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Abstract—We present a selfish routing model to optimize the
allocation of tasks in a mobile crowdsensing (MCS) system.
The players of our game are sensing service requesters that
wish to route their demand along paths that are made up
of resources belonging to the crowd participants. Resource
usage involves load-dependent costs and one resource may serve
several requests at the same time. Due to human involvement
and mobility there exists uncertainty, which we address by
introducing certainty parameters. For the Nash equilibria of
our game, we can transfer efficiency guarantees, i.e., the
worst-case ratio between the welfare of an equilibrium and
the welfare of a social optimum is provably bounded by a
small constant when cost functions are polynomials. An ε-
approximation of a Nash equilibrium solution can be computed
in polynomial time for affine cost functions. Based on our
model, we develop a mechanism for the automation of efficient
task allocations in MCS systems and we present a proof for
the truthfulness of this mechanism.

I. INTRODUCTION

The use of the collective intelligence and performance of
crowds - online communities providing resources to solve
tasks - has become more and more popular. These activities
are grouped under the umbrella term crowdsourcing, a term
marked in particular by Jeff Howe and Mark Robinson and
their discussions on how work can be outsourced to individ-
uals by using the Internet [1]. Examples of crowdsourcing
include Amazon Mechanical Turk [2], LEGO Ideas [3], and
the IoT Lab [4]. Unlike old-known markets where goods are
offered by companies, here the goods are the cumulative
product of a large number of people. The participants in
crowdsourcing usually operate no specialized business but
qualify due to circumstances that they own desired resources.
They obtain benefits for participation in form of idealis-
tic, monetary, or other personal rewards. The sub-category
of mobile crowdsensing (MCS) is a recent and emerging
paradigm which leverages the sensing data from the mobile
devices of a crowd to serve various goals. These include
business goals as for example designing and evaluating a
health care product by using the cumulative data gathered
by a crowd through the powerful sensors integrated in
smartphones. Moreover, MCS systems are used to improve
public and individual services. Concrete examples include
weather monitoring in rural areas of East Africa [5] as
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well as participatory citizen sensing systems for sharing
information on water conditions and flooding in Vicenza,
Italy and Doncaster, UK [6]. The term MCS was coined in
[7] presenting a categorization of various MCS applications
and pointing out research challenges including the schedul-
ing of sensing and communication tasks. In MCS systems,
the allocation of tasks (also called load balancing) among
a huge number of heterogeneous mobile personal devices
is a fundamental and non-trivial issue. Tasks should be
allocated such that short- and long-term system performance
are optimized with respect to costs, quality of results, user
satisfaction and further application-specific metrics.

In this paper, we study this issue of load balancing in
MCS systems for a specific setting: A requester wants
to collect sensing data about an area, but implementing
commercial sensors is not feasible or too expensive. Instead,
the requester engages a number of people present in this area
that are equipped with personal mobile devices that have
sensing capabilities. Mobile devices usually have a lower
computing performance and limited power supply compared
to standard personal computers. Data generation and data
transfer via the Internet involves load-dependent costs. The
question, we would like to answer is “How should tasks
be assigned to participants for the efficient completion of
the tasks?” The overall sensing task (covering the area)
should be successfully completed with high probability and
the involved costs should be minimized. We point out that
such a setting may for example arise in area-related MCS
applications on weather monitoring [5].

We present an atomic routing game to depict the problem.
Each provider (crowd participant) owns a node (resource) in
a multi-commodity network. On the other side, requesters
balance their demand over feasible paths (resource bundles
that are capable of successfully completing desired sensing
tasks) in a cost-minimizing manner. A resource may serve
several requests at the same time, which can be modeled
efficiently by the network model. Resource usage involves
load-dependent costs. From the computed costs, we may
infer minimal rewards to engage participants. A special as-
pect of our problem comes with the mobility and autonomy
of crowd participants producing uncertainty about location
and, hence uncertainty about the participants’ suitability to
accomplish tasks ahead of time. We address this aspect by
introducing certainty parameters into the model. The exact
values of these parameters in practice could for example be



derived from the results of mobility prediction algorithms
(see e.g., [8] and [9]). The model can furthermore be
extended to include participation constraints of the crowd
(when a personal costs limit is exceeded).

