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Abstract—This paper studies means of archiving energy bal-
ance in Wireless Sensor Networks (WSNs) as criterion to in-
crease network lifetime. While protocols for balancing energy
through centralized computation have been established, effective
solutions for more realistic distributed settings are still an open
research field. In this work, we present a novel approach for
balancing energy in WSNs in a distributed manner by solving a
sequence of modular strategic subgames. In addition, we prove
theoretical bounds for its solution quality. To the best of our
knowledge, we are the first to explicitly provide theoretical
bounds for distributed WSN energy balancing schemes. We do
so by formulating two specific routing games in which sensor
nodes act as strategic agents with interests in energy balance.
The first formulated game is a monotone utility game and by
exploiting and adapting some existing results, we can prove
a meaningful relative bound for its solution value via our
distributed modular subgames scheme under realistic conditions.
For the second game we provide an absolute bound. We round
up our theoretical results by an experimental evaluation, where
our modular subgames scheme shows increased performance
compared to state-of-the-art algorithms.

I. INTRODUCTION

We study Wireless Sensor Networks (WSNs) which due
to their practical applications, including (forest) fire detec-
tion, traffic surveillance, climate monitoring, tracking (location
sensing), and more, have gained particular attention in recent
years. WSNs are composed of multiple sensor nodes whose
sensed data are collected at one or more data gathering sink(s).
The nodes usually have limited resources, i.e., small battery,
limited memory, limited computing power. Energy consump-
tion when forwarding data is a key local criterion and balanced
energy consumption among the nodes composing the network
prolongs network lifetime. A well known radio transmission
property is that small distance transmission consumes less
energy than direct transmission to distant nodes. Instead of
sending their data directly to the sink, nodes may shift to
multi-hop routing to regulate energy consumption.

In the following, we will present a novel approach for
balancing energy in WSNs in a distributed manner by solving
a sequence of modular strategic subgames. We will prove so-
lution quality bounds and present an experimental evaluation.

A. Related Work
From 2004 to 2011, the groups around Leone, Nikoletseas,

and Rolim established a series of fundamentals regarding

energy balance in WSNs (i.a., [1], [2], [3]). They provided
theoretical analyses and experimental results for specific static
network models, centralized offline data propagation schemes
and first distributed online schemes. In the years 2011 and
2012, Nikoletseas et al. extended this line of research. In
2011, they introduced a nodes mobility model and a new dis-
tributed online energy balancing protocol (without theoretical
or experimental results) [4] and later studied heterogeneous
node placements and presented improved performance in
experimental tests of a new distributed algorithm compared
to [1] (if nodes have extended knowledge about the network
density and if the number of messages is constant over
time and equal for all nodes) [5]. The distributed schemes
in [3] and [5] will serve as benchmark algorithms in the
simulation section of this paper. Further related research
and recent developments regarding WSN energy balancing
algorithms include: studies of lifetime maximization by focus
on a suitable node distribution avoiding “energy holes” (e.g.,
[6]); experimental evaluations of energy balance protocols
for random sensor network topologies considering coverage
and connectivity problems (e.g., [7]); experimental evaluations
of explicitly integrating energy balancing ideas in standard
clustering data propagation protocols as LEACH (e.g., [8]);
and an analytical study of energy balance bounds of two-
hop based mixed data transmission (as even in energy-balance
optimal topologies an energy-balanced flow may not exist at
all) [9]. Other than the later work, we will study bounds of
balancing schemes not on the topology. First game-theoretic
models to find energy balancing solutions for WSNs can be
found in [10] and [11], where schemes for static offline,
respectively, cluster full knowledge settings are presented.

B. Contribution of this Work

In contrary to former work, we will not only provide a
distributed energy balancing scheme for WSNs based on a
game-theoretic model, we will furthermore exploit existing
results from algorithmic game theory to prove theoretical
solution quality bounds. To the best of our knowledge, we are
the first to explicitly introduce theoretical solution bounds for
distributed energy balancing schemes for WSNs. We round up
our theoretical results by an experimental evaluation. As will
be demonstrated, not only can we prove theoretical bounds,



Fig. 1. An energy-balance optimal topology on the left, sensors transmit data
to the next slice or directly to the sink (not represented). A simple model of
it on the right.

our new distributed energy balancing scheme for WSNs also
outperforms the considered state-of-the-art algorithms.

II. DATA GATHERING MODEL

We use the following data gathering network definition
(modified from its version in [3]) as preliminary WSN model.

