
Mobility Prediction-Assisted Over-The-Top

Edge Prefetching for Hierarchical VANETs
Zhongliang Zhao, Lucas Guardalben, Mostafa Karimzadeh, José Silva,

Torsten Braun, Susana Sargento

Abstract

Content prefetching brings contents close to end users before their explicit requests to reduce

the content retrieval time, which is crucial for mobile scenarios such as vehicular ad-hoc networks

(VANETs). In order to make intelligent prefetching decisions, three questions have to be answered:

which content should be prefetched, when and where it should be prefetched. This paper answers these

questions by proposing a vehicle mobility prediction-based Over-The-Top (OTT) content prefetching

solution. We propose a vehicle mobility prediction module to estimate the future connected roadside units

(RSUs) using data traces collected from a real-world VANET testbed deployed in the city of Porto,

Portugal. We design a 3-tier caching mechanism and an OTT content popularity estimation scheme

to forecast the content request distribution. We implement a learning-based algorithm to proactively

prefetch the user content to VANET edge caching at RSUs. We implement a prototype using Raspberry

Pi emulating RSU nodes to prove the system functionality. We also perform large-scale OpenStack

experiments to validate the system scalability. Extensive experiment results prove that the system can

bring benefits for both end-users and OTT service providers, which help them to optimize network

resource utilization and reduce bandwidth consumption.

Index Terms

Content prefetching, vehicular ad-hoc networks (VANETs), mobility prediction, content popularity

estimation, over-the-top services, road side units (RSUs), edge computing.

I. INTRODUCTION

In the past years, vehicular ad-hoc networks (VANETs) have evolved from a research topic to

real-world deployments. VANETs provide car-to-car communications to address the increasing

Zhongliang Zhao, Mostafa Karimzadeh, and Torsten Braun are with the University of Bern, Switzerland. Lucas Guardalben,

Jose Silva, and Susana Sargento are with the University of Aveiro and the Instituto de Telecomunicações - Aveiro, Portugal.

traffic demands for vehicle-correlated applications. Efforts have also been made to explore the

potential of using vehicular network communications to improve transportation efficiency and

to provide comfortable user experiences to passengers and convenience to drivers. The service

characteristics of VANETs differ from conventional wireless communication services, which

means that we have to analyze the specific requirements of various vehicles, their services, and

applications. A recent study [1] highlights the importance of having a comprehensively coordi-

nated system to meet the low-latency and high-mobility communication features for VANETs.

VANETs consist of hundreds of connected vehicles, which use DSRC (Dedicated Short-Range

Communications), Wi-Fi, or cellular to connect to each other and to the infrastructure. A real-

world VANET testbed includes the installation of communication systems, which assure vehicle-

to-vehicle (V2V), vehicle-to-roadside (V2R) and vehicle-to-infrastructure (V2I) communications.

A VANET is deployed by installing on-board units (OBUs) on vehicles, road side units (RSUs)

at particular city spots, and by connecting the RSUs to the access infrastructure (copper or fiber

network).

Over-the-top (OTT) services have grown in recent years. The number of OTT services, char-

acterized by being transmitted over any network without the operators’ control in the distribution

process, has been increasing. Supported by an existing and usually free Internet backbone, service

providers have exploited the characteristics of unmanaged networks to deliver services to their

consumers without having to invest heavily in the infrastructure. Due to their nature, OTT services

have an inherent widespread reachability and they are able to accommodate virtually any Internet-

connected device, without requiring network-specific equipment or management capabilities [2].

The rising popularity of multimedia streaming protocols has led to its widespread adoption in

modern multimedia services, such as YouTube, Netflix, etc. As shown in Section 2.4, this set

of streaming protocols exhibits very specific traits, which depend on the streaming protocol in

use. For example, delivering content using adaptive streaming protocols over HTTP, although

conceptually similar to delivering any other web content, presents a set of challenges regarding

scalability and maintenance of adequate QoE levels, especially in highly dynamic environments,

such as it is the case for VANETs [3]. Since Internet Service Providers (ISPs) allow third-party

services to use their network for free, this type of service is called Over-the-Top, and content

is delivered without direct operator management. One emerging OTT application scenario is

vehicle on-board video streaming, and many works on OTT service and content prefetching for

VANETs have been proposed [4].

A typical VANET use case is the one where mobile users are downloading multimedia

streaming services from the connected RSUs while travelling in a car. To ensure seamless content

delivery, an efficient OTT content prefetching mechanism is required to improve the quality of

experience of mobile users in moving vehicles. To address the problems of where to prefetch

the OTT content and which content should be prefetched in VANETs, the system should be able

to know the content popularity and the future locations of vehicles. This leads to the problems

of vehicle OTT content popularity estimation and vehicle location prediction. Considering the

specific characteristics of VANETs, both problems should be resolved while being subject to the

VANETs features, such as short V2V/V2R contact time, fast node movements, and unreliable

radio channel characteristics in vehicular communications environments [5].

Given the challenges of VANETs, such as short V2R contact times, we propose a vehicle

mobility prediction-assisted OTT prefetching mechanism. The system estimates the OTT content

popularity and performs content prefetching operations based on the predicted future connections

of RSUs and vehicles. The contributions of the paper can be summarized as follows:

• We propose a hierarchical VANET architecture, which supports content caching at different

layers. The 3-tier architecture enables vertical cache aggregation, which optimizes the

caching operations and improves the system performance.

• We provide a deep exploration of a rich vehicle dataset collected from a real-world VANET

testbed deployed in the city of Porto, Portugal. The testbed consists of 600+ bus/garbage

trucks as OBUs, and 70+ RSUs. This dataset empowers us to understand the real OBU-

RSU connectivity, which enables us to develop a practical VANET prefetching mechanism

in real implementation using IEEE 802.11p compatible hardware. Plus, it makes our work

different from existing works that are simulation-based.

• We design a content prefetching mechanism assisted by vehicle mobility prediction. The

proposed mobility prediction solution is a dynamic Markov chain-based model, which

adaptively selects the first- or the second-order Markov chain model based on the available

trace quality. We implement a context-aware content popularity estimation mechanism for

VANET video streaming services.

• We implement a system prototype using the Raspberry Pi platform emulating the RSU to

perform real prefetching operations in a small-scale network. We use the OpenStack infras-

tructure to emulate a large-scale scenario with 40 RSUs to validate the system scalability.

Results from extensive experiments prove the capability of the system.

The rest of the paper is organized as follows. Section II describes the related work. Section III

elaborates the design details of system architecture and the subcomponents. Section IV includes

implementation details of both a small-scale prototype and a large scale OpenStack experiment.

Section V discusses the results of the prototype and OpenStack experiments. Section VI

concludes the paper and foresees future works.

II. RELATED WORK

VANET-correlated experiments should be done using IEEE 802.11P/WAVE compatible hard-

ware mounted on vehicles running on real roads. However, due to the prohibitive costs of real-

world VANET deployments, most of the research activities on VANETs focus on simulation-

based study or very small-scale testbeds. The Veins framework [6] was proposed as a hybrid

simulation framework to develop efficient Inter-Vehicle Communication (IVC) protocols for on-

demand route planning and safety applications. Authors of [7] proposed another simulation

framework, which includes driving, traffic, and network simulators, for testing and evaluation

of cooperative intelligent transport systems applications. C-VeT [8], an open VANETs testbed

within the UCLA campus, integrates a wireless mesh network solution. HarborNet [9] is a real-

world testbed for research and development in vehicular networking that has been deployed

successfully in the seaport of Leixões in Portugal. It allows cloud-based code deployment, and

distributed data collection from OBUs and RSUs.