In our selfish routing model, we are interested in the
computation and efficiency properties of Nash equilibria
corresponding to stable outcomes. An ε-approximation of
a Nash equilibrium can be computed in polynomial time for
all ε > 0, given that the cost functions on the resources
are affine [10]. In addition, in our atomic routing model,
well-known results regarding the price of anarchy (the
welfare ratio between a worst-case equilibrium and a social
optimum of a game) apply, i.e., the solution quality of a
Nash equilibrium is provably bounded, given that the cost
functions are polynomials. Based on the model, we develop a
mechanism for the automation of efficient task allocations in
MCS systems. This paper extends [11], which also presented
an atomic routing model for MCS systems. [11] focused
on comparing several different solution concepts and an
experimental study. In this work, we extend theoretical parts
of [11] by providing a proof for the truthfulness of a mech-
anism generating equilibrium outcomes in a MCS system.
Truthfulness is a game-theoretic property of mechanisms
describing that players (here the sensing service requesters)
will not lie about their private values in order to manipulate
the mechanism (see e.g., [12]). A formal definition will be
given in the course of this paper.

In summary, this paper makes the following main con-
tributions: (1) An analysis of MCS systems using a game
theoretical selfish routing model that explicitly incorporates
strategic behavior and uncertainty. In particular, the chosen
model allows the transfer of well-known theoretical results
on the existence and quality of some solutions. (2) A
mechanism for the automation of efficient distributed task
allocations in MCS systems including a full proof for its
truthfulness.

A. Related Work

Load balancing has different forms depending on the
considered problems and issues introduced by the MCS
system designer. It is important whenever data is collected
from a large number of people and has frequently been
studied in the field of game theory in relation to congestion
control in communication networks (see e.g., [13], [14],
[15]) and also in crowdsourcing systems (see e.g., [16], [17],
[18]). In MCS, notably [19], [20] and [21] deal with the issue
of load balancing. In [19], an auction formulation for the
distributed generation of task allocations in MCS systems
is presented. Participants can offer bids for undertaking
sensing tasks. A centralized operator selects winners based
on the bids and pays them after the completion of the tasks.
In contrast to [19], the quality of our results is actually
provably bounded. In [20], cost-minimal mechanisms that
provide a certain quality level are proposed. In contrast

to our work, in [20], participants may only be involved
in one sensing task at a time. [21] also offers an auction
mechanism rather than an efficient network formulation
as presented in our work. In [18], the authors provide a
resource allocation problem formulation for more general
crowdsourcing systems. Nevertheless, they do not exploit
the efficient structure of network routing games. The same
holds for [16] and [17].

Related to our work are furthermore crowdsourcing con-
tests. The authors of [22] study such crowdsourcing contests
and introduce a mechanism that calls for competition in the
crowd to produce a product within a limited time frame
with a hard deadline. Only the product with maximum
quality will be of value for the principal. Nevertheless,
every participant that spends effort receives a payment. The
authors of [23] model crowdsourcing contests as variation
of all-pay auctions and compare crowdsourcing contests to
more conventional means of procurements. In contrast to
our work, in the latter articles, each participant produces one
complete end-product. Instead, we focus on crowdsensing of
complementary resources. Both of the latter articles extend
ideas of [24] which established the connection between
crowdsourcing and all-pay auctions.

In addition, [25] studying innovation management in
crowds is related to our work. In [25], the problem of
assigning tasks of unknown difficulty to crowd participants
of unknown skill is modeled as an extended resource al-
location problem. They present a decentralized mechanism
which produces a hierarchy such that participants’ skill
levels and task difficulty levels are matched properly. Due
to the special properties of MCS (complementary goods and
data collection limited by the abilities of sensors and mobile
devices), we present a simple efficient network flow model
depicting the crowdsourcing environment instead.

Finally, we would like to emphasize that one of the roots
of MCS systems lies in wireless sensor networks (WSNs).
WSNs can be envisioned as large collections of autonomous
smart sensor nodes, which can distributively form an ad
hoc wireless communication network. The nodes can be
deployed in a region of interest in order to monitor crucial
events and propagate sensed data to a base station, but clas-
sical WSNs do not integrate personal mobile devices such
as smartphones. Many fundamentals have been established
for WSNs regarding representative models and balancing
algorithms which maximize network lifetime (see e.g., [26],
[27]). In MCS systems, load balancing plays a different role,
i.e., we usually do not have multi-hop communication with
the high potential of causing early fall-outs of bottleneck
nodes. Instead, we have a higher degree of unpredictability
and unreliability due to (a different level of) mobility and
human involvement. The design of incentive mechanisms to
engage crowd participants while taking into consideration
preferences and individual behavior is necessary. The pur-
pose of load balancing in MCS systems is to optimize short-
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Figure 1. Graphical representations of a MCS problem instance with
two requesters and four crowd participants. Every participant owns one
resource indicated by r1, r2, r3, r4. In (a) the areas that the requesters
wish to examine are represented as boxes. Requester 1 wants to cover Area
1 and requester 2 wants to cover Area 2. The radius of the subarea covered
by a resource is indicated by the dotted circle surrounding it. In (b) a table
is given that indicates whether resource bundles cover an area or not. In
(c) a network representation of the problem instance is given. For requester
1 (Area 1), choosing a feasible resource bundle corresponds to choosing
a path in the network from source 1 to sink 1. Accordingly, requester 2
(Area 2) chooses a path from source 2 to sink 2.

and long-term system performance with respect to costs,
quality of results, user satisfaction and further application-
specific metrics.