Definition 1 (Data Gathering Network): A data gathering
network is defined to be the directed acyclic simple graph
G = (V,E, d,g,b, c). V = {0, .., n} is the node set of G
with designated data gathering sink 0. The other nodes in V
represent sensor nodes. E is the set of directed edges in G.
We assume that G \ {i = 0} can be decomposed into slices
S1, S2, ..., Sm such that edges only exist from one slice to the
next lower one and every node has at least one edge towards
the next lower slice. In addition, we assume that every node
i = 1, ..., n has a direct edge to the sink 0. (Note that graph G
is multiply connected, i.e., for every node in a slice higher than
S1 there exist at least two paths to the data gathering sink). An
example of the resulting topology is taken from [3] and can be
found in Fig. 1. For all i = 1, ..., n, let ci0 denote the costs of
edge (i, 0) and let ci denote the costs of any other outgoing
edge of node i (we will slightly abuse the notation). Costs
represent energy that has to be spent by node i for sending
one unit of flow along the edge. We assume that ci has equal
value for all i = 1, ..., n and ci0 > ci for all i = 2, ..., n (and
ci = ci0 for i = 1). Furthermore, for all nodes i, j in the same
slice let ci0 = cj0 and let ci0 < cj0 if i ∈ Sl1 and j ∈ Sl2
and l1 < l2 (i.e., the costs for sending flow directly to the sink
are the same for all nodes in the same slice and increase as
the distance of the slice to the sink increases). Scalar d refers
to the total flow value that is supposed to be sent through the
network to the sink. For i = 1, ..., n, parameter gi denotes the
fraction of flow value generated by node i and bi is the initial
energy amount available to i.

We briefly repeat the notion of an energy-balanced flow and
network lifetime taken from [3] and [2].

A. Network Lifetime & Energy Balance
Given data gathering network G = (V,E, d,g,b, c), we

want to route the given total flow (value) d along edges such
that each node i = 1, ..., n generates gi · d units of the total
flow, the flow on the edges is non-negative (fe ≥ 0, ∀e ∈ E),
and flow conservation is satisfied, i.e.,

gid+
∑

e∈δ−(i)

fe =
∑

e∈δ+(i)

fe, ∀i = 1, ..., n.

Let {fe} be a non-negative multiple-source single-sink flow
in G satisfying above conditions.

Definition 2 (Lifetime of G w.r.t. {fe}): The lifetime of
network G w.r.t. {fe} is the minimum lifetime of the nodes
composing the network w.r.t. {fe}, i.e.,

min
i=1,...,n

bi∑
e∈δ+(i) fece

.

Definition 3 (Energy-Balanced Flow in G): Flow {fe} is
called energy-balanced in G if

∃k : ∀i = 1, ..., n
∑

e∈δ+(i)

fece = kbi .

The topology of our data gathering network and the settings
for transmission costs along an edge ensure that every energy-
balanced flow maximizes the lifetime of the network (see [3]).
Our data gathering network is therefore also called an energy-
balance optimal network. Nevertheless, an energy-balanced
flow might not exist at all (see e.g., [2]).

B. Centralized Offline Computation of Energy Balance

The centralized offline problem of finding a flow that
maximizes lifetime in our data gathering network can be
solved by solving the linear program (LP) of Problem 2 in
[3]. Instead of searching for a maximum lifetime flow, we
will focus on the computation of an energy-balanced flow with
prospects to be found much easier in a distributed manner. We
will present a centralized offline approach that computes an
energy-balanced flow if existent and a best approximation of
energy balance if it does not exist. The solution will later on
serve as upper bound for the distributed solutions. For this
purpose, we introduce balance-factors for the nodes.

Definition 4 (Balance-Factor of a Node in G w.r.t. {fe}):
Given data gathering network G = (V,E, d,g,b, c), ∀i ∈
V \ {0} the balance-factor of node i w.r.t. {fe} is

ki =

∑
e∈δ+(i) fece

bi
.

Note that a flow {fe} is energy-balanced iff the ki are equal
for all i = 1, ..., n.

Definition 5 (Best-Energy-Balanced Flow): A flow {fe} is
called best-energy-balanced in G = (V,E, d,g,b, c) iff it
is an optimal solution of the following Centralized Offline
Balance (CentralEBOpt) LP:

min
β,{ki},{fe}

β (1a)

ki − kj ≤ β ∀ i, j = 1, ..., n (1b)

kibi =
∑

e∈δ+(i)

fece ∀ i = 1, ..., n (1c)

gid+
∑

e∈δ−(i)

fe =
∑

e∈δ+(i)

fe ∀ i = 1, ..., n (1d)

fe ≥ 0 ∀ e ∈ E (1e)

Note that above LP is bounded and that there always exists a
feasible solution (i.e., any routing of the demands through the
network to the sink, as we do not have limiting capacities on
the edges), hence there always exists an optimal solution.