In a VANET deployment, vehicles could download content from RSUs when the OBU-RSU

association is established. However, due to the high speeds, the actual contact time between

the vehicle and RSU is very short. For instance, a moving car with an average speed of 50

km/h and equipped with the IEEE 802.11p Wireless Access in Vehicular Environments (WAVE)

device with a transmission range of 200 meters has a contact time with a connected RSU of

less than 30 seconds. Moreover, [5] has evaluated the performance of the WAVE protocol, and

it claimed that in dense and high load scenarios, the network throughput is decreased while the

delay is increasing significantly. Therefore, it is important to have the content to be downloaded

available when the car is approaching the RSU, such that the short vehicle-RSU contact period

can be fully dedicated to content transmission. This leads to the design of efficient content

prefetching mechanisms at the VANET edge of RSUs. Several challenges arise when trying to

bring content as close as possible to the vehicle consumers, such as the lack of memory and

the limited processing power of equipments to store them (e.g., embedded cache on OBUs and

RSUs), etc. Therefore, in order to optimize multimedia content delivery in vehicular networks,

prefetching strategies must be able to reduce the user-perceived latency by predicting next OBU-

RSU connection to store OTT contents in advance [10].

Therefore, a prefetching mechanism needs to be used in conjunction with smart caching

strategy. To be effective, the prefetching operation must be performed timely, to be useful and

with low overhead. The work of [11] proposes a model to take into account the evolution of

content popularity, which is used by a caching algorithm to keep track of the user requests.

However, the impact of the dynamic model building overhead is not considered in the experi-

ments. In [12], a predictive approach is taken towards content popularity, where data traces are

used to build synthetic Gaussian, exponential, and power law models, which are then used in a

modified least frequently used (LFU) caching policy. The work in [13] focuses on prefetching

content to the clients’ devices. Caching and prefetching are highly intertwined as both require a

deep understanding of the content characteristics, and work towards the goal of reducing peak

bandwidth consumption. Therefore, a content distribution network in vehicles should consider

the particularities of every content object that will be cached [14].

Very recently, researchers started to analyze the possibilities of applying vehicle mobility

prediction information to improve the proactive caching performance for VANETs. Many works

are based on the simulation using the San Francisco taxi cabs mobility dataset [15], which

contains GPS coordinates of approximately 500 taxis collected over 30 days in the San Fran-

cisco Bay Area. [16] presented a proactive caching strategy that leverages Information-Centric

Networking (ICN)’s flexibility of caching data anywhere in the network, rather than only at

the edge. They evaluated their protocol by performing simulation using the San Francisco taxi

cabs mobility dataset. To estimate OBU-RSU connections, they assume that multiple RSUs

(with known GPS coordinates) are distributed in San Francisco such that they can calculate the

OBU-RSU connections based on distances. [17] proposed a second-order Markov chain based

vehicle mobility prediction solution for content prefetching in VANETs. They also conducted

simulation studies using the San Francisco dataset, and used a wireless AP coverage database in

San Francisco to estimate the AP-vehicle connections. However, this AP coverage database is not

designed for VANET applications intrinsically, which also limits their contributions. [18] builds

a model of vehicle path assignment to estimate the vehicle’s moving path and its sequences of

visited APs along the path. However, as authors indicated in the paper, they ignored the time

for vehicles to discover and associate with APs.

DSRCLogs

Proxy Cache

Config

Caches

Content
Popularity
Estimation

Prefetch

C
onnection
M

anager
Server

C
lient

Mobility DB

Vehicle
Mobility

Prediction

Regional Server

prefetching request prefetching operations

RSU

DSRC

Tier 2: Regional Server

Tier 1: RSU

OBU

Tier 3: OTT Content Origin Server

Figure 1: System Architecture.

Therefore, this work focuses on the practical design of a VANET OTT content prefetching

solution by using the real OBU-RSU connectivity data collected from a real-world VANET

testbed. We propose a hierarchical VANET architecture, which includes smart caching at different

tiers. The system includes a vehicle mobility prediction engine, which estimates the future

connected RSUs of an OBU, such that the content can be prefetched to the correct place.

A content popularity model is also proposed to estimate the future content requests. The design

has been validated in both a real prototype and OpenStack experiments.

III. SYSTEM MODELS

In this section, we describe the architecture of the proposed mobility prediction-assisted OTT

content prefetching mechanism in a hierarchical VANET.

A. System Architecture

The proposed system architecture is shown in Figure 1, which includes a 3-tier hierarchical

caching design. The architecture includes three main entities: RSUs, regional server, and origin

server. Their functions are explained as follows:

• RSUs are tier 1 edge cache units deployed on road sides that provide requested content to

mobile vehicles when they are connected.

• Regional Servers work as tier 2 aggregation caches. They answer the prefetching requests

from the RSUs that are deployed within their regions, and prefetch the requested content if

available in their local cache to the indicated places. Otherwise, they forward the request

to the origin server. They also include some logics to optimize the prefetching decisions.

• Origin Server works as tier 3 cache, and it stores all the content and chunks. It responds

to prefetching requests from regional servers.

As illustrated in Figure 1, two regions (marked as light grey blocks and light blue blocks) are

served by multiple RSUs, which are covered by two regional servers. OBU devices are installed

on vehicles, such as buses or garbage trucks. The 3-tier caching architecture has many benefits.

When a vehicle changes the associations from one RSU to another one, its content objects will

be cached on the previous edge cache and also on the tier 2 aggregation caches. When asking

for the same content once it is connected to the new RSU, there is no need to request the same

content from the origin server, and the request can be served directly from the tier 2 aggregation

cache. In the event of an edge cache server failure, the aggregation cache is also helpful to

rebuild the cache of the backup edge caches, and there is no need to bother the origin server.

The 3-tier aggregation cache is also useful when a Content Delivery Network (CDN) has a high

geographical diversity and potentially large access delays to the origin server.

Each RSU node consists of five internal components. The Connection Manager manages the

DSRC connection between RSU and vehicles. It also interconnects RSUs with the regional

server to send the prefetching requests and receive content. The Proxy Cache is responsible for

managing the context information about the connections of the RSU with the vehicles. It has

an internal cache to store the content, and a database of historical movement traces of vehicles,

which are needed in the location prediction. The Content Popularity Estimation predicts the

content that will be requested by the mobile consumers. This solves the problem of ”what to

prefetch”. The Vehicle Mobility Prediction module is responsible to predict the future connected

RSUs and the corresponding connection probabilities of the vehicle. It answers the question of

”where to prefetch”. The Prefetch module takes the results of the Content Popularity Estimation

and Vehicle Mobility Prediction modules, and sends the prefetching request to the regional server.

The origin server stores all the content chunks. Moreover, it has two more data records:

• Content Metadata contains information that is associated with each media element (the core

elements representing basic media types). In Video-On-Demand (VOD) services, content

metadata includes content title, Electronic Program Guide (EPG) information, such as the

original broadcasting program date, broadcast station, program title, episode number, series

identifier, duration, etc. In case of live content, the origin server may act as conventional

HTTP server, delivering the live content over many sources (e.g., HTTP-based live stream-

Figure 2: Real-time locations of OBUs (green

nodes) and RSUs (brown nodes) provided by

GPS of the VANET testbed deployed in the

city of Porto, Portugal.

ing, Mpeg-dash, etc.). An example of live streaming metadata information includes a time-

stamp of the last video recorded, the width/height of the video in pixels, bit rate, frames

per second, duration, etc.

• Demand Logs provide traceability by recording who requested what content and when.

Therefore, it provides timestamped records that map user requests to VoD programs and

the type of the streaming for live content.

