Live eNodeB Container Migration in
LTE Mobile Networks

Master thesis
Faculty of Science, University of Bern

handed in by

Jesutofunmi Ademiposi Ajayi

2019

Supervisor

Prof. Dr. Torsten Braun

MASTER N
COMPUTER
SCIENCE

A

Live eNodeB Container Migration
in LTE Mobile Networks

Technical Requirements, Design, and Implementation of
the Live eNodeB Container Migration in LTE Mobile
Networks

Master Thesis

Jesutofunmi Ademiposi Ajayi

University of Bern

September 2019

b

u ni

UNIVERSITAT UNIVERSITE DE UNIVERSITE DE FRIBOURG

BERN NEUCHATEL UNIVERSITAT FREIBURG

“A Good Craftsman Never Blames His Tools”

Abstract

This master thesis aims to provide the technical requirements, design, and
implementation for the live migration of an Evolved Node B (eNodeB) in
Long Term Evolution (LTE) Mobile Networks. We use the OpenAirInter-
face (OAI) implementation of an LTE network to carry out our research. We
focused on the eNodeB, which provides the Radio Access Network (RAN)
in a containerized environment using Docker and the necessary steps that
are required to perform a live migration of the container among physical
machines. We show the challenges of successfully performing a live eNodeB
container migration, as well as the current limitations of migration tools.
Our evaluation shows that running the eNodeB inside a Docker container
or directly on the machine has significant impact on the performance of the

application.

Prof. Dr. Torsten Braun, Communication and Distributed Systems, Insti-

tute of Computer Science, University of Bern, Supervisor

Dr. Eryk Schiller, Communication Systems Group, Department of Informat-

ics, University of Zurich, Assistant

Contents

[List of Figures|

[List of Tables

2.2 Long Term Evolution|.
[2.2.1 Evolved Packet Core (EPC)|.
[2.2.2 Radio Access Network (RAN)[.
2.2.3 User Equipment| oL
[2.2.4 Channels, Intertaces and Protocols|

ii

iv

Contents iii
3.4 Host Modifications 24
3.5 Networking| 24

3.5.1 Open vowitch|. o 25
[3.5.2 Container Networking] 25
[3.6 Checkpoint and Restore in Userspace|. 26

[4 Cloud RAN Implementation and Live Migration| 29
MI Tntroductionl. o o o o o 29
4.2 OAI eNodeB Implementation| 29
4.3 Live Migration| 31
4.4 Live Migration in LTE| 000 L 31
4.5 Challenges in Live Migration| 32

4.5.1 CRIU Live Migration| 33
[4.5.2 Checkpoint and Restore| 33
4.6 Observationson CRIUl 34
4.7 Towards Live Migration|, 35

b__FKvaluationl 39
BI Tntroductionl. o o o 39
b.2 Throughput| 40

6 Conclusion| 43

6.0.1 Future Workl o 44

[A Software and NFS Configuration| 46
[A.1 Configuration file of the eNodeB at the RCC| 46
|A.2 Configuration file of the Radio at the RRU| 49
[A.3 NFS Configuraton| 50

(B Implementation| 52
B.1 _Modification of lte-ru.d. 52
eNodeB an ogs 55
|C.1 Connecting the eNodeB and RRU| 55
I[C.2 UFE connection to EPC viaeNodeBl 56
IC.3 MME registration|. 57
|C.4 eNodeB and MME during Checkpoint| 58

(Bibliography| 59

List of Figures

2.1 General ITE architecturel o 0oL 9
2.2 Control Plane Structurein LTH 10
[2.3 X2 Handover procedure in LTE/LTE-A Networks [IJf 14
2.4 NGFI based C-RAN architecture with protocol splits|. 16
[3.1 USRP B210, Telmat Duplexer Radio and Antenna configured at the RRU| 22
3.2 Central RAN architecturelo oL 22
4.1 General Live Process Migration| 32
4.2 Container Migration with CRIU| 33
4.3 Container Migration Procedure with CRIU| 34
[5.1 Network setup with stationary UK| 40
5.2 Throughput on Host| oo 40
5.3 Throughput on Docker container| 41
(C.1 Connection established between eNodeB and RRU| 55
|C.2 Full connection between UE and MME: Frames being processed|. 56
|C.3 MME registering the UE to the network{ 57
|C.4 Post-Checkpoint eNode and EPC Logl 58

iv

List of Tables

Chapter 1

Introduction

1.1 Overview

Due to the increasing number of mobile users worldwide, there has been a continuous
rise in the demand for wireless data use, primarily due to an increasing number of 3G
and 4G mobile phones [2] 3]. It is believed that by 2021, an estimated 10 billion devices
could be connected to mobile networks all over the world [4]. This implies a growing
pressure on Mobile (Virtual) Network Operators (M(V)NO) to provide better services
whilst keeping their CAPital and OPerating EXpenses (CAPEX/OPEX) low. It has
become evident that keeping up with increasing demand will require mobile network
operators to find new ways of increasing network capacity while also improving their

service offerings in terms of the Quality of Service (QoS) and system capacity [2].

The management of IT infrastructures, platforms, and applications in the Everything
as a Service (XaaS) manner allows for the significant cost reduction in terms of CAPEX
and OPEX. For example, no upfront investment is required as resources are traded
on-demand, thus zero-CAPEX; no risk of ill-estimated CAPEX versus revenue estima-
tions since resources and thus infrastructures, platforms as well as applications scale
continuously up, etc. When the XaaS operational model is applied to the telecommuni-
cations industry, the significant benefits of the XaaS model can counter the effect of the
ever-decreasing Average Revenue Per User (ARPU) in the telco ecosystem. Cloud com-
puting and virtualization have stood out as two important technologies that can be used
to create new opportunities that will meet the MNOs goals. Cloud computing enables
ubiquitous and on-demand access to a shared pool of scalable computational resources
(i.e. processing, networking and storage), while virtualization techniques such as Net-
work Function Virtualization (NFV) and Software Defined Networking (SDN) both use

CHAPTER 1. INTRODUCTION 2

network abstraction to virtualize network functions and enable network programming

and intelligence.

The emergence of the Central/Cloud Radio Access Network (C-RAN/Cloud-RAN) as
an advanced mobile network architecture that can be deployed to leverage features such
as network slicing, statistical multiplexing, energy efficiency, and higher capacity, has
provided one possible way to meet this challenge [4]. C-RAN systems replace traditional
Base Stations (BS) where distributed (passive) radio elements, such as the Remote
Radio Head (RRH), are connected to a centralized baseband processing pool. In C-
RAN systems, the baseband processing pool is located at a remote location (i.e. a Data
Center), whilst the front-end entity, RRH, are located at sites that are closer to users [5].
Centralized baseband processing brings about several advantage such as: lower energy
consumption costs due to the reduced number of sites, easy software upgrades and
maintenance, as well as performance improvements for multi-cell signal processing (due

to increased spectral efficiency from joint spatio-temporal processing of radio signals) [6]

1.2 Motivation

The transition from Fourth-generation (4G) networks, to Fifth-generation (5G) net-
works, is likely to see an increase in the uses and applications of cloud computing and

similar virtualization-like techniques, in the mobile telecommunications industry.

Already, current developments [7] have shown it is possible to virtualize and deploy
parts of a mobile network, on General purpose Processors (GPPs). Such a deployment
is likely to prove cost effective for MNOs as they can centralize baseband processing and
improve their service offerings. Using cloud computing and virtualization, we can run
the EPC and RAN on GPPs rather than expensive hardware. They also provide us with
a means to scale and share computational resources based on the needs of the mobile
network, and ensure the mobile network can handle different cell variations by applying

techniques such as load balancing.

With this thesis, we aim to deliver a cloudified Long Term Evolution (LTE) mobile
telephony infrastructure. We also look to address the issue of load balancing for handling
different cell variations by performing a live migration of a container running a RAN
service. Our RAN is deployed as a real-time service which offers direct access to real-time
radio information (i.e. radio status, network statistics) for low-latency, high bandwidth
services deployed at the network edge [7], and therefore it is important that the migration
of such a service does not have a significant impact on the users that are connected to

it (i.e. negligible network down time during migration).

CHAPTER 1. INTRODUCTION 3

We believe that performing a live migration of a containerized RAN service will bring
us a step closer to having a fully cloudified LTE network that can handle various cell

loads and other instances of poor network performance.

1.3 Goal

The goal of this thesis is to provide the technical requirements, design decisions, and
implementation details of the live eNodeB container migration in Long Term Evolution
(LTE) Mobile Networks. The eNodeB which provides a radio access network will be
deployed in a cloud setup as a containerized application. Our eNodeB is a real-time
application that is placed within a Docker E] container that we look to migrate towards
another physical machine. For this migration to be successful, all states of the eNB
application before the migration has taken place, need to be maintained after the mi-
gration has occurred (i.e. reestablishment of the connection to the core (EPC), and
maintaining connection and service information about mobile devices). We believe that

by doing this, we can show a way to handle load balancing in cloud data centers.

1.4 Contributions

The main contributions of this thesis can be summarized as follows:

e A cloudified RAN setup: We provide a fully operational RAN network that
is deployed in a containerized environment. We use virtualization-like techniques
such as Docker to containerize the Radio Access Network (eNodeB), opening up

the possibility for the application to be migrated between machines.

e Challenges of Live Migration: To the best of our knowledge, there hasn’t been
many attempts to live migrate a containerized eNodeB using a Next Generation
Fronthaul Architecture (NGFI), in real time as most attempts have been carried
out in simulated environments. Our work looks at the challenges in doing this using
a real-time implementation of an LTE system. We explain a key shortcoming in the
open-source migration tool we use, Checkpoint and Restore in Userspace (CRIU),
and the effect it has on our goal of performing a live migration. We also point out
that look into how the MME responds to interruptions from the connection to the

UE when the eNodeB is down for a short while.

"https://www.docker.com/

CHAPTER 1. INTRODUCTION 4

e Evaluation of containerized eNodeB We compare the performance of the
network when the eNodeB is running inside a container as compared to the host.
We also look at how the network performs when there’s a disruption in the running
of the service (i.e. when the eNodeB is shut down and restore after a period of
time). Through our performance analysis of the eNodeB application, we show
that providing an eNB service as a container does has a significant impact on its
performance compared to running it directly on the physical machine in terms of

throughput.

1.5 Thesis Structure

In this chapter, we motivated the need for live migration of the eNB to enable load
balancing in data centers and introduced other related concepts, the rest of this thesis is
organized into 6 chapters. In Chapter 2, we provide a background analysis and present
work related to the aims of this thesis, where we explain the concepts, such as Next
Generation Fronthaul Interface architecture that our work is based on. In the third
chapter we focus on the architecture of our work and explain the technical requirements
and design needed to achieve our setup. In chapter 4 we talk about the implementation
of our setup. We focus on our efforts to achieve the migration the eNodeB and how
we try to use CRIU to achieve this. In Chapter 5 we evaluate our work and present
results from the experiments we conducted and our assessment of the eNodeB and UE.
We conclude in Chapter 6 and look to possible future work that could improve on our

work.

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

2.1 Introduction

The Long Term Evolution (LTE) Mobile Network is the basis on which our work is
built on, hence we present the significant components of this network such as the differ-
ent interfaces, channels, and protocols that permit communication between the various
components of the network. We look at the types of handovers availble, and how the
handover procedure is done in LTE. We present the developments to RAN deployments,
such as Cloud RAN and Next Generation Fronthaul Interface (NGFI), that are meant
provide MNOs better services and increase network capacity, as well the challenges these
new deployments bring. Finally, we briefly describe Software Defined Radios and their

use in our work.

2.2 Long Term Evolution

The Long Term Evolution (LTE) network is currently one of the most advanced mobile
telecommunications technology. It provides high-speed data and voice capabilities and
outperforms the previous generation GSM network. It is also one of the most widely
deployed mobile network infrastructures across the world, serving billions of users world-
wide. The LTE network provides Internet Protocol (IP) connectivity between User
Equipment (UE) and a Packet Data Network (PDN), such as the internet, without sig-
nificant disruption to the end users connectivity during mobility. It offers faster data
transmission than previous networks, lower latency, and higher reliability and robustness

against unforeseen failures.

CHAPTER 2. RELATED WORK 7

The LTE mobile network architecture is comprised of three components: (i) Evolved
Packet Core (EPC): which connects user equipment with the internet or a mobile
network operators network, (ii) Radio Access Network (RAN): which handles wire-
less radio connections between user equipment and the base station(s), and (iii) User
Equipment (UE): which is essentially any device that sends and receives radio signals

and can be used to access the internet.

2.2.1 Evolved Packet Core (EPC)

As previously explained, the EPC provides UEs with a way to connect to the internet or
to an MNO/MVNOs network. The EPC has 5 components that enable it to achieve this:
Home Subscriber System, Mobility Management Entity, Serving and Packet Gateways,
and the Policy Control and Charging Rules Function.

e Home Subscriber Server (HSS): The HSS is a database that contains user-
related and subscriber-related information. The server also provides support func-
tions in mobility management, call and session setup, user authentication and
access authorization, and is primarily hosted by the mobile network provider. The
HSS is able to communicate with the Mobility Management Entity over the s6a

interface.

e Mobility Management Entity (MME): The Serving Gateway deals with the
User Plane. It is used to transport IP data traffic between the UE and external
networks, and serves the UE by routing incoming and outgoing IP packets. The
S-GW becomes an anchor point when the UE moves from one base station to
another (i.e. in the case of a handover), and it is logically connected to another
gateway known as the Packet Data Network Gateway (PDN-GW). It is the point

of interconnect between the radio-side and the Evolved Packet Core.

e Serving Gateway (S GW): The Packet Data Network is the point that connects
the EPC with external IP networks such as the internet and is essentially a route
between the two entities. The PDN-GW performs tasks such as IP address/prefix
allocation, as well as policy control and charging. Since the interface of the Serv-
ing Gateway is based on the GPRS Tunnelling Protocol (GTP-U), the PDN-GW

matches IP data flows towards external networks.

e Packet Data Network Gateway (PDN GW): The MME deals with the con-
trol plane. It is responsible for handling signalling related to mobility and security
for the Evolved Universal Terrestrial Radio Access Network (E-UTRAN). It is
also responsible for the tracking and paging of the UE in idle mode, where the

CHAPTER 2. RELATED WORK 8

UE doesnt have an established Radio Resource Control (RRC) connection and
is unknown to the network at the cell level. It is the termination point of the
Non-Access Stratum (NAS).

e Policy Control and Charging Rules Function (PCRF): The PCRF is a node
in the EPC that is in charge of policy control and decision making within the core.
It controls the flow-based charging functionalities in the Policy Control Enforce-
ment Function (PCEF) which resides inside the Packet Data Network Gateway
(P-DN). The PCRF handles the Quality of Service (QoS) (i.e. bit rates) author-
itzation, and determines how the PCEF will treat certain data flows to ensure they

are in accordance with the user’s subscription profile [§].

