
A FRAMEWORK FOR THE EVALUATION OF
FLOW-BASED TRAFFIC MONITORING

SYSTEMS

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Peter Siska
2010

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Acknowledgment

First of all I would like to thank my academic advisor, professor Prof. Dr. Torsten Braun, for
agreeing to my rather unorthodox request and giving me the opportunity to write my master
thesis as part of my stay at the IBM Zurich Research Laboratory. Furthermore, I would like
to thank my project advisor Dr. Andreas Kind as well as all of my group members at the
research laboratory, especially Marc Ph. Stoecklin, for their valuable input on the topic, their
indispensable help allowing me to solve many problems along the way, but also for all the off-
topic discussions we had during my stay. Moreover, I would like to thank Markus Nufer, my
manager, for all the time he allowed me to invest into my studies, and for his indispensable
support throughout the thesis. Lastly, I would like to thank Jana, for all her patience and love.

Summary

Systematic evaluation of flow-level network monitoring and analysis systems is crucial for
quantifying their performance and accuracy under various traffic conditions. As many conditions
critical to the proper operation of such systems occur only rarely, or produce overloads on
the collector side when capturing the network traces corresponding to these conditions, such
as network attacks, scans, or similar, the evaluation of traffic monitoring systems is typically
performed on a set of synthetic test traces comprising simplistic traffic structure. Moreover, the
automated assessment of the accuracy of such flow-based systems is further aggravated due to
the missing tools to compare the exact values of traces generated with values analyzed by the
network monitoring and analysis systems.
In this thesis, we propose a novel methodology to generate realistic traffic traces on the
network flow level, allowing the combination of normal background traffic and customized
traffic conditions. Our technique uses a graph-based approach to model and extract traffic-
behavior templates from communication patterns observed in real-world traces. Furthermore,
by combining extracted and user-defined traffic templates, realistic traces with parameterizable
background traffic that also comprise critical borderline cases are generated in a scalable manner.
A proof-of-concept implementation demonstrates the utility and simplicity of our method to
produce a variety of evaluation scenarios. Moreover, the framework introduced in our thesis
comprises a pluggable architecture, allowing user-defined plugins to programmatically examine
the exact values of the generated traces and perform operations before, during, and after the flow
trace generation process, such as the automated evaluation and comparison of values in network
monitoring and analysis systems processing the traces.
Our evaluation sections show that the extraction of traffic templates from real-world traces
leads to a manageable number of intuitive models that still enable an accurate re-creation of
the original communication properties. Moreover, our initial implementation of the framework
is able to achieve satisfactory high flow generation rates, extending its use not only as a means
of evaluating the accuracy of flow-based systems when processing traces with realistic traffic
structure, but also for assessing these system’s processing performance.
We believe that our approach is useful not only for the evaluation of flow-level network
monitoring and analysis systems but also for a wider spectrum of general validation tasks based
on network traces on the flow-level.

Contents

Contents i

List of Figures iii

List of Tables vii

List of Algorithms ix

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 2
1.3 Thesis Outline . 3

2 Related Work 5
2.1 Packet-based Generators . 5
2.2 Flow-based Generators . 6
2.3 FLAME . 8
2.4 Harpoon . 9
2.5 Topology Generators . 10
2.6 Traffic Dispersion Graphs . 11
2.7 NetFlow / IETF IPFIX . 13
2.8 Flow Record Attributes . 14

3 Background 15
3.1 Graph-based Connectivity Pattern Modeling 15
3.2 Traffic Portion of The Top Service Ports . 17
3.3 Visualizations of Traffic Dispersion Graphs 18
3.4 Graph Degree Properties . 20

4 Flow Trace Generation Framework 23
4.1 Partitioning . 24
4.2 Traffic Templates . 25

4.2.1 Distribution Parameters . 26
4.2.2 Representation of Partitioning . 27

i

4.2.3 Optional Parameters . 29
4.3 Self-Parameterization . 30

4.3.1 Top Ports Calculation . 31
4.3.2 parameterization of Templates . 31

4.4 Flow Trace Generation . 36
4.4.1 Template Customization . 36
4.4.2 Generating TDGs from Templates . 38
4.4.3 Flow Record Generation . 41

4.5 Pluggable Architecture . 44

5 Evaluation 47
5.1 Graph Generation . 47
5.2 Graph Degree Distribution . 52
5.3 Traffic Structure . 54

5.3.1 Graph Metrics . 54
5.3.2 Partitioning . 57
5.3.3 Visualizations . 59

5.4 Definition of Traffic Scenarios . 61
5.5 Performance . 64
5.6 Limitations . 66

6 Conclusion 71

Glossary 73

Bibliography 75

ii

List of Figures

2.1 Graphical user interfaces of two NetFlow generators 7
(a) Paessler NetFlow Generator . 7
(b) Flowalyzer NetFlow & sFlow Generator 7

2.2 Example visualization of a TDG. 12

3.1 Example TDG with six vertices and seven directed edges 16
3.2 Visualization of port-based TDGs of six service ports 19

(a) HTTP (80, TCP) . 19
(b) DNS (53, UDP) . 19
(c) SSH (22, TCP) . 19
(d) NetBIOS NS (137, UDP) . 19
(e) HTTPS (443, TCP) . 19
(f) LDAP (389, UDP) . 19

3.3 Scatter plots of out-degree and in-degree values of TDGs 21
(a) HTTP (80, TCP) . 21
(b) DNS (53, UDP) . 21
(c) SSH (22, TCP) . 21
(d) NBNS (137, UDP) . 21
(e) HTTPS (443 TCP) . 21
(f) LDAP (389, UDP) . 21

4.1 Degree distribution partitioning and example partitionings for HTTP and DNS
traffic . 24
(a) Degree distribution partitioning . 24
(b) Partitioning of HTTP (80, TCP) . 24
(c) Partitioning of DNS (53, UDP) . 24

4.2 Partition parameters generated over a number of time intervals for DNS and HTTP 28
(a) [10, 100)× [10, 100) partition parameters (DNS) 28
(b) [10, 100)× [0, 1) partition parameters (HTTP) 28

5.1 Relative difference in the number of vertices and edges between original and
generated graphs (campus network). 48
(a) HTTP (80, TCP) . 48
(b) HTTPS (443, TCP) . 48

iii

(c) SSH (22, TCP) . 48
(d) DNS (53, UDP) . 48
(e) NetBIOS NS (137, UDP) . 48
(f) LDAP (389, UDP) . 48

5.2 Relative difference in the number of vertices and edges between original and
generated graphs (hosting provider) . 49
(a) HTTP (80, TCP) . 49
(b) DNS (53, UDP) . 49

5.3 Relative difference in the number of vertices and edges between original and
generated graphs (polynomial coefficients) . 50
(a) HTTP (80, TCP) . 50
(b) HTTPS (443, TCP) . 50
(c) SSH (22, TCP) . 50
(d) DNS (53, UDP) . 50
(e) NetBIOS NS (137, UDP) . 50
(f) LDAP (389, UDP) . 50

5.4 Relative difference in the number of vertices and edges between original and
generated graphs (hosting provider) . 51
(a) HTTP (80, TCP) . 51
(b) DNS (53, UDP) . 51

5.5 CCDF, P (X > x), of the degrees of each vertex in the original and generated
graphs (campus network). 53
(a) HTTP (80, TCP) . 53
(b) HTTPS (443, TCP) . 53
(c) SSH (22, TCP) . 53
(d) DNS (53, UDP) . 53
(e) NetBIOS NS (137, UDP) . 53
(f) LDAP (389, UDP) . 53

5.6 CCDF, P (X > x), of the degrees of each vertex in the original and generated
graphs (hosting provider). 54
(a) HTTP (80, TCP) . 54
(b) DNS (53, TCP) . 54
(c) HTTPS (443, TCP) . 54
(d) SMTP (25, TCP) . 54

5.7 Comparison of graph partitionings between original and generated traffic 58
(a) DNS (53, UDP) . 58
(b) HTTP (80, TCP) . 58

5.8 Visualizations of original TDGs and TDGs established from generated traffic . 60
(a) HTTP (80, TCP), Original Graph . 60
(b) HTTP (80, TCP), Generated Graph . 60
(c) DNS (53, UDP), Original Graph . 60
(d) DNS (53, UDP), Generated Graph . 60

5.9 Comparison of graph partitionings between original and generated SSH traffic . 63

iv

(a) Original Traffic . 63
(b) Generated Traffic . 63

5.10 Three phases of the flow-generation process. 64
5.11 Comparison of aggregated graph partitionings between original and generated

traffic . 67
(a) Original Traffic (80, TCP) . 67
(b) Generated Traffic (80, TCP) . 67

5.12 Illustration of vertex movement in partitions between consecutive intervals. . . 68

v

List of Tables

3.1 Traffic Statistics for the top 50 service ports 17

4.1 Traffic Template Parameters . 26

5.1 Graph metrics comparison of TDGs of original and generated traffic 56
5.2 Network Scan Template Parameters . 61

vii

List of Algorithms

1 Calculation of ~ag,k for a partition parameter g ∈ Gk for a partition k ∈ K . . . 35
2 Graph generating algorithm . 39
3 Algorithm to form edges from vertex out-stubs and in-stubs. 40
4 Algorithm to generate flow trace from traffic templates. 43

ix

Chapter 1

Introduction

The complexity and importance of computer networks has risen considerably over the past
decades as the world becomes increasingly connected. In the course of such development, new
challenges in planning, deployment, and maintenance of computer networks arise. In order to
ensure the best possible operational quality, and an error-free and continuous operation of their
network infrastructure, businesses and Internet service providers employ a plethora of tools that
monitor, measure, analyze and evaluate traffic that flows through their networks.
Traffic-monitoring and anomaly detection systems are widely used in corporate and service
provider networks to gather network-related information of business critical applications,
analyze prevalent communication patterns of the traffic, collect data for volume-based
accounting, or detect abnormal traffic patterns. In addition to performing these analyses on
the packet level, many of today’s traffic monitoring systems use flow-based information of
the network traffic, e.g., NetFlow or IETF IPFIX, exported by routers, switches, or software-
based probes. Even though these protocols summarize observed traffic flows into a compact
representation, the sheer amount of flows as well as particular traffic conditions may lead to an
overload and inaccurate results produced by monitoring systems.
Systematic testing of monitoring systems to ensure accuracy and performance is therefore
crucial, but, at the same time, poses a number of challenges. Flow-based traces are usually
in a fixed, binary format, leaving them hard to parameterize in terms of the number of flows or
the number of unique network hosts present in traces used for evaluation. Similarly, the flow
record field values, such as the start and end timestamps, the number of packets or bytes, or the
flow duration and similar, in such traces cannot easily be adapted to contain desired values that
model specific, desired traffic conditions, without rewriting each flow record in existing traces.
Therefore, the evaluation of a traffic monitoring system is typically performed on a collection
of traces known to contain complex constellations such as attacks, network scans or high item
cardinalities, e.g., many different service ports or IP addresses, or very high flow rates, e.g., the
number of network flows present in a trace during a fixed time interval.
Many traffic conditions detrimental to a monitoring system’s performance are, however, difficult
to collect as they are either observed rarely or may produce overloads on the collector side.
Critical traffic scenarios must be generated synthetically. This is achieved with a set of manually
parameterized scripts to imitate expected traffic conditions. Consequently, the flow attributes and

1

the structure of the traffic are limited by simplifications and assumptions resulting in unrealistic
traffic properties. Therefore, evaluations using these traces only rarely provide satisfying results.

1.1 Problem Statement

In this thesis, we consider the problem of flow-level trace generation to support the evaluation
in terms of performance, as well as in terms of correctness of traffic analysis performed, of
monitoring systems under realistic conditions. Flow-level network-monitoring systems are
faced with very high flow export rates from one or more export devices (e.g., routers) in the
network. The systems are equipped with high-speed insertion algorithms and specially designed
in-memory database systems. The performance of the flow processing is bounded by hardware
constraints as well as the structure of the monitored traffic. If the analyzer process cannot keep up
with the rate of incoming flow records, the quality of the results degrades. A proper evaluation
of the performance limits of monitoring systems is therefore indispensable, both in terms of
export rates and nature of the observed traffic. We propose a theoretical and practical framework
comprised of different parts that, either used each on its own or in combination, help to evaluate
such flow-based traffic-monitoring systems.
First, we propose a template-based approach using graph-theoretic metrics to define traffic
patterns present in traffic scenarios such as attacks, anomalies, and other borderline cases.
By combining different templates and streaming the generated traffic trace to a monitoring
system, the performance and data processing accuracy of such system can be studied under
various conditions. Our approach enables easy-to-use customization of traffic features and
characteristics in terms of the number of hosts and flows, as well as the evaluation time.
Moreover, we present a self-parametrization technique that extracts traffic templates from real-
world traffic traces. These templates enable the recreation of flow traces that closely resemble
those of the original traffic, and allow for parameterization of certain traffic aspects such as the
number of flows, the number of unique network hosts, or values of other network flow attributes
such as the number of packets and bytes, as well as flow durations. The template library created
can be used as background traffic and combined with customized templates to produce specific
evaluation scenarios.

1.2 Contributions

The contribution of our work is threefold. First, we introduce the concept of traffic templates,
a compact representation of network traffic conditions using a set of graph metrics and their
evolution over time. By means of such templates, network flow traces containing desired traffic
conditions can be composed and generated. Several different traffic templates can be combined
to generate parameterizable background traces with realistic traffic structure. Furthermore, our
template-based approach allows for definitions of custom, specific traffic scenarios, such as
network scans, attacks, or similar. The combination of thereby defined templates containing
user-defined traffic conditions with traffic templates established from real-world traces, enables

2

the generation of traces comprising borderline cases and realistic background traffic which can
be used to evaluate the accuracy of traffic-monitoring systems.
Second, we present a self-parametrization technique that extracts traffic templates and their
respective template parameters from existing flow traces and enables the creation of a library
of realistic and parameterizable background traffic. We demonstrate that the traffic structure
of flows generated from these templates exhibits characteristics close to those observed in the
original traffic.
Finally, we introduce a flow-based traffic generator which generates flow records in NetFlow
format from a collection of traffic templates. To the best of our knowledge, we are the first to
generate parameterizable flow records with traffic structure established from real-world traces
directly, without the detour of a packet-based traffic generator in conjunction with a flow
collecting probe device or software application, as a means of evaluating flow-based monitoring
systems. Moreover, the realistic traffic structure in the flow traces generated and the ability to
easily define custom traffic scenarios addresses the simplistic approach and some drawbacks of
the existing flow-based generators described in Section 2.2. Finally, the pluggable architecture
of our flow generator implementation allows for an automated processing of the generated data,
hence providing a valuable instrument to assess the accuracy of flow-based systems that process
and analyze the flow trace generated.

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, we review existing techniques to produce
evaluation traces as well as other techniques related to our work. Moreover, we describe the
graph-theoretical traffic classification approach, which serves as the main building block of
our methodology. We specify important background information related to our objectives,
and present observations that justify our design choices in Chapter 3. Chapter 4 presents our
template-based approach and the self-parametrization technique. Moreover, we introduce details
about our trace generator implementation and provide information about the algorithms used.
The flow trace generation, the self-parametrization technique, as well as the definition of custom
traffic scenarios and the performance of our trace generator are evaluated in Chapter 5.

3

Chapter 2

Related Work

2.1 Packet-based Generators

A vast number of packet-based network traffic generators and models have been proposed over
the past years. The work by Rolland et al. [1, 2, 3] introduces LiTGen, a lightweight network
traffic generator. LiTGen uses a hierarchical description of semantically meaningful traffic
entities, where each entity is expressed by a set of random variables in order to statistically
model IP traffic on a per user and application basis. This hierarchical model is made up of four
distinct levels.
First, in a per-user defined session level, the traffic for each user is characterized by a series of
session and inter-session periods, expressed by the size of each session in terms of the number
of objects downloaded, and the inter-session durations. Next, on the object level each session
is split into several objects, a set of user requests and server responses. Finally, a packet level
further divides each session object into a series of packets and is expressed by a random variable
for the packet inter-arrival times. LiTGen uses existing packet traces to extract the relevant
parameters for each level and traffic entity in a bottom-up approach.
When generating the output, the packet stream for a each user and application is composed
in a top-down fashion across the different levels, starting with the session level, moving to
the generation of single packets on the packet level. The number of users is fixed for each
application. By superimposing the synthetic trace of all users and all applications, the final trace
is obtained.
Vishwanath et al. introduced an other packet-based traffic generator called Swing [4]. Similar
to LiTGen, it uses a structural model to emulate the distributions for user, application, and
network behavior. The model in Swing consists of four categories (layers), where each category
is expressed by a set of suitable parameters. A users layer characterizes the application-specific
user behavior in the traffic. The properties of different user sessions, such as the number and
target of individual connections within a session, are expressed in the sessions layer. Then, the
authors furthermore consider the connections layer, where connection-specific traffic properties
such as the request size or the packet size distribution are characterized. Finally, they include a
fourth layer in their model to model the low-level network characteristics such as link loss-rates
and delays, path latencies, and similar.

5

Several other similar packet-based network traffic generators exist. Most commonly, such
traffic generators preserve traffic properties on the packet-level, such as inter-packet gaps, file
size distributions, or traffic burstiness. They have been applied in application-specific traffic
generation, soft- or hardware performance evaluation [5, 6], and the evaluation of anomaly
detection systems [7, 8].
We focus on flow-level rather than packet-level trace generation: our aim is to produce traces
that preserve traffic properties on the network flow level (e.g., connectivity patterns), which are
essential for the evaluation of flow-based network monitoring and analysis systems. Even though
a packet-level generator combined with a flow-exporting probe may be employed produce flow
traces, the overhead incurred and the risk of potential measurement errors arising in the probe
are not justified. Furthermore, some packet-based generators, e.g., Swing, require the use of
cutting-edge hardware to properly emulate all network characteristics and therefore generate
realistic flow traces.
Moreover, our aim is to model traffic properties that are important for the evaluation of flow-level
network monitoring systems. These properties include a useful traffic structure, the flow-level
traffic properties, such as the number of flows, or the application (service) port diversity.

2.2 Flow-based Generators

To the best our our knowledge, only a few open-source or commercial tools for generating
network traces in a flow-based format, e.g., NetFlow, are available. Paessler NetFlow
Generator [9] and Flowalyzer NetFlow & sFlow Generator [10] are two freely available, closed-
source software packages provided by businesses for rudimentary testing of their commercial
network analysis products. Usually, these tools are applied as a means of testing the capability
of flow-based monitoring systems to receive data. Consequently, only a small subset of the
possible flow-level properties can be parameterized.
In the two software packages mentioned, for example, source and destination ranges for IP
addresses as well as for application ports for the flow records to be generated can be defined
through a graphical user interface. An example of the interfaces of both tools is shown in
Figure 2.1. Furthermore, in some of the tools, the values of certain NetFlow record fields such
as packet and byte count, source and destination interface, type of service, TCP flags, or source
and destination autonomous system can be specified, either as fixed values or value ranges.
The generated NetFlow packets are sent as datagrams over the UDP protocol to the destination IP
address and port specified in the user interface. An open-source alternative to these applications
is the NetFlow Simulator in C# [11]. Similar to the previously mentioned tools, it provides
a graphical user interface for configuration. However, this application only allows the user
to specify a small portion of the flow record fields available. Namely, the NetFlow datagram
version and a traffic rate, in terms of the number of packets per second, to use when sending the
NetFlow packets over UDP. Values for the flow record fields are not user-definable but chosen
at random for each record.
Although these tools generate flow records directly, without the detour of a packet-level traffic
generator in combination with a flow-based data collecting router device or software application,

6

(a) Paessler NetFlow Generator

(b) Flowalyzer NetFlow & sFlow Generator

Figure 2.1: Graphical user interfaces of two NetFlow generators

they only support generation of simplistic traffic structure or trace properties. For example,
the user can only specify source and destination ranges for IP addresses and application ports,
which does not lead to realistic traffic structure in the trace generated. Moreover, custom traffic
scenarios, such as network scans, attacks, or other borderline cases, cannot easily be modeled
and underlaid with realistic background traffic. Consequently, the ability of these existing tools
to evaluate flow-based systems under realistic traffic conditions is very limited.
Furthermore, some of the tools [9, 10] include only one flow record per each NetFlow packet

7

generated, which is another serious drawback as in real-world applications, router devices
usually export up to 301 [12] flow records in a single UDP datagram. These tools, moreover, are
not able extract traffic information from real network traces to parameterize the configuration
and are limited to graphical user interfaces, which impede automation and are usually restricted
to one specific operating system.
Flow-based network monitoring systems are usually capable of achieving flow record processing
rates of thousands or even ten thousands of flows per second. This is where the current set of
flow trace generators fails to provide satisfactory results. Although the NetFlow generators
mentioned here can be used for basic inspections of data processed by a network monitoring
system, the low flow record generation rates achieved constitute a serious drawback.
Finally, the automated processing and comparison of data generated with data collected by a
network monitoring system is missing in these generators. Although some generators, such as
the Paessler NetFlow Generator or Flowalyzer NetFlow & sFlow Generator, provide elementary
statistics about the data generated (cf. Figure 2.1), there is no notion of any other flow record
attributes which have been generated. As such, the collecting network monitoring system cannot
compare the data collected, such as the total number of bytes in the flow records, or the total
number of unique IP addresses present in the trace, with the data generated.
In our work, we propose a pluggable flow generator architecture, which allows for an automated
processing of the generated data. Consequently, specific plugins can collect and compare actual
flow attributes of generated data with values processed by the network monitoring system.

2.3 FLAME

Brauckhoff et al. [13] introduced a flow-level anomaly modeling engine. Their work focuses on
providing a framework for injecting user-defined, realistic and parameterizable anomalies into
existing flow traces. By operating on existing flow traces captured from real network traffic, the
authors are able to provide realistic background traffic while having control over the simulated,
explicitly defined anomalous traffic. As opposed to defining anomalies by a descriptive model,
e.g., in terms of an anomalous effect on monitored network data, they apply a constructive
model by building a list of known anomaly events. As such the authors distinguish between
three classes of anomalies: additive, subtractive, and interactive. For additive anomalies, such as
network scans or bot activities, FLAME injects new flow records into the existing traces, while
not interacting with the baseline traffic. Subtractive anomalies, e.g., outages in the network or
ingress shifts, remove existing flow records from the existing traces. In the case of interactive
anomalies, such as denial of service attacks, new records that interact with the baseline traffic
are added to the trace.
The FLAME prototype consists of five functional building blocks. A reader takes an existing
flow trace as input and converts it to an internal format. The flows are then passed to a deleter
unit, which selects flows to be deleted based on a deleter model passed as an additional input
parameter. For additive and interactive anomalies, a flow generator outputs new flows based on

1The number of flow records exported in a single UDP datagram depends on the version of the protocol used. For
different NetFlow versions for example, the number of records in a packet can vary from 24 to 30.

