sudo apt -get install nfs -kernel -server

Listing A.3: Downloading and Installing the Components on RCC

1 $ sudo apt -get update

2 $ sudo apt -get install nfs -common

Listing A.4: Downloading and Installing the Components on RRU



APPENDIX A. SOFTWARE AND NFS CONFIGURATION 51

1 $ sudo mkdir -p /nfs/home

2 sudo mount 130.92.65.83:/ home/tofunmi /nfs/home

Listing A.5: Creating the Mount Points and Mounting Directory on RRU

1 $ sudo nano /etc/exports

2 # Add below line to exports file:

3 /home 130.92.65.32(rw ,sync ,no_root_squash ,no_subtree_check)

4 # Restart nfs -kernel -server service

5 $ sudo systemctl restart nfs -kernel -server

Listing A.6: Configuring the NFS Exports on the RCC

1 # First , check firewall status

2 $ sudo ufw status

3 # If ufw is inactive , use the below command to enable ufw:

4 $ sudo ufw enable

5 # Make ufw allow incoming and outgoing:

6 $ sudo ufw default allow incoming

7 $ sudo ufw default allow outgoing

8 # Make client server can access host server

9 $ sudo ufw allow from 130.92.65.32 to any port nfs

10 # Check ufw status

11 $ sudo ufw status numbered

Listing A.7: Adjusting firewall on RCC



Appendix B

Implementation

B.1 Modification of lte-ru.c

When the eNodeB is restored, the difference in time caused it to crash. Modifying the

in-built OAI subframe timer ensures the application doesn’t crash upon resumption.

More future work in this area could also ensure that the threads are processing the right

subframes, taking into account the time difference.

1 // Synchronous if4p5 from south

2 void fh_if4p5_south_in(RU_t *ru,int *frame ,int *subframe) {

3

4 LTE_DL_FRAME_PARMS *fp = &ru ->frame_parms;

5 RU_proc_t *proc = &ru ->proc;

6 int f,sf;

7

8

9 uint16_t packet_type;

10 uint32_t symbol_number =0;

11 uint32_t symbol_mask_full;

12 uint64_t t;

13 // uint64_t t2;

14 // uint64_t t_diff;

15

16 if ((fp ->frame_type == TDD) && (subframe_select(fp ,* subframe)==SF_S))

17 symbol_mask_full = (1<<fp ->ul_symbols_in_S_subframe) -1;

18 else

19 symbol_mask_full = (1<<fp ->symbols_per_tti) -1;

20 if (proc ->symbol_mask [* subframe] == symbol_mask_full) proc ->symbol_mask

[* subframe] = 0;

21 do {

22 recv_IF4p5(ru, &f, &sf , &packet_type , &symbol_number);

52
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23 if (packet_type == IF4p5_PULFFT) proc ->symbol_mask[sf] = proc ->

symbol_mask[sf] | (1<<symbol_number);

24 else if (packet_type == IF4p5_PULTICK) {

25 if ((proc ->first_rx ==0) && (f!=* frame)) LOG_E(PHY ,"rx_fh_if4p5:

PULTICK received frame %d != expected %d\n",f,* frame);

26 if ((proc ->first_rx ==0) && (sf!=* subframe)) LOG_E(PHY ,"rx_fh_if4p5:

PULTICK received subframe %d != expected %d (first_rx %d)\n",sf ,*

subframe ,proc ->first_rx);

27 break;

28 } else if (packet_type == IF4p5_PRACH) {

29 // nothing in RU for RAU

30 }

31 LOG_D(PHY ,"rx_fh_if4p5: subframe %d symbol mask %x\n",*subframe ,proc

->symbol_mask [* subframe ]);

32 } while(proc ->symbol_mask [* subframe] != symbol_mask_full);

33

34 // caculate timestamp_rx , timestamp_tx based on frame and subframe

35 proc ->subframe_rx = sf;

36 proc ->frame_rx = f;

37 proc ->timestamp_rx = ((proc ->frame_rx * 10) + proc ->subframe_rx ) * fp

->samples_per_tti ;

38

39 if (proc ->first_rx == 0) {

40 // printf (" rdtsc_diff: %" PRIu64 "\n", t_diff);

41 if (proc ->subframe_rx != *subframe){ printf("Correcting Subframe\n");

42 LOG_E(PHY ,"Received Timestamp doesn't correspond to the time we

think it is (proc ->subframe_rx %d, subframe %d)\n",proc ->subframe_rx ,

sf);

43 }

44

45 if (proc ->frame_rx != *frame) {printf("Correcting Frame\n");

46 *subframe = proc ->subframe_rx;

47 *frame = proc ->frame_rx;

48 LOG_E(PHY ,"Received Timestamp doesn't correspond to the time we

think it is (proc ->frame_rx %d, frame %d)\n",proc ->frame_rx ,* frame);

49 }

50 }

51 else {

52 proc ->first_rx = 0;

53 *frame = proc ->frame_rx;

54 *subframe = proc ->subframe_rx;

55 }

56

57 if (ru == RC.ru[0]) {

58 VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(

VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_RX0_RU , f );

59 VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(

VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_RX0_RU , sf );
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60 // VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(

VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_RU , proc ->frame_tx );

61 // VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(

VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_RU , proc ->subframe_tx

);

62 }

63 proc ->symbol_mask[sf] = 0;

64 VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(

VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS , proc ->timestamp_rx &0 xffffffff );

65 LOG_D(PHY ,"RU %d: fh_if4p5_south_in sleeping ...\n",ru ->idx);

66 usleep (100);

67 }

Listing B.1: lte-ru.c
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eNodeB and MME Logs

C.1 Connecting the eNodeB and RRU

Figure C.1: Connection established between eNodeB and RRU

55
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C.2 UE connection to EPC via eNodeB

Figure C.2: Full connection between UE and MME: Frames being processed
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C.3 MME registration

Figure C.3: MME registering the UE to the network
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C.4 eNodeB and MME during Checkpoint

Figure C.4: Post-Checkpoint eNode and EPC Log
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