2.2.2 Radio Access Network (RAN)

The Radio Access Network is used to provide wireless radio connection between mobile
devices and the Base Station (BS), and is mainly made up of the evolved Node B
(eNodeB).

e Evolved Node B (eNodeB): An eNodeB provides the radio interfaces for com-
munication in LTE and allows User Equipment to wirelessly connect to the LTE
network. It’s main purpose is to perform typical functions of a Base Station by
providing Radio Resource Management functions such as dynamic resource al-
location, eNodeB provisioning, eNB measurement configuration, radio admission
control, connection mobility, radio bearer control and inter-cell interference coor-
dination. The eNodeB contains a Baseband Processing Unit (BBU) that processes
(baseband) signals, and it can be connected to one or more Remote Radio Units.
The eNB is typically connected to the MME for control-plane communication, and
to the S & PDN gateways for control-plane and user-plane data transmissions. The
eNodeB communicates with the MME and the S-GW over the SI-MME and S1-
U interfaces, respectively. This element is also responsible for deciding whether
handovers are required. The decision to perform a handover is typically based on
measurements sent by the UE, and the eNodeB is responsible for implementing

this handover.

2.2.3 User Equipment

A User Equipment is essentially any device that can be used by an end-user for com-
munication. Examples of common UE include: Mobile Phones, and personal computers

with mobile broadband adapters (such as a USB dongle).

CHAPTER 2. RELATED WORK 9

e User Equipment (UE): The User Equipment typically refers to mobile devices
which can be used to connect users to subscription services such as data and voice
call, by connecting users to a Base Station (BS). A UE can be identified by either
its unique International Mobile Station Equipment Identity (IMEI), or by the use
of a Universal Subscriber Identity Module (USIM) which can be physically inserted
in the UE and can also be used for authentication, security, and protection of radio
transmission between the UE and another RAN component known as the Evolved
Node B.

HSS
MME PCEF
P -
SOW P.GW —EI:,.. IPNetwork

EPC e

FIGURE 2.1: General LTE architecture

For the purpose of this thesis we refer to the S-GW and PDN-GW as a single component
called the Serving Packet Gateway (SPGW). In the EPC implementation we use, the
PCRF is not included as a component of the Core Network. Figure 2.1 is an example of
the general LTE architectureﬂ including the key components and sub-components that
have been mentioned (for a more comprehensive look at the interfaces used to facilitate

communication between the EPC components and the UTRAN; see [§]).

2.2.4 Channels, Interfaces and Protocols

In this section we describe the channels, interfaces and protocols that allow different
elements of the network to communicate with each other. Figure 2.2 shows the protocol
structure that allows the UE to communicate with the eNodeB and the MME. Note
that since the communication between the UE and eNodeB is done over an air interface,
LTE-Uu, it is different from the other links as it handles radio transmissions and related

details.

"https://www.researchgate.net/figure/LTE-Network-architecture_figl 318502441

CHAPTER 2. RELATED WORK

MAS : MAS
Relay
RRC RRC S1-AP ? S1-AR
FOCF FOCP SCTF SCTP
RLC RLC IF IF
W4 WA 7]
L1 L1 L1 L1
S1-MME
UE LTE-Llu eModeB MME

FIGURE 2.2: Control Plane Structure in LTE

2.2.4.1 LTE-Uu Interface

The LTE-Uu interface protocols are divided into two types: user-plane protocols and

control-plane protocols which handle tasks such as the request of the service, control of

transmission resources and inter/intra eNodeB handovers [9].

e L1 (Layer 1): This is a physical layer. It monitors the downlink (DL) quality

and alerts the RRC of any potential problems. [10]

¢ MAC (Medium Access Control): This layer performs multiplexing and de-

multiplexing for the uplink and downlink directions respectively. It also controls

scheduling of different logical channels.

e RLC (Radio Link Layer): Handles the delivery of data and it’s duplicate de-

tection. Can also perform segmentation and concatenation of sent data units.

e PDCP (Packet Data Convergence Protocol): Encrypts IP packets and per-

forms header compression to improve effeciency of over the air transmission. Used

to transfer User and Control plane packets to and from upper layers in the stack-

/structure.

¢ RRC (Radio Resource Control): Used to signal exchange between UE and

eNodeB entity (i.e. in the case of handovers).

e NAS (Non Access Spectrum): This protocol supports mobility management

functionality and user plane bearer activation in LTE. It also handles ciphering and

integrity protection of NAS signals. NAS signalling occurs between UE and the

MME, with the eNodeB relaying the messages between the entities, not processing

them.

CHAPTER 2. RELATED WORK 11

2.2.4.2 S1-MME Interface

This is a signalling interface which is used to support functions and procedures that occur

between the eNodeB and the MME. Below we give brief descriptions of each protocol.

e L1 (Layer 1): Physical layer which connects the eNodeB and MME together and

can be implemented with fixed cabling such as optical fibre.
e L2 (Layer 2): Supports any data link layer protocol, such a MAC, using Ethernet.

e IP (Internet Protocol): In this interface, IP is used to route signalling and user

data messages through the EPC.

e SCTP (Stream Control Transmission Protocol): This protocol is used in
the control plane and guarantees the delivery of control or signalling messages
between the eNodeB and the MME.[11]. It’s main features include: association

setup, and reliable data delivery.

e S1-AP (S1-Application Part): The S1-AP is the control signalling protocol
between the eNodeB and the MME. It fulfils S1 functions such as paging, NAS

signaling transport function, error reporting and UE context release.

2.2.4.3 S1-U Interface

This interface is used for communication between the eNodeB and the S GW/PDN GW.
It is implements the bottom two layers (L1 and L2) in the SI-MME interface but has
two other interfaces: GTP-U and UDP.

e GTP-U (GPRS Tunneling Protocol User plane): The GTP-U tunnel is

used to carry IP packets through the core network.

e UDP (User Datagram Protocol): In LTE UDP has the task of carrying sig-

nalling messages between specified endpoints.

2.2.4.4 X2 Interface

The X2 interface is used to tunnel user packet data between eNodeBs. It handles
load/interference related functions, handovers and influences radio resource management
processes in real time. The interface is composed of the control plane and user plane.

The control plane (X2-CP) prepares and performs handovers between eNodeBs, while the

CHAPTER 2. RELATED WORK 12

user plane (X2-U) is needed for downlink forwarding during a handover. The transport
layer of X2-CP is built on SCTP, which functions on top of IP, and UDP on top of IP
for X2-U.

2.2.4.5 Channels

In LTE, data and control information is encoded down from the MAC layer to the
physical layer (L1) and decoded back from physical layer to the MAC layer to serve
both transport and control channels [12]. The main channels are used in downlink (DL)
and uplink (UL) to carry data, messages in the protocol stack. Some examples of such

channels are listed below:

Downlink (DL)

e Physical Broadcast Channel (PBCH): This channels carries system informa-
tion for UEs that need to access the LTE network,

e Physical Downlink Control Channel (PDCCH): The PDDCH is responsible

for scheduling information (such as paging and downlink resource scheduling)

e Physical Downlink Shared Channel (PDSCH): This channel carries UE-
specific data (such as the DL payload)

Uplink (UL)
e Physical Random Access Channel (PRACH): A physical channel that is

used for random access functions, such as the initiation of a data transfer [13].

e Physical Uplink Shared Channel (PUSCH): This is the uplink counter part
of the PDSCH mentioned above.

e Physical Uplink Control Channel (PUCCH): Handles the Hybrid Auto-
mated Repeat ReQuest (HARQ) ACK/NACK in the network [13].

2.3 Handovers in LTE

As stated in Section one of the key features of LTE is the ability to afford users
free mobility without significant disruption to their connectivity to the internet. One
of the ways this is done is through handovers of the UE. There are two main types of

handovers: intra-eNodeB handover and inter-eNodeB handover. A third type of

CHAPTER 2. RELATED WORK 13

handovers (inter Radio Access Networks: inter-RAT) exist, but that’s beyond the scope
of this thesis.

e Inter-LTE Handover(using X2/S1): Occurs when UE handover is between
two cells/eNodeBs connected to the same MME, hence the X2 or S1 interfaces can

be used to control this handover.

e Inter-LTE Handover(without X2): Here, the handover over is between two
MMEs/S GWs as the source and target cells are located in different networks,
which the the X2 interface cannot deal with.

e Intra-LTE Handover: In this case the source and target cell, between which the
UE(s) will be handed over, reside within the same LTE network. In such a case,
the X2 interface is the interface between the two eNodeBs and the EPC is not
explicitly involved in the handover as the release of resources is activated by the
source eNodeB. If the X2 interface is unavailable the S1 interface provides a way

for the handover to occur, when the source and target eNodeB belong to the same
MME/S GW.

The handover procedure is mainly executed in three steps/phases:

e preparation phase: During this phase the decisions about the need for a cell

change and resource reservation are made;

e execution phase: In this second stage, the mobile connection to the target eNB

entity is established;

e completion phase: In the final stage, the establishment of final bearers are

configured and old resources are released.

Figure 2.3 below gives a more detailed explanation of the handover procedure, as well as
the functions/requests (i.e. X2 Handover requests, HO admission and resource setup)

that are executed before, during and after the handover has occurred.

2.4 Virtual Radio Access Networks (vVRAN)

The virtualization of the Radio Access Network has emerged as a possible solution for
MNOs to improve their services, while keeping costs down. This involves decoupling the
software that controls the access network from the underlying hardware, allowing for

fast upgrades and scaling to meet varying network traffic demands, the deployment of

CHAPTER 2. RELATED WORK 14

UE Source eNB Target eNB EPC
e I
Before RRC RRC RRCidle
handover connected connected
H Measurement report——=s
HO decision
L2 HOrequest——»
0
Handover admission
preparation & resource
setup
—H 2 HO request ACK——
HO command
[RRC connection reconfiguation]
RRCidle
I ——SHN Status transfer—m
Handover RACH
execution UL grant
1
- —HO complete [RRC connedion reconfiguration complete]—s
*
RRC RRC
connected connected
Handover
completion —Path switch request—»
Path switch request |
ACK
Al I 4+——Release resource——
er
RRCidle
handover -

FIGURE 2.3: X2 Handover procedure in LTE/LTE-A Networks [I]

new services automatically, as well as the ability to centralize and pool various resources
together. Virtual RANs consume significantly less power than traditional Radio Access
Networks that are provided by Base Stations as a result of this abstraction. With Virtual
(Centralized) RAN, Baseband Units are not deployed along with physical Base Stations
at a remote location, they are decoupled and moved to a centralized processing pool that
includes other BBUs. Remote Radio Heads still remain at their current locations in the
network (i.e. at Physical locations). Centralized BBU pooling and processing of radio
signals could lead to more sophisticated joint spatiotemporal processing of the signals,
and possibly improve spectral efficiency [2]. VRANs also support advanced features
of LTE-A, such as Coordinated MultiPoint Operation (CoMP)[14] and enhanced Inter-
Cell Interference Coordination (eICIC), which are considered important features in small
cell deployments [2]. Having a central location that can cater to many different users
also benefits MNOs as they can offer better Service Level Agreements (SLAs), as the
processing pool is closer to users and therefore the response time for services is shorter

if the requested data has already been cached at the processing pool [2].

CHAPTER 2. RELATED WORK 15

2.4.1 Cloud Radio Access Networks

Recent developments have seen cloud services being transformed from monolithic archi-
tectures towards a microservice oriented architecture in which services are a collection of
microservices running/executing some set of functions [I5] [16]. The microservice archi-
tecture brings better benefits in the cloud computing paradigm such as maintainability,
flexibility, scalability and reduced complexity. As a single microservice can be deployed,
scaled and operated independently of the whole service, this makes it very flexible in
regards to the geographic distribution of computational tasks [I7]. The microservice ar-
chitecture also support the ETSI NFV architectureﬂ where a Virtual Network Function,

such as eNodeB/RAN, can be considered a service.

RAN-as-a-Service (RANaaS) is seen as a possibly new cloud computing paradigm, in
which a radio access network is delivered as a pay as you go service that has been
instantiated on top of a cloud infrastructure [3], giving us a Cloudified Radio Access
Network (Cloud RAN).

Effectively, Cloud RAN takes the concept of Virtual/Central RAN deployments and
adapts them for the cloud computing paradigm and other virtualization-like tools. This
has the advantage of giving MNOs even better opportunities for scalability and resource
allocation, as it can support multi-layer, ultra-dense operations in many different de-
ployment scenarios [18]. The Cloud RAN architecture also allows for the use of Network
Function Virtualization (NFV) and Software Defined Networking (SDN) techniques, and
can take advantage of data center processing capabilities such as coordination, central-
ization and virtualization in mobile networks[19]. It is also believed that the adaptation
and development of Cloud RANSs are set to play an important role in the upcoming Fifth
Generation (5G) mobile networks. Cloudification of the radio access network means a
move away from specific expensive hardware to more general purpose computing plat-
forms, as well as other benefits including: load balancing and rapid deployment and
service provisioning. Deploying RAN into the cloud is not a particularly new concept,
however [20] showed that such a setup could save up to 71% in terms of power consump-

tion.

2.4.2 Next Generation Fronthaul Interface

Recent developments in Central RAN have focused on redefining the current architecture
of Central RAN deployments. In current C-RAN deployments, in-phase and quadrature
(I/Q) samples are carried from the BBU to the RRH, which places very high bandwidth

*https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf

CHAPTER 2. RELATED WORK 16

requirements on the fronthaul transport network [3]. Such a architecture will likely
struggle to meet scalability and performance requirements of future mobile networks,

such as the upcoming Fifth Generation (5G) mobile network [3].

The Next Generation Fronthaul Interface (NGFI) is an architecture proposed by China
Mobile [20], that focuses on splitting the radio stack between two main components,
namely the BBU and the RRH, and therefore redefining the positioning of the eNodeB
stack components (e.g. physical layer (PHY) Reception (RX)/transmission (TX)) be-
tween the BBU/RRH. The two components can be connected to each other through
Ethernet or IP interfaces. In this architecture, the BBU is redefined as the Remote
Cloud Center (RCC), and resides in a Cloud (Data) Center with multiple other BBUs.
The RRH is redefined as the Radio Remote System. This architecture allows for point-
to-multipoint connections between RCC and RRH, and for a third component called the
Radio Aggregator Unit (RAU), to control multiple RRHs that may be operating in dif-
ferent bands and with different coverages. Figure 2.2E| shows how the eNodeB protocol

stack is split using this architecture.

Flexible Prodossol
Sl ower Fromihau
POCP POCP
—_ Core
G i Metwork
MAC I MAC
i
Upper PHY iE4 Upper PHY
Lower PHY 1= Lower PHY
RF RF

Aggrogation Unin

Etharnet

RRU Fronthaul

FIGURE 2.4: NGFI based C-RAN architecture with protocol splits

S3http://www.eurecom.fr/en/publication/5079/download /comsys-publi-5079.pdf

CHAPTER 2. RELATED WORK 17

The functional split established by the NGFI architecture makes Central RAN deploy-
ment more flexible. There are 2 methods on how to perform this split: IF5, IF4.

e IF5/1F4.5: This split is similar to the traditional RRH-BBU interface, and trans-
ports baseband time domain I/Q samples between the BBU and RRH. The 1/Q
samples are exchanged between the RCC and RRH as Ethernet samples across the
fronthaul link. [21]

e IF4: The IF4 split is done at the input (RX) and output (TX) of the OFDM
symbol generator (i.e. frequency domain signals), and transports transmitted or
received resource elements in usable channel bandwidth. Specifically, the RCC
and RRH swap 1/Q samples across the fronthaul link. With this split, the RRHs
are responsible for some of the lower PHY layer processing, namely Fast Fourier
Transform (FFT) and Inverse Fourier Transform (IFFT). A-law compression is
also applied to the I/Q data that is transported across the Ethernet fronthaul
links. This is done to reduce the fronthaul link capacity requirement to 28% of the
time-domain I/Q split case. Therefore an RRH with a bandwidth of 20MHz, can
be provisioned using a 1 Gbps link between RRH and RCC. [2]]

2.5 OpenAirlnterface

OpenAirInterfacef_r] (OAI) is an open source software project that implements 3GPP
technology on general purpose computing hardware. It is the first open source software
based implementation of an LTE system which contains the full protocol stack of the
3GPP standard, which includes the Evolved Universal Terrestrial Radio Access Network
(E-UTRAN) and the Evolved Packet Core (EPC), as well as the User Equipment (UE).
The OAI platform provides a way to build and customize an LTE RANE] (eNB 4+ UE) and
EPCﬁ (HSS + MME + SPGW) on general purpose commodity x86-based computers to
test multiple network configurations, as well as monitor the performance of the network
and mobile devices in real time. The receiver and transceiver functions of a typical
Base Station (eNodeB) are realized via an SDR card (i.e. ExpressMIMO2, USRP, and

LimeSDR [22]) that is connected to a host computer for baseband processing.