8

a generator model. Depending on the type of an anomaly, the flow generator either generates
packets or entire flows and groups the output into one flow stream. In a next step, a flow merger
combines the two output streams from the deleter and generator into one flow stream. Finally,
the combined stream is written to a trace file and output by the flow writer.
The work presented in FLAME emphasizes on injecting user-defined anomalies into existing
flow traces as a mean to evaluate anomaly detection systems. Our work differs in that we do
not primarily target the evaluation of such anomaly detection systems, but more generally flow-
based traffic monitoring systems. Moreover, as opposed to operating directly on existing flow
traces, we extract parameters from existing traffic that allow us to generate new flow traces with
traffic structure and host connectivity properties similar to that in the original traces.

2.4 Harpoon

Sommers et al. proposed Harpoon, an application-independent and configurable network traffic
generator [14, 6]. Their approach aims at generating representative packet traffic at the IP flow
level. The packet traffic is generated by means of unicast file transfers using either the TCP or
UDP protocol. Harpoon implementation comprises a three-level hierarchical model.
On the lowest hierarchical level in Harpoon, the file level, file transfers are modeled by the
distribution parameters for the the file sizes and the time intervals between consecutive file
transfers. The middle level in their implementation is referred to as the session level, comprising
three components: the IP address spatial distribution, the inter-session start times, and the
session duration. Here, series of file transfers take place between network hosts drawn from the
IP address distribution parameter, each series of file transfers being separated by a time interval
determined by the inter-session start time parameter. Finally, the highest level is described as
the user level, which models network users conducting consecutive sessions using either TCP
or UDP. The session level is parameterized by the number of active users and the time period
lengths during which users are active.
By modulating the parameters in each level in the model, Harpoon can generate packet traffic
that exhibit bytes and packets volume, as well as temporal and spatial characteristics similar to
those found in real traffic. Related to our work is the ability of Harpoon to extract the model
parameters from existing traces. In Harpoon, the relevant distribution parameters for each level,
such as the file sizes, inter-connection times, IP addresses, or the number of active sessions and
similar, are extracted from existing NetFlow (or packet) traces in a self-parametrization process.
However, our approach differs in that we model and generate flow records (as opposed to packet
traffic) and preserve flow-level properties (as opposed to per-flow properties), such as the distinct
connection structures on service ports (applications), as well as the service port diversity found
in real-world traffic traces. Moreover, while the approach presented in Harpoon seems suitable
for router device and network hardware testing [6], it suffers similar drawbacks with regard to the
evaluation of flow-based systems as described in Section 2.1, since the trace is being generated
on the packet-level. Also, their approach, similar to some other packet-based generators, requires
the use of several different computers as well as router hardware for the generation and collection
of traces, while the framework introduced in this thesis can be operated from a single, desktop-

9

class commodity machine without any additional hardware requirements.

2.5 Topology Generators

Related to our problem of generating flow traces, with structural traffic properties similar to
those found in real networks, is the generation of realistic network topologies, a topic which
has been widely covered in the area of network research. Network topologies map the physical
interconnections between network elements, which can be either single hosts on the host-level,
network routers on the router-level, or entire Autonomous Systems (AS) which are connected
groups of one or more IP network prefixes run by a specific network operator [15].
The need for generated, synthetic but realistic network topologies arises mainly due to the
difficulty of obtaining topologies of operational networks. Although network protocols,
applications, and algorithms should be designed to be independent of the underlying network
topology, the latter often has an impact on the performance of network protocols or applications.
Consequently, realistic network topologies are important for a proper evaluation of network-
based technologies, especially in order to draw accurate conclusions when performing
simulation-based evaluations.
The topological structures of networks are usually expressed as graphs in which vertices either
constitute network hosts, routers, or ASs, based on the network hierarchy level modeled.
Tangmunarunkit et al. distinguish between two categories of network topology generators:
structural and degree-based topology generators [16].
Structural topology generators, such as Transit-Stub [17] or Tiers [18], are based on a
hierarchical model of the Internet, which is viewed as a collection of interconnected routing
domains. The size of each domain determines its type and also its position in the hierarchy, with
wide area networks being on the top level, and fine-grained networks such as campus networks or
local area networks being on the bottom. The graphs are generated top-down by interconnecting
the routing domains based on predefined parameters, while the intranetwork connectivity in each
routing domain is handled separately.
Faloutsos et al. [19] later showed that the degree distributions of graphs of router- and
AS-level Internet topologies are power-laws, a structural property which the hierarchical
topology generators were not able to model. Consequently, degree-based topology generators
were introduced. These topology generators are designed to mainly match the power-law
distributional properties of the Internet topology graph degrees.
A prominent and widely used topology generator is BRITE [20]. Similar to other topology
generators, BRITE builds the graphs that model the topologies by first placing the vertices
(nodes) in the plane. Then, the nodes are interconnected by forming edges in the graph.
Furthermore, additional attributes relevant to topological components, such as the link delay, AS
ids for router nodes, etc., can be assigned. Finally, the topology generated is output to a specific
format. Due to different topology generation models that can used during the node placement,
as well as the edge forming process, BRITE is capable of generating both, degree-based and
hierarchical topologies.
Nevertheless, our work is different from topology generators. First, we model the traffic structure

10

on the network host-level, as opposed to the coarser level of traffic between network routers or
ASs. Moreover, the degree distributions of graphs generated from the traffic structure for each
service port are not of specific types or power-laws. Therefore we try to learn the traffic structure
found in real traces and model it with graphs generated from the empirical degree distribution.
Finally, the physical topology of the network, such as the node placement and inter-distances,
link-delays, or similar, are not of particular interest since we do not generate traffic on the
packet level, but rather abstract to trace generation on the flow-level and concentrate on the
logical structure of the traffic seen in a network, i.e., the number of clients and servers, and their
interconnectivity.

2.6 Traffic Dispersion Graphs

The traffic modeling approach introduced in our work uses graph-theoretic means. We apply the
concept of Traffic Dispersion Graphs (TDGs) introduced by Iliofotou et al. [21, 22] as a method
for network traffic analysis and classification. TDGs are graphs in which each node is a host
in the network and every edge represents an interaction between two hosts. Figure 2.2 shows
an example TDG visualization established from an analyzed 300 seconds long flow trace. The
number of nodes in the graph has been limited to 600 to better depict the resulting visualization.
Edges between nodes in TDGs can be established in various ways and their formation depends
on the type of analysis the graphs are used for. For example, edges between nodes can be created
based on the application service port of the traffic between two network hosts, the number of
bytes transferred, or the IP protocol used, and similar. Moreover, by using directed edges in
TDGs, the graphs can be used to capture the “social” behavior among hosts in a network. TDGs
can therefore be used to successfully model the roles of network hosts.
When using directed edges in the graphs, there is a clear distinction between ”who talks to
whom”[22] in the traffic trace. As such, network hosts acting as service initiators and as service
providers can be unambiguously identified and modeled using TDGs. We provide a more
detailed definition of TDGs, motivate our design choices when modeling interactions between
network hosts with edges in the graph, as well as depict additional visualizations in Chapter 3.
TDGs have successfully been applied as a means to network monitoring and traffic classifica-
tion [22]. The authors create port-based TDGs from real network traffic traces from a set of
twelve consecutive, disjoint intervals of fixed length of 300 seconds2. The edges between nodes
in port-based TDGs are created for traffic between network hosts on specific application ports
on the respective IP protocols.
They analyze the computed graphs by means of several graph metrics, such as the number of
graph vertices and edges, the average degree, the assortativity coefficient, and similar, and show
that the average metric values computed over the set of analyzed intervals introduce only small
standard deviations of each metric for each network traffic type. Consequently, they suggest that
the TDGs can be used to characterize and distinguish specific classes of traffic. Some graph
metrics for HTTP (port 80) traffic, for example, significantly differ from the graph properties of

2The sum of these twelve consecutive, disjoint intervals leads to a total analyzed trace length of one hour of traffic.

11

TDGs created from DNS (port 53) traffic and vice versa.
The authors extend these findings in a more recent work and introduce Graption [23, 24],
an application classification framework for automated detection of P2P applications. First,
Graption eliminates network traffic for known legacy applications such as Web, DNS, or SMTP
by filtering out these application-specific flows from the trace in a pre-processing step. Then,
network flows in the remaining traffic are grouped based on numerous packet and flow features
by clustering and cluster merging. Finally, a TDG is created for each group obtained. A set
of rules applied to the graph metrics computed from these TDGs can successfully identify P2P
traffic. Although their work focused on P2P application detection, they propose that Graption
can be used for general application classification by choosing appropriate set of metrics in the
application of rules [24].

Figure 2.2: Example visualization of a TDG.

12

2.7 NetFlow / IETF IPFIX

NetFlow is a network protocol implemented on specific hardware router devices and provides a
set of features that allows network operators to gain IP flow information about traffic in networks.
Although initially implemented by Cisco and as such available only routers running Cisco’s
Internetwork Operating System (IOS), NetFlow has since become a widely spread network
monitoring solution adopted by other vendors. The initial and to date the most commonly used
NetFlow version is the protocol version 5 [12]. An updated and more flexible version 9 [25]
introduced later by Cisco has been standardized by the Internet Engineering Task Force (IETF)
and defines the IP Flow Information Export (IPFIX) Protocol [26, 27].
The most basic description of a flow is a set of packets that share common characteristics. More
precisely, a network flow is defined as a unidirectional stream of packets which have the same
source and destination IP address, use the same Layer 4 network protocol, and have an equal
source and destination port in the IP packet headers [28]. Formally we express a flow as a
5-tuple f with equal key fields f = (srcIP , dstIP , srcPort , dstPort , protocol).
The NetFlow protocol specification extends this 5-tuple flow definition by imposing additional
bounds on the packet stream. In NetFlow, the set of packets must also arrive at the router on the
same ingress interface and comprise the same Type of Service (ToS) byte in the IP headers [12].
For the remainder of this thesis we will use the term “flow” to refer to an entry in the NetFlow
record, using the values which constitute the 5-tuple definition f , rather than to the series of
packets defining a flow. Furthermore, a flow record in NetFlow can contain additional flow
fields such as packet and byte counts, source and destination AS, or similar. The inclusion of
these fields depends on the NetFlow version used as well as the configuration of the network
device exporting flow-based information.
For each packet passing a measuring point in the network, e.g., a NetFlow-enabled router
or switch, the device (exporter) keeps a flow cache, a list of all active flows. The NetFlow
implementation then determines whether a packet is part of an already existing flow and updates
the respective flow properties, or creates a new flow entry in the cache. Items in the flow cache
are periodically expired based on a fixed set of rules such as flow inactivity timeout, FIN or RST
TCP flags, or if the device cache becomes full. Expired flows are grouped together and packed
into NetFlow datagrams and exported over the UDP protocol to a collecting device (collector)
for further analysis.
Each NetFlow datagram consists of a header and a sequence of one or more flow records.
The export packet header contains information about the NetFlow version used, the number
of records in the datagram, a flow sequence number, as well as router-related information such
as the system uptime and a UNIX timestamp. The number and type as well as the order of flow
record fields is fixed in the NetFlow version 5. In NetFlow version 9 or IETF IPFIX the contents
of a flow record can be described by a template flowset. This allows for a flexible configuration
of the record format as opposed to the fixed format in earlier versions.

13

2.8 Flow Record Attributes

The main goal of our thesis is the generation of flow traces with realistic traffic structure,
rather than an accurate reproduction of flow-level traffic patterns such as the flow durations,
flow volume (in bytes or packets), or per-flow attributes such as the number of packets or
bytes. Usually, flow-based network monitoring systems are mainly affected by the number
of hosts, their inter-connections, as well as the network protocol and port diversity present
in the traffic they process. Therefore, the reproduction of flow-level traffic patterns is, in our
case, of secondary interest. Nevertheless, in order provide at least a reasonable approximation
flow record attributes, a statistical distribution for modeling flow record attributes needs to be
identified.
Current literature suggests the existence of heavy-tailed distributions, such as the Pareto,
Weibull, or Lognormal distribution, for flow durations and flow lengths in network traffic [29,
30, 31]. Olivier et al. observed that the flow length in terms of flow duration and the number
of packets or bytes often shows a very high degree of variability. Therefore, the statistical
distribution of these values behaves differently in the head and the body of the distribution and is
as such often best expressed by a mixture of two different distributions, such as, for example, the
Pareto and the Lognormal distribution [32]. Other authors also suggest that flow-level properties
for certain application-specific traffic such as web or peer-to-peer traffic can be approximated by
a Pareto or Lognormal distribution [33, 34].
We describe the statistical distribution chosen in our approach in the definition of traffic
templates in Section 4.2 as well as in the self-parametrization process outlined in Section 4.3.

14

Chapter 3

Background

3.1 Graph-based Connectivity Pattern Modeling

Our work has been inspired by the work of Iliofotou et al. [22]. They analyze the interactions
between hosts on a given service port by means of graph-based metrics in Traffic Dispersion
Graphs (TDG), described previously in Section 2.6. However, while they use the graph metrics
for application-based traffic classification, we use them as a basis for trace generation.
A TDG is a directed graph G = (V,E) that consists of a collection of vertices V (hosts) and a
collection of edgesE (connections) that connect pairs of vertices. Figure 3.1 (adapted from [22])
depicts an example TDG composed of six vertices H1, . . . ,H6 ∈ V . In general, the directed
graph that defines a TDG is not simple as an edge (H1, H4) and an edge (H4, H1) can be
created as shown in Figure 3.1. Furthermore, a TDG by definition evolves in time and space as
new connections between hosts that interact with each other emerge, and new vertices and edges
are being added to the graph. As such, each TDG is associated with a fixed time interval over
which it was formed, or with a fixed number of network hosts used to establish the graph. The
edge labels 1, . . . , 7 in Figure 3.1 depict the order in which the connections between hosts in the
network were observed.
A vital part of TDGs is the definition of an edge, a process called “Edge Filtering” [24].
Generally, a connection or traffic flow between two hosts in a network has a clear notion of
a service initiator and a service provider. For example, service initiators can be network nodes
with specific applications such as web browsers, downloading data from and transferring data to
web servers that act as service providers. Therefore, the edges between vertices in a TDG are
directed. The authors in [24] distinguish between two basic edge filters for TDGs:

• Edge of First Packet (EFP)
Since UDP is a connection-less protocol, we cannot properly differentiate between the
service provider and service initiator due to the absence of TCP flags. Therefore, this
filter, mainly used to translate UDP flows between hosts into directed edges, adds an edge
(u, v) between two vertices (hosts) when the first packet is sent from u to v.

• Edge on First SYN Packet (EFSP)
Contrary to UDP, the roles of two network hosts involved in an interaction can be

15

H2 H3 H4

H1 H5

H6

41 2
3 65

7

Figure 3.1: Example TDG with six vertices and seven directed edges

determined based on the values of the TCP flags. This filter creates an edge (u, v) between
two vertices when the first SYN packet is sent from u to v.

This basic set of edge filters can be further extended by an additional set of rules to model
specific goals of a study. We can for example chose to create edges between vertices in the
graph only when a certain amount of packets or bytes has been transferred between two hosts.
Another possible filter can consist of adding an edge only when traffic on a specific service port
or a range of ports has been seen between pairs of network nodes. Furthermore, a protocol-
based edge filter could be established, creating edges between vertices only when traffic is being
exchanged using a specific protocol such as UDP, TCP, ICMP, or similar.
In our work we focus on protocol- and port-based1 TDGs. We add a directed edge (u, v) ∈ E
between two vertices u and v when a flow between the two hosts is first seen over a given
protocol and on a given service port. Since we analyze flow records in NetFlow format, we use
the term “flow” instead of “packet” and name the edge filter applied Edge on First Flow (EFF),
based on the definition of the EFP filter.
Although the NetFlow protocol is capable of storing the value of TCP flags of flows in the
records, most traces used in our analysis do not contain TCP flags. More generally, we need to
assume that TCP flags are often not exported in the flow records by the respective devices, hence
we cannot rely on these. Furthermore, the UDP protocol being connectionless does not provide
any direct notion of service initiators and service provides, making it harder to determine the
direction of a flow between two hosts.
Therefore, to determine the direction of an edge, we apply a simple heuristic. First, we compare
the source and destination port numbers in the flow record with the service or application port
number the port-based TDG is being established for. When the source port number matches the
port number we filter on, the source IP address in the flow is most-likely the service provider and
we create a directed edge in the TDG from the destination to the source IP address. Inversely,
when the destination port number of the flow equals the filtered port number, the destination IP
address is assumed to be the service provider and an edge from the source to the destination IP
address is added to the graph. In some rare cases, the source and destination port number can
be the same in a flow record. Therefore, in the cases, we identify the source IP address as the

1For the remainder of this thesis we will use the term “port-based” TDG when referring to these graphs. However,
while leaving out the explicit “protocol-based” prefix, we note that each such graph models the traffic structure on
exactly one service port and one network protocol.

16

Table 3.1: Traffic Statistics for the top 50 service ports, TCP and UDP traffic combined

(a) Campus Network Traffic

Length % Packets % Bytes % Flows % Hosts

1h 97.16 (1.43) 98.54 (1.10) 89.76 (1.96) 74.38 (11.67)

2h 96.90 (1.33) 98.30 (0.99) 90.23 (1.68) 75.76 (14.14)

4h 96.10 (0.91) 97.75 (0.67) 89.89 (1.45) 69.60 (12.72)

8h 96.43 (0.66) 98.20 (0.40) 89.72 (0.96) 64.89 (13.32)

24h 96.62 (0.45) 98.22 (0.36) 90.56 (0.48) 65.90 (12.29)

Average Values

5h 96.85 (1.30) 98.32 (0.98) 89.96 (1.71) 72.95 (13.22)

(b) Hosting Environment Traffic

Duration % Packets % Bytes % Flows % Hosts

1h 87.35 (3.76) 90.57 (3.09) 91.14 (10.28) 98.49 (0.47)

2h 87.50 (3.16) 90.78 (2.89) 91.01 (9.26) 98.74 (0.30)

4h 86.72 (2.63) 89.77 (2.35) 91.66 (8.10) 98.95 (0.21)

8h 86.25 (2.04) 89.06 (1.26) 92.48 (4.38) 99.07 (0.15)

24h 86.14 (0.78) 89.00 (0.58) 89.86 (2.90) 99.10 (0.13)

Average Values

6h 87.46 (3.15) 90.62 (2.82) 91.35 (8.89) 98.75 (0.34)

service initiator and the destination IP address as the service provider.
Consequently, we can exclude the existence of self-loops in the definition of a TDG since
network connections are always established between two distinct hosts. Furthermore, once an
edge (u, v) has been added to the graph using the EFF filter, new flows from u to v are ignored.
Consequently, a TDG cannot have multiple edges between two vertices in the same direction.

3.2 Traffic Portion of The Top Service Ports

In our approach, we model the traffic structure for each service port and network protocol by
means of one port-based TDG. Therefore, in a preliminary study, we explored how many port-
based TDGs are needed to achieve a high coverage of the connectivity patterns. We analyzed
flow traces collected in two different networks. The first set of flow traces comprises NetFlow
records of the internal traffic from an average-sized campus network, collected over a period of
10 days between May 1, and May 9, 2009. The second flow trace collection consists of NetFlow
records accumulated at a large hosting environment between April 14, and April 20, 2008.
The analysis was conducted over several disjoint trace lengths, ranging from one hour up to an
entire day of traffic. We determined the top 50 service ports, for TCP and UDP traffic combined,
present in the trace, and computed the relative amount of traffic these ports accounts for in terms
of various metrics. Table 3.1 shows the percentages of the total amount of the number of packets
and bytes, the number of flows, and the number of unique hosts for the top 50 service ports. For
each analyzed trace length, we list the average value computed over a set of disjoint intervals of
that length, and depict the corresponding standard deviations in parentheses. The bottom row
shows the values averaged over all analyzed intervals with the corresponding average interval
length on the left. The values for the internal campus network traffic are specified in Table 3.1(a),
the statistics for traces collected at a hosting environment are listed in Table 3.1(b).
We observe that the majority of flow records that define the structure of the traffic are associated
with only a small subset of dominant service ports. In the campus network traffic, for example,
an average of 89.95% (σ = 1.71) of all flows are related to only 50 service ports. Similarly,
72.95% (σ = 13.22) of all hosts can be attributed to this set of ports. The dominant service ports
in the hosting provider traces account for even a larger relative amount of the total values in the

17

traffic. Particularly, 95.46% (σ = 1.29) of all flows and 98.95% (σ = 0.10) of all unique hosts are
found on the top 50 service port in the traces. We further note that the percentages of packets
and octets transmitted on the top service ports account for a large portion of the traffic in both
traces analyzed. However, the values for the number of packets and octets do not contribute to
the traffic structure determined by the number of unique hosts and the flows between these hosts.
Hence, in order to preserve the traffic structure found in a trace, we focus on the relative amount
of flows and IP addresses covered by the set of dominant service ports.
As a result of the lesser port diversity in the hosting provider traces, the percentage values for
the number of unique hosts are higher compared to the values found in the campus traffic. The
latter exhibits a increased number of different applications that run on a wider range of service
ports. For example, the portion of HTTP traffic on the service port 80 (TCP) and DNS traffic on
port 53 (UDP) on average accounts for more than 70% of the traffic in terms of the number of
flows, as well as in terms of the traffic volume in packets and bytes transmitted. Consequently,
traffic on dominant service ports in the hosting traces contains a greater amount of unique IP
addresses compared to the total hosts in the traffic.
We conclude that the combination of the top n service ports (e.g., with n = 50) in terms of
the number of flows and the number of unique hosts provides a sufficiently high coverage of
the connectivity patterns present in the traces analyzed. As such, a combination of port-based
TDGs established for the top n service ports can model the service port diversity and the traffic
structure with respect to the number of unique hosts and flows well.