B. Real-World VANET Dataset

This work considers real bus traces collected from the VANET testbed deployed in the City

of Porto from October 2016 until August 2017 [9], [19] (as shown in Figure 2). This urban-scale

testbed consists of 600+ networked vehicles using IEEE 802.11p, WiFi or 4G to connect to each

other and to the infrastructure through 4G as well as 70+ RSUs scattered along the city. GPS

positions and accelerometer data are gathered from vehicles’ OBUs. The data trace collection

process basically is done by a deployed DTN (Delay Tolerant Network) system, which makes

use of the existing vehicular network infrastructure, communicating through V2V DSRC WAVE

technology to carry and forward data towards its final destination. All information is stored in a

MySQL database, which has available logs from the OBUs’ positions and speeds. The positions

log database stores all the collected raw data, which includes three tables:

• RSUs Traffic Information stores information about the amount of data traffic transmitted via

different technologies (4G, WiFi, DSRC, etc).

• OBUs Information stores information about the OBU location, speed, connected RSU ID,

number of hops to the data server collector, 4G/DSRC traffic, etc.

• RSUs Information stores information about the RSUs in terms of the download/upload traffic

volumn;

This work focuses on the OBUs Information table, which includes valuable information for

vehicle location prediction. The GPS time identifies the exact time when the spatial attributes

(latitude, longitude, altitude, heading) were captured, which are used to calculate the average

speed of OBU nodes. With the stable data collection, the VANET testbed collects 1.2 up to

3 millions of SQL records per day. However, if the VANET link conditions are bad or with

temporary equipment failures, the amount of data collected will be greatly reduced. Therefore,

based on the amount of collected data during the data collection period, we classify user trace

data into two categories: vehicles with an average number of 500k entries of data in the database

are considered as with good quality, and vehicles with an average number of 250k entries of

data are considered as with bad quality.

C. Content Popularity and Prefetching

The management and control of edge caches (RSUs) are performed mostly using proxy-based

cache solutions. In our model, the proxy cache plays an important role, and it helps to orchestrate

where, which, and how the vehicles (OBUs acting as video consumers) are watching adaptive

segmented HTTP-based delivery videos. When deployed in a RSU, the proxy cache deals with

a small cache storage and it can be overloaded quickly, leading the caching strategies to replace

more content objects. Therefore, the prefetching model should have high precision on choosing

the correct content chunk to be cached on the correct RSUs, such that excessive back-end traffic

to the origin server can be avoided, and the content delivery time can be reduced.

Given the characteristics of multimedia transmissions, one important thing to consider is which

chunk will be more popular for future client consumption such that the specific chunk should

be populated on the closest RSU cache before the vehicle’s request. For adaptive segmented

HTTP-based content delivery, such as Dynamic Adaptive Streaming over HTTP (DASH), the

prefetching technique should involve the prediction of the popularity of future chunks of a given

video in a certain quality, and populate the RSU cache to reduce the hit misses. Some additional

features should also be considered when designing a prefetching model in VANETs, such as

the intermittent wireless connections between OBU-RSU, network congestions, low bandwidth

available, and the video popularity.

The proposed prefetching strategy analyzes the behavior of each OBU consumer and is based

on the current quality and the last n = 4 requested chunks. A simple linear regression model is

used to predict which quality will be requested next, as explained in Equation 1.

Tt RiTt-1Ri-1

D

Tt+1Ri+1

D

t t+λ t+2λ

Ri-1 = 0

Ri-1 != 0

Ri-1, Ri Ri+1

2nd Order Markov Chain

1st Order Markov Chain

Figure 3: Hybrid Markov Chain.

X(t+1) = w1⇥X(t) + w2⇥X(t�1)+,

w3⇥X(t�2) + w4⇥X(t�3) + w5⇥X(t�4)

(1)

X(t+1) is the expected quality, X(t) is the current one and X(t�1), ..., X(t�4) are the last 4

qualities. From our previous experience [20], a value of 4 past records is good enough to infer

the next quality to be consumed as well. Basically, the vehicle content consumption pipeline is

as follows: i) the vehicle asks for a chunk; ii) the RSU acts as proxy-based cache answering the

request back; iii) the prefetching model predicts which quality and where the next chunk will

be placed, and iv) the RSU as proxy-cache then caches the predicted content.

D. Vehicle Mobility Prediction

This section presents the proposed vehicle mobility prediction algorithm. The approach is

based on a hybrid Markov chain model, which adaptively selects from the first-order or the

second-order Markov chain, depending on the availability and quality of vehicle’ traces.

The proposed hybrid Markov model benefits from both the first-order Markov chain presented

in [21], and the second-order Markov chain. The rationale behind using a hybrid model is that

the standard first-order Markov chain models are memoryless predictors, which means that the

next location (vehicle’s connected RSU) depends on (i) it’s current location, (ii) the current time,

and (iii) the day of the week of the movement. The second order Markov chain model is slightly

different, as the prediction considers not only the current state information, but also the one from

the previous state. The utilization of two state information could increase prediction accuracy.

However, when trace data includes discrete gaps, the 2-order state transition conditions will not

be met, which will lead to poor performance for the second-order predictor.

The proposed hybrid model is illustrated in Figure 3, in which a Markov chain state consists

of a time step and a RSU ID. Equation 2 defines the calculation of future location probability,

Table I: Vehicle mobility prediction algorithm parameters

Parameter Name Parameter Definition

Ri, OBUi RSU ID i, OBU ID i

D, Ti The day of the week, and time of the day

� Future time interval

C = {R1, .., i}, |C| = I Set of RSUs

U = {OBU1, .., j}, |U | = J Set of OBUs

NRi (t) Number of OBUs connected with RSU Ri at time t (e.g., m)

NRi (t+ �) Number of OBUs in RSU Ri at time t+� (e.g., M)

n1 Number of OBUs that may be connected with Ri at time t+�

n2 Number of OBUs that may be disconnected from Ri at time t+�

4m = M �m = n1 � n2 The difference between the number of OBUs in RSU Ri at time t and t+�

FRi0 (t)
Subset of all OBUs out of Ri at time t

FRi(t) Subset of all OBUs in Ri at time t

Pj1 , OBUj1 2J P{OBUj1 is in Ri0 at time t} ⇥ P{OBUj1 moves to Ri at time t+�}
Pj2 , OBUj2 2m P{OBUj2 is in Ri at time t} ⇥ P{OBUj2 moves from Ri at time t+�}

in which Ri represents a RSU with ID i, D indicates the day of the week (e.g., Saturday), Ti

defines the time of the day D, and � determines the future time interval. Table I shows the

parameters used in the prediction algorithms. As we can see from Equation 2, the conditional

distribution of the first-order Markov chain only depends on the current location (RSU) of the

vehicle, time and the week day. But the second-order Markov chain comprises both current and

previous visited states, time and weekday.

The first-order and second-order Markov chain models of Equation 2 can be further decom-

posed into a location-dependent component and a time-dependent component, which represents

a location-dependent distribution, and a time-dependent distribution (as shown in Equations 3

and 6). For the second-order Markov chain, as we can see from Equation 6, both the location

dependency and the time dependency distributions are based on the current and previous states.

The location distribution can be modelled as a Mobility Markov Chain (MMC) that encodes

the frequency (probability) of transitions between the RSUs. In order to derive the transition

probability matrix of the Markov chain, we calculate the probability of moving from one RSU

to other(s) for each individual vehicle, by counting the number of transitions from one RSU to

another on the given weekdays (e.g., Mondays). For the case of the second-order Markov chain,

the counting of transition frequency happens only when the vehicle’s movement is continuously

following the sequence of two states.