OALI has two key features: (1) Real-time experimentation (2) Emulation. For the purpose
of this thesis we use real-time experimentation to carry out all of our work. The details

on the other features of the platform as well as our implementation are given below.

“https://www.openairinterface.org/
®https://gitlab.eurecom.fr/oai/openairinterfacebg
Shttps://github.com/OPENAIRINTERFACE /openair-cn

CHAPTER 2. RELATED WORK 18

2.5.1 OAI eNodeB

The OAI eNodeB implements the MAC layer which provides the Hybrid Automatic Re-
peat ReQuest (HARQ) and introduces short deadlines for processing of received signals
in the PHY layer. As a result of this deadline, every piece of information received by
the eNodeB has to be acknowledged to the transmitter. If this information isn’t ac-
knowledged by the receiver a retransmission request has to be sent. Typically, in FDD
the retransmission time is 8ms, which essentially means that for every subframe N that
is processed, the acknowledgment (ACK) or negative acknowledgment (NACK) of the
subframe has to be sent at subframe N+4 and decoded by the transmitter before sub-
frame N+-8 is processed [3]. Based on the received ACK/NACK, the transmitter decides
which piece of information to send, whether new data in the case of an ACK or missing
data in the case of a NACK.

Table 2.1 below summarizes the key features of OAI in the current release:

Supported Releases Rel-8.6, part of Rel-10

Duplexing modes FDD, TDD

Carrier bandwidths 5, 10 and 20 MHz

Tx modes 1 (SISO), 2, 4, 5 and 6
(MIMO 2x2)

DL channels PSS, SSS, PBCH,

PCFICH, PHICH,
PDCCH, PDSCH, PMCH

Multi-RRU support Over air synch b/w multi
RRU inp TDD
UL channels PRACH, PUSCH,

PUCCH (format
1/1a/1b), SRS, DRS

HARQ Support

TABLE 2.1: Main OAI Features

OATI’s eNodeB contains the full protocol stack (physical (PHY), Medium Access Control
(MAC), Radio Link Control (RLC), and Radio Resource Control (RRC) and Packet
Data Convergence Protocol (PDCP) layers), and it can be configured for both Time
Division Duplex (TDD) and Frequency Division Duplex (FDD). Currently, the OAI
eNodeB is able to operate at 3 channel bandwidths: 5MHz, 10MHz, and 20MHz and
can theoretically achieve throughput of up 70 Mbps on the DL and 35 Mbps on the UL.
The channels, interfaces and protocols mentioned in [2.2.4] are all implemented in OAI

CHAPTER 2. RELATED WORK 19

as means of communication between the eNodeB and the UE and the eNodeB and the
MME/S GW.

For an even more comprehensive look at the OpenAirInterface platform and its current

development refer to [22].

2.6 Software Defined Radio (SDR)

Software Defined Radios (SDRs) are essentially any radios in which some or all physical
layer functions are software defined. Centralized RAN and Cloud RAN can therefore
be considered as SDR Systems running on general purpose I'T platforms and the cloud,
respectively. Typical SDRs have two components: Software and Hardware, where the
software component handles functions such as signal processing, while the hardware
component consists of the radio front-end (i.e. SDR cards like the ETTUS USRP, Lime
SDR, Blade RF and ExpressMIMO2). The radio front-end is primarily used to transmit
and receive radio signals and can run on dedicated hardware platforms such as General
Purpose Processors (GPPs) or other general purpose computing platforms (x86). In this
thesis we use a USRP B210 board (via UHD) for our setup.

CHAPTER 2. RELATED WORK

20

Chapter 3

Radio Access Network

Architecture

3.1 Introduction

Based on the related work and the OAI platform described in Chapters 2 and 3, we
describe the design of our main architecture (which is based on NGFI) in this section.
The architecture and design of our setup is born from the aim of creating a Cloudified
Radio Access Network (containerized eNodeB) in order to fulfill our aim of a live migra-
tion. Containerization is a tool that can be used to take full advantage of the benefits
of cloud paradigm, and achieve RAN as a Service (RANaaS). There are different tools
and platforms we used in our setup, including: Docker, Pipework, Open vSwitch, and
CRIU. To enable unfiltered communication and access between the container eNodeB
and the bridge we created to direct traffic to and from the EPC, we needed to bind
our container to the bridge. In this chapter, we explain how Docker networks failed to
provide this functionality and how we use the Pipework tool to overcome this challenge.
Meeting the hard processing deadlines (e.g. HARQ) in LTE is one of the challenges of
running BBU processing on GPPs, to account for this we made some modifications to

the hosts and configure them for real time performance, we describe this in section 4.4.

3.2 General Architecture

Our RAN setup runs on 3 machines, where each machine hosts a different component
of the radio network: eNB, RRH and UE (USB dongle). The EPC we use and it’s

components are hosted on machine in a different location at the Communication and

21

CHAPTER 3. RADIO ACCESS NETWORK ARCHITECTURE 22

Distributed Systems building. Figure 3.1 depicts how we replicate the NGFT architecture
proposed by [3], which splits the Base Station functionality between the BBU and the
RRH. This setup has the advantage of reducing the fronthaul data requirements, which
is important for such a deployment as explained in the previous chapter. Table 3.1 shows

the hardware specifications of our 3 host machines.

Figure 3.1 shows the USRP B210 board connected to the telmat duplexer radio (band
7), using SMA cables, and the antenna.

mat Duplexer Radio

USRP B210 |

FiGure 3.1: USRP B210, Telmat Duplexer Radio and Antenna configured at the RRU

USB Dongle

192.168.1.100

Room B

Room A

OAI MME

OAIRCC

130.92.70.163
OAIHSS Packet Switched Network
(Le.Internet)

130.92.65.69

OAI RRU

Docker

10.0.5.4 130.92.70.162

OAI SPGW

Pipework

Open vSwitch

130.92.70.164
OpenStack

USRP B210 Radio
Equipment Remote Radio Unit Remote Cloud Center Evolved Packet Core
(RRU) (RCC) (EPC)

FIGURE 3.2: Central RAN architecture

CHAPTER 3. RADIO ACCESS NETWORK ARCHITECTURE 23

Host.

Farnsworth (eNodeB) Silverter (RRU) Host 3 (UE)

Item Value Value Value

CPU Tntel Core {7-4790 CPU @ Intel Core i7-3770 @ 3.40GHz, 16GB RAM Intel Core i5-2400 @ 3.1 GHz, GB RAM
Hardware 3.60GHz, 32GB RAM

USRP N/A Ettus Research USRP B210 N/A

0s 64-bit Ubuntu 16.04 LTS with 64-bit Ubuntu 16.04 LTS with 64-bit Ubuntu 16.04 LTS with
Software low-latency kernel 4.15.0 low-latency kernel 4.4.0 generic kernel 4.14.24

OAI Master Branch (v1.0.0) Master Branch (v1.0.0) N/A

Duplex mode FDD

Transmission mode TM1(SISO)

Carrier frequency 2.6/2.7 GHz (band7)

Cyclic Prefix: Normal

System bandwidths: 5 MHz, 10 MHz, 20 MHz
Modulation schemes: QPSK,16-QAM,64-QAM

Parameters

TABLE 3.1: Cloud-RAN System: Host Specifications

3.3 Containerization

As mentioned Cloud RAN will enable MNOs to provide better, improved services,
and increase the capacity of their networks. In this paradigm we deploy the RAN as a
Service (RANaaS), which is made up of a host or microservices that carry out different
functions and operate in a containerized or virtualized environment (such as Docker of
Kernel Virtual Machines (KVM)). With this in mind, we deploy our OAI eNodeB in a
container delivering it as a service that can take advantage of the benefits mentioned in

chapter 2. Specifically, we use Docker as the containerization tool to deliver this service.

3.3.1 Docker

Our background research showed that there have already been efforts to use virtualiza-
tion/containerization tools such as KVM LXC, and Docker to containerize an eNB/BBU
application. [3] compared the BBU processing budget of a GPP platform on the Down-
link and Uplink for different virtualized environments. Their work showed that while the
average processing times where close for their chosen virtualized environments, Docker
and KVM had higher time variations compared to GPP and LCX, and even moreso
when there was an increase in the PRB and Modulation Coding Scheme (MCS) used
by the BBU. However for our work we do not necessarily consider the effects of these
results. Also note that containers like Docker are built on modern kernel features (i.e.
cgroups, namespace, and chroot) which is very important for ensuring the host scheduler

can meet real time deadlines. [3]

Placing the eNodeB application inside of a Docker container means we can improve
the provision of the RAN service by making it more scalable to meet various levels of

demands. Containerizing the eNodeB also allows us to achieve our aim of migrating the

CHAPTER 3. RADIO ACCESS NETWORK ARCHITECTURE 24

eNodeB between physical machines, as Docker provides us with an experimental feature
to do this.

In general, containers are more efficient for computing as they do not require a vir-
tualization layer, compared to other virtualization platforms (such as Kernel Virtual
Machines) and they provide direct access to the underlying host machines resources.
Containers can also be migrated between machines with small overhead, unlike Kernel
Virtual Machines (KVMs), which suffer from virtualization overhead, which is critical

for a real-time applications like the eNodeB.

To be able to use non-standard Docker functions like checkpoint and restore, we set the

Docker daemon to experimental mode.

3.4 Host Modifications

To ensure the containerized eNodeB process is able to meet the various processing and
scheduling deadlines, such as those imposed by the Hybrid Automatic Repeat reQuest
(HARQ) mentioned in We give the eNodeB real-time prioritization using the

Linux’s chrt command: chrt -p -rr 1, where p is the process id of the eNodeB.

To improve the performance of the hosts where the containers are running (RCC and
RRU) even further, we use a userspace governor scaling policy and set the frequency scal-
ing of the machines to their maximum (3.9GHz @ Silvester and 3.60GHz @ Farnsworth)

capacity. This ensures frame and subframe processing meet the strict deadlines.

3.5 Networking

Careful consideration was given to our networking setup. We needed to ensure the
related components could communicate with each other and that the traffic between our
eNodeB and EPC was . We mention those below and justify their use in our setup. We

also look at the limitations that they pose and how we overcome them.

It allows for the on-demand establishment of virtual switches among Windows or Linux
operating systems. On the north-bound interface, the switch uses OpenFlow to commu-
nicate with the controller. It supports various matching rules at different levels of the IP
stack as well as many actions (e.g., modification of addresses; tunneling, encapsulation,

decapsulation in GRE, VXLAN, etc.) that allow for advanced traffic engineering

CHAPTER 3. RADIO ACCESS NETWORK ARCHITECTURE 25

3.5.1 Open vSwitch

To direct and control traffic between components in our setup, we use a open-source dis-
tributed multi-layer SDN virtual switch called Open vSwitch (OVS)[23]. OVS provides
a switching stack for virtualization environments and supports multiple interfaces and
protocols including TCP, SCTP, UDP, and GTP. It is able to support many matching
rules at all various levels of the IP stack. It can also be used for modification of addresses,
tunneling, encapsulation and decapsulation in GRE, etc, which allows for advanced traf-
fic engineering [24]. The virtual switch can also support transparent distribution across
a range of physical servers, which means it can be used to connect Virtual Machines or
containers between different hosts and across multiple networks. Traffic management
is handle by flow table, and in our setup OVS is primarily used to handle communica-
tion between the eNodeB and the EPC. We also use it to handle the IP traffic that is
exchanged between the UE and the EPC.

The following commands show how we create an OVS bridge at our RCC, and bind a

Physical Network Interface Card (NIC) on the host machine to our bridge:

$ ovs-vsctl add-br ovs-br

$ ovs-vsctl add-port ovs-br eml

It should be noted that ordinarily binding the NIC to the bridge does not ensure that all
traffic is passed to the bridge. To solve this we place the physical network interface in
promiscuous mode which ensures that all traffic that is passed to the NIC is forwarded
to the bridge and hence any traffic that our host receives from the EPC is accessible to

the eNodeB that is connected to the OVS bridge.

3.5.2 Container Networking

Using Docker, we were able to create a macvlan bridge network and set the subnet and
gateway that it operates in. We place this bridge on top of OVS bridge to enable it
to communicate with the switch. However, during our setup we discovered that the
bridge network didn’t allow for direct communication between the container and the
underlying host (or bridge), and so we are unable to ping the host from inside the
container and vice-versa. This is due to the fact that macvlan networks do not allow us
to ping or communicate with the default namespace IP address, as the traffic is explicitly
filtered by the kernel modules to offer the containers additional isolation and security
from the underlying host. To navigate this, we use an opensource Software Defined

Networking (SDN) tool called Pipework. Pipework is networking tool for Linux (&

CHAPTER 3. RADIO ACCESS NETWORK ARCHITECTURE 26

Docker) containersﬂ Pipework enables us to connect containers in complex scenarios
and is a viable alternative to docker bridge networking. It can be used to create or
configure network interfaces and bind containers to them, even when they’re running.
The tool uses cgroups and namespaces and work with plain containers. Using Pipework,
we are able to bind our containers directly onto the previously created OVS bridge and
assign them an IP address on this bridge which corresponds to one of the 3 addresses
that the MME at the EPC accepts (130.92.65.68 and 130.92.65.69 and 130.92.65.83).
This allowed us to communicate directly with the different components of our cloudified
EPC, as well as the underlying host. We use the following Pipework command to bind

our container to the OvS bridge:
$ pipework ovs-br $CONTAINERID 130.92.65.69/24

As our setup is based on the NGFI, our RRH host and eNodeB host were connected
via a 10Gbps Ethernet cable. To provide communication between the eNodeB container
and the RRH host we looked to bind the container to a NIC that detected the cable,
however Pipework was unable to do this, as it seemingly can only bind a container to
a single physical interface. We solved this by using a docker network and setting the
appropriate NIC to it. This way we were able to communicate with the RRH host from

inside the container.

The following command show how we created this new network, place it on the appro-

priate NIC (plpl) and connect the container to it:

$docker network create -d macvlan
--subnet=10.0.5.0/24
--gateway=10.0.5.1

-0 parent=plpl ethnet

$docker network connect ethnet $CONTAINERID

3.6 Checkpoint and Restore in Userspace

Checkpoint and Restore in Userspace (CRIU) is an open-source tool that can be used to
achieve the migration of processes between different hosts without a significant amount
of downtime. CRIU works by freezing a running application and checkpointing it’s

state to the disk. The data that has been saved on the disk can be used to restore

"https://github.com/jpetazzo/pipework

CHAPTER 3. RADIO ACCESS NETWORK ARCHITECTURE 27

the application back to it’s previous state on the same host, or alternatively, a different
host. Another important feature of CRIU is it’s ability to preserve network connections
across different hosts by dumping active connections (i.e. TCP, UDP) and restoring
them later, meaning that user connections are not dropped after the migration process.
In Chapter [we explain how we used CRIU to dump the a containerized eNodeB as
well as an eNodeB running directly on the host/GPP.