3.3 Visualizations of Traffic Dispersion Graphs

Visualizations of Traffic Dispersion Graphs provide an additional level of information with
regard to the traffic analyzed. In this thesis, we use the GraphViz [35, 36] graph visualization
software to depict the TDGs. GraphViz provides a set of tools capable of converting graph
definitions from a text-based format to images of directed and undirected graphs. Furthermore,
the graph layout is automatically optimized to produce lesser overlaps of vertices and to place
denser graph structures around the center of the image.
Figure 3.2 shows visualizations of TDGs for six different service ports generated from the
campus network traffic traces. The number of unique hosts has been limited to 300 (|V |= 300)
to improve the quality of visualization of the underlying traffic structure. The graphs for HTTP
and HTTPS traffic in Figures 3.2(a) and 3.2(e) respectively have been generated from 500 unique
hosts (|V |= 500). A visual inspection shows that the graphs exhibit distinct structures that are
characteristic of each service port on a given protocol. The TDG of service port 80 (HTTP) in
Figure 3.2(a) and port 443 (HTTPS) in Figure 3.2(e) contains many vertices that only connect
to one or a few other vertices. This is a typical property of web traffic where usually various
different clients connect to several web servers. Other service ports, such as service port 53
(DNS) or service port 389 (LDAP) using the UDP protocol, exhibit much denser structures
containing many low out-degree vertices connecting to only a few extremely high in-degree
vertices like in (c.f. Figures 3.2(b) and 3.2(f)). This corresponds to the properties of DNS
traffic, where numerous clients connect to usually only a few name-servers. Similarly, the traffic

18

(a) HTTP (80, TCP) (b) DNS (53, UDP) (c) SSH (22, TCP)

(d) NetBIOS NS (137, UDP) (e) HTTPS (443, TCP) (f) LDAP (389, UDP)

Figure 3.2: Visualization of port-based TDGs from six service ports. The direction of edges defines the
service initiators (from) and providers (to). Characteristic for DNS traffic is the existence of a few high
in-degree and out-degree nodes, in contrast to HTTP and SSH traffic which exhibits significantly more
low-degree vertices.

structure for applications using the LDAP protocol contains many clients that connect to only a
few designated LDAP servers.
Moreover, we find that in many TDGs a large number of vertices have either zero out-degree
(sinks) or in-degree (sources) and only a small portion of the hosts act as both, service initiators
and service providers. We apply colors to vertices in order to better depict the role of the
corresponding hosts in the graphs. Sinks, vertices with incoming edges only, are colored dark-
blue. Sources, vertices that have outgoing edges only, have a light-blue color. Additionally,
vertices with both incoming and outgoing edges are colored yellow and represent hosts in the
traffic that are service initiators as well as service providers. The latter, for example, can be seen
in peer-to-peer or terminal services traffic, such as on service port 22 (SSH) in Figure 3.2(c).

19

Similarly, due to the peer-to-peer nature of the NetBIOS Name Service (NBNS) [37], traffic
on the service port 137 (NBNS) in Figure 3.2(d) comprises nodes that act as both, clients and
servers. In contrast to these TDGs, graphs for the service ports 80 (HTTP) and 443 (HTTPS)
in Figures 3.2(a) and 3.2(e) respectively, as well as the service port 389 (LDAP) graph in
Figure 3.2(f), contain sinks and sources only. Such graphs are a clear indication of traffic
structure found in pure client-server applications.

3.4 Graph Degree Properties

Traffic Dispersion Graphs contain information about the structure of the network traffic
analyzed. However, in order to find a way of generate flow traces with similar structural
properties as found in these graphs, we need to find a different representation of TDGs to achieve
this goal. In this section, we analyze the degree properties of port-based TDGs in order to
establish the basis for a method to capture the inter-connectivity between network hosts.
The out-degrees and in-degrees of vertices in TDGs capture the connectivity between the
underlying network hosts and hence describe the structure of the traffic captured by the graphs.
We analyzed the vertex out-degree and in-degree properties of various port-based TDGs in
various traffic traces. In Figure 3.3 we visualize the graph vertices in a scatter plot, where
the number of out-degrees and in-degrees defines the position of each vertex. The plots for
six different service ports were created from TDGs established from one hour long traces from
the campus network traffic. Vertices with zero out-degrees and in-degrees have been artificially
added to the plot in order to include them on the log-log scale.
We find that graphs for most ports, such as web traffic on port 80 and port 443 in Figures. 3.3(a)
and 3.3(e) respectively, exhibit a distinct separation of vertices along both axes. These vertices
have either zero out-degree (sinks) or zero in-degree (sources). Similarly, the plots for the graph
on the service port 389 (LDAP) in Figure 3.3(f) show the same separation of vertices along the
axes and therefore primarily of sinks and sources. This is typical characteristic of client-server
applications. The points along the x-axis are vertices with zero out-degree values and act as the
servers, whereas the points along the y-axis represent vertices in the graph with zero in-degrees
and are the clients.
While other services, such as DNS in Figure 3.3(b) and SSH in Figure 3.3(c), still exhibit a
concentration of vertices along the axes, they are also characterized by points distributed to a
greater extent in the first quadrant of the Cartesian plane. These points reflect vertices with non-
zero out-degree and in-degree values. The peer-to-peer structure of the NetBIOS Name Service
is well visible in the plot in Figure 3.3(d), where numerous points are scattered throughout
the Cartesian plane. Nevertheless, the traffic structure on a considerable number of service
ports consists primarily of sinks and sources, whereas a smaller portion of vertices is located in
the center of the plane. The vertex degree values in TDGs reflect the communication patterns
between hosts on a given service port. We use these findings to define a method to capture
the inter-connectivity between network hosts based on the out-degree and in-degree values of
vertices in TDGs.

20

0 1 10 100 1000
0
1

10

100

1000

in degree

ou
t
de
gr
ee

(a) HTTP (80, TCP)

0 1 10 100 1000
0
1

10

100

1000

in degree

ou
t
de
gr
ee

(b) DNS (53, UDP)

0 1 10 100 1000
0
1

10

100

1000

in degree

ou
t
de
gr
ee

(c) SSH (22, TCP)

0 1 10 100 1000
0
1

10

100

1000

in degree

ou
t
de
gr
ee

(d) NBNS (137, UDP)

0 1 10 100 1000
0
1

10

100

1000

in degree

ou
t
de
gr
ee

(e) HTTPS (443 TCP)

0 1 10 100 1000
0
1

10

100

1000

in degree

ou
t
de
gr
ee

(f) LDAP (389, UDP)

Figure 3.3: Scatter plots of out-degree and in-degree values of each TDG vertex for different ports on a
log-log scale over a one-hour interval. Zero out-degree and in-degree vertices have been artificially added
to the scatter plot.

21

Chapter 4

Flow Trace Generation Framework

In this chapter we introduce the concept and methodology of your flow trace generation
and evaluation framework. Our flow trace generation technique comprises four building
blocks. We model the connection patterns between network hosts on distinct service ports and
network protocols in terms of out-degree and in-degree distributions, which are parametrized
by partitioning the joint degree distribution. The partitioning comprises information about the
inter-connectivity of hosts, based on which TDGs whose edges comprise connections between
hosts can be established.
Then, we introduce the concept of traffic templates used to express the traffic structure
characteristics of a service port on a given network protocol. Traffic templates include various
distributional parameters of flow record attributes, such as the parameters for the flow duration
and for the number of packets and bytes, as well as parameters for the aforementioned
partitioning of the joint degree distribution. Collections of traffic templates can be used to
generate flow-based traces with useful traffic structure, as well as specific, user-defined traffic
conditions.
Therefore, flow traces are generated from a collection of traffic templates in two steps. First,
for each template, a graph generation algorithm builds a set of admissible connections from
the partition parameters, based on which the trace generator produces the flow records with
meaningful attribute values. Moreover, the pluggable architecture of our framework allows for
automated processing of the generated trace by user-defined plugins which interact with the trace
generation process during different phases.
Moreover, we describe a self-parametrization technique which can extract traffic templates with
their respective parameters from an existing set of flow traces. The thereby extracted traffic
templates can be used to produce evaluation traces comprising “normal” and parameterizable
background traffic together with critical borderline conditions.
This chapter is organized as follows. First, we describe the basic ideas behind the partitioning
of the joint degree distribution. Next, we introduce the concept of traffic templates and
establish definitions for the set of template parameters used. We explain the self-parametrization
process used to extract a relevant set of traffic templates with their corresponding parameters
from existing traces. The process of generating flow records from traffic templates with a
trace generator, along with specific characterization of the algorithms used, as well as the

23

[0,1) [1,2) [2,10) [10,100) [100,∞)

[100,∞)

[10,100)

[2,10)

[1,2)

[0,1)

in-degree

ou
t-d

eg
re

e
Partition parameters

 - Number of vertices nk
- Mean and std. dev. of
in-degrees μk,in,σk,in

,
- Mean and std. dev. of
out-degrees μk,out σk,out

(a) Degree distribution partitioning

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

113

156

63

0

777

0

4

0

0

206

0

0

0

0

18

0

0

0

0

0

0

0

0

0

in−degree

ou
t−
de
gr
ee

(b) Partitioning of HTTP (80, TCP)

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

437

98

0

0

471

0

1

0

0

11

1

1

5

1

3

2

3

2

0

0

0

1

1

0

in−degree

ou
t−
de
gr
ee

(c) Partitioning of DNS (53, UDP)

Figure 4.1: 4.1(a) shows the out-degree and the in-degree plane of a TDG divided into 24 distinct, fixed-
sized partitions. 4.1(b) and 4.1(c) depict the partitioning of a 300-s time interval for traffic analyzed on
service port 80 (HTTP) and service port 53 (DNS) respectively. Values in each each partition indicate the
number of vertices.

implementation details of the pluggable architecture of our framework is outlined at the end
of this chapter.

4.1 Partitioning

In Section 3.4 we introduced scatter plots of out-degree and in-degree values of TDGs. The
vertex values for out-degree and in-degree contain information about how hosts interconnect
with each other. Based on these scatter plots, we use the joint out-degree and in-degree
distribution of vertices derived from TDGs to capture this social behavior in terms of
connectivity between hosts in the network. We use this empirical degree distribution to establish
TDGs from the partitionings when generating flow traces.
For a given service port, protocol, and fixed time interval, we divide the plane spanned by the out-
degree and in-degree values of vertices in TDG established from a traffic trace into fixed-sized
partitions (quantization). The partitions boundaries are determined by the non-linear, left-closed
intervals [0, 1), [1, 2), [2, 10), [10, 100), and [100,∞). This leads to a set K of 24 relevant1

partitions as shown in Figure 4.1(a). Hence the out-degree and the in-degree value of a vertex
determine its distinct placement into exactly one partition.
The interval boundaries are chosen such that vertices are separated into meaningful partitions.
We distinguish between zero, low, medium, and high degree vertices for both, out-degrees and
in-degrees. Vertices with zero out-degree fall into the [0, 1) × z partitions, whereas vertices
with zero in-degree fall into the z × [0, 1) partitions. Similarly, the low degree vertices in the
partitioning are in the [1, 2) and [2, 10) partitions, while the medium degree vertices are in the

1We ignore the partition [0, 1) × [0, 1) in the bottom left corner in Figure 4.1(a) as it does not contain any valid
nodes. By definition, a TDG does not have any isolated vertices, i.e., nodes with both zero out-degree and zero
in-degree.

24

[10, 100) partitions and the high degree vertices fall into the [100,∞) partitions for both, out-
degrees and in-degrees.
For example, a web server that is accessed by a only few clients falls into one of the low in-
degree partitions (e.g., [1, 2)). A popular web server, in contrast, is likely to be assigned to a
high in-degree partition (e.g., [100,∞)). Similarly, in the case of DNS traffic for example, a
domain name resolver is probably assigned to a high-out degree partition while DNS clients
usually only query one or a few servers to resolve domain names. Such clients will are probably
to be assigned one of the zero in-degree and low out-degree partitions (e.g. [1, 2) or [2, 10)). In
general, clients are likely to exhibit zero in-degrees, but non-zero out-degrees.
The vertex population in a partition k ∈ K is expressed by a set of five parameters Gk =
(nk, µk,out , µk,in , σk,out , σk,in). The parameter nk is the number of vertices in a partition k.
Furthermore, to capture the average values of vertex degrees and the deviations thereof, µk,out

and µk,in are the mean out-degree and in-degree of the vertices in a partition k, whereas σk,out

and σk,in are the respective standard deviations.
Figure 4.1 shows two examples of a partitioning created from TDGs of HTTP traffic (service
port 80) in Figure 4.1(b) and DNS traffic (service port 53) in Figure 4.1(c) respectively. Both
partitionings were generated from graphs established from the campus network traces measured
in a 300-s time interval. The values and the color intensity in each partition indicate the number
of vertices nk. The zero out-degree partitions (bottom row) in Figure 4.1(b) contain most likely
web servers, where popular servers with high in-degrees are in partitions on the right-hand side
and less frequently visited servers are in partitions on the left-hand side. In this particular
case, for example, we identified eight of the 18 hosts in the [0, 1) × [10, 100) partition to be
highly frequented Google web servers. Similarly, the clients in Figure 4.1(b) are in the zero in-
degree partitions (left column), with clients connecting to several web servers are in the upper
partitions and clients accessing few servers are in the lower partitions. Typical for a client-server
architecture, as seen in web applications, is the absence of vertices with non-zero out-degrees
and non-zero in-degrees.
Partitioning of DNS traffic in Figure 4.1(c) shows similar concentration of nodes along both
axes. Similarly to web traffic, clients reside in the left column and servers are located in the
bottom row. However, in contrast to HTTP traffic, we also find vertices in the high out-degrees
and high-in-degrees partitions (e.g. [10, 100) × [100,∞)). These are most likely to be domain
name resolvers propagating resolution queries to other name servers. To sum up, we conclude
that the information about the vertex out-degree and in-degree in these partitionings can be used
to model connections (flows) between network hosts based on the traffic structure found in real
traces.

4.2 Traffic Templates

A traffic template captures the structural properties of the connection patterns between hosts,
as well as the distribution parameters of flow record attributes, such as the flow duration or the
number of packets and bytes, for a time period. Furthermore, each traffic template is associated
with exactly one service port and one transport layer protocol, such as TCP or UDP. A template

25

consists of three parts: a representation of the degree distribution partitioning representing
the traffic structure found on a service port, a collection of distribution parameters defining
admissible flow attributes, as well as a set of optional configuration parameters related to the
flow trace generation process. Moreover, a period length T is assigned to each template to
maintain the temporal dimension associated to the template definition. The list of all template
components is depicted in Table 4.1.

Table 4.1: Traffic Template Parameters

Parameter Description Example

T Period length associated with the template parameters. 300-s

R Protocol number for the associated service port pdst 17 (UDP)

~ag,k Polynomial coefficients for each partition parameter g ∈ Gk
for every partition k ∈ K.

pdst Destination (service) port for service initiators. 80

Psrc Source port range for service initiators. 1024–32 768

IPk Ranges for source and destination IP addresses for every
partition k ∈ K.

10.2.19.0/24

dµ, dσ , pµ, pσ ,
bµ, bσ

Lognormal distribution parameter for the duration, packets,
and octets flow record field.

2.03, 1.16

µH , σH Mean value and standard deviation of the number of hosts. 812, 22.75

µF , σF Mean value and standard deviation of the number of flows. 58 732, 210.25

Optional Parameters

minH Minimum number of hosts for a period T 780

Iactive Range of intervals T the traffic template is active at. 1-3

4.2.1 Distribution Parameters

Number of Hosts and Flows The average number of hosts present during a period of length T
for a given service port is parameterized by µH . The variability in the number hosts over
a set of consecutive periods of length T is expressed by the associated standard deviation
value σH . Similarly, we parameterize the number of network flows present during a period
by µF and express the deviation of the number of flows by σF .

Flow Record Attributes The length of network flows is expressed by the duration flow record
field value. Equally, the flow size in terms of the number of packets and the number of
bytes transmitted is quantified by the flow record field values for packets and octets. In
terms of the evaluation of flow-based monitoring systems, the importance of flow-level
properties such as the duration, the number of packets, as well as the number of bytes, is
secondary. These systems are mainly affected by the traffic structure determined by the

26

number of hosts and their inter-connections, the number of flows such systems need to
process, as well as the diversity of service ports present in the traffic analyzed. In our
approach, we concentrate on modeling the traffic structure as opposed to the flow-level
properties. Nevertheless, the distribution parameters for flow lengths and flow sizes in the
traffic templates are close to values observed in real network traces.

We outlined some valid statistical distributions to model the flow-level traffic properties in
Section 2.8. Based on these findings, we chose to model the flow-level properties in traffic
templates with a Lognormal distribution. The distribution parameters dµ, dσ, pµ, pσ, and
bµ, bσ denote the duration, packet, and octet attributes, respectively.

We further note that the Lognormal distribution used by default can be easily replaced
by different distributions, such as the Normal distribution, the Pareto distribution, or
the Uniform distribution, in combination with the appropriate distribution parameters to
model other flow properties requested. Other possible distributions, provided in our initial
implementation of the framework, that can be used to replace the Lognormal distribution
when generating flow records, are described in Section 4.4.1.

Source and Destination Ports Service initiators in the network use service ports of providers to
establish connections. Web servers, for example, run as a service on one of the well-known
ports (e.g., service port 80). Connections from clients to these web servers are established
over the network using a random source port (on the client) and the application-specific
service port on the server. The parameter Psrc is the range of source ports the service
initiators use to connect to service providers on the destination (service) port pdst the
traffic template is associated with.

IP Address Ranges The partitioning of the plane spanned by the out-degrees and in-degrees
of TDG vertices comprises 24 partitions. The traffic templates contain definitions of IP
address ranges IPk for each partition k ∈ K. We use the Class Inter-domain Routing
(CIDR) [38] notation to list IP address ranges in the templates and allow for several CIDR
prefixes to be specified. Traffic templates for web traffic (service port 80), for example,
can contain prefix definitions for several Class C networks (e.g. 172.134.16.0/24 and
82.14.2.0/24) in the partition [0, 1) × [10, 100), which comprises vertices (hosts) with
zero out-degrees and in-degree values greater than ten (popular web servers).

4.2.2 Representation of Partitioning

The partitioning introduced in Section 4.1 captures the inter-connectivity between network hosts
and their roles (e.g., clients or servers), in the traffic. The partitioning of the plane spanned by the
out-degrees and in-degrees of vertices in TDGs allows us to employ this information to recreate
the graphs, whose edges determine the connections between network hosts, during the flow trace
generation process.
The analysis of parameters from partitions generated over a number of time intervals of varying
length allows us to determine the temporal behavior of the number of hosts active on service port
pdst and of their connectivity properties. With increasing numbers of distinct hosts observed, the

27

1000 2000 3000 4000
0

20

40

60

80

global hosts

me
an

 in
-d

eg
re

e

 nodes nk
 mean in-degree μ k,in

 4th degree polynomial

nu
mb

er
 o

f n
od

es

0

20

40

60

80

(a) [10, 100)× [10, 100) partition parameters (DNS)

1000 2000 3000 4000
0

50

100

150

200200

global hosts

me
an

 o
ut

-d
eg

re
e

mean out-degree μ k,out
nodes nk

nu
mb

er
 o

f n
od

es

0

50

100

150

200

(b) [10, 100)× [0, 1) partition parameters (HTTP)

Figure 4.2: Evolution of different partition parameters g ∈ Gk over a set of twelve time intervals of
increasing length. 4.2(a) Shows the number of host, as well as the mean in-degree values including the
approximating polynomial of the partition k = [10, 100) × [10, 100) for DNS traffic. 4.2(b) Depicts the
number of hosts and the mean out-degree of the partition k = [10, 100)× [0, 1) for HTTP traffic.

connectivity patterns change depending on the service port. For example, for DNS (53), the in-
degree of servers generally increases with the number of clients observed whereas the number
of servers remains constant. For web traffic, on the other hand, many new distinct servers appear
in low in-degree or low out-degree partitions, whereas only the in-degree of popular servers
increases.
Figure 4.2 shows an example of the partition parameters evolution for two partitions and two
DNS and HTTP (80) traffic generated over a set of twelve time intervals of increasing length.
In Figure 4.2(a) the number of hosts in the high in-degree partition [10, 100)× [10, 100), likely
to comprise DNS servers, remains almost constant for DNS traffic, whereas the mean in-degree
values for hosts increases. The high out-degree and zero in-degree partition [10, 100) × [0, 1)
depicted in Figure 4.2(b) for HTTP traffic, in contrast, shows an increasing number of hosts
while the mean out-degree value rises only gradually. With the increasing numbers of distinct
hosts in the traffic, new web clients likely appear in this partition while, for each client, the
number of connections established remains almost constant.
To address this dependency of the traffic structure on the host population, we express the partition
parameters as a function of the number of hosts. As such, we approximate the parameters in Gk
of each partition k ∈ K with a polynomial function. Each partition k ∈ K is then expressed
as a collection of coefficients ~ag,k for each partition parameter in g ∈ Gk. For example, in
Figure4.2(a), we depict the approximating polynomial for the partition parameter g = µk,in
(mean in-degree) for the particular partition k = ([10, 100) × [10, 100)). The polynomial
in this particular case is of degree four, leading to a collection of five coefficients ~ag,k. The
resulting polynomials allow us to compute partition parameters for a desired number of hosts
when generating flow traces.

28

4.2.3 Optional Parameters

In contrast to the mandatory distributional parameters of flow attributes and source and
destination IP addresses and ports, as well as the polynomial coefficients representing the
partitioning, we complement the definition of traffic templates with the description of two
optional parameters.

Minimum number of hosts The hosts generated from a traffic template for a given service port
and network protocol for each interval T is defined by the distributional parameters for
the number of hosts µH , σH . In some rare cases, the number of hosts to be generated,
drawn from the normal distribution defined by these parameters, can be insufficient. For
example, when the average number of hosts is µH = 820 and the standard deviation equals
σH = 80.4, the number of hosts in one particular interval can be much smaller (e.g. 540)
than the mean value. The parameter minH imposes a lower bound on the number of hosts
generated for a time interval of length T .

Active intervals In order to achieve a coverage of the traffic structure and port diversity similar
to real-world traces, a certain amount of service ports must be present when generating
flow traces as described in 3.2. Therefore, the number of traffic templates employed must
be reasonably high. Usually, a collection of several traffic templates associated with
various service ports and network protocols is used to generate traces for a set of time
intervals of length T . In some cases, however, traces for certain service ports must be
excluded from the traffic mix. For example, a network scan on the service port 22 (SSH)
is likely to be present only during certain specific time intervals, while being absent in
others when the hosts performing the scan are not active. The Iactive parameter in traffic
templates addresses this requirement.

The Iactive parameter can be specified using three different notations. First, a set
of numbers corresponding to the time intervals during which flow records are being
generated for a given traffic template can be specified. For example, for a traffic template
to be active during the first, third, and fourth time interval when generating flow records,
the Iactive parameter is set to Iactive = 1, 3, 4. Furthermore, the parameter notation also
supports the specification of time interval ranges, e.g. 1−4, during which a traffic template
is active, or a combination of the interval ranges and specific time intervals, e.g., 1, 3−5, 7.
In the latter example, flow records are generated from the template during the first, third
to fifth, and the seventh time interval.