II. MODEL

To motivate our model, we present a simple example in-
stance of our problem in Fig. 1 with four crowd participants
and two sensing service requesters. Fig. 1a shows an area
coverage representation of the considered problem instance.
Each requester wants to cover an area of interest, i.e.,
requester 1 wants to cover Area 1 and requester 2 wants to
cover Area 2. In these areas several participants are present
(with certain probability). Several combinations of crowd
participants, or more explicitly, the resources they own
(indicated by r1, r2, r3, r4), yield feasible coverage of the
areas of interest. A single participant covers the area within a
certain radius around her. It is rather unlikely that she will be
able to set her sensors to only cover a smaller subarea within
this radius. Hence, when engaging several participants that
have overlapping radii, it is not possible to decrease costs by
assigning them smaller subareas. When contributing to the
application, a participant will have to spend the full effort
to cover the area within her radius. The table in Fig. 1b
indicates the feasible resource bundles covering Area 1 and
Area 2, respectively. A network representation as given in
Fig. 1c can be used to indicate feasible resource bundles
as network paths. For requester 1 (Area 1), choosing a
feasible resource bundle corresponds to choosing a path in
the network from source 1 to sink 1. Accordingly, requester
2 (Area 2) chooses a path from source 2 to sink 2.

We turn to the formal definition of our model. The
problem of allocating resources of crowd participants to
requesters which desire bundles of complementary goods
can be modeled as atomic splittable routing game G =
{N,R,Q =

⋃
i∈N Qi, (cr)r∈R, (di)i∈N , (πi)i∈N}. (See

e.g., [28] for an introduction to atomic routing games.) The
finite set of requesters is denoted by N = {1, ..., n} and the
finite set of crowd participants each owning one resource
is denoted by R = {1, ...,m}. Since each participant is
uniquely tied to a resource and this resource to her, we will
denote a participant simply as a resource when convenient.
In our game, a requester i ∈ N has a total demand of
di ∈ Z+ units of feasible resource bundles. Let set Qi denote
the set of all feasible resource bundles of requester i. If a
player decides to use resources, she must distribute (split)
demand in integral parts over feasible resource bundles
Qi

j ∈ Qi. Such a combination of feasible resource bundles
corresponds to a strategy of requester i. (Note that Qi

j ⊆ R .)
For resource usage, there are load-dependent costs, i.e., costs
are not fixed per unit of demand but depend on the total
amount of demand the resource is serving. Resource costs
are given by functions cr : R+ → R+ for all r ∈ R. We
consider non-negative, non-decreasing, and normalized (in
the sense that for all r ∈ R, we have cr(0) = 0) polynomial
cost functions. Every requester i has a willingness to pay
π ∈ R+. This value indicates the maximum amount a
requester is willing to spend.



A strategy may also be interpreted as a combination of
paths in a multi-commodity network. In that network, the
resources in R correspond to nodes. In addition, for each
requester i ∈ N , there exists a distinct source node si and
a distinct sink node ti. A feasible bundle Qi

j corresponds
to a path going from si to ti passing exactly through
the resources of set Qi

j . Let DG = (V,E) be the multi-
commodity network associated with game G. The set of
network nodes is given by V = R∪{si, ti}i∈N and the set of
network edges is given by E holding the edges of all paths.
A feasible outcome of G is a feasible flow x = (xQi

j
)Qi

j∈Q

in multi-commodity network DG with∑
Qi

j∈Qi

xQi
j
≤ di ∀i ∈ N , (1a)

xQi
j
∈ Z+ ∀Qi

j ∈ Q . (1b)

Variable xQi
j

denotes the amount of flow on path Qi
j .