CHAPTER 3. RADIO ACCESS NETWORK ARCHITECTURE

28

Chapter 4

Cloud RAN Implementation and

Live Migration

4.1 Introduction

We were able to implement the Cloud RAN using our setup. However, before attempting
a live container migration, we decided to first study the behaviour of the eNodeB, and
network at large, when the eNodeB is stopped and restored on the same host after a
short period. Based on our initial observations, we noticed that the eNodeB crashed
when it was stopped/paused for a period of time and hence the connection to the MME

was lost. This also caused the connection to the UE to go down instantaneously too.

In this section we talk about the modifications (see Appendix we applied to the OAI
code to ensure that it doesn’t crash immediately after the lte-softmodem(that starts the
eNodeB) process is stopped. First we show how we instantiate our RAN and the EPC
to deliver a cloudified /virtualized network, including commands to reproduce it based
on our architecture. Then we motivate the need for live migration. Next we talk about
the procedures required for a live migration in general and the challenges (and solutions)
we had trying to perform a dump of the eNodeB process running on the host as well as

in the container.

4.2 OAI eNodeB Implementation

To run the OAI eNodeB on our host systems (RCC and RRU), we download the required

resources from the git repositoryﬂ and we used the master branch (v1.0.0). We install

"https://gitlab.eurecom.fr/oai/openairinterfacebg

29

CHAPTER 4. CLOUD RAN IMPLEMENTATION AND LIVE MIGRATION 30

the appropriate packages and drivers and build the eNodeBs on both hosts using the

following commands:

$./build_oai -I
$./build_oai -t ETHERNET -c --eNB
$./build_oai -w USRP -c --elNB

Here, the -1 tag tells the build script to install all required packages, the -t tag sets
Ethernet as the transport protocol, and the -w tag specifies which hardware to is being

used for the radio frequency board (i.e. USRP in our case).

We make use of the cloudified EPC that had already been deployed on the open-source,
cloud computing platform, OpenStack. The 3 main components of the EPC (MME,
HSS, and SPGW) are run as Virtual Network Functions. Juju charms EI are used to
deploy and manage this cloudified EPC, as they can be used to scale the network based
on demand and available resources. We instantiate each EPC component using the

following commands:

e HSS: ./srv/openair-cn/scripts/run_hss

e MME: ./srv/openair-cn/scripts/run mme

e SPGW:./srv/openair-cn/scripts/run_spgw
With the EPC up and running, we can now instantiate our RAN service. As previously
mentioned our setup follows the NGFI architecture, so our RAN implementation is made
up of an eNodeB (started using the lte-softmodem) process at the RCC (where baseband
processing occurs), and another one at the RRU (where the USRP board is located),
with the two hosts link via a 10Gbps Ethernet cable. We start the lte-softmodem on
the two hosts using the following commands:

e RCC: ./lte-softmodem -0 rcc.band7.tml.if4p5.50prb.conf

e RRH: ./1te-softmodem -0 rru.oaisim.conf

The configuration files can be found in Appendix [A]

*https://jaas.ai/

CHAPTER 4. CLOUD RAN IMPLEMENTATION AND LIVE MIGRATION 31

4.3 Live Migration

Live Migration is the process of moving applications or processes (e.g. services) running
on a machine from one host to another, with the aim of minimal disruption to the users
that are using that application or service. It can be used to solve two problems that are
often experienced in data centers - system maintenance and load balancing. In the case
of system maintenance, the downtime that a server undergoes can prove costly, especially
when its running mission critical applications, such as a RAN, that are being used by
many users. While load balancing is usually applied when a host system is overloaded
which leads to a fall in the performance of the processes running on it. There a number
of uses cases where the live migration of the eNodeB would be critical, including: video
streaming, gaming, virtual reality applications, industrial automation, remote medical

procedures, and autonomous driving.

Typically, the Source Node (Figure 4.1) is the where the process/service to be migrated
is placed before the migration and the Destination Node is where the container will
resume the process/service after migration. As Figure 4.1 shows, the live migration

process is a 5-step procedure:

e Freeze: The application/service is frozen by the migration tool at the source node

and blocks memory, processes, file systems and network connections

e Get the state: The current state of the memory, processes, file systems and

network connections of the application or service are saved as an image or as

pages.

e Copy the state: The saved imaged containing information about the application

state is copied onto the destination node.

e Restore: The applications processes, file system and network connections are then

restored on the destination node based on the information from copied image.

e Unfreeze: The application is then unfrozen at the destination node and runs as

normal.

4.4 Live Migration in LTE

The role of the RAN in LTE systems means that it should be readily available (i.e. fault

tolerant), and offer a continuously high level of performance (to maintain the end-user’s

CHAPTER 4. CLOUD RAN IMPLEMENTATION AND LIVE MIGRATION 32

Destination _ ' ' Restore . Unfreeze .
Nl.')d!'-_‘ - ' . - — v
Source : H : - TIME
Node Freeze | Get the state | Copy the state i Cleanup
|- Frozen time

FIGURE 4.1: General Live Process Migration

experience). Deploying the RAN into the cloud means we can take advantage of features
such as load balancing that is offered by the infrastructure, to essentially protect the
eNodeB in cases where the cloud instance or host it’s running on cannot provide the

desired availability or performance.

The idea of migrating network resources to perform load balancing is not a particularly
new concept in mobile network systems. As mentioned in Section the X2 and S1
interfaces are used to perform the handover of UEs for intra-LTE handovers, when an
eNodeB cell is overloaded and a nearby eNodeB has fewer users. This often requires the
cooperation and synchronization of the source and target eNodeBs (using X2), and at
times the reconfiguration of the UE (e.g. inter-LTE handovers with no X2 interface).
The migration of eNodeBs to carry out load balancing is, to the best of our knowledge,

a relatively novel concept that could have applications in future mobile networks.

Figure shows a simple diagram on how a container can be migrated between two
hosts using Docker api and the CRIU feature either by the user or by the use of an

orchestration tool.

4.5 Challenges in Live Migration

Despite the obvious benefits that would come with a successful eNodeB live migration,
there are some challenges to carrying it out. Ideally we would like to have a seamless
migration of the containerized eNodeB between hosts without the end-user experienc-
ing little to no interruptions. However, as [25] show, migration of the PUSCH stack
introduces a service disruption time of several seconds when using VMware or KVM,

and for real-time services (such as video streaming) the maximum interruption time in

CHAPTER 4. CLOUD RAN IMPLEMENTATION AND LIVE MIGRATION 33

User/Orchestration

Dnckerlapifcli

source dest

L L

Docker C/R Docker C/R

runc/libcontainer runc/libcontainer

CRIU CRIU

FIGURE 4.2: Container Migration with CRIU

a handover is 300ms, which means the eNB must be migrated within this time for the

user to not experience a significant degradation of the service.

4.5.1 CRIU Live Migration

CRIU’s Live Migration procedure can be effectively realized in three steps: Checkpoint
(Dump), Copy (or pre-copy) and Restore. Figure 4.3 show how this process is achieved
between the source host and destination in CRIU. In our implementation, we use a
shared file system (NFS) between the source and target host, and therefore don’t need
the copy phase. This allows us to reduce the downtime of the service as copying the file
from one location to the another could further unwanted delays. Our NFS configurations
on the RCC and RRU can be found in Appendix [A]

4.5.2 Checkpoint and Restore

We use CRIU to attempt a checkpoint the eNodeB process running directly on the host
machine. The following commands can be used to perform a dump (more on this in
section) of the eNodeB running on the host or in a container. The dump saves the
process states, and other related information (such as number of threads, sockets, etc)
into image files (memory pages) and gives the information in a log file, dump.log. The

dump log has over 9000 outputs, hence we do not provide it in this thesis.

Host: $criu dump -v4 -o dump.log -t $PID --shell-job
--images-dir=/hostDumps && echo 0K

CHAPTER 4. CLOUD RAN IMPLEMENTATION AND LIVE MIGRATION 34

Source host Destination host

Transfe, con

tainer ;
; i
Fs d'ﬁereﬂceg Mage

pre-dump 1
pre-dump 2
_____ pre-copy
pre-dumpn
dump
restore

FI1GURE 4.3: Container Migration Procedure with CRIU

Container: $docker checkpoint create eNodeBContainer checkpointl

--checkpoint-dir=/dockerCheckpoints

Once all the required images have been copied and the states saved, the process/container

could be restored on either the RCC or the RRU using the following commands:

$ criu restore -d -vvv -o dump.log && echo OK

$ docker start --checkpoint checkpointl eNodeBContainer

4.6 Observations on CRIU

During checkpointing, we found out that CRIU does not currently support linux-kernel
SCTP (lk-sctp) sockets, so were unable to complete a full dump of the eNodeB appli-
cation and it’s connections which we require for the process restoration. We looked to
modify CRIU to support SCTP. Having studied how CRIU checkpoints other sockets
used by the eNodeB, we looked to implement the same functions for SCTP sockets,
however this was ultimately unsuccessful. We considered an alternative solution which
was to replace the current linux SCTP with a Userspace SCTP El (usrsctp) implemen-
tation that allows encapsulated SCTP packets via UDP datagrams (a protocol CRIU

3https://github.com /sctplab/usrsctp

CHAPTER 4. CLOUD RAN IMPLEMENTATION AND LIVE MIGRATION 35

supports), but we realized that this was not possible due to the fact the lk-sctp is one
of the modules/packages OpenvSwitch depends on, so we could not offload it without
affecting how OvS behaves. We therefore decided to use CRIU’s dump function to in-
stead evaluate the behaviour and performance of the eNodeB, and the network setup at
large, when the eNodeB is down momentarily. Our observations and evaluation of the

network setup is detailed in the next chapter.

4.7 Towards Live Migration

Live migrating a containerized eNodeB was the original goal of this thesis, but as we
show in this section being able to checkpoint and resume the eNodeB doesnt guarantee
that the service will run normally, and provide the user with the consistent access to the

network service in real time.

To evaluate our setup, we looked at how the network handles common network scenarios.
One of the benefits of LTE systems is the ability to provide users with consistent mobile
connections even in times of mobility. We wanted to observe how our network setup
handles users being disconnected for a period of time (approximately 2 minutes) and
coming back into range of the cell, in real time. This time interval was chosen to allow
the network to detect the UE is no longer available in the cell and disconnect it from the
EPC as well as allow the eNodeB to perform other radio resource control/management
related tasks. To test this, we connected the UE to the EPC and maintained a stable
connection for a period of 5 minutes. We then disconnected the UE from the network
for 2 minutes. During this time the UE is detached from the EPC, although the EPC
shows the it remains attached/registered. After 2 minutes we switch on our UE and
try to reconnect to the network. The eNodeB is able to pick up the UE and reconnect
it to the EPC, however in this instance the UE is given a new ID or Radio Network

Temporary Identifier (RNTI) value. This shows that our setup works in such a case.

Live container migration causes the network setup to be down for a period of time.
We decided to analyse the behaviour/response of the network in a similar situation
to a live eNodeB container migration. To this end, we observed the changes in the
network when the eNodeB service is disrupted for a short period of time (less than
1s). Checkpointing the eNodeB container affects the eNodeB process running inside,
as CRIU pauses the application to collect the latest information about the state and
connections of eNodeB into image files, which can be used to restore the container later.
As the time between checkpoint and restore needed to be as short as possible, we opted
to resume the container as soon as the checkpointing process was completed (using the

—leave-running tag).

CHAPTER 4. CLOUD RAN IMPLEMENTATION AND LIVE MIGRATION 36

From our observations, we could see that the eNodeB-MME connection is immediately
resumed upon restoration. The output from the MME shows that this short disrup-
tion doesn’t trigger any events at the MME (this is not the case when the eNodeB is
unavailable for extended periods, or shut down). However, the connection between the
OAI eNodeB and the UE is impacted by this disruption. The OAI eNodeB has a lo-
cal counter that counts how many frames and subframes have been processed since the
establishment of the eNodeB and radio unit connection. When the eNodeB process is
disrupted, the reception and transmission (RX/TX) threads that process the LTE frames
and subframes are also stopped. However, since we are following the NGFT architecture
the RRH is still on and continues to communicate with the UE over the air interface
during this downtime. Restoring the eNodeB resumes the RX/TX thread, however, at
this point in time the local frame and subframe counter, which continues where it left
off, and the frames and subframes received from the radio fronthaul differ, which causes
an error in the eNodeB process. To fix this, we modify the OAI code (Appendix .
Our patch sets the local frame and subframe counter to correspond with the underlying
frame and subframe number received from the radio (Appendix [B.1). This ensures that

the eNodeB doesn’t crash immediately upon being restored.

To better motivate the need for the local counter frame/subframe counter implemented
in the eNodeB, it is important to look at how timing/synchronization affects the connec-
tion between the UE and RRU/eNodeB. Before the UE and the eNodeB can be initially
connected, they have to be time-synchronized (e.g. LTE/radio frame timing). When
the two components are synchronized in this way, the PRACH, which is responsible for
requesting uplink resources, can begin to request for such resources which allows the UE
to be selected for uplink transmissions [26]. When the eNodeB is momentarily stopped,
this breaks the synchronization, causing the radio connection between the eNodeB and
UE to be lost. As a result of the lost radio connection between the components, the eN-
odeB initiates a UEContextReleaseRequest which allows the eNodeB to request for the
MME to release the UE-associated logical S1 connection due to E-UTRAN generated
reasons (e.g. lost connection with UE), at which point the UE is removed from the list

of actively connected devices in the core network.

As the UE is now disconnected from the network, it sends periodic Traffic Area Update
(TAU) requests, via the NAS protocol, to the MME to let it know that it is available.
The UE controls this procedure using the periodic TAU timer (T3412). The value of the
timer is initially sent by the network to the UE upon initial attachment in an ATTACH
ACCEPT message or a TRACKING AREA UPDATE ACCEPT message. After the
eNodeB has been dumped and resumed, the UE goes from FMM_CONNECTED to
EMM_IDLE mode, where an EMM is the Evolve Packet System Mobility Management
layer controlled by the NAS layer and that tracks the UEs in the network. In this state

CHAPTER 4. CLOUD RAN IMPLEMENTATION AND LIVE MIGRATION 37

the T3412 timer is reset and started with it’s initial value. We deduce that due to the
change in the state of the UE which triggers this difference in TAU timer, the MME
rejects any periodic TAU request that is received and therefore the UE is unable to

connect to the MME and re-establish it’s connection to the internet.

In the experiments we performed, we left the eNodeB running after a checkpoint. We
noticed that after approximately one hour of the UE trying to make a connection with
the MME, the connection between the two components is re-established ad the UE has
access to the internet again. By tracing the actions of the network, we see that the
UE is re-attached to the MME/core network as a new UE (based on new user context,
and new RNTI). Hence, we can conclude that it takes a long time before the EPC is
able to accept UE attachments requests due to disruption of the service and the lack of
synchronization in the network. A live migration would not have been possible if the
EPC was not able to accept new connections from the same (or different) UEs, based

on our tried experiments.