Pr(Ri+1(t+ 2�)) =

8
>>>>>>>><

>>>>>>>>:

Pr(Ri+1|R(t+ �) = Ri, D,

T (t+ �) = Ti)
if Ri�1 = 0

Pr(Ri+1|R(t) = Ri�1, R(t+ �) = Ri,

T (t) = Ti�1,T (t+ �) = Ti, D)
if Ri�1 6= 0

(2)

Pr(Ri+1|R(t+ �) = Ri, T (t+ �) = Ti, D) (3)

=Pr(Ri+1|R(t+ �) = Ri) (4)

+Pr(T (t+ �) = Ti, D) (5)

Pr(Ri+1|R(t) = Ri�1, R(t+ �) = Ri, T (t) = Ti�1, T (t+ �) = Ti, D) (6)

=Pr(Ri+1|R(t) = Ri�1, R(t+ �) = Ri) (7)

+Pr(T (t) = Ti�1, T (t+ �) = Ti, D) (8)

P
�
NRi (t+ �) = M

=
X

m

P
�
NRi (t+ �) = M | NRi (t) = m

⇥

P
�
NRi (t) = m

=
X

m

h
X

n1,n2,n1�n2=4m

P
�
Nin,Ri (t+ �) = n1

⇥

P
�
Nout,Ri (t+ �) = n2

i ⇥ P

�
NRi (t) = m

(9)

P
�
Nin,Ri (t+ �) = n1

=

X

A12FRi0 (t)

Y

j12A1

Pj1

Y

j012Ac
1

⇣
1� Pj01

⌘
P
�
Nout,Ri (t+ �) = n2

=
X

A22FRi(t)

Y

j22A2

Pj2

Y

j022Ac
2

⇣
1� Pj02

⌘
(10)

From the probability distributions of the OBU’s future connected RSUs, we can further

estimate the number of connected OBUs to a given RSU at a future moment. Therefore, next,

we target at predicting the probability distribution of the number of connected OBUs with a

specific RSU within a given time. This information will help us to optimize the caching strategy

for content objects that might be requested by multiple vehicles that will be connected to the

same RSU simultaneously or following a continuous time series. For instance, if we know that

two vehicles will be connected to the same RSU at time t and t + � and they will request

the same chunk of content, the targeted RSU should keep that chunk for both vehicles at t

and t + �. Parameters used in the probability distribution estimation of the number of OBUs

connected to a RSU is also shown in Table I. The probability distribution of the number of

OBUs that will be connected to a specific RSU is calculated at the regional server side. This is

because this calculation requires the knowledge of an OBU’s future connected RSUs, which is

generated once the relevant RSU receives a request from a connected OBU. Therefore, whenever

a RSU generates a transition probability matrix for an OBU, it should notify this to the regional

RSU 1 RSU 2

OBU 1

OBU 2

location 1 location 2

location 3location 4

OBU 2

OBU 1

Figure 4: OBU’s connections with

multiple RSUs

server such that the regional server is updated about the OBU’s future connected RSU. When

the regional server is aware of the information about the probability distribution of the number

of OBUs that will be connected to a specific RSU, it will optimize the caching at the relevant

RSUs. In Equation 9, P {Nin,Ri
(t+ �)} and P {Nout,Ri

(t+ �)}, describe the probability of n1

OBUs that may be connected with RSU Ri and n2 OBUs that may be disconnected with Ri at

time (t+ �), respectively. These probabilities can be calculated using Equation 10.

Apart from the theoretical reasons in favour of a higher order Markov chain, practical ex-

periences gained from empirical studies also lead us to favour a higher order model [22]. As

shown in Figure 4, when both OBU 1 and OBU 2 are connected with RSU 1 simultaneously at

location 1 and location 4, it is not possible for RSU 1 to predict OBUs’ next locations with only

their current location information. However, if we also know that in the next time slot, OBU

1 is connected with RSU 2 at location 2 or in the previous time slot, OBU 2 was connected

with RSU 2 at location 3, then we can infer their movement directions, which will enable us

to distinguish them and predict their future locations with higher accuracy. Therefore, for the

vehicle mobility prediction problem, a higher order Markov model is definitely better than the

memoryless first order Markov model. However, this statement is based on the assumption that

there will be enough information about the vehicle movement data available. As we show later

in the evaluation part, we can see that if the dataset is of poor quality, then the second-order

Markov chain model will perform much worse than the first-order Markov chain. This is the

reason why we design a hybrid Markov model, which adaptively selects from the first-order or

the second-order Markov model based on the data quality.

As learned from our previous experience [23], trace quality has crucial impact on the prediction

performance. Therefore, we first classify the dataset into two groups (good or bad quality) based

on the number of recorded instances during the whole data collection periods. We choose data

from four vehicles with good quality of trace data (e.g., with 460000-500000 instances of SQL

Figure 5: Example of OBU-RSU connection

records

Figure 6: Probability distribution of OBU-RSU

connections

records) and from four vehicles with bad quality of trace data (e.g., with 200000-220000 instances

of SQL records). For each vehicle, we separate the available data into two parts: a learning part

(L), and a testing part (T). The learning dataset L, which is the first 70% of a vehicle’s trace data,

is utilized to derive the Markov chain states and to calculate its transition probability matrix.

The testing dataset T contains the rest 30% of trace data, which is used to test and evaluate the

proposed algorithm. For instance if the duration of trace data is 10 months, which includes the

trace files of 40 Saturdays, we use the data of the first 28 Saturdays for the learning purpose

and apply the data from the remaining 12 Saturdays in the testing phase.

In order to feed the prediction algorithm with useful inputs, the original dataset has to

be cleaned and processed into a proper format. As described in Subsection III-B, the raw

data collected from the VANET testbed includes a huge amount of information. However, for

the purpose of vehicle mobility prediction, the algorithm only needs the history of vehicles’

connected RSUs and the timestamps of the connections. Therefore, we have to generate a file

with all the connected RSUs/timestamps information for every vehicle, such that the vehicles’

transition probability matrices can be calculated from it. In Figure 5, we show a small part of

OBU-RSU connection records and the corresponding time stamps collected from the real-world

VANET testbeds. The first five fields indicate the timestamps of the connections, and the last

field indicates the connected RSU ID. Figure 6 shows the probability distribution of the OBU-

RSU connection intervals for two vehicles (OBU IDs 2509 and 2797) randomly selected from

the dataset. As we can see, 60% of the OBU-RSU connection has a duration of less than 30

seconds, and 80% of the OBU-RSU connection is less than 50 seconds.

IV. IMPLEMENTATION AND EVALUATION

This section describes the implementation details, which include a real-world prototype using

a testbed at the University of Aveiro (referred to as Aveiro testbed) and an implementation

for large-scale evaluation an OpenStack infrastructure at the University of Bern (referred to as

Bern OpenStack testbed). We use the Raspberry Pi platform to emulate the real communication

between OBU-RSU on the Aveiro testbed consisting of 3 Raspberry Pi nodes for RSUs and

mobile clients for OBUs. To validate the system scalability, we simulate a large-scale scenario

with 40 RSUs on the Bern testbed. We use video streaming applications to evaluate the system

performance, including vehicle prediction accuracy, network performance metrics, and metrics

from the end-users’ perspectives.

A. Prototype Implementation at Aveiro Testbed

In order to emulate the data transmission between an OBU-RSU pair in a practical way, we

use Raspberry Pi nodes to implement all the RSU functionalities. For this scenario, three RSUs

are emulated with three Raspberry Pi devices to implement the displacement of consumers along

a route (as shown in Figure 7). The OBU starts from the connection with RSU 1, and it moves

to RSU 2 or 3 according to the real vehicular mobility trace explained in Section III-B. Each

emulated RSU represents a real RSU placed in the city of Porto, which the real IDs were assigned

for each Raspberry Pi. The real IDs were chosen accordingly from the top three ranked IDs that

received more contacts from the OBU ID 2509 during the experiment time window, e.g., RSU

1 ID=494, RSU 2 ID=2394 and RSU 3 ID=418.

We choose Raspberry Pi 2 Model B to emulate a RSU node. For all Raspberry Pi nodes, the

OpenWRT operating system is installed. The client PC emulating the OBU consumer is a core

I7 PC with 16GB RAM, 1T storage and 128 SSD, and with Ubuntu 16.04 installed. To build a

HTTP and reverse proxy server, we choose Nginx (version 1.10) [24] in this experiment.