Equations (1a) and (1b) indicate that a feasible flow is non-
negative, integral and does not exceed the total demand of
a requester. (Recall that di is also a non-negative integer.)
Given a feasible flow x, the load xr =

∑
Qi

j∈Q: r∈Qi
j
xQi

j
of

resource r ∈ R corresponds to the total flow running through
the corresponding node r in network DG. The implied costs
for the crowd participant owning resource r are cr(xr) ·xr .
The effective costs for a requester i, given flow x, equal the
sum of load-dependent costs of resources contained in the
chosen paths multiplied by the amount of flow belonging to
the requester, i.e.,

∑
Qi

j∈Qi

∑
r∈Qi

j
cr(xr)xQi

j
. If all feasible

combinations of paths have costs higher than the requesters
willingness to pay, she will reduce the amount of demand
to be routed, so in addition we have∑

Qi
j∈Qi

xQi
j

∑
r∈Qi

j

cr(xr) ≤ πi ∀i ∈ N . (2)

Note that we defined a feasible flow explicitly over the
feasible paths and not over the edges it contains. Therefore,
edges connecting resources, source, and sink of a requester
such that a path is created that does not correspond to a
feasible bundle, do not pose a problem. The other way
around, a feasible bundle always corresponds to a feasible
path in the network.

A. Nash Equilibrium

We will assume that a requester will always route the
highest possible demand such that costs do not exceed her
willingness to pay. Among these options of highest possible
demand, a requester chooses a feasible combination of paths
that will minimize her effective costs. A requester may
split her demand into integral parts over feasible paths to
minimize costs. A stable outcome in this scenario is a Nash
equilibrium of our defined atomic splittable routing game G
defined as follows.

Definition 1 (Nash Equilibrium): A feasible flow xNE is
a Nash equilibrium (NE), if for all i ∈ N and for all
Qi

j , Q
i
k ∈ Qi with xNE

Qi
j
> 0, we have∑

r∈Qi
jrQi

k

cr(x
NE
r ) ≤

∑
r∈Qi

krQi
j

cr(x
NE
r ) . (3)

Equation (3) indicates that the costs would increase if flow
was shifted from path Qi

j (with positive flow in the NE) to
path Qi

k. As cost functions are non-decreasing, existence of
an NE is guaranteed (see e.g., [28]). For tighter conditions
on the cost functions, we can even guarantee uniqueness,
i.e., when all cost functions cr are polynomials of degree
at most three (see [29]). A Nash equilibrium of our game
can be computed via a Best-Response Dynamic (see e.g.,
[12]). An ε-approximation of a Nash equilibrium can be
computed in polynomial time for all ε > 0, given that
the cost functions on the resources are affine [10]. Under
certain symmetry conditions on the network structure, [30]
furthermore present an exact polynomial time algorithm to
compute a Nash equilibrium in atomic splittable routing
games with affine cost functions.

B. Social Welfare and Social Optimum

The social optimum of our game corresponds to a solution
of a central planner optimizing social welfare. In our model
social welfare corresponds to the difference between the
willingness to pay of the requesters and the total load-
dependent costs.

Definition 2 (Social Welfare and Social Optimum):
Given feasible flow x, the value of function

S(x) =
∑
i∈N

πi − ∑
Qi

j∈Qi

xQi
j

∑
r∈Qi

j

cr(xr)

 (4)

is called the social welfare of x. A social optimum cor-
responds to a vector xS maximizing the social welfare
function S over all feasible flow vectors.

C. Aspects of the Crowd

We now present several model extensions to depict rel-
evant aspects in the interaction of the requesters with the
crowd.

1) Engagement Constraints (Incentivization): Partici-
pants may only engage when a certain wage (monetary,
idealistic or other form of a reward) level is reached. In
monetary terms, the lowest wage level for engagement
should be one that covers the costs for resource usage.
From the costs of the solutions (that can be generated using
the approaches described in Sec. II-A and II-B), we may
infer these minimum rewards to engage crowd participants.
The costs, respectively, rewards, may vary depending on
the chosen solution approach but in any case correspond to
the burden laid on the participants for using their resources
during the operation of the MCS system.



As an extension of our model, additional rewards that are
not related to load-dependent costs could be integrated by
adding terms to the existing resource cost functions. More
complex pricing schemes in our model will be the subject
of a planned follow-up work.

2) Withdrawal Constraints: Crowd participants may
withdraw from the MCS application, respectively, network,
if certain costs are exceeded. To avoid this, for each resource
r ∈ R, we introduce a threshold br ∈ R+. If the costs of a
flow unit passing through r would exceed br, the participant
would withdraw from the application. Solutions for this
extension of our model can be computed by adding the
following constraints to the flow formulation in Equations
(1a), (1b), and (2):

cr(xr) ≤ br ∀r ∈ R . (5)

3) Quality under Uncertainty: When engaging partici-
pants in a MCS application, there may exist uncertainty
about the quality of the results. We include uncertainty in
our model by introducing a certainty γr for every resource
r ∈ R. This certainty corresponds to the probability that a
resource delivers a full quality result for its subtask. From
the certainty of the resources, we can derive the certainty of
a path Qi

j ∈ Q as

γQi
j
=

∏
r∈Qi

j

γr . (6)

Note that alternative measures for certainty are possible (see
e.g., [19]). Every requester i ∈ N will have a level of
certainty δi for the average quality of her results that needs
to be met. Solutions for this extension of our model can be
computed by adding the following constraints to the flow
formulation in Equations (1a), (1b), and (2):∑

Qi
j∈Qi xQi

j
γQi

j

di
≥ δi ∀i ∈ N , (7)

i.e., the average certainty of one unit of demand routed must
be greater or equal than the desired level of certainty for
every requester.