CHAPTER 4. CLOUD RAN IMPLEMENTATION AND LIVE MIGRATION 38

Chapter 5

Evaluation

5.1 Introduction

We evaluate the performance of our setup by measuring the throughput whilst the

eNodeB resides in the container and directly on the host (GPP).

To evaluate our network setup, we used a stationary UE that was attached to one of the
computers in our setup and connect are able to connect the UE to the EPC and internet
through the eNodeB via the RRU/RRH. The figures from our evaluation are based on
such a setup. The RCC (eNodeB), RRU, and UE are all in the same room, and as such
the UE is close to the RRU during all our experiments. The EPC that is used for our
work is located in the server on the third floor on the Communication and Distributed

Systems building at the University of Bern (Room B in Figure 5.1).

In terms of video streaming, We noticed that our network setup did not perform as
well when the eNodeB was running in the container as on the host. We were able to
stream videos in high quality from the UE and were able to download rather large files
(100 MB) when the eNodeB ran directly on the host, but when deployed in a container,
the eNodeB would often crash upon such heavy usage. The video quality on the UE
was also poorer when using a containerized eNodeB. Based on this, we would say that
the challenges to meet the strict time requirements in LTE play a part in the poorer
performance of the network in a containerized environment as such an environment

brings it’s own processing overheads.

39

CHAPTER 5. EVALUATION 40

USB Dongle

192.168.1.100

Room B

OAIRCC OAI MME

130.92.70.163
OAI HSS Packet Switched Network
(i.e.Internet)

130.92.65.69

OAI RRU

Docker

10.0.5.4 130.92.70.162

Pipework
OAI SPGW

Open vSwitch

130.92.70.164

USRP B210 Radio
Equipment

OpenStack

Remote Radio Unit Remote Cloud Center V Evolved Packet Core
(RRU) (RCC) H (EPC)

FI1GURE 5.1: Network setup with stationary UE

5.2 Throughput

During the time the eNodeB and UE were connected, we measured the throughput of
the network using different Personal Resource Blocks provided by the configuration of
the eNodeB. Our results showed that the throughput of the UE whilst the eNodeB was
running in the docker container, was not significantly worse than when running it was
running on bare metal (directly on host). Note that for each bandwidth measurement

we take only the maximum recorded value of each experiment we performed.

Speedtest - Host

Bl Max UL - Mbps
B Max. DL - Mbps

25 PRBs 50 PRBs 100 PRBs
FIGURE 5.2: Throughput on Host
As can be seen in Figure 5.2 we were able to achieve a maximum throughput of up to

17Mbps for download speed and 10Mbps for upload speed when using 100 PRBs and

running on the host. With the same configuration we were only able to get 6Mbps

CHAPTER 5. EVALUATION 41

DL and 3Mbps UL. These results were collected from the speedtestﬂ website. This
performance is consistent with what we would expect and have seen in the literature,

where the downlink is often almost twice as much as the uplink. From our results we

Speedtest - Docker Container

B Max. UL - Mbps
B Max DL - Mbps

25 PRBs 50 PRBs 100 PRBs

FI1GURE 5.3: Throughput on Docker container

can conclude that OAI performs considerably better when running directly on the host,

compared to running on the container.

In Appendix|[C] we show the running logs of the eNodeB and MME at the different points
in the network such as: Connection establishment between the eNodeB and RRU, UE
connection to EPC via RAN (eNodeB), registration of the UE with the MME, and the
output of the eNodeB and MME when the eNodeB has been checkpointed.

"https://www.speedtest.net/

CHAPTER 5. EVALUATION

42

Chapter 6

Conclusion

In this thesis we provided the technical requirements, design and implementation details

on how to we implemented a cloudified RAN.

In chapter 2 we presented a background on LTE mobile networks, and looked at related
technologies such as Virtual Radio Access Networks (Cloud-RAN) and Next Generation
Fronthaul Interfaces, and the benefits they bring in terms of keeping expenses down,
while also improving the network’s service in terms of scalability and reliability. We also
briefly looked at the LTE software platform on which our work is based. Finally, we

explained Software Defined Radios and their used in our setup.

In Chapter 3 We presented the architecture of our Cloud RAN implementation as well
as the modifications that needed to be made to ensure our hosts could meet the strict
processing deadlines involved in LTE networks. We talked about the used of container-
ization to cloudify our RAN and how we setup the networking between the container and
the host to be able to have unfiltered communication with the EPC from the container.
Finally, we laid the ground work for the subsequent chapter by briefly introducing the

CRIU, the migration tool we intended to use to live migrate the containerized eNodeB.

Chapter 4 focused on our efforts to perform the live migration of the container. We
explained how we setup the eNodeB inside the container. We then looked at the live
migration procedure in general, and how CRIU can be used to perform live migration.
Finally, we document the challenges of performing a live container migration in real time.
We describe the behaviour of the LTE network in certain scenarios, and the patch we
implemented to ensure that the eNodeB service doesn’t die immediately after it has been
checkpointed. We showed that whilst our patch achieves it’s aim, the behaviour of the
network after the eNodeB has been temporarily unavailable means that a live migration

of the containerized eNodeB is not yet feasible, due in part to the strict LTE subframe

43

CHAPTER 6. CONCLUSION 44

and frame processing deadlines, and the network needing time to re-synchronize and

reconnect UEs.

We evaluated and compared the performance of our RAN setup when running inside a
container and on the host in Chapter 5. We showed that our results are consistent with
what would be expected when the RAN is deployed in those two environments. Finally

we present a evaluation scenario

From our analysis, the disruption of the eNodeB service that would occur in the case of
a live migration is not the primary cause of network failure. The MME and S GW play
significant roles in how the UE is reconnected after the service is resumed. We deduce
that the OAI EPC implementation is unable to cater to live eNodeB container migrations

in real time, even though there have been some successes in simulated environments.

The performance of a live eNodeB container migration between hosts did not occur as we
intended, but nevertheless the details we presented could contribute to eventually being
able to achieve this problem and carry out the migration successfully. Firstly, a means
to checkpoint and restore linux SCTP sockets that works with Open vSwitch is needed
before the eNodeB can be fully dumped. Secondly, a way to ensure the downtime of
the eNodeB is as minimal as possible will also provide a way to successfully migrate the
container without breaking any LTE timing restrictions. We posit that once these are
solved, it would be possible to successfully checkpoint and ensure that the UE remains

unaffected when it is restored.

To keep up with the theme of cloud computing, we believe that manually migrating the
eNodeB between hosts is inefficient. In large scale deployments of the RAN in the cloud,
a more efficient (and potentially quicker) way would be to use an orchestration system
that could automatically detect what machine to migrate the container to, and when

the best to perform a migration of the eNodeB service is.

6.0.1 Future Work

Future work would focus on understanding in detail how the EPC handles different use
case scenarios in real time that could occur as a result of network deployment in virtual
environments such as the cloud. OAI is currently able to handle handovers using the
X2 interface described in this thesis. In a handover the UE is temporarily disconnected
from the source eNodeB (typically milliseconds) and handed over to the target eNodeB.
Similarly, a live eNodeB migration performs the same procedure and we expect therefore
that the network should reconnect the UE as is the case in a handover. In other words,

the UE is not supposed to notice this change in operation of the eNodeBs. For a live

CHAPTER 6. CONCLUSION 45

migration to be successful the migration procedure would have to adhere to extremely
strict time requirements in LTE (due to arrival of subframes every millisecond, HARQ),
etc). Most migration tools take several milliseconds, and from our observations we have
seen that even just a second of the RAN being unavailable leads to a non-convergence of
the operation of the network. We posit that a true real-time live migration of the RAN
might not be feasible unless: (1) container/Virtual Machine migrations can occur in
the milliseconds range, allowing for the network to stay synchronized, or (2) modifying
the network (EPC and RAN) to deal with disruptions in the eNodeB service during a
live migration, i.e. allowing registered/attached UEs to create new uplink transmissions

with the MME/S GW, despite the temporary disconnection.

Appendix A

Software and NFS Configuration

Al

Configuration file of the eNodeB at the RCC

Active_eNBs = ("eNB-Eurecom-LTEBox");

Asnl_verbosity, choice in: none, info, ann
Asnl_verbosity = "none";
eNBs =
(
{

real_time choice in {hard, rt-preempt,
real_time = "no";

////////// Identification parameters:
eNB_ID 0xe00;

"CELL_MACRO_ENB";

cell_type
eNB_name = "eNB-Eurecom-LTEBox";
// Tracking area code, 0x0000 and Oxfffe

tracking_area_code = 1;

plmn_list = ({ mcc 208; mnc = 95; mnc

tr_s_preference "local_mac"
////////// Physical parameters:
component_carriers = (
{
node_function = "NGFI_RCC_
node_timing = "synch_to_
node_synch_ref = 0;
frame_type = "FDD";
tdd_config = 3;
tdd_config_s =

prefix_type

46

oying

no}

are reserved values

_length = 2; });

IF4p5";

ext_device";

0;
"NORMAL";

APPENDIX A. SOFTWARE AND NFS CONFIGURATION

eutra_band
downlink_frequency
uplink_frequency_offset
Nid_cell = 0;
N_RB_DL

Nid_cell_mbsfn
nb_antenna_ports
nb_antennas_tx
nb_antennas_rx

tx_gain

rx_gain

pbch_repetition
prach_root
prach_config_index
prach_high_speed
prach_zero_correlation
prach_freq_offset
pucch_delta_shift
pucch_nRB_CQI
pucch_nCS_AN
pucch_ni1_AN
pdsch_referenceSignalPower
pdsch_p_b

pusch_n_SB
pusch_enable64QAM
pusch_hoppingMode

pusch_hoppingOffset
pusch_groupHoppingEnabled
pusch_groupAssignment
pusch_sequenceHoppingEnabled
pusch_nDMRS1

phich_duration
phich_resource

srs_enable

pusch_pO_Nominal
pusch_alpha
pucch_pO_Nominal
msg3_delta_Preamble
pucch_deltaF_Formatl
pucch_deltaF_Formatilb
pucch_deltaF_Format2
pucch_deltaF_Format2a
pucch_deltaF_Format2b
rach_numberOfRA_Preambles

rach_preamblesGroupAConfig

47

7;
2685000000L;
-120000000;
100;
0;
= 1;
ig
1
= 90;
= 125;
= "FALSE";
0;
0;
"DISABLE";
ig
2;
ig
0;
0;
0;
= =-27;
= 0;
= 1;
= "DISABLE";
= "interSubFrame
= 0;
= "ENABLE";
= 0;
= "DISABLE";
= 1;
= "NORMAL";
= "ONESIXTH";
= "DISABLE";
= -96;
= "AL1";
= -104;
= 6;
= "deltaF2";
= "deltaF3";
= "deltaFO";
= "deltaFO";
"deltaFO0";
= 64;
= "DISABLE";

APPENDIX A. SOFTWARE AND NFS CONFIGURATION

77 rach_powerRampingStep = 4;

78 rach_preambleInitialReceivedTargetPower = -108;
79 rach_preambleTransMax = 10;
80 rach_raResponseWindowSize = 10;
81 rach_macContentionResolutionTimer = 48;
82 rach_maxHARQ_Msg3Tx = 4;

83 pcch_default_PagingCycle = 128;
84 pcch_nB = "oneT";
86 }

87)

88

89 # ------- SCTP definitions

90 SCTP

91 {

92 # Number of streams to use in input/output

93 SCTP_INSTREAMS = 2;

94 SCTP_OUTSTREAMS = 2;

95 };

96

97 ////////// MME parameters:

98 mme_ip_address = ({ ipv4 = "130.92.70.163";

99 ipv6 = "192:168:30::17";

100 active = "yes";

101 preference = "ipv4d";

102 }

103);

104 enable_measurement_reports = "no'";

105 ///%2

106 enable_x2 = "no";

107 t_reloc_prep = 1000; /* unit: millisecond */

108 tx2_reloc_overall = 2000; /* unit: millisecond */

109

110 NETWORK_INTERFACES

111 {

112 ENB_INTERFACE_NAME_FOR_S1_MME = "ethO0";

113 ENB_IPV4_ADDRESS_FOR_S1_MME = "130.92.65.69/24";
114 ENB_INTERFACE_NAME_FOR_S1U = "ethO0";

115 ENB_IPV4_ADDRESS_FOR_S1U = "130.92.65.69/24";
116 ENB_PORT_FOR_S1U = 2152; # Spec 2152
117 ENB_IPV4_ADDRESS_FOR_X2C = "130.92.65.69/24";
118 ENB_PORT_FOR_X2C = 36422; # Spec 36422
19 3

120 }

121) ;

122

123 RUs = (

APPENDIX A. SOFTWARE AND NFS CONFIGURATION

)

local_if_name
remote_address
local_address
local_portc
remote_portc
local_portd
remote_portd
local_rf

tr_preference

nb_tx

nb_rx

att_tx
att_rx
eNB_instances

is_slave

THREAD_STRUCT = (

{

#three config for level of parallelism

PARALLEL_RU_L1_SPLIT",

parallel_config

worker_config

"ethl";
"10.0.5.4";
"10.0.5.2";
50000;
50000;
50001 ;
50001 ;

"not

"udp_if4pb"

SO O = B

[01;

n "

no

or

"PARALLEL_SINGLE_THREAD",

"PARALLEL_RU_L1_TRX_SPLIT"

= "PARALLEL_RU_L1_TRX_SPLIT";

#two option for worker

"WORKER_DISABLE"
= "WORKER_ENABLE";

or "WORKER_ENABLE"

n

49

LisTiNG A.1: rce.band7.tml.if4p5.50PRB.conf

A.2 Configuration file of the Radio at the RRU

RUs

(

local_if_name
remote_address
local_address
local_portc
remote_portc
local_portd
remote_portd
local_rf
tr_preference
nb_tx

nb_rx

"p1p2";
1lP.0.5,27
"10.0.5.4";
50000;
50000;
50001;
50001
"yes™"
"udp_if4pb5";
2;

3

N

V]

APPENDIX A. SOFTWARE AND NFS CONFIGURATION

max_pdschReferenceSignalPower = -27;
max_rxgain = 125;
bands = [7,13];
is_slave = "no";
}
);
THREAD_STRUCT = (
{
#three config for level of parallelism "PARALLEL_SINGLE_THREAD"
PARALLEL_RU_L1_SPLIT", or "PARALLEL_RU_L1_TRX_SPLIT"
parallel_config = "PARALLEL_SINGLE_THREAD";
#two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"
worker_config = "WORKER_ENABLE";
}
);

log_config = {

50

global_log_level ="info";
global_log_verbosity ="medium";
hw_log_level ="info";
hw_log_verbosity ="medium";
phy_log_level ="info";
phy_log_verbosity ="medium";
mac_log_level ="info";
mac_log_verbosity ="high";
rlc_log_level ="info";
rlc_log_verbosity ="medium";
pdcp_log_level ="info";
pdcp_log_verbosity ="medium";
rrc_log_level ="info";
rrc_log_verbosity ="medium";
};
LISTING A.2: rru.oaisim.conf
A.3 NFS Configuraton
sudo apt-get update
sudo apt-get install nfs-kernel-server
LisTiNG A.3: Downloading and Installing the Components on RCC
sudo apt-get update
sudo apt-get install nfs-common

LisTING A.4: Downloading and Installing the Components on RRU

10

11

APPENDIX A. SOFTWARE AND NFS CONFIGURATION

51

$ sudo mkdir -p /nfs/home
sudo mount 130.92.65.83:/home/tofunmi /nfs/home

LisTING A.5: Creating the Mount Points and Mounting Directory on RRU

$ sudo nano /etc/exports

Add below line to exports file:
/home

#
$

130.92.65.32(rw,sync ,no_root_squash ,no_subtree_check)

Restart nfs-kernel-server service

sudo systemctl restart nfs-kernel-server

LisTiNG A.6: Configuring the NFS Exports on the RCC

N H H H L A H L H L =

First,

check firewall status

sudo ufw status

If ufw is inactive, use the below command to enable ufw:

sudo
Make
sudo
sudo
Make

sudo

ufw
ufw
ufw

ufw

enable
allow incoming and outgoing:
default allow incoming

default allow outgoing

client server can access host server

ufw

allow from 130.92.65.32 to any port nfs

Check ufw status

sudo ufw status numbered

LisTiNG A.7: Adjusting firewall on RCC

1

2

Appendix B

Implementation

B.1 Modification of lte-ru.c

When the eNodeB is restored, the difference in time caused it to crash. Modifying the
in-built OAI subframe timer ensures the application doesn’t crash upon resumption.
More future work in this area could also ensure that the threads are processing the right

subframes, taking into account the time difference.