Proposition 1: If an energy-balanced flow in G exists then
every best-energy-balanced flow is energy-balanced and vice
versa.

Proof: For an energy-balanced flow, there exists k such
that ∀i = 1, ..., n

∑
e∈δ+(i) fece = kbi. When inserting this

solution (setting all ki = k) in LP (1), we get a solution value
of β = 0 which is optimal. Now given a best-energy-balanced
solution (β, {ki}, {fe}), assume that {fe} is not an energy-
balanced flow while another energy-balanced flow {f ′e} exists.
Then the existing energy-balanced flow {f ′e} is also a solution
to LP (1) with a better solution value as all k′i are equal. This
is a contradiction to (β, {ki}, {fe}) being optimal.

III. DECENTRALIZED SOLUTIONS FOR ENERGY
BALANCING ROUTING GAMES

The task of balancing energy in a wireless sensor network
can be viewed as a global problem that has to be tackled in
a decentralized manner due to resource and communication
limitations. We will apply methods and tools of game theory,
here autonomous agents make local decisions resulting in
global outcomes. In our static data gathering model, we will in
the following assume that nodes do not only decide to which
node they will forward their message next, but they will choose
a complete path towards the sink using one- or multi-hop
routing. We will use this model to provide a theoretical basis
for bounding distributed WSN energy balancing protocols also
for model variations. In a follow-up work we want to adapt
the model such that it is also suitable for WSNs with mobile
nodes and for networks with changing connectivity.

Before, we describe our distributed solution approach and
prove bounds, we build two game models. While the first
one employs less network information, its social optimum is
only close to optimal energy balance. In the second provided
game, the social optimum equals energy balance, but more
information about past activities is needed. Trade-offs will be
discussed in the course of this paper.

A. Classical Routing Game

We define a special maximization version of a selfish routing
game that we call classical WSN routing game.

Definition 6 (Classical WSN Routing Game): Given data
gathering network G = (V,E, d,g,b, c) with designated sink
0 ∈ V , a classical WSN routing game is defined as the
Wardrop game (often also referred to as non-atomic routing
game) with set of players N = V r 0 = {1, ..., n} in which
each player i aims to route its initial demand di = gi · d as
profitable as possible towards the sink along existing (i, 0)-
paths in G. The set of (i, 0)-paths is denoted by Pi and let
P = ∪iPi. An outcome or feasible flow of the game is a
function f : P → R≥0 routing all demand of the players to
the sink. We set fe =

∑
p∈P:e∈p fp and each edge has load-

dependent costs le(f) = le·fe with le = ce
bi:e∈δ+(i)

. (The latency
factor le corresponds to the energy amount for forwarding one
unit of flow along the edge divided by the initially available
energy amount of the tale node i of edge e). A player receives
a reward rpi for every unit of flow sent along a path pi ∈ Pi.

We slightly abuse the notation and denote the amount of flow
sent by player i along path pi with fpi . We set rpi to be equal
for all pi ∈ Pj ,∀i,∀j, and assume rpi �

∑
e∈pi le(f) for

every possible outcome. The utility function of a player i is
defined as

ui(f) =
∑
pi∈Pi

(
rpi −

∑
e∈pi

le(f)

)
fpi .

In the classical WSN routing game, every player has an
incentive to send its own flow as cheap as possible while
receiving a reward for every flow unit sent. Due to the
classical routing game structure, a player considers that own
costs will depend on the other players’ abilities to minimize
energy consumption, too. Note that while we have equilibrium
existence due to the linear, hence continuous, and monotone
growing cost function, this will play a minor role for the
distributed solution approach of the classical WSN routing
game. Let us now formally define the social welfare function
for our game and prove some further nice properties, which
will help us build a bounded decentralized solution scheme in
the next subsection III-C.

Definition 7 (Social Welfare): The social welfare of a subset
f of an outcome of a classical WSN routing game is

V (f) =
∑
i∈N

ui(f) =
∑
i

∑
pi∈Pi

(
rpi −

∑
e∈pi

le(f)

)
fpi .

A socially optimal flow in our classical WSN routing game
yields a feasible flow with minimum total energy consumption
under the assumption that players act selfish and routing costs
are load dependent. While this objective is not equivalent to
maximizing global energy balance, it favors energy balance
among nodes sharing the same paths. We will later on provide
experimental tests to make results comparable to the actual
optimal best-energy-balanced solution in the according WSN.
Note that the social optimum of the classical WSN routing
game can be computed by solving a quadratic program with
positive definite matrix in the objective function and linear
constraints.

The following Lemma proves that a classical WSN routing
game is a monotone utility game which guaranties properties
which we will exploit later on.