To emulate the vehicle mobility and its impact on OBU-RSU connections, we have used

nmcli1, a Unix-based network manager tool that reports the wireless SSID network status, to

control the connectivity between RSUs and vehicles to emulate vehicle mobility. When an OBU

needs to move from one connected RSU to another, the nmcli module manages the disconnection

from the current RSU, and sets up the connection with the new RSU. To achieve this, we built a

1nmcli: https://developer.gnome.org/NetworkManager/stable/nmcli.html

OTT Content
Origin Server

Prefetching

DSRCDSRC
Moving

RSU
3

RSU
2

RSU
1

Regional Server

Tier 1

Tier 2

Tier 3

RSU Time Prob
13 t 0.8
21 t 0.2
36 t+λ 0.95
21 t+λ 0.05

OBU ID = 10

OBU Time Prob
13 t 0.64
21 t+λ 0.81

RSU ID = 35

Transition Prob. Matrix

Connection Estimation

Figure 7: Prototype Implementation

Topology at Aveiro testbed

RSU transition probability matrix (TPM), which decides the probability of moving from one RSU

to another. This matrix is calculated using the vehicle mobility prediction algorithm presented

in Section III-D. The TPM will be stored at every RSU, such that once a content request is

received from a connected OBU, the RSU could decide which RSU will be the next connected

one, which will trigger the nmcli network operations to break the old connection and establish

the new connection with the RSU as indicated in the TPM.

B. Large-scale VANET Emulation at Bern OpenStack Testbed

To validate the performance of the proposed system in a large-scale testbed, we choose to use

the OpenStack cloud infrastructure at the Institute of Computer Science at University of Bern to

emulate a large VANET with multiple RSU nodes. Figure 8 shows the network topology, which

includes 3 OpenStack VMs: one RSU VM includes 40 Docker containers and each container is

running the identical OpenWRT image installed on the Raspberry Pi device, a client VM which

sends video streaming requests to the RSU VM, and a server VM working as the content origin

providing all video chunks. Detailed configurations of each VM are given below:

• One OBU VM as client with 1 vCPU, 2 GB of RAM and 20 GB of disk space. The VM

client is an Ubuntu machine, which runs the same consumer services and tools of the PC

client used in the previous evaluation.

• One Server VM with 2 vCPUs, 4 GB of RAM and 40 GB of disk space used as the Origin

server VM running Window Server 2012, with Microsoft Smooth Streaming (MSS) installed

Host Process
(e.g. SSH
service)

Docker
Container 1

(RSU 1)

Docker
Container 2

(RSU 2)

Docker
Container 40

(RSU 40)…

NAT

10.0.0.6

OBU VM
10.0.0.7

Server VM
10.0.0.3

Docker bridge (172.17.0.0/42)

172.17.0.2:80 172.17.0.41:80

172.17.0.1

eth0

RSU VM

192.168.0.1

192.168.0.2 192.168.0.3

172.17.0.3:80

Figure 8: OpenStack Experiment Topol-

ogy at Bern testbed

over an Internet Information Services which supports IIS Media Services, supporting to

request a full Manifest or a specific video content fragment with given quality level.

• One RSU VM with 2 vCPUs, 4 GB of RAM and 40 GB of disk space. The RSU VM is

an Ubuntu machine, which hosts 40 Linux Docker containers as 40 RSUs. A YAML script

is created on the RSU VM to automatically configure and deploy 40 RSU containers. Each

RSU communicates with the connected OBU using the same IP address provided by the

Docker engine to accept incoming video requests. Different from the Raspberry Pi platform,

which uses the nmcli tool to manage the OBU-RSU connections, we assume that all RSUs

are directly connected to the OBU in the OpenStack experiments. Therefore, when an OBU

moves to another RSU following its movement trace, the OBU-RSU connection will be

established automatically. In this case, the prefetching mechanism only needs to point out

the Ethernet IP address of the next targeted RSU, and conducts the prefetching operations.

C. Evaluation Setup

Regarding the setup of the prefetching evaluation, we apply nearly 1700 content object requests

(one hour of observation time) for the prototype experiments on the Aveiro testbed and nearly

9400 content object requests (five hours of observation time) for OpenStack-based experiments

on the Bern testbed. To validate the performance of the mobility prediction algorithm and its

impact on the proposed mobility prediction-based prefetching, we compare our system (referred

to as Prediction) with an optimal solution (referred to as Reference). The Reference solution uses

the whole vehicle movement trace to make the prefetching operations, which means an OBU

knows exactly which RSU will be the next connected RSU. Detailed descriptions of the two

approaches are given as follows:

1) Reference: This approach uses the real VANET traces for an OBU ID (e.g., 2509) and its

input parameters are OBU ID, RSU ID and the amount of time that the OBU will be connected

to the RSUs (as shown in Figure 5). In the Reference approach, the OBU will follow all the OBU-

RSU connection information available in the data trace. This means that the future connected

RSU and the connection times will be known beforehand such that the prefetching operations

can be made with 100% accuracy about which RSU will be the next connected one.

2) Prediction: This approach uses the information of the predicted OBU’s future connected

RSUs to feed the proposed prefetching mechanism to have more accurate decisions on where

the OTT content should be prefetched. The Prediction approach is based on vehicles’ historical

movement trajectories, and its main parameters are described in the following:

• OBU ID is the ID of the OBU considered in the evaluation.

• Current RSU ID is the ID of the current connected RSU. This field is very important

for forecasting. It is only considered as a valid prediction if the Current RSU ID hits the

RSU ID at that time instant.

• Next RSU ID is the next RSU, where the OBU can connect in the near future.

• TPM presents transition probability matrix of an OBU ID when a certain probability is

greater than 60%. Higher probabilities are also used as a tie-breaker in order to choose the

ideal RSU candidates to receive the prefetched content.

• Granularity is synchronized accordingly with the experimentation time. It is about how

often the prefetching mechanism should be updated.

When an OBU ID starts the experiment (using the Reference approach as an example), an

internal timer is triggered. This timer is used to check the TPM matrix if there are some

probabilities to be connected with the next RSU ID. For the experiments on the Aveiro testbed,

Raspberry Pi devices are configured with a cache size of 500 MB. Five rounds of experiments

are conducted with a confidence interval of 95%. For the OTT content requests, we use a

real application asking for a chunk every 2 seconds (configured as default in the consumer’s

manifest) of a certain bitrate/quality. When the video ends, but the experiment is still running,

the consumer starts the video streaming again until the experimentation is finished. The whole

experiment is considered for 1 hour. OBU movements are emulated using the wireless interface

of the PC, while prefetching requests are requested to the respective RSU using the backend

Table II: Available Qualities and Average Size per Chunk

Available Qualities [bps] Average Chunk Size [bytes] Available Bitrate [bps] Average Chunk Size [bytes]

230,000 58,620 991,000 240,559

331,000 82,529 1,427,000 347,243

477,000 117,652 2,056,000 499,551

688,000 169,255 2,962,000 718,157

Ethernet network. For client HTTP request management purposes, we used the urllib32 tool,

which is an abstraction for a collection of ConnectionPools used to support HTTP requests to

multiple hosts. Each prefetching request uses a different thread such that it is possible to have

multiple in parallel HTTP requests. To evaluate the Quality of Experience (QoE), a QoE probe

is also installed in the client, which evaluates the QoE on watching adaptive streaming videos

(more technical details about the QoE probe can be found in [25]). The QoE probe basically

estimates the consumer experience as well as helps to understand the network infrastructure

performance and limitations (e.g., influence of jitter, delay, link quality from the RSU up to the

origin servers).