// Synchronous if4p5 from south

void fh_if4p5_south_in(RU_t *ru,int *frame,int *subframe) {

LTE_DL_FRAME_PARMS *fp = &ru->frame_parms;
RU_proc_t *proc = &ru->proc;

int f,sf;

uintl6_t packet_type;
uint32_t symbol_number=0;
uint32_t symbol_mask_full;
uint64_t t;

//uint64_t t2;

//uint64_t t_diff;

if ((fp->frame_type == TDD) && (subframe_select(fp,*subframe)==SF_S))
symbol_mask_full = (1<<fp—>u1_symbols_in_S_subframe)—1;

else
symbol_mask_full = (1<<fp—>symbols_per_tti)—1;

if (proc->symbol_mask [*subframe] == symbol_mask_full) proc->symbol_mask
[*subframe] = 0;

do {
recv_IF4p5(ru, &f, &sf, &packet_type, &symbol_number);

52

// nothing in RU for RAU
}
LOG_D(PHY,"rx_fh_if4p5: subframe %d symbol mask %x\n",*subframe,proc
->symbol_mask [*subframe]) ;

} while(proc->symbol_mask [*subframe] != symbol_mask_full);

//caculate timestamp_rx, timestamp_tx based on frame and subframe

93

APPENDIX B. IMPLEMENTATION

if (packet_type == IF4p5_PULFFT) proc->symbol_mask[sf] = proc->
symbol _mask [sf] | (1<<symbol_number) ;
else if (packet_type == IF4p5_PULTICK) {

if ((proc->first_rx==0) && (f!=xframe)) LOG_E(PHY,"rx_fh_if4p5:
PULTICK received frame %d != expected %d\n",f,*frame);

if ((proc->first_rx==0) && (sf!=*subframe)) LOG_E(PHY,"rx_fh_if4p5:
PULTICK received subframe %d != expected %d (first_rx %d)\n",sf,k *
subframe ,proc->first_rx);

break;
} else if (packet_type == IF4p5_PRACH) {

proc->subframe_rx = sf;
proc->frame_rx = £f;
proc->timestamp_rx = ((proc->frame_rx * 10) + proc->subframe_rx) * fp

->samples_per_tti ;

if (proc->first_rx == 0) {
//printf ("rdtsc_diff: %" PRIu64 "\n", t_diff);
if (proc->subframe_rx != *subframe){ printf("Correcting Subframe\n")
LOG_E(PHY,"Received Timestamp doesn't correspond to the time we
think it is (proc->subframe_rx %d, subframe 7%d)\n",proc->subframe_rx

sf);

}

if (proc->frame_rx != *xframe) {printf("Correcting Frame\n");
*subframe = proc->subframe_rx;
*frame = proc->frame_rx;

LOG_E(PHY,"Received Timestamp doesn't correspond to the time we
think it is (proc->frame_rx %d, frame %d)\n",proc->frame_rx,*frame) ;

}

else {
proc->first_rx = 0;
x*frame = proc->frame_rx;

*subframe = proc->subframe_rx;

if (ru == RC.rul0]) {
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME (
VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_RXO_RU, f);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME (
VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_RXO_RU, sf);

)

B

61

APPENDIX B. IMPLEMENTATION 54

//VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME (
VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TXO_RU, proc->frame_tx);
//VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME(
VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TXO_RU, proc->subframe_tx
)5

}

proc->symbol_mask[sf] = 0;

VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME (
VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&Oxffffffff);

LOG_D(PHY,"RU %d: fh_if4p5_south_in sleeping ...\n",ru->idx);

usleep (100) ;

LisTiNG B.1: lte-ru.c

Appendix C

eNodeB and MME Logs

C.1 Connecting the eNodeB and RRU

1PHY]
o]
[PHY]

[PHY]

txdataF_BF[0] Bx7fdaddeafSed for RU &
rxdataf[8] Bx7fdad4d76660 for RU &

Sending Configuration to RRU @ (num_bands 1,bande 7, txfreq 2685080000,rxfreq 2565000000 ,att tx @,att rx 8,N_RB OL 25N RB_UL 25,3/4FS @, prach FO 2, prach CI 8)
setup_RU_buffers: frame_parms = @x2¢15188

signaling main thread that RU & is ready

vatting for sync (ru_thread,-1/8xdbéb4s,Bx146a160,6x13262¢8)
ru_thread_tx ready
iC.ru_nask:88

[PHY]

RUs configured

ALL RUs READY!
3C.nb_RU:1

ALL RUs ready - inlt eNBs

Vot NFAPT mode - call inlt_eNB_afterRU()

PHY'
PHY
PHY
PHY

PHY
PHY
pHY
PHY
PHY
PHY
PHY’
PHY’
PHY
PHY
PHY
HY
PHY]
PHY]
HH)

PHY]
pHY]
HH)

PHY)
i)

PHY)
PHY]
HA)

[PHY]
[HH]

init_eNs_afterRU() RC.nb_inst:1
RC.nb_CC[tnst]:1
RC.nb_CC[tnsti0][CC_td:0]:exTfdaf 05016

[ene 8] phy_tntt_Lte_eNB() About to wait for eN8 to be configured[PHY] [eNB 8] Initializing DL_FRAME_PARMS : N_RB_DL 25, PHICH Resource 1, PHICH Duration @ nb_antennas_tx: nb_antennas_rx:® nb_antenna_

Mapping RX ports from 1 RUs to eNg @

Overwriting eNB-sprach_vars.rxsigF[0]:8x37461e8
Overwriting eN8-»prach_vars_br.rxsigf.rusigf[0]:(nil)
Overwriting eN8-sprach_vars_br.rxsigF.rxsigF[8]:(nil)
Overwriting eNB-sprach_vars_br.rxsigF.rasigF[8]:(nil)
Overwriting eNB-sprach_vars_br.rxsigF.rxsigF[8]:(nil)
eNB->num_RU:1

Attaching RU @ antenna @ to eNB antenna 8

s0rts_eNB:1 PRACH[rootSequencelndex:d prach_Config_enabled:1 configIndex:® highSpeed:d zeroCorrelationZoneConfig:1 freqoffset:2]
sefich_reg : 8,12,25,37

init_eNB_afterRU() *+#+#sssssss Jp #o4v+ eNg->frane_parns.nb_antennas_tx:0 - GOING TO HARD CODE TO 1[PHY] 1inst 8, CC_id 8 : nb_antennas_rx 1

Initialise transport

intt_eN8_proc(inst:8) RC.nb_CC[inst]:1

Initializing eNB processes instance:d CC_id &
Creating te_thread &

Creating te_thread 1

[SCHED] [€NB] te_thread started on CPU 3, sched_policy
thread te created 1ds25659

Creating te_thread 2

[ScHED][eNB] te_thread started on CPU 1, sched policy
thread te created 1d=25660

[SCHED][eNB] te_thread started on CPU 7, sched policy
thread te created 1d=25661
ehB-ssingle_thread_flag:d

[SCHED][eNB] td_thread started on CPU B, sched policy
thread td created 1d=25662

[SCHED][eNB] Rkn_Txnpd_8

» SCHED_FIFO ,

= SCHED_FIFO ,

= SCHED_FIFQ ,

= SCHED_FIFO

started on CPU 2, sched_pﬂltEy = SCHED_FIFO , priority = 99, CPU Affinity=

[Hd]

[SCHED][eNB] Txp#_t

priority « 99, CPU AfFinitys CPUB CPU_1 CPU_Z CPU_3 CPU_4 CPU_S CPU_6 CPUT

priority = 99, CPU Affinity= CPU_B CPU_T CPU_2 CPU_3 CPU_4 CPU_S CPU_6 CPU_T

priority = 99, CPU Affinity= CPU_8 CPU_1 CPU_2 CPU_3 CPU_4 CPU_S CPU_6 CPUT

priority = 99, CPU AFfinity= CPU_8 CPU_1 CPU_2 CPU_3 CPU_4 CPU_S CPU_6 CPU_T

CPU_D CPU_L CPU_2 CPU_3 CPU_4 CPUS CPUG CPUT

started on CPU 6, sched_policy = SCHED_FIFO , priority = 99, CPU AFfinity= CPU8 CPU_L CPU_2 CPU_3 CPU_4 CPU_S CPU_6 CPUT

[PHY]
[Hi]
[PHY]
[HW]

[PHY)
[PHY)

thread rxtx created 1d=25663

[SCHED][eNB] eNB_thread prach started on CPU 5, sched_policy = SCHED_FIFO , priority = 99, CPU AFfinity= CPU_® CPU_1 CPU_2 CPU_3 CPU_4 CPU_S CPU_6 CPU_T

wakeup_rxtx called HEREALL RUs ready - ALL eN8s ready

[SCHED][NB] eNB_thread_prach_br started on CPU 7, sched_policy = SCHED_FIFO , prierity = 99, CPU Affinity= CPU_® CPU_1 CPU_Z CPU_3 CPU_4 CPU_S CPU_6 CPU_T
sending sync to all threads
IYPE <CTRL-C> TO TERMINATE
tntering ITTI signals handler
jot sync (ru_thread)

RU 8 no rf device
RU 8 no asynch_south interface

.05t IFaps connection with 0.6.0.0

[ac)
[pHY]
[PHY]

SCHED_MODE=0
prach_18 = 1.1 d8
nax 10 32, nin 10 27

FIGUurE C.1:

Connection established between eNodeB and RRU

95

APPENDIX C. ENODEB AND MME LOGS

C.

[RRC]

2 UE connection to EPC via eNodeB

KeNB:e9 45 94 16 fe 49 6b 27 37 aa 3f 8¢ 17 d9 c5 db %a b2 81 ¢9 08 €0 4b 74 d1 17 1f €7 78 ¢4 7 d4

[RRC]

KRRCenc:6b a1 el 38 03 4e 25 80 91 53 94 55 9 ee 06 41 93 3¢ 39 1o ca ba 34 94 32 9 3a 8 7a a1 97 f8

[RRC]

KRRCint:16 2 eb d6 05 o bf cc 3e ef c7 45 35 49 6 19 06 32 ac 61 f4 79 f5 10 cb 6c fe by 1 62 e5 54

[WRC]

[FRAME 8068][eNB][HOD 03] [RNTL 3c48] Logical Channel OL-DCCH, Generate SecurityYodeComnend (bytes 3)

[FRAME 8066][eNB][HOD 03] [RNTT 3c48][SRB AN 61] RLC_AN DATA RE) size 8 Bytes, B SDU 4 current sdu_index=3 next_sdu_index=4 conf 8 mul 6 vtA 3 vtS 3
[eNB 8] Freme 61: received a DCCH 1 message on SRE 1 with Size 2 from UE 3c48

Received nessage RRC_DCCA DATA_TND

[FRANE 89060][eNB][HOD 03] [RNTI 3c43] Received on DCCH 1 RRC_DCCH DATA_IND

[FRANE 09060][eNB][HOD 09] [RNTT 3c48] received security¥odeComplete on UL-DCCH 1 From UE

[FRAME 09066][eNB][HOD 03] [RNTT 3c48] Logical Channel DL-DCCH, Generate UECapebilityEnquiry (bytes 3)

[FRAME 09066][eNB][HOD 03] [RNTL 3c48][SRB AN 61] RLC_AN_DATA_REQ size § Bytes, NB SDU 5 current_sdu_index=4 next_sdu_index=5 conf B mul 1 vtA 4 vtS 4
[N 0] Freme 64: receivad a DCCH 1 message on SRE 1 with Size 44 fron UE 3cde

Received nessage RRC_DCCH_DATA_IND

[FRANE 09060][eNB][H0D 63][RNTL 3c48] Recaived on DCCH 1 RRC_DCCH_DATA_IND

[FRANE 09068][eNB][HOD 09][RNTL 3c48] recaived ueCapabilityInfornation on U-DCCH 1 fron UE

got UE capebilities for UE 3c48

RRCConnectionReconfiguration Enceded 1677 bits (135 bytes)

[eN8 0] Freme 0, Logical Channel DL-DCCH, Generate LTE RRCConnectionReconfiguration (bytes 135, UE id 3cdg)

Successfully sent 71 bytes on strean 1 for assoc_id 125

[FRAME 88066][eNB][HOD 09][RNTT 3c48][SRB AN 61] RLC_AN DATA RE) size 146 Bytes, B SDU 6 current sdu_incex=5 next_sdu_index=6 conf 6 mul 2 vtA 5 vis §
[eN8 8] Freme 66: received a DCCH 1 message on SRE 1 with Size 2 from UE 3cd8

Received nessage RRC_DCCA_DATA_TND

[FRAKE ©9060][eNB][HOD 0] [RNT 3c43] Reczived on DCCH 1 RRC_DCCH DATA_IKD

[FRAME €9060][eNB][H0D 03] [RNTE 3c48] UE State = RRC_RECONFIGURED (default DRE, xid 1)

[FRAME 90668][eNB][OD 30][RNTI 3c48][SR3 62] Action ADD LCID 2 (SRB id 2) convigured with SN size 5 bits and RLC AM

[FRAME 90608][eNB][OD 30][RNTI 3c48][OR3 61] Action ADD LCID 3 (DR id 1) conigured with SN size 12 bits and RLC UM

[FRANE 09060][e8] H0D 69][RNTI 3c48] [SR3 2] rre_rlc_add_rlc SR

[FRAME 09060][eNB][HOD 03] [RNTL 3c48][SRB AN 62][CONFIGURE] max_retx_threshold 32 poll_pcu 8 poll_byte 16960 t_poll_retransmit 15 t_reordering 35 t_status_prohibit 10
[FRANE 09060][eNB][HOD 69][RNTI 3c48] [DR3 1] rre_rlc_add_rlc DRB

[eNB 0] Frame 0 CC 0 : SRB2 is now active

[eN8 0] Freme 6 @ Logical Channel UL-DCCH, Received LTE_RRCConnectionReconfigurazionConplete from UE rnti 3cds, reconfiguring ORB 1/LCID 3
[eN8 0] Freme 6 : Logical Channel UL-DCCH, Received LTE RRCConnectionReconfigurazionConplete from UE 0, reconfiguring DRE 1/LCID 3
inttial ctxt_resp p: e rab ID 5, enb_eddr 130.92.65.83, SIZE 4