Lemma 1 (Monotone Utility Game Properties): The classical
WSN routing game is a monotone utility game.

Proof: For the social welfare function V of a balanced
WSN routing game holds:

1) V is submodular (when restricted to a suitable fine
discretization of the routed flow), i.e., for any f ⊂
f ′ ⊂ f ′′ and any element f ∈ f ′′: V (f + f) − V (f) ≥
V (f ′ + f) − V (f ′). I.e., the marginal benefit to social
welfare of adding new flow diminishes as more flow is
added.

2) The total value for the players is less than or equal to
the total social value:

∑
i∈N ui(f) ≤ V (f).

3) The value for a player is at least her/his added value for
the society: ui(f) ≥ V (f)− V (f − fi).



Hence, the classical WSN routing game is a utility game.
The classical WSN routing game furthermore has a mono-
tone growing social welfare function, i.e., for all f ⊆ f ′,
V (f) ≤ V (f ′). (The more flow is added the higher the value
for society due to increased number of rewards).
Note that utility games, formally introduced by Adrian Vetta
[12], are defined as games with submodular social welfare
function aimed to be maximized. As done for general selfish
routing games in [12], we defined a maximization version of
our specific routing game in order to later on exploit some of
the results for utility games.

In the following, we present an alternative game formulation
in which players’ costs do not only favor balanced energy
consumption, but energy balance is more directly addressed.
Nevertheless, for this game we cannot prove the same property
of being a monotone utility game.

B. Balanced Routing Game

We modify the game from the previous section such that
edge costs reflect the actual energy consumption at this point
of the network and total costs are split between the players
via special player cost functions.

Definition 8 (Balanced WSN Routing Game): Given data
gathering network G = (V,E, d,g,b, c) with designated sink
0 ∈ V . The balanced WSN routing game is the strategic game
(N,P,C) with player set N corresponding to the set of nodes
V r0 and set P = ∪iPi being the product of pure strategy sets
Pi of players i ∈ N . The set Pi corresponds to the set of all
(i, 0)-paths in G. The vector p = (p1, ..., pn) ∈ P denotes an
outcome of the game, di = d ·gi denotes the initial demand of
player i, and fe(p) =

∑
i∈N ((pi ∩ e)di) denotes the amount

of flow on edge e in outcome p. General costs for using edge
e in p are given by ce

bi:e∈δ+(i)
· fe(p). In addition, a unique

cost function C : P → R≥0 is defined as

C(p) = max
i,j∈N

1

n
(
∑

e∈δ−(i)

ce
bi:e∈δ+(i)

fe(p)

−
∑

e∈δ−(j)

ce
bj:e∈δ−(j)

fe(p) ) . (2)

The value of the cost function corresponds to 1
n times the

maximum difference of individual energy consumption of
nodes in outcome p. The cost function of player i ∈ N is
given by ui : P → R≥0. The cost functions of all players are
equal, we have u1 = u2 = ... = un = C.

The above game is explicitly defined for pure strategy
game play. The introduction of mixed strategies (i.e., prob-
ability vectors over the pure strategies) is straight forward
when needed. The defined game models the interaction of
autonomous agents whose goal is to minimize the social costs
while each being limited by the strategies available to her/him.
We emphasize that this game is a potential game with a
potential function being equal to the social costs function (i.e.,
the sum of costs over all players). In other words, there exists
a unique function describing the incentives for every player
to change her/his strategy (see e.g., [13]). As the potential

Fig. 2. Sketch of an energy-balance optimal topology. Network slices are
indicated in vertical distance from the sink. Each slice is split into sectors of
equal size within a slice.

function equals the social costs function, the social value of a
best Nash equilibrium equals the social optimum of this game
(see e.g., [14]). (A mixed Nash equilibrium exists as we are
considering a finite strategic game due to Nash’s Theorem). A
best Nash solution can be computed by solving the centralized
energy balance LP (1) from section II-B. This is obvious when
comparing the objective function of LP (1) to the social cost
function (which are equal).

C. Decentralized Modular Subgames Scheme

We now present our decentralized modular subgames so-
lution approach for the presented games and prove solution
quality bounds.

1) Modular Subgames Generation & Scheme: The core
of the distributed modular subgames solution concept is the
generation of disjoint subgames. We propose two kinds of
suitable partitionings of the nodes to form subgames which
correspond to realistic groupings of neighboring nodes.

Definition 9 (Feasible Subgames Partitioning): A feasible
subgames partitioning of G = (V,E, d,g,b, c) is a set
partitioning P of the nodes V such that for every two nodes
in the same set Q of the partitioning, there exists a connecting
path in the induced subgraph E(Q). The nodes of each set of
the partitioning form the players of a subgame of a (global)
game defined on G with strategies and costs/utilities as in the
game.