For the OpenStack experiments on the Bern testbed, most of the parameters are identical with

the ones used in the Aveiro testbed. The only difference is that the experiment time window is

randomly chosen over five hours from Wednesdays (the highest accuracy day) for OBU ID 2509

with good quality. Both the Reference and Prediction approaches consider different Wednesdays

to avoid biased predictions for the same day.

D. Performance Metrics

For all experimental evaluations, the video streaming considered is Elephants Dream H.264

720p3. Table II shows the available of video qualities and the average chunk sizes. To evaluate

the system performance, we consider the following metrics:

Average Load measures the mean of the number of processes waiting to be served by the

CPU. Assuming a single-CPU system, the critical load point is 1. An average load value of 0

means that there are no processes waiting to be served by the CPU, and average load value is

1 means that the processor is at full capacity. In case of multi-processors, the critical load point

is given by the number of core processors available.

2https://pypi.python.org/pypi/urllib3
3https://www.microsoft.com/en-us/download/details.aspx?id=18199

Backend traffic is a key metric in content delivery networks. As the purpose of RSU caches

is to reduce the load on backend servers measured by the percentage of misses that reaches the

origin servers, a low metric indicates good performance.

Vehicle Mobility Prediction Accuracy measures the accuracy of the location prediction

algorithm. We randomly select 10% of states out of the Markov chain states (e.g., states from 9

AM to 11 AM) derived for each particular weekday from the training data set L for each vehicle.

Afterwards, the prediction algorithm is performed for each of the selected states to estimate the

possible future connected RSU(s) in the next � minutes. These states have been chosen as the

random testing points. We check the transition probability for states during the same period

of time in the testing data set T as well. Afterwards, the Mean Absolute Error (MAE) of the

possible transitions of the corresponding testing points is calculated according to Equation 11.

MAE =
1

M

MX

i=1

| PriL� PriT | & Accuracy = (1�MAE)⇥ 100 (11)

Cache Hit-Ratio summarizes the ratio between the number of cache hits when compared

to the number of cache requests, and is an indicator of how good the caching algorithm is on

guessing programs that will be requested in the near future. The miss percentage might be used

to calculate the backend traffic from, for example, the RSU to the origin server. The calculation

of the hit ratio and miss ratio are given in Equations 12.

RatioHit =
TotalHit

TotalHit + TotalMiss
& RatioMiss =

TotalMiss

TotalHit + TotalMiss
(12)

Request Latency represents the time required to serve a request. Latency must be carefully

monitored to ensure that there is no impact on the user experience, as high request latency may

indicate high server or network load, which leads to queued or dropped requests.

Mean Opinion Score (MOS) is a common QoE measure. Due to its subjective nature,

QoE evaluations vary significantly between different users. However, objective QoE evaluation

frameworks exist that provide an estimate on the expected MOS of a given service. A developed

Smooth Streaming QoE estimation probe [25] is used to provide the objective MOS estimate.

V. EXPERIMENTATION RESULTS

In this section, we present and discuss the results of both the prototype implementation on

the Aveiro testbed and the OpenStack experiments at the Bern testbed.

Figure 9: Prediction accuracy of hybrid predictor for OBUs with good quality

Figure 10: Prediction accuracy of hybrid predictor for OBUs with poor quality

A. Mobility Prediction Accuracy Results

Figures 9 and 10 show the accuracy of the proposed hybrid predictor per day, for users with

good and poor quality of trace data. As described before, we classify vehicle trace quality based

on the number of SQL entries of a vehicle during the data collection period. We randomly choose

4 OBU ID (2169, 2268, 2408, 2509) from the group of good quality trace user, and another 4

OBU ID (2541, 2797, 2831, 2468) from the group of poor quality trace user.

As we can see from Figure 9, the hybrid predictor can reach a prediction accuracy of nearly

88% for OBU ID 2509 on Wednesday, and the average accuracy of OBU ID 2509 over all the

weekdays and weekends is 84%. The average accuracy of all the four OBUs with good quality

data traces is nearly 86%. Even for the OBUs with poor quality data traces, we can see from

Figure 10 that the hybrid predictor can reach an accuracy of 77% for OBU ID 2468 on Monday,

and the average accuracy of OBU ID 2468 over all the weekdays and weekends is around 69%.

The average accuracy of all the four OBUs with poor quality data traces is nearly 70%. These

results show that the hybrid predictor is able to generate accurate enough prediction for users

with both good and poor trace qualities. Given that this work focuses on OBUs that are installed

on buses that are supposed to follow predefined fixed driving routes an average accuracy of 86%

for buses with good trace quality is still not as high as we could expect. This is because during

the 10 months of data collection, the same bus (with the same OBU ID) might be assigned to

different routes, which brings uncertainty for prediction.

Figure 11: Prediction accuracy of hybrid predictor for OBU ID 2509 (left) and 2797(right)

To clearly show the benefits of the hybrid predictor, we compare the prediction accuracy of the

first-order Markov chain, the second-order Markov chain, and the hybrid predictor. From Figures

9 and 10, we randomly select OBU ID 2509 and OBU ID 2797 as the representatives of the

good and bad quality data category. Figures 11 shows the prediction accuracies of the first-order

Markov chain, the second-order Markov chain, and the proposed hybrid predictor for OBU ID

2509 and OBU ID 2797. As we can see, the hybrid predictor outperforms the first-order and

the second-order Markov chains for both good and poor quality datasets. However, there is a

significant performance difference between the first-order and the second-order Markov chains

when the traces are of different quality. As shown in Figure 11 (left), when vehicles’ movement

data is of good quality (OBU ID 2509), the second-order model could reach an average accuracy

of 75%, which is much better than the first-order model (an average accuracy of 65%). This

result matches with our statement about the performance of the second-order Markov chain

described in Section III-D. But even for good quality movement data, there are still occasions

that the OBU-RSU connection data is not recorded due to data transmission collision or other

technical problems of the VANET testbeds. Therefore, the hybrid predictor can adaptively switch

to the first-order mode in those cases when it detects that only one order data is available, which

leads to a better performance than the second-order Markov chain. When vehicle’s movement

data is of poor quality, as shown in Figure 11 (right) for OBU ID 2797, the assumptions of

the second-order Markov chain’s superior performance do not hold anymore. Therefore, it can

not make more accurate predictions than the first-order Markov model. However, the proposed

hybrid predictor will apply the first-order Markov model in this condition, and whenever there

are some 2-state information available, it will switch to the second-order Markov model, which

enhances the performance of the first-order Markov chain. That is why the hybrid predictor

performs better than the first-order Markov model.

Figure 12: Trace qualities of OBU ID 2509/2797 on weekdays.

As shown in Figures 9 and 10, the hybrid predictor can achieve an average prediction accuracy

of 83% for OBU ID 2509 (with good quality trace data), and 68% for OBU ID 2797 (with bad

quality trace data). To explain the performance difference of these two vehicles, we next discuss

the data quality of OBU ID 2509 and 2797. Figure 12 presents the number of valid data records

stored in the SQL table for OBU ID 2509 and 2797 during a time period of 24 hours (1440

minutes) of all weekdays. The metric of the days of valid trace data counts the number of

days that have more than a certain number of records, referred to as threshold, stored in the

SQL database for one day. Take Monday as an example: A value of 12 means that there are 12

Mondays that have more than the threshold number of records at a specific time moment stored.

For instance, a threshold value of 1000 means that if an OBU ID has less than 1000 records in

one day, the data of that specific day will not be included in the prediction. This is because such

a low number of records happen most probably for vehicles that are not in the regular operational

function and could be under the conditions of vehicle breakage or maintenance. Therefore, their

data are exceptional cases and should not be considered in the prediction procedure. In Figure

12, a pulse means that at the corresponding moment of time, there are certain weekdays with

valid trace data. Therefore, a good quality trace data should include a series of continuous pulses

at a high value of the days of valid trace data. Instead, a series of scattered pulses with large

fluctuations and a low value of the days of valid trace data means that the data is of very bad

quality.