Successfully sent 40 bytes on strean 1 for assoc_id 125

[eNB 8] Freme 69: received a DCCH 2 message on SRE 2 with Size 16 fron UE 3cdf

Received nessage RRC_DCCA_DATA_TND

[FRAME ©9060][eNB][HOD 0] [RNT 3c43] Reczived on DCCH 2 RRC_DCCH DATA_IKD

Successfully sent 61 bytes on strean 1 for assoc_id 125

Found date for descriptor 59

Received notitication for sd 59, type 32777

UE rati 3c48 : in synch, PHR 40 dB DL CQI 15 PUSCH SHR 18 PUCCH SNR 10

UE rati 3c48 : in synch, PHR 40 dB DL CQI 15 PUSCH SHR 18 PUCCH SNR 10

UE rati 3c48 : in synch, PHR 40 dB DL CQI 15 PUSCH SR 18 PUCCH SNR 10

UE rati 3c48 : in synch, PHR 40 dB DL CQI 14 PUSCH SR 18 PUCCH SNR 10

[eNB O][PUSCH 6] CC_ic 0 543.0 ULSCH in error in round @, ul_cqt 116

[eNB B][PUSCH 6] CC ic 0 543.8 ULSCH in error in round 1, ul cqt 164

[eNB B][PUSCH 6] CC_ic 6 544.6 ULSCH in error in round 2, ul cqt 164

UE rnti 3¢48 ¢ in synch, PHR 40 dB DL CQT 15 PUSCH SHR 18 PUCCH SR 10

UE rnti 3¢48 ¢ in synch, PHR 40 dB DL CQT 14 PUSCH SHR 18 PUCCH SR 10

UE rati 348 : in synch, PHR 40 dB DL CQI 14 PUSCH SHR 21 PUCCH SAR 18

UE rati 348 : in synch, PHR 40 dB DL CQI 15 PUSCH SHR 18 PUCCH SNR 17

UE roti 3c48 failure timer 6/8

prach_I0 = 8.5 d8

max_10 33, min_16 27

UE rati 3c48 : in synch, PHR 40 dB DL CQI 14 PUSCH SHR 18 PUCCH SNR 17

UE rati 3c48 : in synch, PHR 40 dB DL CQI 15 PUSCH SHR 18 PUCCH SNR 18

UE rati 3c48 : in synch, PHR 40 dB DL CQI 13 PUSCH SHR 18 PUCCH SNR 18

UE rati 3c48 : in synch, PHR 40 dB DL CQI 13 PUSCH SR 18 PUCCH SAR 18

F1Gure C.2: Full connection between UE and MME: Frames being processed

o6

APPENDIX C. ENODEB AND MME LOGS

C.3 MME registration

B91422 00162; 105100 TFS4RS61ETH0 TRACE NAS-ES openalr-cn/sre nasesn esn_ebr,€:0530
101423 OBLEZ: 195108 TRGDGOIETON INFD WAS-ES coenatr-cn/sre/mas/esnjesn_ebr.ci0sét
I COKTERT ACTIVE

D01424 BBLEZ:1195121 TROADGOLETON TRACE NAS-ES cpenair-cn/sre/nas esnjesn_ebr.ci0Th
11425 00162105129 TFE4RSIETE TRACE WaS-E5 aultEpsBearerCantenthctivation <0278
101426 00182135137 TFA4SGO1ETH0 TRACE NAS-ES ir-cnjsrc/nasfesn/sapjesn recy.cbddd
B1427 00162: 105145 TFG4NSIETH0 TRACE NAS-ES alr-cnjsrc /nas s/ sap/esn_sap.c.0743
DO1428 OBLBZ: 19515 TRGBGBIETON TRACE NAS-ES atr-cnjsre/nas/esn)sapjesn_sap.ci0rd
B1420 09162105155 TFS4U861ETH0 TRACE NAS-EN alr-cnfsre/nas e/ sapem_sap.c:0110
101430 OBL8Z: 195160 TRGDGOLETON TRACE NAS-EM air-cnjsrc/nas/emn)sapjem _reg.ciolit
11431 00102; 105194 TFS4RS61ETE0 TRACE WAS-EN alr-cnfsrc/nas e/ sap/em_Tin. <0256
101432 0182195071 TFA49GBIETHO INFD NAS-EM air-cnsrc/nasjemnsap/emn_fon.ci0263
141433 O0102; 105180 TFS4RSHIETR TRACE NAS-EN rc/nas emn/sap/Ernbereqiatered <084
DO1434 OBLBZ: 195188 TRGSGOIETON TRACE NAS-EM air-cnjsre/nas/emnsapjem_fen.cool7e
191435 00162:105196 TFS4RSIETH0 NFD WAS-EM alr-cnfsee/nas e/ sap/em_Tsn.c0181
101435 QD162:135208 TFE4BGEIETIO TRACE WAE-AF cn/erc/nne_appmne_app_ content.cr1Bld
B1437 00162: 105210 TFS4U861ETS TRACE WAE-AP cn/sre/ee_app/ee_apg_context €183
101438 OBLEZ:195220 TROADGOIETON TRACE NAS-EM air-cnjsrc/nas/emnsapjem _fen.ci0ldd
11439 0102105233 TFE4RSIETE TRACE WAS-EN rc/nasjemn/sap/Ernbereqiatered <0158
D140 0182135241 TFA49G01ETH0 TRACE NAS-EM alr-cnsrc/nas jemn)sap/emn_fin.ci0rl
B01441 06162: 105247 TFS4RSH1ET80 TRACE NAS-EM alr-cnfsrc /nas e/ sapem_rig 0119
D147 OBLBZ195257 TRADGBIETON TRACE NAS-EM air-cnjsre/nas/emn)sapjem _sap.ci0ldd
B1443 00162105257 TFE4U8G1ETH TRACE NAS-EM Jopenatr-cnfsrcfnas fenn/Rttach,c6723
D144 DBLEZ: 195267 TROADGOIETON TRACE NAS-EM Lr-cnjsrc/nas/enmfsap/enn recv.coddds
101445 00102; 105247 TFS4RS1ETE TRACE WAS-EN nalr-enfsre/nas fenn/sap/enn_is <043
101445 00182135271 TFA49GB1ETHO TRACE NAS-EM natr-cnfsre/nas/enn/sap/enn_as.ci0sdl
B1447 0102105277 TFE4RSIETE TRACE WAS-EN nalr-enfsre nas fenn/sap/enn_is <0041
D148 OBLBZ:195287 TROADGBIETON TRACE NAS-EM air-cnjsre/mas/emn)sapjem _sap.ci0ldd
191449 00162: 105207 TFS4RS1ETH0 TRACE WAS-EM rvapenalr-en arcinas fnas _proc, €036
101450 OBLEZ:197553 TRG9501C700 DEBLG WP /sre/udp/up priektives server.c:0la?
B1451 00162: 107580 TFS4USHICTR DERUG Ub Jsre/udp/udp_printtlves_server,c:6163
101452 00102137570 TF49501C700 DEBLG WP Jsrcjudp/ulp_printtives_server.c0loB
11453 00102107575 TFR4RSOICTRN DERUG UD Jsre/udp/udp_primttlves_server,<621
D01454 00102137589 TFO49561C700 DEBLG WDP fsrejudp/udp_printtives server.c023s
11455 00162107612 TFG4MEINTE TRACE GTIVE- 2-¢/nugtpule-8, 11/srefitpvic, 1111
DO1456 OBLBZ 197674 TROAMEIRTON TRACE GTPvE- 2-c/nugtpelc-0.10{sre faCkpd. 1538
B1457 00162: 107680 TFS4EINTH DERUG GTivE- 2-c/nugtpule-8, 11/srefitpvic, 11540
101438 ABLEZ: 197080 TRO4MELRTON DEBLG GTRvE- 2-c/mugtpele-0.10fsre halkpvie.colids
101450 00102167697 TFR4REINTRG TRACE GTivE- 2-c/nugtpwle-8, 11/srefhaitpvic, 1370
101480 0182137707 TFA4MEIRTHO DEBLG GTPv- fmugtpuic-D. 11 src/Mnitpuichsg.ci0lds
B1461 00162107747 TFS4REINTR DERUG GTivE- magtpvac-, 11/src/Mitpvielran <0328
101462 Q1621137712 TRL4MEIETIO DEBLG GTPV2- [migtpuac-D. 11/sre/Midtpvicheg.co0i3d
BO1463 00162107723 TFG4REINTH DEBUG GTIvE- |\ 11/sre/witpvichs]TeParselnte, c:0665
DO1464 OBLEZI19T720 TRGAMELETON TRACE GTPvZ- 2-c/mugtpelc-.10{sre hakpvie.co0ime
141465 00162107734 TFR4MEIRTR DERUG §11 penalr-enfsre/siifsii_ e _task,c0871
101488 00102137875 TFG4MEIRTH0 DEBLG GTPv2- vic-D.11/sre NwdtovlchegFarser .ci0203
B1467 00102107001 TFR4REINTR DERUG §11 Lr-cnfsrcfsinfatl_Le Tormatter, <0441
101468 00102137893 TFG4S4EIRTH0 DEBLG GTPvZ- migtpuzc-0. 11 sre/Mwdtpuzehsg.c0Ldee
11469 9616210756 TFS4MEINTE TRACE GTIVE- 2-c/nugtpule- 8, 11/srefhabtpvic, 10170
DOL4TO OBLBZ 197911 TRGAMELRTON TRACE GTPvE- 2-c/nugtpelc-0.10{sre /aCkpde. co1187
B1471 00118: 225070 TFS4TFIFETS DEBUG AAE-AP sre/mme_app/me_app_statistlos,cio83

B1472 00118; 225961 TFR4TFIFETR DERUG WAE-AP src/wme_app/me_app_statlstlos,cio8i
DO1473 0110225871 TR4TFIFETHO DEBLG WAE-AF src/me_app/me_app statistics.cons
B01474 6118: 225985 TFS4TFIFETS DEBUG AE-AP 5rc/wne_app/he_app_statistlos,co838
BOL4TS OBL10:215996 TRGATFTFETEN DEBUG MAE-AP src/me_app/re_agp statistics.coomdd
11476 00118: 206001 TFS4TFIFETS DEBUG AAE-AP src/wme_app/me_app_statistles,ciosl
DOL4TT OBLI0:Z26000 TRGATFTFETEN DEBLG MAE-AP sro/me_app/me_app statistics.codid

101478 00110226018 TF4TFTFETOO DEBLG WAE-AF src/me_app/me_aop statistics.cioMs

ntering esn_ebr_set_status()

ESH-FSM - Status of EPS bearer contest § changad: BEARER CONTEXT ACTIVE PENDING =w= BEARE

Leaving esn_ebr set status{) {rosd)
Leavng esn_prac_(eTauTt_sps_bearer contest_acct() {rest)
Leaving esn_recy_activate_default eps_bearer context accept() {rc=-1)
Leakig _esh_sap_recv() (reh)
Leaving esn sap send() (reed)
Entertng em_sap_send()
Entertng enn_reg_send(}
Enterlng emm_fsn_process()
EMN-FSH - Recelved event ATTACH CNF (5) in state DEREGISTERED
Entaring EneDiregistered()
Entering em_fin_set status)
UE Bxbabaan) E-Fin
Entering me_ue context_update ue_em _state()
Leavlng nee_ue_centexi_update_ue_enn_state()
Leaving emn_fsn set status{) {rosd)
Leaving Ernbereqistared() (r=8)
Leaving enn_fsn_process() {rest)
Leawkig eF_reg_send() (re=8)
Leaving enn_sap_ send() (reed)
Leavlng em_prac_attach_conplete() [rozh)
Leaving emn_recy attach complete(} (rced)
Leaving _enn_as_recv() (re=h)
Leaving _ern_as_data_ind(} (resd)
Leaving emn_as_send() (rc=)
Leaving emn_sap send() (rest)
Leaving nas_prac_ul_transfer_tnd() (rc=f)
Recelvad | events
Leaking for sd 33
Found natching task desc
Inserting new descriptor for task 6, sd 3
Hsq of length 18 received fram 130.52.70.164:2123
Entertag nuGtpvachracessidgheq)
Entering niCtpv2cStopTiner()
Stopplag actlve tirer Bx7TE4TER11360 Tor \nfo Bubalro4Tabi1zes|
Stopping active theer D7fedTaRl1360 for info MbaTfoaTERLz00!
Leaving mtpvzcitopTiner() (re=A)
Purging nessage Tfad7RAL1560!
Purging transaction BabaTTe4TERL1 108
Created nessage Gx7faaTantisen!
Recelved I 2 alth nstance @ of length 2 \n ms-type 351
Entering niGtpv2csendrrigperedRspIndTollp(}
Recelved triggerad respanse {ndlcation
Recetved IE 2 of length 2!
- (aige 16
Furgtng message 76473011560
Leavhng mtpvesendTrggeradhspladTaip)) {rezh)
Leaving mdtpyzcPracessidoreq() (read)
STATISTICH

- Status changed: DERECISTERED === REGISTERED

| Current Status| added since Last dlsplay] Removed slace Tast dlsplay |
Connected ehBs | 0 | [}

! |

Attached Vs | 1 | f |

Connected LEs | 1 1 | ? |

Default Bearers| 1 1 | # |

sieU Bearers | I 1 | ? |
STATISTICS

FiGure C.3: MME registering the UE to the network

APPENDIX C. ENODEB AND MME LOGS

C.4 eNodeB and MME during Checkpoint

o8

~/OpenAir/openairi = root@famsworth: fsys/kernel/debug/pm_g.. root@famsworth: ~ root@farnsworth: ~ +
[PHY] mex_ID 44, min_I0 34
[PHY] frame_rx: 1900 || subframe_rx: 9 || timestamp_rx: 307200609 || rdtsc: 86314
[RRC] UE rnti cb58 failure timer 6/8
[PHY] frame_rx: 0 || subframe rx: 0 || timestanp rx: 0 || rdtsc: 80315
[PHY] prach_l6 = 16.6 dB
[PHY] mex_ID 45, min_I0 34
[1]+ Stopped .[lte-softnoden -0 /home/tofunni /OpenAir fopenairinterfacesg)targets/PROJECTS/GENERIC-LTE-EPC/CONF/rec.band7. tmd. 1f4p5. SPRB. conf
i~/Openkir/openairinterfacesg/cnake_targets/Lte_build_oai/build# ETHERNET IF4p5 READ: Interrupted system call
(Interrupted system call):
[PHY] L1_thread isn't ready in 580.1, aborting RX processing
[PHY] Frame 580, subframe 6: RXTXO thread busy, dropping
[PHY] L1 thread isn't ready in 581.4, aborting RX processing
PHY] Frame 581, subframe 3: RXTXO thread busy, dropping
PHY] L1_thread isn't ready in 582.3, aborting RX processing
PHY] Frame 582, subframe 2: RXTXO thread busy, dropping
PHY] frame_rx: 1900 || subframe_rx: 9 || tinestamp_rx: 307206009 || rdtsc: 88325
[RRC] UE rnti cb58 failure timer 6/8
PHY] frame_rx: © || subframe_rx: @ || tirestanp_rx: 6 || rdtsc: 80325
PHY] prach_I0 = 16.6 dB
PHY] mex_I® 44, min_I0 35
PHY] frame_rx: 1900 || subframe_rx: O || tinestamp_rx: 387206000 || rdtsc: 89335
[RRC] UE rnti cb58 failure timer 6/8
[PHY] frame_rx: 6 || subframe rx: 0 || timestanp rx: 0 || rdtsc: 80335
root@ctl: ~ X
File Edit Search Temiral Tabs Help
roat@ctl: ~ +
009248 02320:736839 TF25127FD700 DEEUG MHE-AP src/mn2_app/mme_app_statistics.c:0045 STATISTICS
069249 02327:402683 TF25037FF700 ALERT S6A rvjopenair-cn/src/s6a/s6a_task.c:0086 'STATE_OPEN' <-- 'FDEVP_CNX_M5G_RECV' (0x7f2508091¢90,88) '0ai-hss-0.0penairdG.eur’

069259 02327:402259 TF25037FF700 ALERT S6A rvjopenatr-cn/src/s6a/s6a_task.c:086 RCV fron 'oai-hss-6.openatrdG.eur': (no mocel)d/260 f:R--- src:'oai-hss-6.openatrdG.eur' len:88 {C:254/1:31,C:296/1:21,C:278

L1z}

089251 02327:402441 TF25037FF700 ALERT 564 rvjopenair-cn/src/s6a/s6a_task.c:3086 Iterating on rules of COMMAND: 'Device-Hatchdog-Request'.