Additionally, we introduce a third template-specific notation in order to account for cases
where a specific traffic template is active at “every n-th” time interval, the parameter is set
to Iactive = /n. For example, to activate a template during every second time interval in
the flow trace generation process, the parameter is set to Iactive = /2.

29

4.3 Self-Parameterization

In addition to manually defining traffic templates, our approach provides the ability to
automatically establish a set of traffic templates that provides a sufficient coverage of the traffic
structure, as well as automatically extract the template parameters defined in Table 4.1 for each
each template from existing flow traces. We refer to this process as self-parametrization. The
self-parametrization comprises two main steps:

1. First, a collection Ctop of the top service ports, a combination of sets of top n service
ports in terms of the number of unique hosts and the number of flows for TCP and UDP,
is established from a set of flow traces.

2. Then, for each port in the collection of top service ports Ctop , a traffic template with
the relevant distribution parameters and partitioning representation through polynomial
coefficients is established.

The self-parametrization process operates on a set of existing flow traces. These traces are
usually flow records in NetFlow version 5, version 9, or IETF IPFIX format respectively, as
exported by routers and collected by NetFlow probes such as nProbe [39], either into a database
or binary-format files. Each trace file is associated with a time interval of fixed length T . The
campus network and hosting provider trace files used in our particular case each constitutes a
time interval of length T = 300 seconds. For example, the analysis of twelve consecutive trace
files represents a one hour long network traffic trace. The output of the self-parametrization
is a set of traffic templates. In addition to the the flow trace input, five parameters further
refine the self-parametrization process and output. These additional parameters are specified in
a configuration file that looks as follows:

1 [c o n f i g u r e]
2
3 top = 50
4 udp = 53
5 t cp = 80 ,445 ,8080
6
7 [c r e a t e]
8
9 d e s t i n a t i o n = / some / d i r e c t o r y

10 c i d r = 24

The configuration file is divided into two sections: the [configure] section related to the
process of establishing the collection of the top service ports Ctop for both, TCP and UDP,
as well as the [create] section applied to the second part of the self-parametrization, the
generation of traffic templates and estimation of the relevant parameters thereof. The self-
parametrization configuration file parameters are described as follows:

top This parameter determines the size n of the top ports lists when calculating the top service
ports in terms of the number of unique hosts and the number of flows for both protocols,
TCP and UDP. We describe the top service ports calculation in Section 4.3.1.

30

tcp This parameter specifies TCP service ports to be explicitly included in the self-
parametrization of templates, even though they may not be part of the collection of the top
ports Ctop established in the first step of the process. For example, to always include web
traffic when using the self-parametrization, the service ports 80 and 443 can be specified.

udp Similarly, description of a collection of UDP specific service ports for which traffic
templates may be generated and parameterized, independently of the port numbers present
in the set of top service ports Ctop .

cidr The self-parametrization allows for different levels of granularity, which can be specified
by one of the values 8, 16, 24, or 32, when grouping IP addresses into CIDR prefixes.

destination This is the destination directory the parameterized traffic templates are saved in.

4.3.1 Top Ports Calculation

The analysis of the campus network and hosting provider traffic traces over different time
intervals in Section 3.2 showed that the top n service ports account for the major portion of
the traffic with respect to the number of unique hosts as well as the number of flows. We use
these findings in the first part of the self-parametrization process, which analyzes flow traces to
determine a collection of relevant service ports traffic templates are generated for.
First, we distinguish between TCP and UDP service ports. For each protocol, we establish two
separate sets of service ports: a set which contains the top n service ports with regard to the
number of unique hosts, as well as a second set that comprises the top n ports with respect to
the number of flows present in the trace analyzed. The result of this process are four sets of n
service ports, two for each protocol. The union of these four sets of n ports yields a collection
Ctop of relevant service ports that account for the major portion of the traffic, both in terms of
hosts and flows.
In most cases, the average values from Section 3.2 for the top n service ports (e.g. for n = 50)
with regard to the number of unique hosts and the number of flows present a lower bound on
the traffic portion covered by the established collection Ctop of service ports. The service ports,
which usually account for a significant portion of the total number of flows, may differ from the
service ports with the highest fraction of the number of unique hosts. Similarly, the service ports
with the highest number of unique hosts do not necessarily contain the most flows. Therefore,
the collection Ctop of service ports with the highest number of hosts and flows, for both TCP
and UDP, in the worst case comprises at least n = 50 service ports. However, the size of Ctop is
typically several times higher than n.

4.3.2 parameterization of Templates

The parameter extraction in the second step of the self-parametrization is performed over the
combination of all flow trace segments of time intervals of length T (e.g. T = 300 seconds), for
each port in the collection of top service ports Ctop associated with the corresponding TCP or
UDP network protocol.

31

Grouping of IP Addresses

The IP addresses of network hosts present in the flow trace over the sum of analyzed time
intervals are grouped into CIDR prefixes for each partition k ∈ K. We simplify the super-netting
process by imposing a restriction on the grouping granularity. Different top parameters, namely
8, 16, 24, and 32, can be set in the configuration file and determine how many IP addresses
are grouped together into one subnet prefix. The lower the parameter specified, the more IP
addresses are grouped together into one subnet.
For example, when the self-parametrization process should retain every single IP address
present in the trace for each partition, the parameter 32 corresponding to the prefix notation
x.x.x.x/32 needs to be specified. Similarly, when we chose to group IP addresses in the
same Class C network together, a parameter value of 24 which leads to the CIDR notation
x.x.x.0/24 is more appropriate. The output of this process is a set of network prefixes in
CIDR notation present in the analyzed trace for each partition k ∈ K.

Estimation of Distribution Parameters

In Section 4.2.1 we described the distribution parameters of the flow duration and flow size, in
packets and bytes, and chose to model these flow record attributes with a Lognormal distribution.
We analyzed different service ports and found that, for some service ports, the Lognormal
distribution is not always suitable and the flow parameters, such as the duration, the number
of packets, or the number of bytes, might be better approximated by a different distribution or
even constant values.
However, as described in Section 4.2.1, in our approach we emphasize parameters related to
the traffic structure, which is relevant for the evaluation of flow-based systems, rather than the
flow-level traffic properties. Therefore, in order to simplify the self-parametrization process,
we chose to model these parameters with only one distribution. However, we note that the
distribution used for flow attributes in the estimation process can easily be replaced by other
distributions, value ranges, or constant values as described in Section 4.4.1.
The Lognormal distribution is a continuous probability distribution of a random variable X
whose logarithm Y = ln(X) is normally distributed with mean µ and standard deviation σ [40].
The probability density function of X is defined as

fX(x;µ, σ) =

{
1√

2πσx
e−

1
2σ2 [ln(x)−µ]2 , x ≥ 0,

0 x < 0.
(4.1)

For each service port in the collection of relevant top ports Ctop , the Lognormal distribution
parameters µ and σ for the flow duration (dµ, dσ), the number of packets (pµ, pσ), and the
number of bytes (bµ, bσ) are estimated over all analyzed intervals using the maximum likelihood
estimation. The method of maximum likelihood estimation is an estimation of the parameters
that maximize the likelihood function of a given distribution, in the case of the Lognormal
distribution, approximating the µ and σ parameters [40]. For a simple discrete distribution
with only one parameter, for example, where X1, X2, . . . , Xn denote the independent random

32

variables from the discrete distribution represented by g(X,α), and α is the single parameter of
the distribution to be estimated, the likelihood function L is defined as the joint distribution of
the independent random variables

L(X1, X2, . . . , Xn;α) = g(X1, X2, . . . , Xn;α) = g(X1;α) · f(X2;α) · . . . · f(Xn;α) (4.2)

In the case of the Lognormal distribution with the independent, log-normally distributed, random
variable X , the logarithm Y = ln(X) of the random variable X is normally distributed.
Therefore, the Lognormal probability density function can be rewritten as

flogn(x;µ, σ) =
n∏
i=1

(
1
xi

)fnorm(ln(x);µ, σ) (4.3)

where flogn denotes the probability density function of the Lognormal distribution (4.1), and
fnorm constitutes the probability density function of the normal distribution [41]. Consequently,
the log-likelihood estimation method for normal distributions can be applied. Therefore,
using the same indices for the two distributions as in (4.3) and denoting the log-likelihood
normal distribution function as lnorm (defined in [42]), the log-likelihood function llogn for the
Lognormal distribution can be written as

llogn(µ, σ|x1, x2, . . . , xn) = −
∑
k

ln(xk) + lnorm(µ, σ| ln(x1), ln(x2), . . . , ln(xn))

= c + lnorm(µ, σ| ln(x1), ln(x2), . . . , ln(xn))

where c is a constant term with regard to µ and σ. Applying the formulas for the normal
distribution maximum likelihood parameter estimators from [42] using the equality established
in 4.4, the estimated maximum likelihood parameters µ̂ and σ̂2 are defined [41] as

µ̂ =
∑

k lnxk
n

, σ̂2 =
∑

k(lnxk − µ̂)2

n
. (4.4)

Furthermore, the average number of flows µF and the average number of unique hosts µH , as
well as the respective standard deviation values σF and σH observed over all analyzed time
intervals is established.

Estimation of Partition Parameters

For each time interval analyzed, a TDG is created and the associated partitioning of the joint
out-degree and in-degree distribution of vertices in the graph is established. In this process,
the partitions for each interval consist of the traffic structure accumulated over all previously
analyzed intervals. Consequently, the partitionings established from the graphs capture the

33

dependency of the traffic structure on the number of hosts observed. As such, we express each
partition parameter g ∈ Gk as a function of the number of hosts.
We apply the mathematical procedure of least squares polynomial fitting to determine
coefficients of a polynomial function we derive the partition parameters from, for a given number
of hosts. The least squares fitting method is a form of linear regression and provides a solution to
the problem of finding the best fitting line (or polynomial) through a set of points. The method
minimizes the sum of squares of the vertical offsets (residuals) between the fitted values and the
actual values evaluated [43, 44]. The polynomial Pj of degree j with coefficients c0, c1, . . . , cj
is defined as

Pj(x) = y = c0 + c1x+ · · ·+ cjx
j . (4.5)

Given a set of n points x1, . . . , xn ∈ X (hosts) and their respective values y1, . . . , yn ∈ Y
(partition parameters g ∈ Gk) the method of least squares minimizes the sum of squares error
defined as

SSE =
n∑
i=1

[yi − Pj(x)]2 =
n∑
i=1

[yi − (c0 + c1xi + · · ·+ cjx
j
i)]

2. (4.6)

To minimize the sum of squares error SSE the first partial derivatives for all polynomial
coefficients c0, c1, . . . , cn are set to zero. This leads to a system of normal equations of the
least squares fit whose solution vector comprises the polynomial coefficients with the minimal
sum of squares error SSE . We write the equation system to be solved in matrix notationXc = y
where

X =


1 x1 x2

1 · · · xj1
1 x2 x2

2 · · · xj2
...

...
...

. . .
...

1 xn x2
n · · · xjn

 , c =


c0
c1
...
cj

 , y =


y0

y1
...
yn

 (4.7)

The premultiplication of the equation (4.7) on both sides with the matrix transpose XT yields

XTXc = XT y. (4.8)

The matrix equation (4.8) can be either solved numerically to obtain the desired polynomial
coefficients, or, if the matrix XTX = Z is well formed, directly inverted to obtain the desired
solution vector ~a [44]. Hence, the set of polynomial coefficients is established by

~a = (XTX)−1XT y = Z−1XT y. (4.9)

Furthermore, the approximating polynomial degree j is chosen to be variable for each partition
parameter g ∈ Gk. Depending on the gradient of the partition parameters, the goodness
of fit of the approximating polynomial obtained can vary with respect to its degree j. For
HTTP traffic in Figure 4.2(b), for example, the number of vertices nk in the high out-degree

34

Algorithm 1 Calculation of ~ag,k for a partition parameter g ∈ Gk for a partition k ∈ K
Input: The number of hosts X = {x1, . . . , xn}, partition parameter values Yg = {y1, . . . , yn}.
Output: Polynomial coefficients ~ag,k for partition parameter g.

1: ~abest ← ∅ . coefficients of best polynomial
2: SSEmin ← INTmax . lowest global SSEmin, initialized with a high value
3: if yi = 0,∀yi ∈ Y then . return zero when all values in Y equal zero
4: return 0
5: end if
6: for j ← 4 to 1 do . iterate from higher to lower degree
7: (Ŷ,~aj)← POLYFIT(X ,Yg, j) . least squares fitting with degree j
8: SSE j ← 0
9: for i← 1 to n do . compute local SSE j

10: SSE j ← SSE j + (yi − ŷi)2
11: end for
12: if SSE j ≤ SSEmin then . compare global with local SSE
13: ~abest ← ~aj . update coefficients
14: end if
15: end for
16: return ~abest

partition k = [10, 100) × [0, 1), computed over all intervals analyzed, increases linearly with
the total number of hosts observed. Consequently, a lower degree polynomial provides a better
approximation. For DNS traffic in Figure 4.2(a), on the other hand, the gradient of the mean
in-degree µk,in of vertices in the high in-degree partition k = [10, 100) × [10, 100) is likely to
be better approximated by a higher degree polynomial.
Although the points x1, . . . , xn can be approximated by a direct fit polynomial with degree
n − 1 which runs exactly through all points, such as the Lagrange polynomial [45], this kind
of polynomial tends to oscillate due to its high degree for values that lie between the points
x1, . . . , xn. Therefore, we limit the maximum degree j of the polynomial computed to j = 4
and determine the best polynomial degree for each partition parameter g ∈ Gk by comparing
the sum of squares error SSE .
In Algorithm 1 we outline the process of determining the polynomial with the lowest SSE along
with its corresponding coefficients for a partition parameter g ∈ Gk for a partition k. The number
of unique hosts is expressed as X , the corresponding partition parameter values as Yg. Initially,
the lowest global sum of squares error value SSEmin is set to a reasonably high number (e.g.
highest integer value possible) and an empty set of polynomial coefficients ~abest is initialized.
Next, if all values in Y equal zero, the value zero is returned since there is nothing to interpolate.
Then, iterating from the highest polynomial degree allowed (j = 4) in decreasing order up to
a degree of one (j = 1), the least square approximating polynomial of degree j is computed.
The POLYFIT function thereby returns the interpolated partition parameters Ŷ , as well as the
corresponding polynomial coefficients ~aj . The sum of squares error value SSE j for the current

35

polynomial degree j is iteratively computed as defined in (4.6) and compared to the minimal
sum of squares error SSEmin. As a result, the lowest-degree polynomial with the minimal SSE
value is preferred, hence the size of the polynomial coefficients ~abest returned can vary from five
(polynomial degree four) to two (linear function).

4.4 Flow Trace Generation

The goal of this step is the generation of flow traces in a flow-based format (e.g., NetFlow),
from a collection of traffic templates. The thereby generated traces can be either streamed
directly over the network to a flow-based collector device, a flow-based network monitoring
or anomaly detection, or saved in binary format on the filesystem, either for further analysis or
offline processing (as opposed to analyzing a directly streamed trace).
The flow trace generation process consists of three consecutive steps. First, the templates to
produce the desired traffic scenario are selected by the user and customized accordingly if
desired. In a next step, for each template selected, a TDG of the underlying traffic structure,
which represents the admissible connections between network hosts, is generated. Finally, the
flow records, which constitute the underlying traffic structure and whose order is shuffled across
all traffic templates, are output by a trace generator. In this chapter, we first describe how
traffic templates are customized. Furthermore, we describe how TDGs are established from
the partition parameters, determined by the polynomial coefficients in the traffic templates, and
outline details about the flow record generation procedure, where flow records are output by a
trace generator.

4.4.1 Template Customization

Each traffic template is associated with one specific service port and network protocol. The
template parameters, which determine the structural properties as well as flow record attributes
of the traffic trace to be generated, can be changed to achieve desired traffic scenarios present
in the trace. We divide the customization of traffic templates into three parts and distinguish
between the following operations:

1. Parameterization of flow record attributes (fields), such as the number of packets, octets,
or duration values.

2. Scaling of the number of flows and the number of unique hosts generated during a fixed
time interval of length T .

3. Definition of the time intervals during which each traffic template is active.

To parameterize flow record fields, their respective distributional parameters may be set in the
traffic templates, based on the definitions of the template parameters established in Section 4.2.
As such, we set the Lognormal distribution parameters dµ, dσ to parameterize the flow durations,
as well as the parameters pµ, pσ for the number of packets and bµ, bσ for the number of bytes.

36

Furthermore, to allow for flexibility with respect to the flow attributes, it is also possible to alter
the traffic templates by replacing the Lognormal distribution with different distributions. Our
framework currently supports the following definitions of additional distributions or sampling
methods for the duration, packets, and bytes values:

Normal Distribution Similarly to the Lognormal distribution, the Normal distribution
N (µ, σ2) is defined (and customized) by two parameters µ and σ in the traffic templates.
We omit the separate notation of the parameter for the duration, packets, and bytes but
note that the respective parameters µ and σ are defined for each flow attribute separately
(e.g., dµ and dσ for the flow duration attribute, where µ and σ are the Normal distribution
parameters).

Uniform Distribution Furthermore, for the flow record fields to exhibit values distributed
with equal probability between two values, the minimum parameter a and the maximum
parameter b for the flow durations, the number of packets, or the number of bytes are
specified. The values for the respective flow record attributes are hence distributed
uniformly at random, with probability 1/n where n = b− a+ 1, between the parameters
specified. Again, we omit the subscript notation for the distribution parameters but note
that they are specified for each flow record field separately (e.g., pa and pb for the number
of packets in the flows records).

Constant Value Additionally, to simulate specific scenarios where the values for flow
durations, the number of packets, or the number of bytes desired must be held constant,
one single numerical parameter is specified for the respective fields.

Random Value Finally, the distributional properties a flow record field can be omitted. In this
special case, the values for the respective fields are chosen at random.

The number of flows (and its variability over time) to be generated during a time interval is
controlled by the parameters µF and σF . Similarly, the number of hosts to be present in the
trace is customized with µH and σH . Finally, the time intervals during which a traffic template
is active are specified with the Iactive parameter using the notation introduced in Section 4.2.3.
For example, to appoint a traffic template to be active at every third interval, the Iactive parameter
Iactive = /3 is specified. Similarly, to activate a traffic template for the first three intervals, as
well as the last out of twelve intervals flow traces are generated for, the Iactive parameter can be
set to Iactive = 1− 3, 12.
Naturally, the entire body of the remaining traffic template parameters from Table 4.1 can be
adjusted according to specific needs. For traffic templates established in the self-parametrization
process, the parameters from the previous paragraphs are the most relevant. However, for
user-defined templates, the definition of the polynomial coefficients ~ag,k which determine the
partition parameters g ∈ Gk (and hence the traffic structure), as well as the specification of IP
address ranges IPk for each partition for each partition k ∈ K is important. We give an example
of user-defined templates to model specific traffic scenarios (e.g., a network scan) in Section 5.4.

37

4.4.2 Generating TDGs from Templates

The edges in a TDG are used during the flow record generation as a list of admissible connections
between hosts to preserve the desired structural properties for a given template (e.g., in terms
of degree distributions, the number of vertices, and the number of edges). We establish a TDG
from the joint degree distribution given by the partitioning. The parameters, i.e., the number of
vertices in each partition and the mean out-degrees and in-degree and their respective deviations,
are derived from the polynomial functions evaluated for the parameterized number of hosts.
This allows the traffic to be parameterized with respect to the number of hosts generated, while
maintaining a realistic traffic structure for each time interval.
To establish a TDG, we apply a random graph algorithm, the matching algorithm proposed
by Newman et al. [46], which efficiently generates random graphs with an arbitrary degree
distribution. In general, random graphs are graphs generated by a random process [47]. Bollobás
et al. describe two commonly known, basic random graph models [47, 48]: the G (n,M)
model and the G (n, p) model. The first model comprises all graphs with set of vertices
V = {1, 2, . . . , n} and M edges, where each of the graphs occurs with equal probability. The
second model consists of all graphs with vertex set V = {1, 2, . . . , n} in which every possible
edge in the graph is chosen independently with probability 0 < p < 1.
In contrast to choosing edges in TDGs at random or with a fixed probability p, we need to
generate directed graphs with an arbitrary degree distribution. The joint degree distribution is
defined implicitly in the partitioning of the out-degree and in-degree plane, established from the
polynomial coefficients ~ag,k in the traffic templates. We divide the algorithm used to establish
the TDGs from the partitioning in two steps:

1. First, all graph vertices are initialized for each partition and assigned a set of out-stubs or
in-stubs2 (or both), depending on the degree setting determined by the respective partition
parameters.

2. Second, the out-stubs and in-stubs of all vertices are picked randomly in pairs and joined
to form edges in the graph.

Algorithm 2 depicts the algorithm used to initialize the vertices with their respective stubs in the
graph. First, an empty graph Gtmp is created. Then, for each partition k ∈ K, an empty vertex
set Vk is initialized and the following set of operations is performed, while iterating over the
total number of vertices nk. Each vertex vk is assigned a random IP address from the IP address
ranges IPk. This procedure is repeated in case a vertex vk with the IP address drawn already
exists in the set of added vertices Vk for the partition k, until the vertex is assigned a unique IP
address, not present in the vertex set Vk.
Then, the vertex vk is assigned a number of out-stubs and in-stubs drawn from the normal
distribution defined by N (µk,out , σ2

k,out) and N (µk,in , σ2
k,in). The partition boundaries,

determined by the left-closed intervals for both, out-degree and in-degree, impose a restriction
on the number of out-stubs and in-stubs allowed for each vertex vk. Therefore, if the number

2Stubs can be considered as open ends of out-going or in-coming edges.

38

Algorithm 2 Graph generating algorithm

Input: Partitioning of the degree distribution with partitions k ∈ K, IP address ranges
definitions IPk

Output: Graph Gtmp = V with vertices v ∈ V with assigned stubs.