We can see that OBU ID 2509 has more valid trace data recorded than OBU ID 2797 for

all the weekdays, which leads to better performance. Moreover, we see that for OBU ID 2797,

there are pulse series with large fluctuations and very low values of the days of valid trace data

Figure 13: Mean Opinion Score

(MOS) Results of Experiments on

the Aveiro Testbed

for every weekdays. Figure 11 (right) shows that for OBU ID 2797, the hybrid predictor can

only achieve an accuracy of around 50% for Sunday. This can be further explained by checking

the trace quality of OBU ID 2797 on Sunday, which has a long period of no valid trace data

(the first data recording starts from around 06:30 AM). For OBU ID 2509, it has a series of

continuous pulses at a high value of the days of valid trace data. For example, on Tuesday from

11:00 AM to 18:30 PM or Wednesday from 11:00 AM to 16:00 PM, it has continuous pulses

with the the days of valid trace data value equal to 11 or 12. This leads to a relatively high

prediction accuracy for OBU ID 2509 on Tuesday and Wednesday (as depicted in Figure 11).

In contrast, when OBU ID 2509 has continuous pulses at a medium value of the days of valid

trace data, its performance will drop. For instance, on Saturday from 05:00 AM to 24:00 PM,

it has continuous pulses with low value of the days of valid trace data equals to 8. That is why

we see a relatively low prediction accuracy (78%) for OBU ID 2509 on Saturday with hybrid

predictor (as depicted in Figure 11).

B. Prototype Evaluation Results on Aveiro Testbed

This section presents evaluation results of the proposed prefetching mechanism on the proto-

type implementation at the Aveiro testbed (as shown in Figure 7) with real wireless connections

between OBUs and Raspberry Pi nodes.

Figure 13 presents the estimated MOS of the OBU consumer when it is watching an OTT video

content. For this evaluation, the entire video manifest including eight default qualities (230000

bps, 331000 bps, 477000 bps, 688000 bps, 991000 bps, 1427000 bps, 2056000 bps, 2962000

bps) were settled to be consumed by the QoE probe. The QoE probe emulates the OBU consumer

and it has a dynamic behaviour, adapting itself (automatically switching between qualities) when

the backend link conditions start to get poor, e.g., high jitter and latency, poor bandwidth, etc. To

Figure 14: RSU Cache Hit/Miss Ratios of Experiments on the Aveiro Testbed: with Low (a),

Medium (b) and High (c) Bit Rates

Figure 15: RSU Total Backend Traffic of Experiments on the Aveiro Testbed: with Low (a),

Medium (b) and High (c) Bit Rates

test the impacts of poor backend traffic conditions on OBU consumer’s QoE, we have introduced

an intermittent latency of 500ms on the link between the RSUs and the OTT origin server. As

it can be seen in Figure 13, the testbed infrastructure as it is (w/o latencies), means without any

injected latency between the RSUs and the Origin server, which leads to better MOS values,

remaining stable until the end of this experiment. Therefore, we analysed the MOS of the

OBU consumer with injected latency, and with and without applying the proposed prefetching

mechanism. With prefetching mechanism, a better performance is observed (even with MOS

fluctuations) compared to without prefetching mechanism. The QoE probe is constantly trying

to decrease video qualities influenced mostly by the link latency, which explains the perceived

MOS fluctuations. Therefore, this QoE analysis reinforces that the prefetching mechanism leads

to better MOS improvements even facing poor backend communication links, which is one of

the main factors degrading the MOS.

Next, we evaluate the impact of content hit and miss rates. The results are presented in Figure

14. We have considered three different fixed bit rates (low, medium and high). Starting from the

lowest bit rate (as shown in Figure 14 (a)), it is possible to observe that the optimal Reference

always provides the best performance, while the Prediction approach closely follows the optimal

approach with 12% less hits. Followed by this first analysis, the medium and high video quality

Figure 16: Average Consumers Time of Experiments on the Aveiro Testbed: with Low (a),

Medium (b) and High (c) Bit Rates

Figure 17: Average RSU CPU/Load/Memory Consumption of Experiments on the Aveiro

Testbed: with Low (a), Medium (b) and High (c) Bit Rates

bit rates present also very small differences. Thus, we could conclude that the Prediction approach

can save caching operations and costs by placing the correct future OTT content chunks on the

right RSUs along the vehicle mobility path. The ideal Reference prefetching approach provides

the best overall caching performance, which is kept approximately with a 95% hit-ratio instead

a 100%. This approximately 5% misses probably as caused by the OBU-RSU connection and

disconnection processes, which add some extra delays.

The volume of backend data transfers is a crucial QoS metric that determines the amount of

data transfer between the RSU and backend origin server. Efficient prefetching will significantly

reduce the frequency of RSU-backend server data transmission, which will lower costly band-

width consumption. In general, an accurate prediction of an OBU’s future connected RSU will

enable the content to be ready and thus reduce the OTT content being requested from the OTT

content origin. As we can see, taking the case of high bit rate consumption (as shown in Figure 15

(c)) as an example, the differences between the Reference and the Prediction approaches are 14%

approximately, 10% for medium quality and 12% for the lowest quality. Therefore, regardless

of quality differences, the Prediction approach with an accurate TPM matrix is able to play an

important role on reducing the total backend traffic between RSUs and OTT origin server.

Figure 16 shows the average OBU request time for each video quality. At a first glance the

Prediction slightly consumes more time, but the delay is very small compared to the Reference

Figure 18: RSU Cache Hit-Miss Ratio of Exper-

iments on the Bern Testbed
Figure 19: RSU Total Backend Traffic of Exper-

iments on the Bern Testbed

approach over different bit rates (low: 0.033s, medium: 0.047s and high: 0,077s). By taking the

optimum Reference approach as a base, it is also possible to conclude that the Prediction approach

has an acceptable response time considering that the OBUs are wirelessly connected to the RSUs.

Moreover, the differences are not big, showing that even though the prediction algorithm might

not always predict the correct future connected RSU ID, the Prediction approach has a very

stable performance over different bit rates on average. It is also possible to verify that the chunk

size (e.g., high quality) has also some influences on backend traffic, which means more data will

flow through the network. In the case of scenarios with real wireless connections, the unstable

wireless connections can be a non-ignorable factor for the long average request time.

Figure 17 shows the average CPU load of those respectively emulated RSUs for both the Refer-

ence and the Prediction approaches. We can see that there are no extreme high load consumption

of the RSUs. Note that the RSUs, which are emulated by the Raspberry Pi nodes, have limited

available resources, and even with those hardware limitations, the prediction approach could be

executed normally without consuming additional high processing time and system resources.

C. OpenStack Experiment Results on Bern Testbed

This subsection presents evaluation results of the proposed prefetching mechanism when

deployed in a large-scale scenario with 40 RSU emulated in an OpenStack infrastructure at the

Bern testbed. The network topology of the experiment can be found in Figure 8. Considering the

high bit rate of 2962000 bps as the chosen quality for all evaluations presented in this subsection,

Figure 18 presents the hit-ratio performance of the Reference, Prediction and (W/O) Prediction

approaches, where the Prediction approach enables significant cache cost savings. The Prediction

Figure 20: RSU CPU Loads of of Experiments

on the Bern Testbed
Figure 21: Average Consumer Times of Experi-

ments on the Bern Testbed

approach has 21% less hits ratios compared to the Reference, and 60% more hits ratios compared

to the (W/O) Prediction approach. So, its performance and accuracy are acceptable, since in this

scenario the Prediction approach has more RSUs options during the TPM matrix processing

procedure. By using the Prediction approach, there are also significant RSU cache cost savings

and also a positive impact on bandwidth savings over urban medium-scale environments.