Definition 10 (Homogeneous Feasible Subgames Partition-
ing): A feasible subgames partitioning of G is called homo-
geneous, if the total number of nodes in a subgame is equal
for all subgames.

Finding a partitioning of nodes as described in Definition 10
is in general known to be a NP-hard problem (see e.g., [15]).
But going the other way around, when needed, the following
network construction yields a homogeneous feasible subgames
partitioning.

As described in section II, we are considering energy-
balanced optimal network topologies in which nodes are
placed in different slices. We pick up an idea from [5] and in
addition cut each slice into sectors of equal size per slice. A
sketch of such a partitioning into sectors is given in Fig. 2. We
place nodes in the network such that each sector of the network
contains the same number of nodes (this is not displayed in the



figure). Furthermore, we assume that every node of a sector is
connected to every node in the parallel sectors of the neigh-
boring slices. A motivation for such a node placement could
for example be network coverage. An improved partitioning
into sectors and distribution of nodes throughout the network
is possible as long as the number of contained nodes is equal
for all sectors and connectivity is satisfied. Now regarding the
actual subgames generation, we employ a given non-negative
integer parameter h. Assuming that the total number of slices
is a multiple of h+1, we cluster parallel sectors of h+1 slices
together to form a subgame starting from the most inner slice.
This way all nodes may coordinate their actions with nodes
in the same sector and nodes in sectors that are at most h
hops away. Applying this rule under given assumptions, we
can generate disjoint subgames with same number of nodes.
Given a feasible subgames partitioning, our modular subgames
solution approach is as follows:

Definition 11 (Modular Subgames Scheme): Given
• data gathering network G = (V,E, d,g,b, c),
• classical or balanced WSN routing game of G,
• a feasible subgames partitioning P of G,
• an order of the subgames of P ,

the players of the first subgame, according the given order,
play best response with respect to the sum of outcomes over
the players in the current subgame. Next the players of the
second subgame play best response with respect to sum of
outcomes over the players in the current subgame to the
strategies chosen by the players from the previous subgames.
Players of the previous subgame cannot change their chosen
strategies. After this, players of the third subgame play best
response to past moves and so on until all subgames have been
played.

Instead of playing one subgame after the other, in the
classical WSN routing game, subgames with disjoint strategy
sets (i.e., disjoint (i, 0)-paths of nodes i that are not in the
same subgame) may be played simultaneously as long as the
subgames scheduled in between them have also strategy sets
that are disjoint from them and each other.

2) An Absolute Bound: For the modular subgames scheme
on the balanced WSN routing game, we can prove an absolute
bound for energy balance, which is derived from the maximum
energy consumption in the solutions and depends on the order
of playing the subgames. In the following, we will slightly
abuse the notation and let cq denote the highest costs for
sending one unit of flow from slice Sq directly to the sink.

Theorem 1: Given data gathering network G =
(V,E, d,g,b, c) and a feasible subgames partitioning. Let m
be the total number of slices in G. Recall that bi denotes
the initially available amount of energy and di = gid is
the demand of node i ∈ V \ 0. For each subgame s, let js
indicate the highest slice index of a slice it covers. When the
modular subgames scheme is applied to solve the balanced
WSN routing game of G such that subgames are played in an
order where subgames with smallest js are played first, than
subgames with second smallest js and so on until all games
have been played, then the maximum energy consumption

deviation between two nodes composing the network is at most
maxi di

cm
bi

.
Proof: For simplicity reasons, let us consider the case

where all nodes have same available energy amount bi = 1.
Recall that we solve a subgame by letting the players play
best response with respect to the sum of the costs for players
in the subgame. Consider the first subgames covering slices
S1, ..., Sq1 . A feasible solution is a solution where all nodes
send their data directly to the sink with energy consumption
ci0di and ci0 ≤ cq1 and di ≤ maxj dj . Hence, the maximum
energy consumption (and therefore also the maximum energy
deviation) is bounded by cq1 · maxj dj . When starting to
play the next disjoint subgames covering slices up to Sq2 ,
all strategies from the former played subgames are fixed,
they cannot be changed. We have cq1 < cq2 by construction
of the network. If a node from a next scheduled subgame
sends demand directly to the sink, its energy consumption is
bounded by cq2 ·maxj dj and energy consumption of nodes in
lower slices is not affected. Due to the player cost functions,
the nodes of the current subgame will only decrease their
current energy consumption by choosing a multi-hop route
while increasing the energy consumption of other nodes up
to a point where their energy consumption is equal. Hence,
the resulting energy consumption for every node is bounded
by cq2 · maxj dj . For further subgames to be played, we
continue with the same arguments until all m slices have been
completely covered. Hence, energy consumption for every
node is bounded by cm ·maxj dj .
The proven bound may seem trivial at first glance, but will
prove to be a relatively good bound for distributed energy
balancing schemes in the experimental tests. Although this
type of scheduling may delay the arrival of messages of
nodes far away from the sink, the delays here are calculable
and can be reduced in dependence of the abilities of the
nodes. Assuming that nodes are able to communicate within
a subgame, the more slices are covered by a subgame, the
lower the latency. By these means, for the first time to our
knowledge, we give an explicit bound for an energy balancing
scheme which also shows best performances in experimental
test in comparison to state-of-the-art algorithms as will be
presented in section IV.