1: Gtmp ← ∅ . empty graph
2: for all k ∈ K do . loop through all partitions k ∈ K
3: Vk ← ∅ . added vertices for the partition k
4: for i← 0 to nk do . iterate over total number of vertices nk
5: repeat . assign unique IP addresses to vertices
6: vk ← RANDOMELEMENT(IPk)
7: until vk /∈ Vk
8:

9: repeat . assign out-stubs
10: STUBSOUT(vk)← N (µk,out , σ

2
k,out)

11: until STUBSOUT(vk) ≥ mink,out and STUBSOUT(vk) < maxk,out

12:

13: repeat . assign in-stubs
14: STUBSIN(vk)← N (µk,in , σ2

k,in)
15: until STUBSIN(vk) ≥ mink,in and STUBSIN(vk) < maxk,in
16:

17: Vk ← Vk ∪ vk . add vertex to set of added vertices Vk
18:

19: if added and expected number of stubs do not match then
20: for all vk ∈ Vk do
21: SCALESTUBS(vk) . linear scaling of the number of stubs
22: end for
23: end if
24: end for
25: Gtmp ← Gtmp ∪ Vk . add all vertices in Vk to the graph
26: end for
27: return Gtmp

of stubs assigned lies outside of the partition boundaries mink,out ,maxk,out for out-degrees
or mink,in ,maxk,in for in-degrees respectively, the stub assignment is repeated. Finally, each
vertex vk is added to the set of added vertices Vk for the partition k.
The expected total number of out-degrees and in-degrees (stubs) for each partition can be easily
derived from the mean values for out-degrees and in-degrees respectively (e.g., µk,out · nk for
the total number of expected out-degrees in a partition k). Due to the randomness of the normal
distribution, the total number of added stubs may significantly differ from these expected totals.
Therefore, at the end of the algorithm, the number of out-stubs and in-stubs assigned for each
vertex vk in the partition k is linearly downscaled or upscaled by the SCALESTUBS function.

39

Algorithm 3 Algorithm to form edges from vertex out-stubs and in-stubs.
Input: Graph Gtmp = V with out-stubs and in-stubs assigned to vertices v ∈ V
Output: Final graph G with edges (u, v) ∈ E (connections).

1: stubsout ← ∅ . set of all out-stubs
2: stubs in ← ∅ . set of all in-stubs
3: for all v ∈ V do
4: stubsout ← stubsout ∪ STUBSOUT(v) . add all out-stubs from v to stubsout

5: stubs in ← stubs in ∪ STUBSIN(v) . add all out-stubs from v to stubs in

6: end for
7: if |stubsout | ≤ |stubs in | then
8: for all sout ∈ stubsout do . iterate over all out-stubs
9: repeat

10: sin ← RANDOMELEMENT(stubs in) . random in-stub
11: until sin 6= sout and (sout , sin) /∈ E . prevent self-loops and multiple edges
12: stubs in ← stubs in \ sin . remove from in-stubs stubs in

13: E ← E ∪ (sout , sin) . connect stub pair
14: end for
15: else
16: for all sin ∈ stubs in do . iterate over all in-stubs
17: repeat
18: sout ← RANDOMELEMENT(stubsout) . random out-stub
19: until sout 6= sin and (sout , sin) /∈ E . prevent self-loops and multiple edges
20: stubsout ← stubsout \ sout . remove from out-stubs stubsout

21: E ← E ∪ (sout , sin) . connect stub pair
22: end for
23: end if
24: return G

The scaling factor is computed from the comparison of the added and expected number of out-
stubs and in-stubs.
To complete the definition of the graph generating algorithm, we outline how edges between
vertices in the graph prepared Gtmp are formed in Algorithm 3. First, the sets of all out-
stubs stubsout and in-stubs stubs in are initialized from the vertices v ∈ V in the graph Gtmp

created in Algorithm 2. Although the partition boundaries impose restrictions on the number of
stubs created for a vertex vk in a specific partition k, the total number of out-stubs and in-stubs
assigned to all vertices in the graph may differ. Therefore, the algorithm iterates over the smaller
of the two quantities to ensure it terminates. Here, we illustrate the part of the algorithm that
iterates over the set of out-stubs stubsout , that is if the total number of out-stubs |stubsout | is
smaller than the total number of in-stubs |stubs in |. The part of the algorithm for the case where
the number of out-stubs is greater that the number of in-stubs |stubsout | > |stubs in | is processed
similarly and outlined in Algorithm 3 in line 16 to 22.

40

For each out-stub sout , the algorithm randomly choses an in-stub sin and connects them to form
an edge (sout , sin) ∈ E in the graph, while removing the in-stub from the set of available in-
stubs stubs in . In order to generate graphs without self-loops and multiple edges, as defined in
Section 3.1, we use a modified version of the matching algorithm proposed by Milo et al. [49].
Therefore, if the vertex at the end of a randomly chosen in-stub sin equals the vertex at the end of
the current out-stub, a new in-stub sin is chosen at random. Similarly, to prevent the formation
of multiple edges between the same vertices, a new in-stub sin is randomly chosen if an edge
between the two vertices of the stubs (sout , sin) already exists in the edge set E.

4.4.3 Flow Record Generation

Flow records are generated for consecutive time intervals of length T by a trace generator,
whose implementation details we outline in this section. The trace generator operates during
two consecutive phases. First, during an initialization phase, the generator processes input
parameters, i.e., the traffic templates, and initializes various value registries used when
generating flow records. Then, in a generating phase, flow records whose fields are populated
with appropriate values, i.e., the source and destination IP addresses, source and destination
ports, values for durations, packets, and similar, are output.

Initialization Phase

The generator implementation comprises various registries for values used when generating
the flow records. However, two value registries are of special importance when generating
flow records. First, for each traffic template, the flow generator must be aware of the time
intervals the traffic template is active at and hence the flow records for a specific service port are
being generated. Second, the range of valid source ports Psrc for each traffic template must be
determined and available during the entire flow generation process.
The values in the registries for active intervals as well as for the valid source port ranges are
associated with a template specific, unique key. Since each traffic template is associated with
exactly one service port and one specific network portal, the template specific registry key is a
combination thereof. The template specific registry key for DNS traffic templates, for example,
is a combination of the service port 53 and the UDP protocol number 17.

Active Intervals Registry The number of time intervals to be generated is a user-defined input
parameter. The active intervals registry Rint contains interval numbers for each traffic
template during which flow records for the respective service port are being generated.
The specification of the Iactive parameter in traffic templates is optional, hence by default
a template is active during all intervals to be generated.

Source Ports Registry The admissible source port range is specified by the Psrc parameter
in each traffic template flow records are generated for. The simplest solution to set the
source port flow record field, when generating records for a specific traffic template, is to
randomly sample from the entire range of source ports Psrc . However, this simplification
may lead to undesirable traffic structure in the generated trace. When flow records are

41

generated for a collection of self-parametrized templates, the thereby emerged set of
template-specific service ports Pservice may intersect with the source port ranges Psrc of
some templates. Therefore, we exclude all ports p ∈ Pservice from the source port range
Psrc for each template. The source port registry Rports comprises the adjusted range of
source ports for each template.

Generating Phase

During the second phase of the flow generation process, flow records in NetFlow format are
populated with the appropriate values and output, in the current implementation, in NetFlow
version 5 format. The records are either saved in binary format to files on the filesystem,
or streamed over the UDP protocol to an IP address and the respective destination port
specified. The latter simulates the functionality of a flow-based exporting device, such as routers.
Algorithm 4 outlines the entire flow trace-generating algorithm, including both, the initialization
and the generating phase in which flow records are output. The respective steps of the algorithm
are described as follows:

1. First, the active intervals registry Rint and the source port registry Rports are initialized in
the INITIALIZE procedure. Then, the algorithm iterates over the number of time intervals
m and outputs the flow records for all traffic templates tpl ∈ TPL active during each
interval, performing the following steps.

2. The number of hosts and the number of flows are sampled for each active traffic template
from the normal distribution determined by the µH , σH parameters for the number of
hosts, and µF , σF for the number of flows respectively. Additionally, the optional
minimum number of hosts parameter minH is respected if present in a template and the
sampled number of hosts adjusted accordingly (not depicted in Algorithm 4).

3. Then the partitioning of the degree distribution is derived from the corresponding
polynomial parameters ~ag,k for each traffic template, based on the number of hosts drawn
in RANDOM from the respective normal distribution N (µH , σ2

H). Then, the port-based
TDG G = (E, V) is generated in CREATEGRAPH from the partitioning as described in
Algorithm 2 and Algorithm 3. The edges (u, v) ∈ E in the thereby established graph
comprise admissible connections between network hosts u and v.

4. Next, for each edge (u, v) ∈ E flow records f are created. The source and destination
IP address are determined by the respective edge vertices u and v. Values for duration,
packets, and octets flow record fields are chosen by sampling from the log-normal
distribution (or a different distribution if specified) defined by the parameters dµ, dσ,
pµ, pσ, and bµ, bσ respectively. The end timestamps of flows are distributed uniformly at
random over the period marked by the start and end timestamp of the current time period
of length T (current interval i in Algorithm 4). The thereby derived end timestamps,
in conjunction with the duration value, yield the start time and thus the time-dependent
interleaving of flows. The template-specific destination port pdst and source port, chosen

42

Algorithm 4 Algorithm to generate flow trace from traffic templates.
Input: Collection of traffic templates TPL, number of m time intervals to be generated
Output: Flow records generated for templates TPL.

1: INITIALIZE() . initialization of Rint and Rports registries
2: for i← 0 to m do . iterate over m time intervals
3: edgeRegistry ← ∅ . admissible connections for each template
4: connectionF lows← ∅ . connections with basic traffic structure ∀tpl ∈ TPL
5: remainingF lows← ∅ . remaining connections ∀tpl ∈ TPL
6: for all tpl ∈ TPL do
7: if tpl ∈ Rint(i) then . processing active templates only
8: hosts← RANDOM(N (µH , σ2

H)) . number of hosts to generate for tpl
9: flows← RANDOM(N (µF , σ2

F)) . number of flows to generate for tpl
10: G = (E, V)← CREATEGRAPH(hosts) . establish TDG
11: for all (u, v) ∈ E do . flow records for each (u, v) ∈ E
12: duration← RANDOM(dµ, dσ)
13: . . .
14: sport← RANDOM(Rports)
15: f ← (u, v, sport, pdst ,R, duration, . . .)
16: connectionF lows← connectionF lows ∪ f
17: flows← flows− 2 . decrease count (flow and responder flow)
18: end for
19: for j ← 0 to flows do . save template keys for remaining flow count
20: remainingF lows← remainingF lows ∪ tpl
21: end for
22: edgeRegistry ← edgeRegistry ∪ E . save edges for tpl
23: end if
24: connectionF lows← SHUFFLE(connectionF lows) . randomize order
25: for all f ∈ connectionF lows do . output flow records
26: OUTPUT(f ← (u, v, sport, pdst ,R, . . . ,))
27: OUTPUT(f ← (v, u, pdst , sport,R, . . .))
28: end for
29: remainingF lows← SHUFFLE(remainingF lows) . randomize template keys
30: for all tpl ∈ remainingF lows do . get template key for each remaining flow
31: (u, v)← RANDOM(edgeRegistry(tpl))) . get random edge (u, v) for tpl
32: duration← RANDOM(dµ, dσ)
33: . . .
34: sport← RANDOM(Rports)
35: OUTPUT(f ← (u, v, sport, pdst ,R, . . .)) . output flow records
36: OUTPUT(f ← (v, u, pdst , sport,R, . . .))
37: end for
38: end for
39: end for

43

from the port range specified in the source ports registry Rports , are set for each flow
record f to be generated.

5. The body of thereby created flow records is added to the list of connections
connectionF lows for the current interval i. This list contains the basic traffic
structure (comprising all edges (u, v) ∈ E from the generated graph G) for all service
ports flow records are generated for.

6. Usually, the number of flows for a template is greater than the number of connections
between hosts. Therefore, for the remaining number of flows, we add the template
key (combination of service port and network protocol) to the list of remaining flows
remainingF lows for an interval. Furthermore, to be able to generate flow records from
this list of remaining flows for a template, we add the list of admissible connections
defined by the TDG edges E to a template-based edge registry edgeRegistry.

7. Then, the entry order in the prepared list of flow records for all active traffic templates
is randomized in SHUFFLE, and two corresponding flow records3 are output for each
element.

8. Similarly, for the remaining number of active traffic template flows for the current time
interval i, flow records are generated by first randomizing the order of the templates
(template keys) in the list of remaining flows remainingF lows. Then, for each template
key, the algorithm randomly chooses an edge (u, v) from the list of admissible connections
for the respective template, and generates the flow records whose fields have been
populated with random values sampled from the corresponding distributions.

Important to say is that the individual flow records output by the flow trace generator in the
OUTPUT function in Algorithm 4 are properly buffered, such that the generated NetFlow packets
contain a realistic number of flow records (e.g., 30), as opposed to some of the current flow-based
trace generators which incorrectly output NetFlow packets that contain only one flow record as
described in Section 2.2.

4.5 Pluggable Architecture

In Section 2.2 we described the currently existing flow-based trace generators and presented
their drawbacks. Although these tools are capable of generating flow records directly, without
the detour of a packet-based traffic generator, one of their disadvantages is the missing ability
to determine the exact values of the data generated. For example, they do not provide any
instruments to programmatically determine the exact number of flows, the number of unique
hosts, the top service ports, or other flow-related attributes such as the generated number of
packets or bytes. Therefore, when streaming the generated trace to a flow-based monitoring

3As a simplification, we assume that for every flow between two hosts a responder flow exists. The attributes of
the responder flow are set by reversing the source and destination IP addresses and ports.

44

system, its analysis accuracy cannot be reliably determined since the values analyzed by the
system cannot be compared to the values generated.
In this section, we introduce the pluggable architecture of our framework. Our flow trace
generator provides several entry points, called “hooks”, for plugins to interact with the generator
during different phases of the generation process. Therefore, the data generated by our
framework can be subjected to additional examinations if desired. For example, the values
effectively generated can be compared to the values established during analysis of the generated
trace, performed by a flow-based network monitoring system.
The plugins are implemented as object-oriented Perl modules. Each plugin must provide at
least one plugin instantiation method to be recognized and activated by the trace generator.
Furthermore, a set of additional plugin methods can be implemented for added functionality. The
flow trace generator invokes each method during different phases of the flow record generation
process. We describe the collection of mandatory and optional plugin methods as follows.

new() This is the mandatory plugin instantiation method. Plugins without an instantiation
method are not activated and thus cannot be used by the trace generator.

active() This method determines whether the implementing plugin is activated by the trace
generator or not. The definition of this method is optional, plugins without an active()
method are ignored by the generator, for a plugin to be activated, the value returned by
the method must evaluate to TRUE (in Perl, the Boolean data type representing the truth
value is 1). This method also simplifies the activation and deactivation of different plugins
employed for different evaluations.

init(@args) This plugin method is called exactly once during the initialization phase of the
flow trace generator. Plugins that require internal configurations should implement this
method. The entire generator parameters array is passed as a method parameter to the
plugin. For example, to determine the existence of certain generator flags (e.g. verbose),
each plugin can inspect the @args parameter array.

record($record) This plugin method is called each time a flow record is output. The
flow record is passed in anonymous array $record to all active plugins. The practical
application of this hook is the possibility for plugins to establish exact counters of flow
record field values generated. For example, to determine the exact number of bytes present
in the trace generated, a plugin can increase internal counters for the number of bytes each
time its record() method is called with the respective value for the number of bytes in
the $record parameter.

finit() The last plugin method is called exactly once after the flow records for all intervals
have been generated. The method targets post-processing plugin operations and is
parameterless. For example, a user-defined plugin can compare values generated with
values analyzed by a flow-based system the flow records have been streamed to.

45

Chapter 5

Evaluation

In this chapter, we evaluate the flow generation and self-parametrization technique introduced
in Sections 4.3 and 4.4. We assess the accuracy of graph generation algorithm by creating
TDGs from partition parameters and comparing the graph metrics of the generated graphs
and graphs established from real traffic traces. Moreover, we show that the flow records
generated by our technique exhibit similar structural properties as the records from original
traffic and provide performance measurements of the record generation. In a case study, we
demonstrate the ability of using templates from background traffic in combination with user-
defined templates to generate new traces containing abnormal traffic events. Furthermore, we
examine the performance of the flow trace generator in Section 5.5 and outline the limitations of
our approach at the end of this chapter in Section 5.6.
The evaluation testbed consists of a desktop-class commodity Core 2 Duo processor with 3 MB
shared L2 cache running at 3.06 GHz with 4 GB RAM. We implemented a prototype of our
technique in Perl 5. We use two different data sets, introduced in Section 3.2, for the evaluation
of our framework. The first data set consists of 10 days of NetFlow records of the internal traffic
from an average-sized campus network, collected between May 1, and May 9, 2009. The second
data set comprises 7 days of NetFlow records collected at a large hosting environment between
April 14, and April 20, 2008.

5.1 Graph Generation

We evaluate the graph generation technique in terms of the number of vertices and the number
of edges as well as the degree distribution of TDGs created from the partition parameters Gk.
First, we generate TDGs directly from static partition parameters Gk. Then, we study the effect
of approximation of the partition parameters using a polynomial function with parameters ~ag,k.
We analyze flow traces from the campus network data set for a time period of one hour, divided
into 12 intervals 300 s length. The trace analyzed comprises 15 353 unique IP addresses and
1.2 million flows. We note that the experiments in this section performed on traces from different
time periods show quantitatively and qualitatively similar results, hence we only display results
for the trace and time interval previously described.

47

-1

-0.5

 0

 0.5

 1

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(a) HTTP (80, TCP)

-2

-1

 0

 1

 2

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(b) HTTPS (443, TCP)

-2

-1

 0

 1

 2

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(c) SSH (22, TCP)

-0.2

-0.1

 0

 0.1

 0.2

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(d) DNS (53, UDP)

-1

-0.5

 0

 0.5

 1

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(e) NetBIOS NS (137, UDP)

-2

-1

 0

 1

 2

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(f) LDAP (389, UDP)

Figure 5.1: Relative difference between the number of connected vertices and edges of the original graph
and the graph generated from partitions, established from the campus network traffic (20 repeated runs of
the graph algorithm for each period length).

For each interval, we extract the partitioning with the corresponding partition parameters Gk
from the traffic accumulated over the analyzed intervals. Then, we generate a TDG for each
partitioning by means of the graph-generating algorithm described in Section 4.4.2. We repeat
the random graph algorithm for different ports and protocols 20 times to increase the stability
of the measurements and to introduce meaningful average values. In Figure 5.1 we show the
relative difference in the number of connected vertices |V | (without isolated vertices) and the
number of edges |U | between the original and the generated graphs for six different service ports
for both, TCP and UDP protocols.
We observe that the random graph algorithm introduces an average error of 0.31% (σ = 0.11) for
HTTP traffic in Figure 5.1(a) in the number of vertices, and 0.22% (σ = 0.09) in the number of
edges respectively. Similarly, the difference in the number of vertices and edges for DNS traffic
in Figure 5.1(d) is on average 0.01% (σ = 0.01) for vertices, and 0.06% (σ = 0.02) for edges. In
some cases, other service ports analyzed exhibit slightly increased average errors.

48

-2

-1

 0

 1

 2

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(a) HTTP (80, TCP)

-6

-4

-2

 0

 2

 4

 6

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(b) DNS (53, UDP)

Figure 5.2: Relative difference between the number of connected vertices and edges of the original graph
and the graph generated from partitions, established from the hosting provider traffic (20 repeated runs of
the graph algorithm for each period length).

Web traffic on the service port 443 (HTTPS) in Figure 5.1(b), for example, in contrast to web
traffic on service port 80 (HTTP), shows an average error 0.68% (σ = 0.14) for the number of
vertices and 0.39% (σ = 0.20) for the number of edges. This can be attributed to lower traffic
portion on this service port. In contrast to HTTP traffic, the number of vertices in the graphs
for HTTPS traffic is considerably lower. Therefore, a difference in the number of out-stubs and
in-stubs, drawn from higher-degree partition (e.g., [10, 100)) when generating graphs from the
partitionings, has a stronger impact on the relative difference in vertices and edges.
Furthermore, for the sake of completeness, we note the numerical values for the remaining
service ports. For SSH traffic on service port 22 (TCP) in Figure 5.1(c), the average error is
0.55% (σ = 0.23) in the number of vertices, and 0.21% (σ = 0.15) in the number of edges. For
LDAP service port 389 (UDP) in Figure 5.1(f), the difference is 0.07% (σ = 0.11) in vertices
and 0.99% (σ = 0.85) in edges. Finally, the values for service port 137 on UDP (NetBIOS NS)
in Figure 5.1(e) are 0.01% (σ = 0.01) for the number of vertices, and 0.15% (σ = 0.11) for the
number of edges respectively.
For most service ports, the relative difference in the number of vertices is smaller than the
difference with respect to the number of edges. This is likely due to the mismatch of the total
number of out-stubs and in-stubs assigned to vertices in partitions. Although the number of stubs
assigned to a vertex is linearly scaled in the graph-generating algorithm (c.f. Algorithm 2), in
order to match the total number of stubs in a partition as closely as possible, the number of stubs
assigned can still differ. We attribute this difference to the nature of the normal distribution and to
the rounding applied to the sampled values (degrees values are integers). Vertices with assigned
stubs, even though the number of stubs might differ from the vertex degrees in the original
graphs, are successfully connected by the edge forming algorithm. Therefore, the number of
isolated vertices is minimal in the graphs generated.
Next, we perform an evaluation of the graph-generating technique on the hosting provider
network traces, which contain a considerably higher number of unique IP addresses and flows.
Particularly, the data set analyzed comprises 5.75 million flows and 158 931 unique IP addresses.
Figure 5.2 shows the relative differences in the number of vertices and edges between the
original and generated graph for each interval for DNS (53, UDP) and HTTP (80, TCP) traffic.
The average error for HTTP traffic in Figure 5.2(a) is 0.18% (σ = 0.05) in vertices and 0.48%

49

-2

-1

 0

 1

 2

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(a) HTTP (80, TCP)

-3

-2

-1

 0

 1

 2

 3

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(b) HTTPS (443, TCP)

-3

-2

-1

 0

 1

 2

 3

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(c) SSH (22, TCP)

-4
-3
-2
-1
 0
 1
 2
 3
 4

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(d) DNS (53, UDP)

-2

-1

 0

 1

 2

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(e) NetBIOS NS (137, UDP)

-2

-1

 0

 1

 2

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(f) LDAP (389, UDP)

Figure 5.3: Relative difference between the number of connected vertices and edges of the original graph
and the graph generated from partitionings established from polynomial coefficients ~ag,k in the campus
network traffic (20 repeated runs of the graph algorithm for each period length).