009252 02327:402478 TF25037FF700 ALERT S6A rvjopenair-cn/src/s6a/s6a_task.c:0086 No Session-Id AVP founc in message 0x7f250400570

069253 02327:402569 TF25037FF700 ALERT S6A rvjopenair-cn/src/s6a/s6a_task.c:0086 Peer tineout reset to 30 seconds (+/- 2)

069254 02327:402599 TF25637FF700 ALERT S6A rvjopenatr-cn/src/s6a/s6a_task.c:0086 'oei-hss-8.openzirdG.eur' in state 'STATE_OPEN' weiting for next event.

089255 02327:402732 TF24FATEC700 ALERT S6A rvjopenair-cn/src/s6a/s6a_task.c:0086 SENT to 'oal-hss-0.openair4G.eur': 'Device-Watchdog-Answer'8/286 f:---- src:'(nil)' len:166 {C:268/1:12,C:264/1:31,0:296/1:2

1,0:278/1:12)
009256 02327:402772 TF24FATEC700 ALERT S6A rvjopenair-cn/src/s6a/s6a_task.c:0086 Sending 106b data on comnectien {----} TCP,#39->192,168.6.115(3868)

009257 02330:729943 TF2512FFD700 DEEUG MHE-AP src/mne_app/mne_epp_statistics.c:0033 STATISTICS

009258 02330:736069 TF25127FFD760 DEBUG MME-AP src/mme_app/mme_app_statistics.c:9034 | Current Status| Added since last display| Removed since last display |
089259 02330:736080 TF25127F0700 DEEUG MME-AP src/mme_app/mme_epp_statistics.c:903¢ Connected eN3s | 3 | (] | |
069269 02330:736100 TF25127F0700 DEBUG MME-AP src/mme_app/mme_epp_statistics.c:0038 Attached UEs | 2 | [| 0 |
069261 02330:736107 TF25127F0706 DEBUG MME-AP src/mme_app/mme_epp_statistics.c:3046 Connected UEs | 0 | 6 | 0 |
009262 0233:730145 TF25127FD760 DEBUG MME-AP src/mme_app/mme_epp_statistics.c:0042 Default Bearers| 2 | 4 | 0 |
009263 02330:736163 7F2512FF0760 DEBUG MME-AP src/mme_app/mme_app_statistics.c:B@44 S1-U Bearers | (] | (] | 0 |
009264 02330:736196 TF2512FFD700 DEEUG MHE-AP src/mne_app/mme_epp_statistics.c:0045 STATISTICS

I

FIGURE C.4: Post-Checkpoint eNode and EPC Log

Bibliography

1]

Konstantinos Alexandris, Navid Nikaein, Raymond Knopp, and Christian Bonnet.
Analyzing x2 handover in lte/lte-a. 2016 14th International Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pages 1-7,
2016.

Aleksandra Checko, Henrik Lehrmann Christiansen, Ying Yan, Lara Scolari, Geor-
gios Kardaras, Michael S. Berger, and Lars Dittmann. Cloud ran for mobile net-
worksa technology overview. IEEE Communications Surveys Tutorials, 17:405—426,
2015.

Navid Nikaein, Eryk Schiller, Romain Favraud, Raymond Knopp, Islam Alyafawi,

and Torsten Braun. Towards a cloud-native radio access network. 2017.

Dimitrios Pliatsios, Panagiotis Sarigiannidis, Sotirios Goudos, and George K. Kara-
giannidis. Realizing 5g vision through cloud ran: technologies, challenges, and
trends. EURASIP Journal on Wireless Communications and Networking, 2018
(1):136, May 2018. ISSN 1687-1499. doi: 10.1186/s13638-018-1142-1. URL
https://doi.org/10.1186/s13638-018-1142-1.

G. C. Valastro, D. Panno, and S. Riolo. A sdn/nfv based c-ran architecture for 5g
mobile networks. In 2018 International Conference on Selected Topics in Mobile and
Wireless Networking (MoWNeT), pages 1-8, June 2018. doi: 10.1109/MoWNet.
2018.8428882.

Eryk Schiller, Islam Alyafawi, Torsten Braun, Navid Nikaein, Andr Gomes, and
Desislava Dimitrova. Critical issues of centralized and cloudified lte-fdd radio access
networks. 06 2015. doi: 10.1109/ICC.2015.7249202.

Eryk Schiller, Navid Nikaein, R Knopp, L Gauthier, Torsten Braun, Dominique
Pichon, Christian Bonnet, Florian KALTENBERGER, and Dominique Nussbaum.
Demo — closer to cloud-ran: Ran as a service. 09 2015. doi: 10.1145/2789168.
2789178.

59

https://doi.org/10.1186/s13638-018-1142-1

BIBLIOGRAPHY 60

8]

[10]

[11]

[12]

[13]

[14]

[18]

Alcatel Lucent. The lte network architecturea comprehensive tutorial. 2009.
URL http://www.cse.unt.edu/~rdantu/FALL_2013_WIRELESS_NETWORKS/LTE_
Alcatel_White_Paper.pdf.

Sassan Ahmadi. Chapter 3 - e-utran and epc protocol structure. In Sassan Ahmadi,
editor, LTE-Advanced, pages 121 — 152. Academic Press, 2014. ISBN 978-0-12-
405162-1. doi: https://doi.org/10.1016/B978-0-12-405162-1.00003-4. URL http:
//www.sciencedirect.com/science/article/pii/B9780124051621000034.

A Perez. LTFE and LTE Advanced: 4G Network Radio Interface. 11 2015. doi:
10.1002/9781119145462.

Sassan Ahmadi. Chapter 2 - network architecture. In Sassan Ahmadi, editor,
LTE-Advanced, pages 29 — 119. Academic Press, 2014. ISBN 978-0-12-405162-
1. doi: https://doi.org/10.1016/B978-0-12-405162-1.00002-2. URL http://www.
sciencedirect.com/science/article/pii/B9780124051621000022.

Hamid Mousavi, Iraj Sadegh Amiri, Mohammad Ali Mostafavi, and Chang Yoong

Choon. Lte physical layer: Performance analysis and evaluation. 2017.
Srikanth H Kamath and Deepashikha. Decoding of pbch in lte. 2014.

Navid Nikaein, M Marina, S Manickam, A Dawson, Raymond Knopp, and Chris-
tian Bonnet. OpenAirlnterface: A flexible platform for 5G research. ACM Sig-
comm Computer Communication Review, Volume 44, N5, October 2014, 10 2014.
doi: http://dx.doi.org/10.1145/2677046.2677053. URL http://www.eurecom.fr/
publication/4434.

C. Esposito, A. Castiglione, and K. R. Choo. Challenges in delivering software in
the cloud as microservices. IEEE Cloud Computing, 3(5):10-14, Sep. 2016. ISSN
2325-6095. doi: 10.1109/MCC.2016.105.

M. Villamizar, O. Garcs, H. Castro, M. Verano, L. Salamanca, R. Casallas, and
S. Gil. Evaluating the monolithic and the microservice architecture pattern to de-

ploy web applications in the cloud. In 2015 10th Computing Colombian Conference
(10CCC), pages 583-590, Sep. 2015. doi: 10.1109/ColumbianCC.2015.7333476.

Jude Okwuibe, Juuso Haavisto, Erkki Harjula, [jaz Ahmad, and Mika Ylianttila.
Orchestrating service migration for low power mec-enabled iot devices. CoRR,
abs/1905.12959, 2019. URL http://arxiv.org/abs/1905.12959.

Gabriel Brown. Huawei white paper: Cloud ran the next-generation mobile network
architecture. 04 2017.

http://www.cse.unt.edu/~rdantu/FALL_2013_WIRELESS_NETWORKS/LTE_Alcatel_White_Paper.pdf
http://www.cse.unt.edu/~rdantu/FALL_2013_WIRELESS_NETWORKS/LTE_Alcatel_White_Paper.pdf
http://www.sciencedirect.com/science/article/pii/B9780124051621000034
http://www.sciencedirect.com/science/article/pii/B9780124051621000034
http://www.sciencedirect.com/science/article/pii/B9780124051621000022
http://www.sciencedirect.com/science/article/pii/B9780124051621000022
http://www.eurecom.fr/publication/4434
http://www.eurecom.fr/publication/4434
http://arxiv.org/abs/1905.12959

BIBLIOGRAPHY 61

[19]

21]

22]

23]

[24]

[26]

Ericsson. Cloud ran: the benefits of virtualization, centralization and
coordination[online]. 2015. URL https://focustech.it/download/

tecnologia-cloud-ran.pdfl

China, Mobile Research Institute. =~ C-ran white paper: The road towards
green ran [online]. 2014. URL https://pdfs.semanticscholar.org/eaa3/
ca62c9d5653e4£2318aed9ddb8992a505d3c . pdf.

S. S. Kumar, R. Knopp, N. Nikaein, D. Mishra, B. R. Tamma, A. A. Franklin,
K. Kuchi, and R. Gupta. Flexcran: Cloud radio access network prototype using
openairinterface. In 2017 9th International Conference on Communication Systems
and Networks (COMSNETS), pages 421-422, Jan 2017. doi: 10.1109/COMSNETS.
2017.7945423.

Navid Nikaein, R Knopp, Florian Kaltenberger, L. Gauthier, Christian Bonnet,
Dominique Nussbaum, and Riadh Ghaddab. Demo: Openairinterface: an open lte
network in a pc. Proceedings of the Annual International Conference on Mobile

Computing and Networking, MOBICOM, 09 2014. doi: 10.1145/2639108.2641745.

Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,
and Martin Casado. The design and implementation of open vswitch. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15),
pages 117-130, Oakland, CA, May 2015. USENIX Association. ISBN 978-1-931971-
218. URL https://www.usenix.org/conference/nsdilb/technical-sessions/

presentation/pfaffl

E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, and T. Braun. Cds-mec:
Nfv/sdn-based application management for mec in 5g systems. Computer Net-
works, 135:96 — 107, 2018. ISSN 1389-1286. doi: https://doi.org/10.1016/j.
comnet.2018.02.013. URL http://www.sciencedirect.com/science/article/
pii/S138912861830080X.

C. Wang, Y. Wang, C. Gong, Y. Wan, L. Cai, and Q. Luo. A study on virtual bs
live migration a seamless and lossless mechanism for virtual bs migration. In 2013
IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), pages 2803-2807, Sep. 2013. doi: 10.1109/PIMRC.
2013.6666624.

R Buvaneswaran and S Srikanth. Cell search and uplink synchronization in lte.
2013.

https://focustech.it/download/tecnologia-cloud-ran.pdf
https://focustech.it/download/tecnologia-cloud-ran.pdf
https://pdfs.semanticscholar.org/eaa3/ca62c9d5653e4f2318aed9ddb8992a505d3c.pdf
https://pdfs.semanticscholar.org/eaa3/ca62c9d5653e4f2318aed9ddb8992a505d3c.pdf
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
http://www.sciencedirect.com/science/article/pii/S138912861830080X
http://www.sciencedirect.com/science/article/pii/S138912861830080X

Declaration of consent

on the basis of Article 30 of the RSL Phil.-nat. 18

Name/First Name: AJAYI Jesutofunmi Ademiposi

Registration Number: 15-126-840

Study program: Computer Science

Bachelor ’:l Master Dissertation D

Title of the thesis: Technical Requirements, Design, and Implementation of the live eNB
container migration in LTE Mobile Networks

Supervisor: Prof. Dr. Torsten Braun

| declare herewith that this thesis is my own work and that | have not used any sources other than
those stated. | have indicated the adoption of quotations as well as thoughts taken from other authors
as such in the thesis. | am aware that the Senate pursuant to Article 36 paragraph 1 litera r of the
University Act of 5 September, 1996 is authorized to revoke the title awarded on the basis of this
thesis.

For the purposes of evaluation and verification of compliance with the declaration of originality and the
regulations governing plagiarism, | hereby grant the Uni\/ersity of Bern the right to process my personal
data and to perform the acts of use this requires, in particular, to reproduce the written thesis and to
store it permanently in a database, and to use said database, or to make said database available, to

enable comparison with future theses submitted by others.

Bern, 09/09/2019

Place/Date

o)
Signature / (ﬁ(ﬁﬂn’h

	Jesutofunmi Ademiposi Ajayi
	Prof. Dr. Torsten Braun
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Goal
	1.4 Contributions
	1.5 Thesis Structure

	2 Related Work
	2.1 Introduction
	2.2 Long Term Evolution
	2.2.1 Evolved Packet Core (EPC)
	2.2.2 Radio Access Network (RAN)
	2.2.3 User Equipment
	2.2.4 Channels, Interfaces and Protocols
	2.2.4.1 LTE-Uu Interface
	2.2.4.2 S1-MME Interface
	2.2.4.3 S1-U Interface
	2.2.4.4 X2 Interface
	2.2.4.5 Channels

	2.3 Handovers in LTE
	2.4 Virtual Radio Access Networks (vRAN)
	2.4.1 Cloud Radio Access Networks
	2.4.2 Next Generation Fronthaul Interface

	2.5 OpenAirInterface
	2.5.1 OAI eNodeB

	2.6 Software Defined Radio (SDR)

	3 Radio Access Network Architecture
	3.1 Introduction
	3.2 General Architecture
	3.3 Containerization
	3.3.1 Docker

	3.4 Host Modifications
	3.5 Networking
	3.5.1 Open vSwitch
	3.5.2 Container Networking

	3.6 Checkpoint and Restore in Userspace

	4 Cloud RAN Implementation and Live Migration
	4.1 Introduction
	4.2 OAI eNodeB Implementation
	4.3 Live Migration
	4.4 Live Migration in LTE
	4.5 Challenges in Live Migration
	4.5.1 CRIU Live Migration
	4.5.2 Checkpoint and Restore

	4.6 Observations on CRIU
	4.7 Towards Live Migration

	5 Evaluation
	5.1 Introduction
	5.2 Throughput

	6 Conclusion
	6.0.1 Future Work

	A Software and NFS Configuration
	A.1 Configuration file of the eNodeB at the RCC
	A.2 Configuration file of the Radio at the RRU
	A.3 NFS Configuraton

	B Implementation
	B.1 Modification of lte-ru.c

	C eNodeB and MME Logs
	C.1 Connecting the eNodeB and RRU
	C.2 UE connection to EPC via eNodeB
	C.3 MME registration
	C.4 eNodeB and MME during Checkpoint

	Bibliography