3) Bounding the Price of Modularity: For the classical
WSN routing game, we can exploit its properties as mono-
tone utility game to prove a relative bound for the modular
subgames scheme. Inspired by the famous price of anarchy
which describes the ratio of the worst Nash equilibrium and
the social optimum, we call the chosen quality criterion price
of modularity. The basis for our proof gives the following
solution concept and bound by Mirrokni and Vetta [16].

Theorem 2 (Thm. 3 from [16]): Consider an arbitrary
solution in a monotone utility game. Suppose that each time
step, we select a player at random and make a best response
move for that player. The social value of the solution is at
least 1

2n times the maximum possible social value (n being
the number of players).



Extending ideas from above theorem, we will derive and
prove a bound for our modular subgames solution concepts
which integrates the ability of nodes to communicate and
coordinate themselves within their local vicinity.

Theorem 3 (Bounding the Price of Modularity): Given
classical WSN routing game of data gathering network G =
(V,E, d,g,b, c) and a homogeneous feasible subgames par-
titioning such that each subgame has the same amount of
players ϑ. The solution via the modular subgames scheme
with a random order of the subgames is at least ϑ

2n times the
social optimum.

Proof: What needs to be shown, is that (1) the super game
of the classical WSN routing game in which a super player
represents the players of a subgame is again a monotone utility
game and (2) that the values of the social optimum in the super
game and in the initial game are equal.

We start with proving (2): In the super game and in the
initial game, we have exactly the same (i, 0)-paths and same
demands di for every node i ∈ V . Furthermore, the cost
functions on the edges as well as the rewards for routing
one unit of flow to the sink are equally defined. In the
social optimum of the classical WSN routing game, routes
and demands are chosen such as to maximize the sum of the
utilities for all demand routed to the sink. If we cluster (i, 0)-
paths of several players to assign them as strategies to a super
player, the social optimum does not change.

To prove (1), we show that the super game of classical
WSN routing game is a monotone utility game: Let q be the
total number of subgames j = 1, ..., q with player sets N j

of the given homogeneous feasible subgames partitioning P .
We slightly abuse the notation and denote the according super
player of subgame j also with j. (This should not lead to any
confusions in the following). The utility function of a super
players j is defined as

uPj (f) =
∑
i∈Nj

ui(f) =
∑
i∈Nj

∑
pi∈Pi

(
rpi −

∑
e∈pi

le(f)

)
fpi .

The social welfare of a subset f of an outcome of the super
game is defined as

V P (f) =

q∑
j=1

∑
i∈Nj

ui(f).

Following holds:
1) V P is submodular (when restricted to a suitable fine

discretization of routed flow), i.e., for any f ⊂ f ′ ⊂ f ′′

and any f ∈ f ′′: V P (f + f)− V P (f) ≥ V P (f ′ + f)−
V P (f ′). I.e., the marginal benefit to social welfare of
adding new flow diminishes as more flow is added.

2) The total value for the players is less than or equal to
the total social value:

∑q
j=1 uj(f) ≤ V P (f).

3) The value for a player is at least her/his added value for
the society: uj(f) ≥ V P (f)− V P (f − fj).

Furthermore, for all f ⊆ f ′, V P (f) ≤ V P (f ′). (The more
flow is added the higher the value for society due to increased

number of rewards). Hence, the super game is a monotone util-
ity game. Solving the super game via the modular subgames
scheme with random ordering of the subgames corresponds to
solving a monotone utility game where in each time step a
player is chosen at random to play best response. We can
apply Theorem 2. Due to the given homogeneous feasible
partitioning, we can infer that the number of players in each
subgame coordinated by a super player is ϑ. The total number
of subgames is n

ϑ , hence the solution is at least ϑ
2n times the

social optimum.
Note that instead of giving a bound for a homogeneous feasible
subgames partitioning with respect to nodes in the game and
number of nodes in the generated subgames, we could drop
these specifications and just give a bound for a general feasible
subgames partitioning with respect to the number of generated
subgames. But we believe that the bound is more expressive
with respect to the practical use in the given form.