(σ = 0.17) in edges. The higher difference in the number of vertices and edges observed
for DNS traffic in Figure 5.2(b) is explainable due to the previously mentioned mismatch
between the number of out-stubs and in-stubs, assigned from the partition parameters, which
can lead to isolated vertices and fewer connected edges. However, the graph shows that the
average difference is around 2% (in some cases even around zero) which leads to acceptable
approximation of the number of edges and vertices. The average error for DNS traffic computed
over the sum of intervals analyzed is 0.17% (σ = 0.51) in the number of vertices and 0.68%
(σ = 0.49) in the number of edges.
Now, we apply the self-parametrization technique to extract the polynomial coefficients ~ag,k
over the same intervals. Based on the thereby derived coefficients, the partition parameters
Gk are computed from the polynomials and the TDGs are generated from the thereby derived
partitioning. We depict the results for different service ports for the campus network traffic in
Figure 5.3, and for DNS and HTTP traffic from the hosting provider traces in Figure 5.4. We

50

-6

-4

-2

 0

 2

 4

 6

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(a) HTTP (80, TCP)

-10

-5

 0

 5

 10

 10 20 30 40 50 60

re
la

ti
v
e
 d

if
fe

re
n
c
e
 [
in

 %
]

period length [in min]

edges
vertices

(b) DNS (53, UDP)

Figure 5.4: Relative difference between the number of connected vertices and edges of the original graph
and the graph generated from partitionings established from polynomial coefficients~ag,k from the hosting
provider traffic (20 repeated runs of the graph algorithm for each period length).

observe that the graphs generated in this manner exhibit slightly higher average errors.
For the campus network traffic, the additional approximation step of using the polynomial
parameters introduces an average error of 0.39% (σ = 0.28) for the number of vertices, and
0.69% (σ = 0.47) for the number of edges for HTTP traffic in Figure 5.3(a). For DNS traffic
in Figure 5.3(d) the average error is 0.02% (σ = 0.02) for the number of vertices, and 1.15%
(σ = 0.71) for the number of edges. Similarly, the average difference in vertices is 0.69%
(σ = 0.80) and in the number of edges 0.78% (σ = 0.66) for HTTPS traffic in Figure 5.3(b).
The absolute values for the average errors for the remaining service ports are 0.79% (σ = 0.33)
for vertices and 0.66% (σ = 0.51) for edges for SSH traffic in Figure 5.3(c), 0.06% (σ = 0.06)
for vertices and 0.32% (σ = 0.27) for edges in the service port 137 (NetBIOS NS) traffic in
Figure 5.3(e), and finally 0.11% (σ = 0.11) for vertices and 1.15% (σ = 1.29) for edges in the
LDAP (service port 389) traffic in Figure 5.3(f).
The average errors for the graphs generated from the hosting provider network traffic,
comprising a much higher number of unique hosts and flows for each time interval analyzed,
are 0.26% (σ = 0.35) for the number of vertices and 1.03% (σ = 0.68) for the number of edges
for HTTP traffic in Figure 5.4(a). For DNS traffic in Figure 5.4(b), the average different in the
number of vertices is 0.23% (σ = 0.53) and the average error in the number of edges is 1.32%
(σ = 2.03).
These increased differences can be explained through the polynomial approximation of the
partition parameters. For higher degree polynomials, the approximating polynomial function
does not run through the original values (cf. Figure 4.2(a)). Consequently, the number of out-
stubs and in-stubs are sampled from partition parameters that differ from the original values.
This could be improved by using the actual partition parameters observed at each interval in
the traffic templates, instead of approximating the values with a polynomial function. Partition
parameters Gk could then be derived for numbers of hosts by linearly interpolating between
partitionings at two intervals (two values for the number of hosts). However, the complexity of
traffic templates and the user-based definition thereof would increase.
Similar to graphs generated from static partition parameters Gk, the difference in the number of
vertices, for most service ports, is distributed steadily around the zero value. Hence, the graphs
generated contain roughly the same number of vertices (hosts), and usually only a few isolated

51

vertices (hosts without any connections) are present.
To sum up, we have shown that graphs generated by means of the random graph algorithm
exhibit only small differences in the number of hosts and the number of vertices, compared to
graphs generated from original traffic traces. Furthermore, the polynomial coefficients, although
introducing slightly higher average errors compared to the static partition parameters, provide
good approximations of the partition parameters for arbitrary host populations.

5.2 Graph Degree Distribution

We further compare the degree distribution of the underlying undirected graph for both, the
original and generated graphs on different ports by computing the empirical Complementary
Cumulative Distribution Function (CCDF) for the degree, determined by the number of adjacent
edges (connections), of each vertex v ∈ V . In Figure 5.5 we depict the CCDF of the original
graphs and those generated from partition parameters, all graphs created from an analysis of
four hours of the campus network traffic trace. The campus network trace analyzed consists
of 43 385 unique IP addresses and 5.1 million network flows. Similar to the experiments in
Section 5.1, we note that the experiments in this section performed on the hosting provider
traces, as well as on the campus network traces, from different time periods show quantitatively
and qualitatively similar results. Therefore, we only depict results for the trace and time interval
previously described.
Similarly, in Figure 5.6 we depict the CCDF comparison of original graphs and graphs generated
from the hosting provider data set. The analysis comprised a one hour long traffic trace, worth
of 158 931 network hosts and 5.7 million flows. To show the stability of our measurements, we
repeated the graph-generating algorithm five times and plot all curves (hence the overlapping
points) for both traces analyzed.
We observe that the degree distribution curves for most service ports match well. Especially for
the the campus network traces graphs, only slight variations between the vertex degrees in the
original and generated graphs are present. In some cases, the probability of vertices having a
certain degree is different in the graphs generated when compared to the original graphs, hence
small sections of some distribution curves do not match exactly.
For traffic on service port 389 (LDAP) on the UDP protocol in Figure 5.5(f), for example, the
mismatch of the two curves around vertex degree x = 3, where P (X > x)original > P (X >
x)generated , suggests that the original graph comprises more higher-degree vertices for degrees
values around three. This can be attributed to the sampling of the number of out-stubs and in-
stubs from the partition parameters, i.e., in partitions [2, 10) where the vertex degrees in the
generated graphs can take a wider range of values than in the lower-degree partitions, such as
[0, 1) or [1, 2).
Similarly, the distribution curves for graphs generated from the campus network traffic on
service port 80 (HTTP) on the TCP protocol in Figure 5.6(a) exhibit similar deviations from
the original values. For degree values from three to ten, the generated graph contains more
lower-degree vertices. Moreover, the graph generated comprises more higher-degree vertices
as indicated by the marginal slope difference in distribution curves for degree values x ∈

52

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

C
C

D
F

Degree

Original
Generated

(a) HTTP (80, TCP)

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

C
C

D
F

Degree

Original
Generated

(b) HTTPS (443, TCP)

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

C
C

D
F

Degree

Original
Generated

(c) SSH (22, TCP)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
C

D
F

Degree

Original
Generated

(d) DNS (53, UDP)

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

C
C

D
F

Degree

Original
Generated

(e) NetBIOS NS (137, UDP)

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

C
C

D
F

Degree

Original
Generated

(f) LDAP (389, UDP)

Figure 5.5: CCDF, P (X > x), of the degrees of each vertex in the original graphs and graphs generated
from an analysis of four hours of the campus network traffic trace.

{100, . . . , 1000}. We explain this, in analogy to the curve slope difference for lower-degree
values, with the higher variance of vertex stubs drawn for high-degree partitions, e.g., [100,∞),
especially for the hosting provider traffic where vertex degree values are generally much higher
than in graphs generated from the campus network traffic (c.f. Figure 5.5(a)).
The distribution curve differences for high-volume1 traffic traces suggests that an adaptation
of left-closed intervals, which determine the partition boundaries of the partitioning of the out-
degree and in-degree plane, could help increasing the accuracy of the degree distribution in
the graphs generated. Furthermore, the intervals could be determined dynamically in the self-
parametrization process, depending on vertex degree values for graphs established from the trace
analyzed.

1High-volume traces in terms of the number of unique IP addresses (network hosts) in the traffic.

53

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

Degree

Original
Generated

(a) HTTP (80, TCP)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

C
C

D
F

Degree

Original
Generated

(b) DNS (53, TCP)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

C
C

D
F

Degree

Original
Generated

(c) HTTPS (443, TCP)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
C

D
F

Degree

Original
Generated

(d) SMTP (25, TCP)

Figure 5.6: CCDF, P (X > x), of the degrees of each vertex in the original graphs and graphs generated
from an analysis of one hour of the hosting provider traffic trace.

To sum up, we find the graph-generating algorithm and our partitioning approach reproduces the
original degree distribution and thus the host connectivity properties accurately. The number of
vertices with a specific out-degree and in-degree in the generated graphs is close to values found
in the original graphs.

5.3 Traffic Structure

5.3.1 Graph Metrics

We use the self-parametrization process on the campus network traces to extract the traffic
template parameters. The flow records analyzed span over 48 consecutive 300 s long time
intervals, comprising a total of 5.15 million flows and 43 385 unique IP addresses. We generate
traffic traces for a period of 4 hours from the templates and create the TDGs. Similarly, we
establish the TDGs from the original traffic traces, with equal period length, from three different
days of the campus network data set, comprising an average of 4.76 (σ = 0.22) million flows and
38 014 (σ = 4 968) unique IP addresses. Then, we compare the TDGs by means of eight graph
metrics, that capture the structure of network traffic, which have been introduced by Iliofotou et
al. [22] and recently refined [50].
Table 5.1 shows a comparison of the graph metrics of the original and generated traces for
different service ports for both, TCP and UDP network protocols. The traces have been
generated from the self-parametrized traffic templates 10 times, the values in the table depict the

54

generated graph metrics averaged over these 10 runs. Similarly, the values for the original graph
metrics have been averaged over the three different days analyzed. The values in parentheses,
for both the graphs of the original traffic and the traces generated, show the respective standard
deviations. The graph metrics used are described as follows.

Average Degree The average degree metric is computed by counting the number of edges,
both out-going and in-coming, adjacent to a vertex. Therefore, this metric ignores the
directionality of the graph and considers the underlying undirected graph of a TDG. High
average degree values are an indication of how tightly connected a graph is.

OnlyIn, OnlyOut, InO In Section 3.3 we introduced TDGs visualizations and distin-
guished between different roles of vertices in the graphs. Each TDG usually comprises
vertices with different degree properties. Vertices with zero in-degree values (sources)
have out-going edges only, modeling hosts in the network traffic which act as service
initiators (clients). Similarly, vertices with zero out-degree values (sinks) have only
incoming edges and represent hosts which act as service providers (servers). The third
class of graph vertices are those with non-zero out-degrees and non-zero in-degrees, hence
vertices with both, outgoing and incoming edges. Therefore, we capture the directionality
of the graph by the percentage of sources (OnlyOut), sinks (OnlyIn), and vertices with
both outgoing and incoming edges (InO).

LWCC Each graph can be split into a number of connected subgraphs, called components. The
Largest Weakly Connected Component (LWCC) indicates the number of vertices in the
maximal connected subgraph as a percentage of the total number of vertices |V |. In their
work, Iliofotou et al. use the Giant Connected Component (GCC) metric to quantify the
connectivity of a graph. When considering the underlying undirected graph of a TDG, this
metric equals the LWCC metric in the directed graph. Densely connected graphs exhibit
higher LWCC values.

Max Degree Ratio (MDR) The Max Degree Ratio (MDR) is the the maximum vertex degree
in the graph normalized by the total number of vertices |V | minus one. Therefore, this
metric provides information about the maximum possible degree of a node in the graph.
High MDR value suggests the existence of a dominant high-degree vertex, such as, for
example, in graphs established from DNS traffic where high MDR values are likely due
to the presence of high-degree DNS servers.

RU The Relative Uncertainty (RU) metric measures the uniformity of the vertex degree
distribution. The probability of a randomly selected vertex having a degree j is defined
by the graph degree distribution P (j) = n(j)/j, for j ∈ {1, . . . , jmax}, where the
number of vertices with degree j is defined as n(j), and jmax is the maximum vertex
degree in the graph. The entropy of the degree distribution H(X) is defined as H(X) =
−

∑jmax

j P (j)log(P (j)) with log(P (j)) = 0 if P (j) = 0. The Relative Uncertainty
is subsequently computed from the formula H(X)/log2jmax [50]. The RU value one
denotes a uniform degree distribution, values closer to zero denote higher variety in the
degrees.

55

Table
5.1:

C
om

parison
ofgraph

m
etrics

ofT
D

G
s

established
from

originaland
generated

traffic.

Port
Trace

type
Vertices

E
dges

Avg.D
egree

InO
,%

O
nlyO

ut,%
O

nlyIn,%
LW

C
C

,%
M

D
R

R
U

r

T
C

P

80
orig

8389
26248

3.13
(0.09)

0.52
(0.02)

10.36
(0.67)

89.12
(0.66)

99.62
(0.21)

0.07
(0.00)

0.26
(0.01)

-0.37
(0.01)

gen
8157

24860
3.05

(0.01)
0.52

(0.00)
10.63

(0.04)
88.84

(0.04)
98.74

(0.17)
0.04

(0.00)
0.28

(0.00)
-0.34

(0.00)

1352
orig

622
1389

2.23
(0.06)

32.62
(1.94)

47.82
(1.52)

19.56
(2.07)

94.38
(1.44)

0.49
(0.01)

0.30
(0.00)

-0.55
(0.02)

gen
645

1479
2.29

(0.02)
33.04

(0.17)
49.02

(0.12)
17.93

(0.17)
98.36

(0.57)
0.49

(0.03)
0.31

(0.00)
-0.50

(0.01)

443
orig

1150
2079

1.81
(0.05)

2.05
(0.33)

32.20
(0.32)

65.75
(0.53)

89.47
(0.65)

0.07
(0.00)

0.39
(0.01)

-0.15
(0.03)

gen
1154

2150
1.86

(0.01)
2.15

(0.03)
32.83

(0.13)
65.02

(0.13)
95.74

(0.68)
0.04

(0.00)
0.45

(0.01)
-0.05

(0.02)

139
orig

671
1374

2.05
(0.04)

11.60
(1.38)

83.89
(1.29)

4.51
(0.78)

97.07
(1.91)

0.69
(0.02)

0.24
(0.01)

-0.63
(0.01)

gen
670

1371
2.05

(0.01)
14.48

(0.26)
80.02

(0.10)
5.50

(0.20)
99.24

(0.43)
0.58

(0.05)
0.26

(0.00)
-0.59

(0.02)

U
D

P

53
orig

7265
8961

1.24
(0.03)

0.42
(0.05)

19.16
(1.25)

80.43
(1.23)

99.99
(0.01)

0.80
(0.01)

0.05
(0.01)

-0.57
(0.01)

gen
7584

9447
1.25

(0.00)
0.42

(0.00)
20.12

(0.00)
79.46

(0.00)
99.84

(0.07)
0.78

(0.00)
0.05

(0.00)
-0.54

(0.01)

137
orig

920
2570

2.79
(0.01)

81.93
(0.56)

9.53
(0.37)

8.54
(0.51)

97.17
(0.29)

1.45
(0.01)

0.21
(0.00)

-0.52
(0.01)

gen
929

2632
2.83

(0.01)
83.47

(0.10)
9.42

(0.10)
7.12

(0.03)
100.00

(0.00)
1.48

(0.01)
0.22

(0.00)
-0.46

(0.01)

389
orig

589
1054

1.79
(0.01)

0.40
(0.07)

97.46
(0.09)

2.15
(0.04)

97.68
(0.04)

0.89
(0.01)

0.11
(0.00)

-0.93
(0.01)

gen
594

1010
1.70

(0.01)
0.00

(0.00)
99.66

(0.00)
0.34

(0.00)
100.00

(0.00)
0.87

(0.00)
0.09

(0.00)
-1.00

(0.00)

123
orig

1281
3634

2.84
(0.02)

80.85
(0.69)

17.85
(0.73)

1.30
(0.06)

96.94
(0.50)

0.60
(0.02)

0.21
(0.00)

-0.70
(0.01)

gen
1264

3603
2.85

(0.01)
80.60

(0.06)
18.28

(0.07)
1.12

(0.03)
99.97

(0.06)
0.49

(0.04)
0.23

(0.00)
-0.72

(0.01)

56

r The assortativity coefficient r ∈ [−1, 1] provides a summary metric of the relationship
between the degrees of adjacent vertices. If the assortativity coefficient value is zero, the
vertex degrees have random correlations and there no relationship between the degrees of
adjacent vertices. When the assortativity coefficient is greater than zero, r > 0, the graph
is assortative with respect to the vertex degrees, hence high-degree vertices are likely to be
connected to other high-degree vertices. If the assortativity coefficient is smaller than zero,
r < 0, on the other hand, low-degree vertices are likely to be connected to high-degree
vertices.

We observe that the differences in the metrics in Table 5.1 are very small. In general, the
directionality of the original and the generated graphs is reproduced accurately. The relative
amount of sinks, sources, and vertices with both outgoing and incoming edges are a close match.
Similarly, the correlation between the degree values of two adjacent vertices are almost equal
in the original and generated graphs. Graphs generated from DNS traffic, for example, exhibit
a negative assortativity coefficient (approx. -0.5), meaning low-degree vertices (DNS clients)
are likely to connect to high-degree vertices (DNS servers). Conversely, for HTTP traffic, the
assortativity coefficient has values closer to zero (approx. -0.3) which suggests the presence of
web servers with lesser incoming connections.
Interestingly, for traffic on service port 137 on the UDP protocol, a discrepancy exists between
the number of sinks, as well as the number of vertices with out-degrees and in-degrees, in
the original and generated graphs. Consequently, the graph for this service port is completely
connected, as indicated by a LWCC value of 100%. In this particular case, this is likely due to
the matching algorithm which spuriously connects out-stubs and in-stubs for a small amount of
vertices, leading to an increased number of connection between vertices that are not connected
in the original graph.
To sum up, we have shown that the traffic structure of the original and generated traffic is highly
comparable by means of various graph metrics. We conclude that our approach leads to traces
with realistic traffic structure for time intervals of fixed length.

5.3.2 Partitioning

We use the self-parametrization process on the campus network traces to extract the traffic
template parameters. The flow records analyzed span over 36 consecutive 300 s intervals, each
comprising an average of 110 313 (σ = 8804) flows and 4 216 (σ = 468) unique IP addresses.
The self-parametrization parameter for the number of top service ports n is set to n = 50,
establishing the top 50 service ports in terms of unique IP addresses and the number of flows in
the trace spanned by the 36 time intervals. The combination of the collections of all top service
ports yields 132 traffic templates, 71 templates for the TCP protocol and 61 templates for the
UDP protocol, based on which we generate the flow records for 36 consecutive time intervals.
In Figure 5.7 we depict the partitioning from four consecutive intervals established from the
original and generated trace. The number (and color) for each partition indicate the count of
hosts observed in the partition. Figure 5.7(a) shows the partitioning visualizations for DNS
(service port 53) traffic. We observe that our method generates traces with highly similar traffic

57

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

394

97

0

0

543

0

0

0

0

10

0

0

6

0

2

3

2

3

1

0

0

1

1

0

in−degree

o
u

t−
d

e
g

re
e

[1,2) [2,10) [10,100) [100,∞)

468

102

1

0

573

1

0

0

0

9

0

3

4

0

2

3

1

3

1

0

0

1

2

0

in−degree

[0,1) [0,1) [1,2) [2,10) [10,100) [100,∞)

463

87

0

0

481

0

1

0

0

12

0

0

6

0

3

2

3

2

1

0

0

1

1

0

in−degree

[0,1) [1,2) [2,10) [10,100) [100,∞)

486

105

0

0

509

0

1

0

0

12

0

1

5

0

5

0

3

2

1

0

0

1

1

0

in−degree

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

380

102

0

0

552

0

0

0

0

11

0

0

5

0

2

4

1

4

1

0

0

1

1

0

in−degree

o
u

t−
d

e
g

re
e

[0,1) [1,2) [2,10) [10,100) [100,∞)

421

114

0

0

603

0

0

0

0

11

0

0

5

0

2

3

2

4

1

0

0

1

1

0

in−degree

[0,1) [1,2) [2,10) [10,100) [100,∞)

405

110

0

0

584

0

0

0

0

11

0

0

6

0

2

3

1

3

1

0

0

1

1

0

in−degree

[0,1) [1,2) [2,10) [10,100) [100,∞)

401

107

0

0

576

0

0

0

0

11

0

0

6

0

2

4

1

3

1

0

0

1

1

0

in−degree

Original Traffic

Generated Traffic

(a) DNS (53, UDP)

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

100

130

38

0

584

0

2

0

0

140

0

0

0

0

20

0

0

0

0

0

0

0

0

0

in−degree

o
u

t−
d

e
g

re
e

[0,1) [1,2) [2,10) [10,100) [100,∞)

131

118

56

0

684

0

0

0

0

205

0

0

0

0

16

0

0

0

0

0

0

0

0

0

in−degree

[0,1) [1,2) [2,10) [10,100) [100,∞)

109

133

52

0

708

0

1

0

0

203

0

1

0

0

18

0

0

0

0

0

0

0

0

0

in−degree

[1,2) [2,10) [10,100) [100,∞)

119

129

49

0

607

1

1

0

0

155

0

0

0

0

22

0

0

0

0

0

0

0

0

0

in−degree

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

94

123

33

0

592

0

2

0

0

147

0

0

0

0

18

0

0

0

0

0

0

0

0

0

in−degree

o
u

t−
d

e
g

re
e

[0,1) [1,2) [2,10) [10,100) [100,∞)

103

147

47

0

688

0

3

0

0

183

0

0

0

0

22

0

0

0

0

0

0

0

0

0

in−degree

[0,1) [1,2) [2,10) [10,100) [100,∞)

108

145

46

0

680

0

3

0

0

180

0

0

0

0

22

0

0

0

0

0

0

0

0

0

in−degree

[0,1) [1,2) [2,10) [10,100) [100,∞)

104

139

44

0

655

0

2

0

0

171

0

0

0

0

21

0

0

0

0

0

0

0

0

0

in−degree

Original Traffic

Generated Traffic

(b) HTTP (80, TCP)

Figure 5.7: Comparison of graph partitionings between original and generated traffic created from four
consecutive time intervals of 300 s length. Figure 5.7(a) shows graph partitionings for DNS (service port
53) traffic on the UDP protocol. Figure 5.7(b) shows graph partitionings for HTTP (service port 80)
traffic on the TCP protocol.