Figure 19 shows that the total backend traffic in the Prediction approach is bigger than that

for the Reference approach. This is similar to the Aveiro testbed case. This growth is again

because more RSUs are deployed in the network, which are demanding more frequent RSU

TPM decisions (every 60 seconds or even shorter). In these situations, any wrong decision about

the TPM will increase RSU-backend OTT server data transmissions. Finally, compared to (W/O)

Prediction approach there are approximately 60% less data requests transmission to the backend

OTT server, which is satisfactory considering the amount of decisions that needs to be performed

during the prediction of the OBU’s movements.

Figure 20 presents the CPU load and memory usage of all RSUs during the prefetching

operations. In the Prediction approach the CPU load is higher than that for the Reference

approach. However, considering the number of cores of the emulated RSUs, this behaviour

is reasonable and acceptable. For example, the load cannot reach more than 4 for a RSU with 4

CPU cores. Compared to the Aveiro testbed results, even the CPU load consumption is higher,

the overall RSU performance is not degraded in terms of user request latency. This difference

probably is because when prefetching needs to take some decisions about where will be the next

RSU, it has to check first the TPM matrix to take a reasonable decision. This explanation is

reinforced by the (W/O) Prediction approach results, which do not use any decision calculations,

remaining in average, below than both approaches of Reference and Prediction.

Figure 21 shows the average OBU request time in the Bern testbed experiments. The difference

between the approaches are very small (0.014 seconds compared to the Reference and 0.02

seconds with W/O Prediction). The very stable Ethernet (1Gb/second) connection between all

OBU-RSU-Servers leads to better OBU consumer time performance compared to the Aveiro

testbed presented in the Figure 16. The Aveiro testbed includes the real OBU-RSU wireless

WAVE connections, which are not as stable as in the Bern OpenStack testbed.

VI. CONCLUSIONS

Multimedia content delivery in VANETs is challenging due to node movements. This paper

proposed a vehicle mobility prediction-assisted OTT content prefetching mechanism in hierarchi-

cal VANETs. We designed a novel approach combining highly accurate forecasts of the OBU’s

mobility with a lightweight OTT content prefetching mechanism. This combination enables us

to leverage accurate vehicle mobility prediction to provide outstanding system performance for

VANET OTT content prefetching. The system performance has been validated using a rich

dataset collected from a large-scale real-world VANET testbed. Experimental results show that

the proposed approach provides good OTT content delivery QoE results and it enables significant

RSUs cache and bandwidth savings, which bring benefits for both end-users and OTT service

providers. Future improvements will focus on adding real-time prediction and exploring the

prefetching approach when facing with unknown content.

REFERENCES

[1] X. Cheng and et.al, “5g-enabled cooperative intelligent vehicular (5genciv) framework: When benz meets marconi,” IEEE

Intelligent Systems, vol. 32, no. 3, pp. 53–59, May 2017.

[2] S. Momeni and B. E. Wolfinger, “Availability evaluations for iptv in vanets with different types of access networks,”

EURASIP Journal on Wireless Communications and Networking, vol. 2014, no. 1, p. 117, Jul 2014. [Online]. Available:

https://doi.org/10.1186/1687-1499-2014-117

[3] C. Quadros and et.al, “Beacon-less video streaming management for vanets based on qoe and link-quality,” in IFIP/IEEE

International Symposium on Integrated Network Management (IM), May 2015.

[4] R. Kim, H. Lim, and B. Krishnamachari, “Prefetching-based data dissemination in vehicular cloud systems,” IEEE

Transactions on Vehicular Technology, vol. 65, no. 1, pp. 292–306, Jan 2016.

[5] S. Eichler, “Performance evaluation of the ieee 802.11p wave communication standard,” in 2007 IEEE 66th Vehicular

Technology Conference, Sept 2007, pp. 2199–2203.

[6] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled Network and Road Traffic Simulation for Improved

IVC Analysis,” IEEE Transactions on Mobile Computing, pp. 3–15, January 2011.

[7] M. Aramrattana and et. al, “A simulation framework for cooperative intelligent transport systems testing and evaluation,”

Transportation Research Part F: Traffic Psychology and Behaviour, 2017.

[8] M. Cesana and et.al, “C-vet the ucla campus vehicular testbed: Integration of vanet and mesh networks,” in 2010 European

Wireless Conference (EW), April 2010, pp. 689–695.

[9] C. Ameixieira and et.al, “Harbornet: a real-world testbed for vehicular networks,” IEEE Communications Magazine, pp.

108–114, September 2014.

[10] J. Harri, M. Fiore, F. Filali, and C. Bonnet, “Vehicular mobility simulation with vanetmobisim,” SIMULATION, pp. 275–

300, 2011.

[11] A. S. Gomes, B. Sousa, D. Palma, V. Fonseca, Z. Zhao, E. Monteiro, T. Braun, P. Simoes, and L. Cordeiro, “Edge caching

with mobility prediction in virtualized lte mobile networks,” Future Generation Computer Systems, pp. 148 – 162, 2017.

[12] J. Famaey, F. Iterbeke, T. Wauters, and F. D. Turck, “Towards a predictive cache replacement strategy for multimedia

content,” Journal of Network and Computer Applications, pp. 219 – 227, 2013.

[13] G. Nencioni and et.al, “Understanding and decreasing the network footprint of catch-up tv,” in Proceedings of the 22Nd

International Conference on World Wide Web, ser. WWW ’13. New York, NY, USA: ACM, 2013, pp. 965–976.

[14] Z. Su and et.al, “The next generation vehicular networks: A content-centric framework,” IEEE Wireless Communications,

vol. 24, no. 1, pp. 60–66, February 2017.

[15] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “A parsimonious model of mobile partitioned networks with

clustering,” in 2009 First International Communication Systems and Networks and Workshops, Jan 2009, pp. 1–10.

[16] N. Abani, T. Braun, and M. Gerla, “Proactive caching with mobility prediction under uncertainty in information-centric

networks,” in Proceedings of the 4th ACM Conference on Information-Centric Networking. ACM, 2017, pp. 88–97.

[17] F. Zhang and et.al, “Edgebuffer: Caching and prefetching content at the edge in the mobilityfirst future internet architecture,”

in 2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), June

2015, pp. 1–9.

[18] G. Mauri, M. Gerla, F. Bruno, M. Cesana, and G. Verticale, “Optimal content prefetching in ndn vehicle-to-infrastructure

scenario,” IEEE Transactions on Vehicular Technology, vol. 66, no. 3, pp. 2513–2525, March 2017.

[19] R. Monteiro, L. Guedes, T. Condeixa, F. Neves, S. Sargento, L. Guardalben, and P. Steenkiste, “Lessons learned from a

real vehicular network deployment of delay-tolerant networking,” in IEEE ICCW workshop, June 2015, pp. 2489–2494.

[20] J. Silva, A. Dias, J. Nogueira, L. Guardalben, and S. Sargento, “Content-aware prefetching in over-the-top wireless

networks,” in IEEE Symposium on Computers and Communications (ISCC), July 2017.

[21] M. Karimzadeh and et.al, Mobility and Bandwidth Prediction as a Service in Virtualized LTE Systems. IEEE Cloudnet,

10 2015, pp. 132–138, 10.1109/CloudNet.2015.7335295.

[22] A. Zolnierek, The Empirical Study of the Naive Bayes Classifier in the Case of Markov Chain Recognition Task. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 329–336.

[23] B. Sousa. and et.al, “Enabling a mobility prediction-aware follow-me cloud model,” in IEEE LCN, December 2016.

[24] “NGINX - HTTP server and reverse proxy,” accessed: 2017-11-25. [Online]. Available: https://www.nginx.com/

[25] A. Salvador and et.al, QoE Assessment of HTTP Adaptive Video Streaming. Cham: Springer International Publishing,

2015, pp. 235–242.