IV. EXPERIMENTAL EVALUATION

The paper closes with a comprehensive simulation study.
In addition to the theoretical bounds proven in section III,
we demonstrate here the quality of our novel decentralized
modular subgames algorithm in experimental test. Simulations
are performed using Matlab R2014b. The linear and quadratic
programs within the algorithms are solved using Gurobi 6.0.4.

We evaluate the distributed modular subgames scheme on
the balanced WSN routing game and the classical WSN
routing game with subgames scheduling as presented in sec-
tion III-C2 against the optimal centralized solution approach
presented in section II-B, the social optimum of the classical
WSN routing game, and two decentralized state-of-the-art
algorithms. These are a decentralized scheme of the developers
of the energy-balance optimal topologies from [3] which we
denote as Jarry11 and a state-of-the-art algorithm that exploits
local information about node densities to achieve improved
results presented in [5] which we denote as Density12. Our
evaluation metrics are (1) energy balance, (2) network lifetime,
and (3) energy efficiency which we define to be the total
energy consumption of the network. Furthermore, we use
experimental tests to draw conclusions on the relation of the
energy-balance optimum and optimal solution of the classical
WSN routing game and hence to the bound for the price of
modularity from section III-C3.

A. Simulation Settings

We conduct our experimental tests on WSNs instances
described by an energy-balance optimal topology as introduced
in section II. We choose a global node density (the fraction
of number of nodes in the network and number of slices) of
15. With this, from the number of nodes n, we can generate
the number of slices m equal to dn/15e. The unique data
gathering sink is placed in the center of the network with
form of a circle, nodes are distributed randomly around the
sink such that the indicated number of slices are each filled
with at least one node and the network is fully connected.
The initially available energy value of each node is 100. The



data amount created by a node is a randomly assigned value
from the interval [1, 10]. This describes a heterogeneous load
distribution as usually the case in WSNs. The costs for sending
one unit of flow on an edge between sensor nodes is 1. Costs
for sending information on a direct edge to the sink can
be inferred from the slice index and the assumed quadratic
increase of costs with distance for radio transmission (i.e.,
costs for nodes in slice S2 are 22, for nodes in S3 are 32 and so
on). In addition, we separate the network slices into 12 disjoint
symmetric sectors (every 30 degrees of the circle a new sector
begins). We will consider network instances with number of
nodes between 6 and 150. For each interval, we randomly
create 50 test instances. Per instance we conduct 60 iterations
of the simulation to compute the average performance of an
algorithm. We will depict results for the mean values for
each metric in the following as results demonstrate strong
concentration around the mean. For now, we are considering
networks in the two dimensional plane, we anticipate that the
transformation to three dimensions is straightforward. We will
consider such instances explicitly in future work.

In our modular subgames algorithm on both games, we
choose hop distance parameter h = 2 to make our algorithm
comparable to the distributed benchmark algorithms. More
precisely, we assume that communication is possible within 3
neighboring sectors. Subgames are formed of parallel sectors
over h+ 1 slices starting from the most inner slice.

B. Performances regarding Evaluation Metrics

In Fig. 3 the results of our experimental tests for different
intervals of total number of nodes in the network for the
considered metrics are displayed. Please note the differing
scales of the graphics in the figure.

1) Energy Balance (Energy Consumption Deviation): Re-
sults for energy balance are given in Fig. 3a. First, we
observe that energy balance in the centralized optimal solution
(CentralEBOpt) varies over the different node intervals. In
particular, the value becomes smaller from a situation with
very few nodes in the network to at least 21 nodes. An
explanation for this is the increased number of options to route
flow, i.e., nodes that have already a high load factor may be
avoided more easily. Solutions for the social optimum of the
classical WSN routing game (CentralClaOpt) and also for its
solution by the modular subgames scheme (ModClaGames)
are initially poorer than those for the other distributed schemes.
But upwards 60 nodes, both solutions become clearly better
than the solutions of distributed benchmark schemes Jarry11
and Density12. The modular subgames scheme on the bal-
anced WSN routing game (ModBalGames) outperforms all
distributed schemes starting from 61 nodes and is always
close to the optimal solution for energy balance. For more
than 81 nodes, Jarry11 and Density12 are clearly above the
absolute bound for the solutions of the modular subgames
scheme on the balanced WSN routing game (ModBOUND)
proven in section III-C2. Note that the weaker performance
of Density12 compared to the results of the authors in [5]
is due to the heterogeneous initial demands of the nodes. In