58

structure. For example, the graphs established from the original trace comprise a high number
of hosts in the zero in-degree and low out-degree ([1, 2) × [0, 1)) partition, which are likely to
be DNS clients.
The high number of hosts in the zero in-degree and low out-degree partition ([0, 1) × [1, 2))
are most likely DNS servers. Furthermore, a number of hosts exists in the high out-degree and
high in-degree partitions. These hosts are likely servers propagating name server resolution
requests to other DNS servers. The partitioning established from the generated trace exhibit
highly similar values (and color intensities), hence the traffic structure is reproduced accurately.
Similarly, for HTTP (service port 80) traffic in Figure 5.7(b), we observe that the number of
hosts in the client partitions, i.e., the zero in-degree partitions in the left column, is very similar
in the generated trace compared to the original partitioning. Furthermore, the number of web
servers in the generated trace, i.e., in the zero out-degree partitions the bottom row, is close to
the values in the original traffic.
There is a marginal mismatch between the number of hosts in some of the non-zero out-degree
and non-zero in-degree partitions for both service ports, DNS and HTTP. This is mainly due
to marginal differences between the original out-degree and in-degree values and the values
approximated by the polynomial parameters, the graphs, and hence the traffic structure, are
generated from. The values for the mean out-degree and the mean in-degree, as well as the
respective standard deviations thereof, are left out to depict the visualizations better. However,
the note that values for these quantities in the partitionings established from generated traces are
similarly close to values in the original trace.
To sum up, we have shown that flow traces generated by our technique exhibit traffic structure
highly similar to the structure found in original traffic compared at each time interval. Although
minimal differences in the number of hosts for some partitions exist, given the approximating
character our our approach, we find this to be negligible in real world applications.

5.3.3 Visualizations

In addition to the evaluation of traffic structure by means of various graph metrics, as well
as visualizations of the partitioning of the degree distribution plane, we use visualizations
of port and protocol based TDGs of generated traffic. We generate flow records from self-
parametrized traffic templates established from the campus network traffic in Section 5.3.2.
Then, we establish the TDGs from both, the original and generated traces, by employing the
GraphViz tool introduced in Section 3.3.
Traffic Dispersion Graph visualizations of original and generated HTTP traffic on service port
80 (TCP), as well as visualizations of graphs established from DNS traffic on service port 53
(UDP) are depicted in Figure 5.8. The layout and the vertex positions in the visualized graphs
has been entirely determined by the algorithms employed in GraphViz. The number of vertices
in the graphs has been limited to 500 (|V | = 500) for HTTP traffic, and to 300 (|V | = 300) for
DNS traffic to depict the results better.
By inspecting these visualizations of TDGs for the generated flows, we observe that the graph
structure for HTTP traffic in Figure 5.8(b) is similar to the TDG shown in Figure 5.8(a). We

59

(a) HTTP (80, TCP), Original Graph (b) HTTP (80, TCP), Generated Graph

(c) DNS (53, UDP), Original Graph (d) DNS (53, UDP), Generated Graph

Figure 5.8: Visualizations of TDGs generated from real traces and graphs established from flow traces
generated from self-parametrized traffic templates.

observe that the quantities of connections between low out-degree vertices and zero in-degree
vertices (clients) connecting to higher in-degree vertices (popular servers) are in the same order.
Furthermore, the TDG established from the traffic templates is visually similar to the HTTP
traffic TDG in Figure 3.2(a) in Section 3.3, generated from real flow traces collected during a
different time period on a different day of the week.
Likewise, the structure of the graph for generated DNS traffic in Figure 5.8(d) matches the
original graph in Figure 5.8(c) closely. The characteristic access pattern from clients (zero in-
degree vertices) to a few DNS servers (high in-degree vertices) is well represented in the graph.
Moreover, the graph structure determined by the high number of low in-degree servers in the
upper part of both visualizations for DNS traffic is reproduced well.
To sum up, we have shown that the graph structure, and therefore the underlying traffic structure
in the traces generated, closely matches the structure in graphs established from original traces.
Although some minor differences are present in the graphs, given the approximating nature of the
polynomial coefficients of the partition parameters, as well as the random graph algorithm, the

60

Table 5.2: Network Scan Template Parameters

Parameter Value Description

T 300-s Period length

R 6 Network protocol

Psrc 22 Service port

pdst 1024-65535 Source port range

µH , σH 603, 0 Mean and standard deviation value for the number of hosts

µF , σF 5 000, 500 Mean and standard deviation value for the number of flows

~anks ,ks 3 Number of vertices for the partition ks = ([100,∞)× [0, 1)) (scanners)

~aµµks ,out ,ks 200 Mean out-degree for vertices in the partition for ks

~ankt ,kt 600 Number of vertices in the partition kt = ([0, 1)× [1, 2)) (targets)

~aµµkt ,in
,kt 1 Mean in-degree of vertices in the partition kt

IPks 10.46.0.1/32,
10.46.0.2/32,
10.46.0.3/32

IP address ranges for the scanners

IPkt 9.9.0.0/16 IP address ranges for the targets

Iactive /2 Active intervals

structure of the graphs is highly comparable. Moreover, the algorithms in GraphViz, controlling
how vertices in a graph are laid out, implicitly provide an additional valuable metric as graphs
with different structures visually differ.

5.4 Definition of Traffic Scenarios

The definition of specific borderline or traffic scenarios such as network scans, attacks, or
abnormal surges of traffic is of special interest when evaluating flow-based network-monitoring
systems. In this section, we demonstrate that such events can easily be defined using our
technique by manually specifying traffic templates and their corresponding parameters.
We chose to model a network scan on the service port 22 (SSH) on the TCP protocol using our
template-based approach. Network scans on the packet level involve sending TCP packets with
specific TCP flags to a collection of hosts. The scan performing host determines whether the
targeted hosts are running a specific service, i.e., a terminal service such as SSH, based on the
TCP flags in the packets received. On the flow level, these packet flows are grouped into flow
records.
Therefore, our aim is to generate flow records containing a network scan performed by three
different hosts (scanners), each conducting a scan on 200 different hosts (targets) on the
terminal services destination port 22. Furthermore, the generated trace should comprise realistic
background traffic without anomalies. Table 5.2 depicts the traffic template parameters used to
model the network scan. We describe the parameters set as follows:

61

Protocol The protocol template parameter R is set to the TCP protocol number R = 6.

Ports The service (destination) port for all flows in the scan is the SSH service port 22.
Therefore, we set the appropriate parameter pdst in the template to pdst = 22. The
range of source ports for the service initiators, hence the scan performing hosts, is set to
a reasonable value Psrc = (1024, . . . , 65535) with the corresponding template parameter
Psrc .

Hosts and Flows The network scan is to be performed by three distinct network hosts targeting
200 other hosts. Consequently, we set the mean values and the respective standard
deviation for the number of hosts to µH = 603 and σH = 0, leading to a constant number
of hosts generated for each time interval. Similarly, the number of flows and the respective
standard deviation are set with µF = 5 000 and σF = 500, leading to a varying number
of flows for each time interval.

Traffic Structure Next, the structure of the traffic trace to be generated is parameterized in the
templates. We start with the partition definitions: the scanners are vertices in the partition
ks = ([100,∞)× [0, 1)) (out-degree higher than 100, zero in-degree), whereas the targets
are vertices in the low-degree partition kt = ([0, 1) × [1, 2)) (zero out-degrees, one in-
degree only).

Furthermore, the polynomial coefficients ~ag,k for two partition parameters g ∈ Gk must
be set for each partition, ks and kt . Three scanners in the ks partition are defined by a
constant value (polynomial of degree zero) for the number of hosts nks = 3. Similarly,
the 200 targets in the partition kt are expressed as a constant value nkt = 200.

The structure in the template is then completed by setting the mean number of out-
degrees (connections) µks ,out for the scanners in the partition ks to µks ,out = 200, and the
mean in-degree value µkt ,in for the targets in kt to µkt ,in = 1. The respective standard
deviations, as well as the polynomial coefficients for the remaining partition parameters
Gk are omitted2.

IP Addresses Additionally, we define IP address for both, the scanners and the targets by the
respective parameters for vertices in each partition. Particularly, the scanners are assigned
IP addresses by setting the IPks parameter to the list of three IP address ranges in CIDR
notation for single hosts, IPks = (10.46.0.1/32, 10.46.0.2/32, 10.46.0.3/32). Similarly,
a Class B network IP address range, comprising 65 535 possible hosts, is assigned to the
targets by setting the IPkt parameter to IPkt = 9.9.0.0/16. The targets are assigned
random IP address from the range determined by this network prefix.

Active Intervals The network scan is to be performed on certain intervals, as opposed to being
active during all time intervals in the trace generated. We set the network scan traffic
template to be present in ever second time interval by specifying the respective Iactive
parameter to Iactive = /2.

2Polynomial coefficients omitted for partition parameters Gk default to zero for each partition k and each
parameter g ∈ Gk.

62

The remaining traffic template parameters, such as parameters for the flow durations dµ, dσ, the
number of packets pµ, pσ, or the number of bytes bµ, bσ, are left out in this traffic scenario. As
such, random values are assigned for these flow record fields in the trace generation process.

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

15

2

2

0

91

3

1

0

0

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

in−degree

o
u
t−
d
e
g
re
e

[0,1) [1,2) [2,10) [10,100) [100,∞)

22

5

3

0

81

6

1

0

0

18

0

0

0

0

0

0

0

0

0

0

0

0

0

0

in−degree

[0,1) [1,2) [2,10) [10,100) [100,∞)

17

2

2

0

91

2

0

0

0

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

in−degree

[0,1) [1,2) [2,10) [10,100) [100,∞)

15

1

2

0

103

3

3

0

0

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

in−degree

(a) Original Traffic

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

17

2

2

0

102

3

2

0

0

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

in−degree

o
u
t−
d
e
g
re
e

[0,1) [1,2) [2,10) [10,100) [100,∞)

24

3

2

3

706

5

2

0

0

13

0

0

0

0

0

0

0

0

0

0

0

0

0

0

in−degree

[0,1) [1,2) [2,10) [10,100) [100,∞)

11

2

2

0

94

4

0

0

0

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

in−degree

[0,1) [1,2) [2,10) [10,100) [100,∞)

14

2

2

3

699

3

1

0

0

9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

in−degree

(b) Generated Traffic

Figure 5.9: Comparison of graph partitionings between original and generated SSH (service port 22)
traffic, created from four consecutive time intervals of 300 s.

Then, we use the collection of 132 traffic templates established in Section 5.3.2 by self-
parametrization, while adding the network scan traffic template, to generate flow records from
a total of 133 traffic templates. In Figure 5.9, we depict the partitioning from four consecutive
time intervals established from the original and generated traces for SSH (service port 22) traffic.
First, we observe that the traffic structure in the generated flow trace (first and third time
interval) depicted in Figure 5.9(b) is similar to the to the partitioning in Figure 5.9(a) established
from original SSH traffic. The number of clients (left column) and servers (bottom row) are
approximated well by the flow generator. Moreover, the number of hosts with both, outgoing and
incoming connections (vertices in the non-zero out-degree and non-zero in-degree partitions) is
similar in the original and generated trace.
The partitionings in Figure 5.9(b) clearly depict the time intervals during which the custom-
defined network scan is present in the trace. The number of clients in the [0, 1)× [1, 2) partition
in every second interval is increased by the number of hosts targeted by the scan. Similarly, the
three hosts performing the scan are depicted in the partitionings of the second and fourth time
interval in Figure 5.9(b) in the top-left partition [100,∞)× [0, 1).
To sum up, we have demonstrated that custom traffic scenarios comprising specific structural

63

preparation

connection flows remaining flows

Tstart Tend

graphs

Figure 5.10: Three phases of the flow-generation process for an interval T .

properties can be defined by our template-based approach. In addition to the network scan
scenario presented here, other scenarios such as attacks performed by a large number of
network hosts connecting to one specific hosts or to a group of network hosts can be easily
specified according to the methodology presented. Furthermore, by choosing different partition
parameters for partitions of varying out-degree and in-degree, the partitioning approach also
allows to model varying host connectivity. This can be used, for example, to model worm-like
structures in the generated traces.
Finally, the advantage of the traffic scenario templates and the flow traces generated thereof
is, that they can be generated in combination with parameterizable background traffic from
templates established from real traces (e.g., in the self-parametrization process). Consequently,
this allows for an evaluation of flow-based network monitoring systems under realistic
conditions.

5.5 Performance

The flow-generation process for a time interval of length T , determined by the start timestamp
Tstart and the end timestamp Tend , can be divided into three parts depicted in Figure 5.10.
First, the preparation part comprises operations needed to prepare the traffic structure by
establishing the TDGs from the partitioning computed from the polynomial coefficients in the
traffic templates. Additionally, the flow record field values for the connection flows, determined
by the edges in all TDGs which model the basic underlying traffic structure for the trace to be
generated, are set in this preparation part of the flow-generation.
The second part of the entire flow-generation process comprises two parts: the generation of
all connection flows (one flow for each edge (u, v) in all TDGs established), as well as the
generation of the remaining flows, which model the remaining number of flows for each traffic
template active during the current interval. In our evaluation, the body of self-parametrized
traffic templates each has a time length intervals of T = 300 s, over which we generate the flow
records.
Consequently, we divide the performance evaluation of the flow-generation into three parts.
First, we measure the time needed to create TDGs for all templates for different number of
network hosts in the preparation part. Then, we quantify the flow generation rates achieved when
iterating over the list of connection flows, as well as when generating the remaining number of
flows for all traffic templates.
We use the collection of 132 self-parametrized traffic templates established in Section 5.3.2,

64

comprising 71 templates for the TCP protocol and 61 templates for the UDP protocol, to generate
flow records in the performance evaluation. The thereby generated NetFlow packets are sent
over UDP protocol to a collector. We also evaluated the performance of the flow generator
saving the generated NetFlow packets to files (in binary format) on the filesystem. We note that
the performance results were quantitatively similar to the UDP output results presented in this
section.
The graph generation during the preparation phase for an average number of 8548 (σ = 418)
network hosts took 3.4 s (σ = 0.25) generated from all 132 traffic templates. The respective
number of unique hosts in the generated trace (combined for all templates) is lower, namely on
average 7630 (σ = 382), since the IP addresses of hosts, determined by the IP address ranges in
the traffic template, may overlap across different templates.
Increasing the number of hosts for a period to an average of 15 763 (σ = 707) yields a mean
processing time of 7.31 s (σ = 0.44), with an average of 13 316 (σ = 578) unique IP addresses in
the resulting trace. Further increasing the average number of network hosts to 24 864 (σ = 1113),
on average resulting in 20 522 (σ = 1016) unique IP address in the generated trace, yields a mean
processing time of 14.3 s (σ = 0.99).
Obviously, in order to model the underlying traffic structure, the graph generation constitutes the
bottle-neck in the flow-generation process by introducing waiting times between two consecutive
time intervals flow records are generated for. However, the number of unique IP addresses
in the hosting provider data set used, is on average around 20 000 during 300 seconds long
time intervals. The graph algorithm for a comparable number of unique IP addresses (although
the number of hosts drawn from the respective distribution parameters in the traffic templates
is generally higher) in our evaluation took 14.3 s, on average, which is about 5% of time
constituting a time interval. Therefore, we conclude that this additional time window introduced,
during which no flow records are streamed to the collector, is negligible.
Next, we evaluate the flow generation rate achieved during both, the phase when the connection
flows are being generated, as well as during the generation of the remaining flow records
for traffic templates active during an interval T . When generating flow records for the set
of connection flows, the generator achieves an average rate of 100 493 flows/s (σ = 4093).
Flow records for the set of remaining flow records are generated at an average rate of 46 051
flows/s (σ = 397). The rate achieved over both phases combined was on average 45 641 flows/s
(σ = 462).
We compared these rates for an average number of total flows generated for a time interval
ranging from 1.32 million (σ = 10321) to 12.45 million (σ = 1 037 089) flows. The number of
flows per second for both phases were remain constant3.
The difference in these two quantities is due to the way the two sets of flows are processed.
Since the values for flow record fields, such as the flow duration, the number of packets, or
the number of bytes, are pre-set for all entries in the list of connection flows (as described in
Algorithm 4), the generator can achieve much higher flow rates by simply iterating over this list.
For the remaining flow records, on the other hand, values for the flow record fields are sampled

3Small differences in the flow generation rates were present, introduced mainly due to the different overall CPU
load of the system the measurements were conducted on, as opposed to the increased number of flows.

65

from the respective distributions for each flow record generated. This introduced an additional
overhead and increases the processing time.
In an earlier implementation of the prototype, we were able to achieve an average flow generation
rate of 98 218 flows/s (σ = 3907) for all flow records generated. This was due to the different
structure of the flow generation process, which consisted only of two steps: a preparation phase
where TDGs were established and flow record fields pre-populated for all flow records to be
generated, as well as a generating phase where flow records were output by iterating over the
prepared flow lists.
While the flow rates in this approach were higher, the introduced overhead in terms of processing
time in the preparation phase was not justified. Moreover, generating millions of flow records
for a time interval introduced additional memory issues since the flow record fields were pre-
populated for the entire number of flow records.
To sum up, we have shown that the graph algorithm scales fairly well in terms of the number
of hosts. Moreover, the flow generator achieves satisfactory high rates when generating flow
records. Also, the generator behaves especially well when generating millions of flow records
for a time interval. Therefore, our framework can be used to stress-test flow-based network
monitoring systems in corporate networks with generated traces comprising realistic traffic
structure.

5.6 Limitations

In the previous evaluation sections we showed that our graph-based approach reproduces the
traffic structure for each time interval accurately, not only by means of the inter-connectivity
between network hosts, but also with respect to more advanced graph metrics as shown in
Section 5.3.1. However, in the current prototype implementation of our framework, a limitation
with regard to the aggregated traffic structure of the generated traffic exists. In this section, we
illustrate these limitations and outline some of the approaches taken in order to ameliorate these
shortcomings.
Figure 5.11 shows a comparison of graph partitionings of HTTP traffic (service port 80) between
the original traces and the traces generated by our flow trace generator from self-parameterized
traffic templates, established from the campus network traffic in Section 5.3.2. The partitionings
in Figure 5.11 were created from four consecutive time intervals of 300 length. Moreover,
the partitioning at each time interval depicts the traffic structure accumulated over all previous
time intervals. For example, the second partitioning in Figure 5.11 shows the traffic structure
of the first and second interval, for both, the original and generated traffic. Similarly, the
third partitioning depicts the traffic structure accumulated over the first, second, and third time
interval, etc.
We observe that the number of vertices in partitions in the original traffic in Figure 5.11(a) and
the traffic generated in Figure 5.11(b) differs, especially in the low degree partitions, such as for
example [0, 1)× [1, 2) or [1, 2)× [0, 1). We attribute these differences in the traffic structure to
the memory-less nature of the flow trace generation process and illustrate this limitation in the
next paragraphs. We further note that this limitation in not related to specific service ports and

66

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

100

130

38

0

584

0

2

0

0

140

0

0

0

0

20

0

0

0

0

0

0

0

0

0

in−degree

ou
t−
de
gr
ee

[0,1) [1,2) [2,10) [10,100) [100,∞)

114

145

65

0

826

0

3

0

0

221

0

0

0

0

28

0

0

0

0

1

0

0

0

0

in−degree
[0,1) [1,2) [2,10) [10,100) [100,∞)

137

190

83

0

951

2

5

0

0

301

0

2

0

0

34

0

0

0

0

1

0

0

0

0

in−degree
[0,1) [1,2) [2,10) [10,100) [100,∞)

154

222

1144

3

6

359

0

2

45

0

0

3

0

0

in−degree

108

1

0

0

0

0

0

0

0

0

(a) Original Traffic (80, TCP)

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

95

130

35

0

611

0

2

0

0

155

0

0

0

0

17

0

0

0

0

0

0

0

0

0

in−degree

ou
t−
de
gr
ee

[0,1) [1,2) [2,10) [10,100) [100,∞)

200

267

80

0

1270

0

5

0

0

328

0

0

0

0

39

0

0

0

0

0

0

0

0

0

in−degree
[0,1) [1,2) [2,10) [10,100) [100,∞)

287

384

114

0

1860

0

6

0

0

476

0

0

0

0

56

0

1

0

0

0

0

0

0

0

in−degree
[0,1) [1,2) [2,10) [10,100) [100,∞)

383

505

153

0

2481

0

9

0

0

637

0

0

0

0

73

0

1

0

0

0

0

0

0

0

in−degree

(b) Generated Traffic (80, TCP)

Figure 5.11: Comparison of graph partitionings between original and generated HTTP (service port 80)
traffic, created from four consecutive time intervals of 300 s length. Each partitioning depicts the traffic
structure accumulated over the sum of all previous intervals.

network protocols, the HTTP (service port 80) traffic depicted in Figure 5.11 merely serves as
an example of the limitation. We observed that other service ports and protocols, although not
always in the same intensity, exhibit similar differences in the aggregated traffic structure.
Figure 5.12 depicts two partitionings (HTTP traffic) established from two consecutive time
intervals T1 and T2 of 300 s length. Similar to the partitionings in Figure 5.11, the partitioning
at each time interval depicts the structure of the traffic aggregated over all previous intervals. In
Figure 5.12, the partitioning on the left-hand side depicts the traffic structure of one time interval
T1, whereas the traffic structure depicted by the partitioning on the right-hand side is from the
intervals T1 + T2 = T1,2.
Let us consider, for example, vertices in the zero out-degree and low in-degree partition
klow = [0, 1) × [1, 2), which in the case of HTTP traffic is likely to contain less popular web
servers (hosts with low incoming connections and zero outgoing connections). Furthermore,
we consider a vertex v (host), determined by its unique IP address, which is present in the
partition klow in both, the first time interval T1, as well as the second time interval T2 of the
trace analyzed. Consequently, the vertex v has zero out-degree and one out-degree (connection)
during each time interval. Therefore, when we establish the partitioning of both time intervals
T1 and T2 separately, the vertex v is going to be present in the partition klow in both partitionings.
However, when we consider the partitioning of the traffic structure aggregated over all previous

67

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

100

130

38

0

584

0

2

0

0

140

0

0

0

0

20

0

0

0

0

0

0

0

0

0

in−degree

ou
t−
de
gr
ee

[0,1)

[0,1)

[1,2)

[1,2)

[2,10)

[2,10)

[10,100)

[10,100)

[100,∞)

[100,∞)

114

145

65

0

826

0

3

0

0

221

0

0

0

0

28

0

0

0

0

1

0

0

0

0

in−degree

ou
t−
de
gr
ee

T1 T1,2

Figure 5.12: Left: partitioning of the first time interval T1. Right: partitioning of traffic accumulated over
the first and second interval T1,2. The degree (connections) of vertices (hosts) which are present in the
same partition in both intervals is likely to increase, hence these vertices change partitions (red arrows)
between two consecutive intervals.

time intervals (e.g., for T2 the partitioning depicts the structure of T1+T2 aggregated), the vertex
v will most likely have moved to a higher in-degree partition (e.g., [0, 1)× [2, 10)) since the total
number of out-degrees (connections) of v will have increased to two (one connections during
each interval). The red arrows in Figure 5.12 illustrate the transition of vertices to different
partitions between two consecutive intervals, as the degree values of vertices that are present
during both time intervals increase.
The traffic templates in the current prototype implementation of our technique do not contain
any information about this transition of vertices to different partitions between consecutive time
intervals. The flow trace generator samples the IP addresses of hosts in each partition k ∈ K
from the range of IP addresses specified in IPk for each time interval independently, without
any notion of which IP addresses were generated in the previous intervals (hence memory-less).
Consequently, the flow traces generated by our framework are likely to contain an increased
number of network hosts as depicted in Figure 5.11, while the generated network hosts are
likely to contain lesser connections (degrees). We have tried to ameliorate this difference in the
vertices and vertex degrees in the aggregated traffic structure with several approaches.

Fixed vertices in high-degree partitions One approach to tackle the limitation of aggregated
traffic structure was to fix the vertices in high-degree partitions between consecutive time
intervals flow traces are generated for. The rationale behind this is the consideration
that some vertices (hosts) in the high-degree partitions remain present during the entire
duration of the trace generated. For example, DNS servers in high in-degree partitions (cf.
Figure 4.1(c)) are likely to be present in each time interval in the flow trace. Similarly, the
number of the popular web servers in HTTP traffic in the high in-degree partitions remains
constant, while only web clients in the zero in-degree and low out-degree partitions
change.

Therefore, we added a retentive component to the flow trace generator which memorized
the vertices (IP addresses of nodes) in high-degree partitions, and, instead of resampling

68

the entire vertex population for these partitions, the memorized vertices were reused when
the flow trace for new time interval. Although this approach worked well for some service
ports (e.g., DNS or HTTP) and the high-degree partitions, it did not solve the aggregated
traffic problem in general, independent of a service port. Moreover, the difference in
the number of vertices and their degrees in lower degree partitions remained, since this
approach only considered the high-degree partitions.

Discarding factor Based on the shortcomings of the previous approach of fixing vertices in
high-degree partitions, as well as due to our observations that the vertices change partitions
also in the lower degree intervals, we tried to improve the aggregated traffic structure by
introducing a discarding factor for every partition. In this approach, we fixed the vertices
for each partition k ∈ K between consecutive time intervals, as opposed to retaining
vertices in high-degree partitions only. Then, for each new time interval flow records
were to be generated for, a certain amount of vertices retained from the previous interval
in a partition k ∈ K was discarded, based on a “discarding factor”, while new vertices
were drawn from the respective range of IP addresses IPk and added. The undiscarded
portion of the vertices reused for the new interval lead to increased vertex degrees for
these vertices in the aggregated traffic, hence simulated the transition of vertices between
partitions.

Even though this approach lead to generally better results with respect to the various
service ports, the aggregated structure however still differed. Moreover, an additional
challenge was to define a proper method to determine the discarding factor. Here,
we pursued two different approaches. First, we defined different, fixed discarding
factors for low-, medium-, and high-degree partitions and discarded the vertices between
consecutive intervals based on these factors. While this lead to aggregated traffic
structure closer to the original for certain service ports, the fixed discarding factors
could not be applied generally as the aggregated traffic structure differs for different
service ports. Consequently, in our second approach, we tried to compute a variable
discarding factor dynamically for each partition k ∈ K and each service port from
partitionings of aggregated traffic of various, consecutive time intervals. However, also
with a dynamic discarding factor, we were not able to achieve a general solution that
reproduced the aggregated traffic accurately. Furthermore, the added performance penalty
when generating flow traces was not justified by the slightly better aggregated structure.

Fixed IP address space The third approach taken was to introduce a fixed IP address space
for each partition. As a means to achieve the retention of vertices in partitions k ∈ K
across consecutive time intervals, and as such to capture the transition of vertices between
partitions, we fixed the size of the IP address space for each partition. For example, for a
partition k ∈ K, the IP address space during all consecutive time intervals T would remain
constant, comprising a fixed number of IP addresses (vertices), e.g., 1000. Moreover, the
IP address space of each partition k ∈ K was disjoint from all other partitions for a service
port.

This implicitly added the retention of certain IP addresses (vertices) between consecutive
time intervals. For example, when the number of vertices for a partition kx ∈ K was

69

400 for each interval and the IP address space was fixed to 1000 IP addresses, the IP
addresses of some of the 400 vertices drawn from the 1000 IP addresses for each new
time interval would “overlap” with the IP addresses of vertices from the previous interval.
As such, IP addresses (vertices) present in both intervals would exhibit increased degrees
(connections) in the aggregated traces.

While this approach somehow ameliorated the aggregated traffic structure, similar to the
previous approaches, it also posed a different problem. The restriction on the total IP
addresses in the entire trace generated, given by the disjoint nature of the IP address spaces
across partitions k ∈ K, was not justified by the slightly better aggregated structure.

To sum up, we have shown that the aggregated traffic structure of the generated traces is likely to
exhibit decreased out-degrees and in-degrees (outgoing and incoming connections) for vertices
in certain partitions. Moreover, the number of vertices in certain partitions is likely to be higher
in the traces generated, compared to the values in the original traces. Although we made several
attempts to ameliorate the aggregated structure, the problem of finding a generation solution for
these limitations remains.
Nevertheless, we believe that our approach provides a valuable addition to the currently existing
flow-based generators, since the simplistic traffic structure generated by the latter, as well as
the inability to define specific traffic scenarios, is less applicable for realistic evaluation of
flow-based monitoring systems. Moreover, the pluggable architecture in our framework allows
for programmatic and exact examination of the values generated. Therefore, in spite of the
differences in the aggregated traffic structure, flow-based systems analyzing the trace generated
can compensate these structural differences since they “know” what exactly has been generated.

70

Chapter 6

Conclusion

The role of computer networks today is more important than ever, not only for businesses and
business critical applications, but also more generally for our quotidian live. However, the
increasing complexity of existing and newly established computer networks introduces several
new challenges on infrastructures, hardware devices, as well as on network monitoring and
analysis applications and systems.
Today, network monitoring and analysis or anomaly detection systems are widely used in
corporate and service provider networks. Often, these systems are needed to ensure an
uninterrupted operation of the network infrastructure, as well as to collect network-related data
used for accounting, detection of anomalies, or quality assurance. Consequently, a proper
evaluation to ensure the accuracy of such systems is crucial. However, proper testing and
evaluation of flow-based network monitoring systems remains challenging, since the generation
of synthetic traces with realistic traffic structure on the flow-level is problematic, and real-world
traces with borderline traffic conditions, vital for realistic evaluations, are either difficult to
collect or rarely observed.
In this thesis, we considered the problem of generating flow-level traces with realistic,
parameterizable traffic structure, as well as the ability to include custom, user-defined traffic
scenarios comprising traffic conditions important for the evaluation of flow-based network
monitoring and anomaly detection systems under realistic conditions.
We introduced the concept of traffic templates which model structural properties of the
connection patterns between hosts by means of Traffic Dispersion Graphs, as well as the
distribution parameters of several flow record attributes. We further described the self-
parametrization process of our framework, capable of extracting a collection of relevant traffic
templates with their respective parameters from existing network traces. Moreover, user-defined
traffic templates with customized parameters can be used to model specific traffic conditions
such as network scans, attacks, or similar. An additional advantage of our template-based
approach is that the notion of IP address ranges in traffic templates can be easily removed,
while leaving the structure of the generated traffic intact. Therefore, traffic templates can be
easily anonymized and exchanged between different parties, without privacy-related issues.
A vital part of the framework introduced in our thesis is the trace generator, providing several
advantages over the currently existing flow trace generation solutions. First, our generator can

71

be used on desktop-class computers using commodity hardware, while achieving satisfactory
high flow generation rates, generating flow records directly without the detour of any additional
soft- or hardware components. Second, the pluggable architecture of our framework presents an
additional advantage over the existing solutions. User-defined plugins can collect exact values of
the trace generated during different phases of the flow generation process, allowing an automated
processing and comparison between the generated data and the values determined by the network
monitoring and anomaly detection systems processing the trace generated.
Our evaluations showed that traces generated from the self-parametrized traffic templates
comprise traffic structure highly similar to the structure in original traces for each time interval.
Moreover, traffic templates with custom traffic scenarios can be used in combination with self-
parametrized templates to generate traces comprising parameterizable background traffic with
user-defined traffic scenarios. We also outlined the limitations of our template-based approach
with respect to the aggregated traffic structure. Nevertheless, we believe that, in spite of these
shortcomings, the high flow generation rate, as well as the more realistic traffic structure present
in the traces generated, and the pluggable architecture present an advantage over the current flow
trace generators available.
The possibilities for future work are threefold. First, the aggregated traffic structure in the traces
generated could be ameliorated to more closely resemble the aggregated structure of the original
traffic. The possible approaches presented in our evaluation, although not leading to a general
solution to the problem, could act as a starting point for further research in this area.
Second, we believe that the performance of the flow generator, while already delivering
satisfactory results, could be improved further. We chose the Perl for the implementation the
initial version of our framework mainly due to the numerous additional modules available,
enabling us to more rapidly develop a ready-to-use version of our framework. The use of
lower-level programming languages is likely to improve the performance of certain application
parts and algorithms. Furthermore, implementing threads for the different phases of the
flow generation process could improve the flow generation rates on multi-core systems by
pre-generating graphs for the subsequent time intervals, hence minimizing the time window
described in Section 5.5 during which no flow records are output.
Third, the structure of traffic templates could be extended to allow for definitions of additional
traffic scenarios. In Section 5.4 we showed an example definition of a horizontal network scan
(one target port on different hosts). Other scenarios such as attacks, or even worm like structures
can be defined similarly by choosing the appropriate template parameters. However, for the
definition of a vertical network scan (different ports on one host), for example, many very similar
traffic templates are needed. This could most likely be improved by introducing additional
template parameters for similar traffic scenarios and conditions.
To sum up, we have presented a flow trace generation framework to enable and simplify the
automated evaluation of flow-based network monitoring and anomaly detection systems under
realistic traffic conditions. We further believe that our framework is also useful for other, more
general validation tasks based on network flows.

72

Glossary

CCDF Complementary Cumulative Distribution Function
CIDR Class Inter-domain Routing
EFF Edge on First Flow
EFP Edge on First Packet
EFSP Edge on First SYN Packet
FLAME Flow-level Anomaly Modeling Engine
IETF Internet Engineering Task Force
IOS Internetwork Operating System
IPFIX IP Flow Information Export
LWCC Largest Weakly Connected Component
MDR Max Degree Ratio
NBNS NetBIOS Naming Service
RU Relative Uncertainty
SSE Sum of Square Error
TAG Traffic Activity Graph
TDG Traffic Dispersion Graph

73

Bibliography

[1] C. Rolland, J. Ridoux, and B. Baynat, “LiTGen, a Lightweight Traffic Generator:
Application to P2P and Mail Wireless Traffic,” in PAM ’07: Proceedings of the Passive
and Active Measurement Conference, 2007.

[2] ——, “Catching IP Traffic Burstiness with a Lightweight Generator,” in Networking, 2007,
pp. 924–934.

[3] C. Rolland, J. Ridoux, B. Baynat, and V. Borrel, “Using LiTGen, a realistic IP traffic model,
to evaluate the impact of burstiness on performance,” in Simutools ’08: Proceedings of
the 1st international conference on Simulation tools and techniques for communications,
networks and systems & workshops, 2008.

[4] K. V. Vishwanath and A. Vahdat, “Realistic and responsive network traffic generation,”
in SIGCOMM ’06: Proceedings of the 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2006.

[5] P. Barford and M. Crovella, “Generating representative web workloads for network
and server performance evaluation,” in SIGMETRICS ’98: Proceedings of the Joint
International Conference on Measurement and Modeling of Computer Systems, 1998.

[6] J. Sommers, H. Kim, and P. Barford, “Harpoon: a flow-level traffic generator for router
and network tests,” in SIGMETRICS ’04/Performance ’04: Proceedings of the Joint
International Conference on Measurement and Modeling of Computer Systems, 2004.

[7] A. Rupp, H. Dreger, A. Feldmann, and R. Sommer, “Packet trace manipulation framework
for test labs,” in IMC ’04: Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, 2004.

[8] J. Sommers, V. Yegneswaran, and P. Barford, “A framework for malicious workload
generation,” in IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, 2004.

[9] Paessler, “Paessler NetFlow Generator,” http://www.paessler.com/ (last accessed: Jan.
2010).

[10] P. International, “Flowalyzer NetFlow & sFlow Generator,” http://www.plixer.com/
products/netflow-sflow/flowalyzer-netflow-sflow-tester.php (last accessed: Feb. 2010).

75

http://www.plixer.com/products/netflow-sflow/flowalyzer-netflow-sflow-tester.php
http://www.plixer.com/products/netflow-sflow/flowalyzer-netflow-sflow-tester.php

[11] J. Juping, “Netflow Simulator in C#,” http://sourceforge.net/projects/ netflowsim (last
accessed: Jan. 2010).

[12] Cisco, “Netflow services solutions guide,” http://www.cisco.com/en/US/docs/ios/
solutions docs/netflow/nfwhite.html (last accessed: Jan. 2010).

[13] D. Brauckhoff, A. Wagner, and M. May, “Flame: A flow-level anomaly modeling engine,”
in CSET’08: Proceedings of the Conf. on Cyber Security Experimentation and Test, 2008.

[14] J. Sommers and P. Barford, “Self-configuring network traffic generation,” in IMC ’04:
Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, 2004.

[15] J. Hawkinson and T. Bates, “Guidelines for creation, selection, and registration of an
Autonomous System (AS),” RFC 1930 (Best Current Practice), Internet Engineering Task
Force, Mar. 1996. [Online]. Available: http://www.ietf.org/rfc/rfc1930.txt

[16] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger, “Network
topology generators: degree-based vs. structural,” SIGCOMM Comput. Commun. Rev.,
vol. 32, no. 4, pp. 147–159, 2002.

[17] K. Calvert, M. B. Doar, A. Nexion, E. W. Zegura, G. Tech, and G. Tech, “Modeling internet
topology,” IEEE Communications Magazine, vol. 35, pp. 160–163, 1997.

[18] M. B. Doar and A. Nexion, “A better model for generating test networks,” in Proceeding
of IEEE GLOBECOM, 1996, pp. 86–93.

[19] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the
internet topology,” in SIGCOMM ’99: Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication. New York, NY,
USA: ACM, 1999, pp. 251–262.

[20] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: an approach to universal topology
generation,” in 9th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, 2001, 2001, pp. 346–353. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=948886

[21] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, and G. Varghese,
“Network traffic analysis using traffic dispersion graphs (tdgs): Techniques and hardware
implementation,” 2007.

[22] ——, “Network monitoring using traffic dispersion graphs (TDGs),” in IMC ’07:
Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, 2007.

[23] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, G. Varghese, and H.-C. Kim,
“Graption: Automated detection of p2p applications using traffic dispersion graphs (tdgs),”
2008.

76

http://www.cisco.com/en/US/docs/ios/solutions_docs/netflow/nfwhite.html
http://www.cisco.com/en/US/docs/ios/solutions_docs/netflow/nfwhite.html
http://www.ietf.org/rfc/rfc1930.txt
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=948886

[24] M. Iliofotou, H.-C. Kim, M. Faloutsos, M. Mitzenmacher, P. Pappu, and G. Varghese,
“Graph-based p2p traffic classification at the internet backbone,” in INFOCOM Workshops
2009, IEEE, 2009. [Online]. Available: http://dx.doi.org/10.1109/INFCOMW.2009.
5072151

[25] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC 3954
(Informational), Internet Engineering Task Force, Oct. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3954.txt

[26] ——, “Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange
of IP Traffic Flow Information,” RFC 5101 (Proposed Standard), Internet Engineering
Task Force, Jan. 2008. [Online]. Available: http://www.ietf.org/rfc/rfc5101.txt

[27] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer, “Information Model for IP Flow
Information Export,” RFC 5102 (Proposed Standard), Internet Engineering Task Force,
Jan. 2008. [Online]. Available: http://www.ietf.org/rfc/rfc5102.txt

[28] K. C. Claffy, H. werner Braun, and G. C. Polyzos, “A parameterizable methodology for
internet traffic flow profiling,” IEEE Journal on Selected Areas in Communications, vol. 13,
pp. 1481–1494, 1995.

[29] T. Asaka, K. Ori, and H. Yamamoto, “Method of estimating flow duration distribution
using active measurements,” IEICE transactions on communications, vol. 86, no. 10, pp.
3030–3038, 2003. [Online]. Available: http://ci.nii.ac.jp/naid/110003221525/en/

[30] W. Liu, J. Gong, W. D. 0001, and G. Cheng, “An algorithm for estimation of flow length
distributions using heavy-tailed feature,” in International Conference on Computational
Science (4), 2006, pp. 144–151.

[31] V. Paxson, “Empirically derived analytic models of wide-area TCP connections,”
IEEE/ACM Transactions on Networking, vol. 2, no. 4, pp. 316–336, August 1994.
[Online]. Available: http://dx.doi.org/10.1109/90.330413

[32] P. Olivier and N. Benameur, “Flow level ip traffic characterization,” available online: http:
//perso.rd.francetelecom.fr/roberts/Pub/OB01.pdf.

[33] T. Mori, M. Uchida, and S. Goto, “Flow analysis of internet traffic: World wide web versus
peer-to-peer,” Syst. Comput. Japan, vol. 36, no. 11, pp. 70–81, 2005.

[34] M. Pustisek, I. Humar, and J. Bester, “Empirical analysis and modeling of peer-to-peer
traffic flows,” in Electrotechnical Conference, 2008. MELECON 2008. The 14th IEEE
Mediterranean, 2008, pp. 169–175.

[35] “Graphviz,” http://www.graphviz.org (last accessed: Mar. 2010).

[36] J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull, “Graphviz
and dynagraph – static and dynamic graph drawing tools,” in Graph Drawing
Software, ser. Mathematics and Visualization, M. Junger and P. Mutzel, Eds.

77

http://dx.doi.org/10.1109/INFCOMW.2009.5072151
http://dx.doi.org/10.1109/INFCOMW.2009.5072151
http://www.ietf.org/rfc/rfc3954.txt
http://www.ietf.org/rfc/rfc5101.txt
http://www.ietf.org/rfc/rfc5102.txt
http://ci.nii.ac.jp/naid/110003221525/en/
http://dx.doi.org/10.1109/90.330413
http://perso.rd.francetelecom.fr/roberts/Pub/OB01.pdf
http://perso.rd.francetelecom.fr/roberts/Pub/OB01.pdf
http://www.graphviz.org

Berlin/Heidelberg: Springer-Verlag, 2004, pp. 127–148. [Online]. Available: http:
//www.springer.com/math/cse/book/978-3-540-00881-1

[37] N. W. G. in the Defense Advanced Research Projects Agency, I. A. Board, and E. to End
Services Task Force, “Protocol standard for a NetBIOS service on a TCP/UDP transport:
Concepts and methods,” RFC 1001 (Standard), Internet Engineering Task Force, Mar.
1987. [Online]. Available: http://www.ietf.org/rfc/rfc1001.txt

[38] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The Internet Address
Assignment and Aggregation Plan,” RFC 4632 (Best Current Practice), Internet
Engineering Task Force, Aug. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4632.
txt

[39] L. Deri, “nprobe: an open source netflow probe for gigabit networks,” IN PROC. OF
TERENA TNC 2003, 2003.

[40] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and Statistics for
Engineers and Scientists, 8th ed. Pearson Prentice Hall, Dec. 2007.

[41] Wikipedia, “Log-normal distribution — Wikipedia, the free encyclopedia,” http://
en.wikipedia.org/w/index.php?title=Log-normal distribution&oldid=344020073 (Last ac-
cessed: Feb. 2010), 2010.

[42] ——, “Normal distribution — Wikipedia, the free encyclopedia,” http://en.wikipedia.
org/w/index.php?title=Normal distribution&oldid=346208688 (Last accessed: Feb. 2010),
2010.

[43] E. W. Weisstein, “”Least Squares Fitting.” from mathworld–a wolfram web resource.” http:
//mathworld.wolfram.com/LeastSquaresFitting.html.

[44] ——, “”Least Squares Fitting–Polynomial” From MathWorld–A Wolfram Web Re-
source.” http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html.

[45] J. D. Hoffman, Numerical Methods for Engineers and Scientists, 2nd ed. Marcel Dekker,
2001.

[46] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree
distributions and their applications,” in Phys. Rev. E 64(2), 2001.

[47] B. Bollobás, Random Graphs. Cambridge University Press, 2001.

[48] P. Erdös and A. Rényi, “On random graphs, I,” Publicationes Mathematicae (Debrecen),
vol. 6, pp. 290–297, 1959.

[49] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon, “On the uniform
generation of random graphs with prescribed degree sequences,” Eprint arXiv:cond-
mat/0312028, 2003.

78

http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.ietf.org/rfc/rfc1001.txt
http://www.ietf.org/rfc/rfc4632.txt
http://www.ietf.org/rfc/rfc4632.txt
http://en.wikipedia.org/w/index.php?title=Log-normal_distribution&oldid=344020073
http://en.wikipedia.org/w/index.php?title=Log-normal_distribution&oldid=344020073
http://en.wikipedia.org/w/index.php?title=Normal_distribution&oldid=346208688
http://en.wikipedia.org/w/index.php?title=Normal_distribution&oldid=346208688
http://mathworld.wolfram.com/LeastSquaresFitting.html
http://mathworld.wolfram.com/LeastSquaresFitting.html
http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html

[50] M. Iliofotou, M. Faloutsos, and M. Mitzenmacher, “Exploiting dynamicity in graph-based
traffic analysis: techniques and applications,” in CoNEXT ’09: Proceedings of the 5th
international conference on Emerging networking experiments and technologies, 2009.

79

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem Statement
	Contributions
	Thesis Outline

	Related Work
	Packet-based Generators
	Flow-based Generators
	FLAME
	Harpoon
	Topology Generators
	Traffic Dispersion Graphs
	NetFlow / IETF IPFIX
	Flow Record Attributes

	Background
	Graph-based Connectivity Pattern Modeling
	Traffic Portion of The Top Service Ports
	Visualizations of Traffic Dispersion Graphs
	Graph Degree Properties

	Flow Trace Generation Framework
	Partitioning
	Traffic Templates
	Distribution Parameters
	Representation of Partitioning
	Optional Parameters

	Self-Parameterization
	Top Ports Calculation
	parameterization of Templates

	Flow Trace Generation
	Template Customization
	Generating TDGs from Templates
	Flow Record Generation

	Pluggable Architecture

	Evaluation
	Graph Generation
	Graph Degree Distribution
	Traffic Structure
	Graph Metrics
	Partitioning
	Visualizations

	Definition of Traffic Scenarios
	Performance
	Limitations

	Conclusion
	Glossary
	Bibliography