(a) Energy Balance

(b) Network Lifetime

(c) Energy Efficiency

Fig. 3. Experimental comparison of (a) energy balance, (b) network lifetime,
and (c) energy efficiency (total energy consumption over all network nodes) of
the solutions of the optimal centralized computation (CentralEBOpt), the mod-
ular subgames algorithm on the balanced WSN routing game (ModBalGames),
the social optimum (CentralCalOpt) and the modular subgames algorithm
on the classical WSN routing game (ModCalGames), and two distributed
benchmark algorithms (Density12 & Jarry11) for networks of different sizes
with heterogeneous node placement and message loads. In (a), the solutions
are in addition compared against the absolute bound (ModBOUND) for
ModBalGames.

their experimental evaluation all nodes had the same amount
of initial messages. Furthermore, note that in the classical
WSN routing game, every individual node uses less network
information about past moves for routing than in the balanced
WSN routing game (i.e., every node only needs data on current
loads on edges of potential routes). The trade-off is a weaker
performance that is still better than the one of the considered
distributed benchmark schemes. The bound for the price of
modularity of the classical WSN routing game guarantees that
the solution via the modular subgames approach is close to
the social optimum of this game. Hence, both have guaranteed
comparable solutions also with respect to energy balance.1

1The bound for the price of modularity was explicitly provided for WSNs
with a homogeneous node placement. In the experimental tests, we are consid-
ering heterogeneous node placements to extend knowledge on the performance
of our scheme. When considering heterogeneous node placements, one can
replace the parameters in the bound by the total number of generated subgames
(see note at the end of section III-C3).



2) Network Lifetime: When evaluating the performances
with respect to network lifetime, displayed in Fig. 3b, unlike
as for energy balance, we measure individual node attributes.
With increased number of nodes, the nodes usually have
more options to evade heavily loaded nodes. Nevertheless, it
cannot be avoided that nodes spend the more energy the more
nodes, hence slices further away from the sink, compose the
network. The overall picture is that with increased number
of nodes network lifetime decreases in all solutions. Note
that we are considering schemes for energy balance and
thus only indirectly for network lifetime. While for 21 to
30 nodes the distributed benchmark schemes Density12 and
Jarry11 outperform the solutions for the classical WSN routing
game, between 41 and 70 nodes, all approaches, excluding
the optimum for energy balance, perform relatively equal.
Starting from 81 nodes the solutions for the classical WSN
routing game are better than those for Density12 and Jarry11
and the modular subgames scheme (ModClaGames) is always
close to the social optimum of this game (CentralCalOpt). The
modular subgames scheme on the balanced WSN routing game
(ModBalGames) outperformes all other schemes and is again
close to the optimum for energy balance.

3) Energy Efficiency (Total Network Energy Consumption):
In Fig. 3c the results for energy efficiency, defined as the
sum of energy consumption over all nodes of the network, are
presented. While Jarry11 is again clearly weaker than the other
protocols, it is especially notable that the Density12 scheme
performs in general even better than the optimal solution for
energy balance (CentralEBOpt). The explanation for this is
that minimizing the total energy consumption of the network
is not equivalent to optimizing energy balance, respectively
network lifetime. While the Density12 solution has lower total
energy consumption, the network in general still dies faster
than in the solution for optimal energy balance and than in the
solutions for the modular subgames schemes due to overuse
of some specific nodes. In the future, here it would certainly
be interesting to vary the definition of lifetime and see how
performances with respect to the different metrics change.
In particular, it would be interesting to define critical nodes
for network lifetime and to look into how far our modular
subgames scheme can be adapted to it.

In summary, our simulation results supported our theoretical
bounds for the distributed modular subgames scheme and
showed that it also provides very good results in experimental
tests. To be fair to the considered distributed benchmark
algorithms, one must say that the modular subgames ap-
proach employs more information than the other schemes, i.e.,
updated information of current costs of potential routes. In
practice, such information could be locally stored and updated
by forwarding information peer to peer.

V. CONCLUSION

The overall goal in this paper was to create a good basis
for the theoretical analysis of distributed energy balancing
schemes for WSNs. We presented a novel approach for bal-
ancing energy in a distributed manner by solving a sequence

of modular strategic subgames. We proved some theoretical
bounds and demonstrated that the modular subgames scheme
also performs good in experimental tests. Our scheme as well
as the theoretical bounds are intended to be adapted gradually
to more complex circumstances. Especially interesting are also
the extension of our recent results to dynamic flows as well as
to WSNs with mobile nodes. The principles of our model may
also be useful for other balancing problems of decentralized
resource usage.
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