III. EVALUATION

In this section, we present a theoretical evaluation of
the Nash equilibria of our model. Based on the model, we
furthermore present a distributed mechanism for the auto-
mated generation of equilibria and, hence, for the efficient
allocation of tasks in MCS. We conclude this section with
a proof for the truthfulness of the mechanism.

A. Efficiency

We are interested in the efficiency of solutions, i.e., the
relation between the social welfare of a solution and the
social optimum. Of particular interest for us is the relation
between the social optimum and the Nash equilibrium which
will be included in our mechanism to balance loads in

MCS systems in Sec. III-B. As indicator for the level of
efficiency, we choose the price of anarchy (PoA), introduced
by Koutsoupias and Papadimitriou [31] and ever since
frequently studied in selfish routing games (see e.g., [28] for
an introduction). The PoA corresponds to the worst possible
ratio of social welfare of a social optimum and social welfare
of an equilibrium.

Definition 3 (Efficiency and Price of Anarchy): For an
instance I of game G, let xNE denote the requesters flow
vector at the instance’s NE. Given furthermore a social
optimum xS of I , the quotient

PoA(I) =
S(xS)

S(xNE)

denotes the efficiency of instance I . The price of anarchy
(PoA) is defined to be the maximum possible ratio over
considered instances:

PoA = max
I∈G

S(xS)

S(xNE)
.

Recently, in [32], a set of exact bounds for atomic split-
table routing games in the special case of a bounded-degree
polynomial cost function with non-negative coefficients were
presented. For a polynomial cost function of degree three
this bound is 5.063, for degree two it is 2.549, and for degree
one it is even as low as 1.5. In practical terms this means
that we can provide distributed solutions of a proven level
of quality that (or rather an ε-approximation of it) can be
computed efficiently as described in Sec. II-A. As discussed
in Sec. II-C1, the computed costs may also be interpreted
as the minimum rewards needed to incentivize participants.

B. Truthful Equilibrium Generation

In this subsection, we present a simple mechanism to
allocate tasks in a MCS system serving several requesters.
A mechanism allocating tasks in MCS systems will in the
further course of this paper be called MCS mechanism.

The Nash equilibrium provides efficient solutions for the
task allocation problem in MCS systems. It is a decentralized
outcome that gives no (selfish) requester an incentive to
deviate from the strategy chosen in the equilibrium. It is a
stable outcome under the assumption that requesters learn or
have full knowledge about their own and the other requesters
available strategy sets. It is an outcome of strategic, i.e.,
rational, selfish, and profit maximizing, requesters.

We will make use of these facts to create a MCS
mechanism in which requesters will chose the equilibrium
strategies in a decentralized way. We add additional aspects
to the mechanism to make sure that requesters are truthful
about available strategies and their willingness to pay. A
pseudo code of the MCS mechanism is given in Algorithm
1. As a result of our mechanism, requesters individually
choose strategies that converge to an equilibrium under
the assumption that requesters are rational. Such a Nash



Algorithm 1 Truthful Equilibrium Generation
Initialize Willingness to Pay: Set and publish a fixed price
per unit of demand that every requester using the MCS
system must agree on paying in the worst case.
for all requester i ∈ N do

Generate Feasible Sets: Requester i must announce
her area of interest and will only receive data for this
area.
end for
for all requester i ∈ N do

Broadcast Knowledge: Release full (anonymized)
knowledge about the strategies of all requesters and cost
functions of all resources in the system.
end for

equilibrium could be also computed by a central operator
of the MCS system and be given to the requesters in order
to support a fast convergence towards an equilibrium. Our
mechanism adheres to individual rationality, i.e., the profit
of a requester will always be non-negative if she reveals her
true strategy set.

Before we give a proof for the truthfulness of our MCS
mechanism, we provide a formal definition of the term truth-
fulness (also see [12] for a definition of truthful mechanism
in auctions). Without truthfulness the mechanism would be
vulnerable to market manipulation and may produce very
poor outcomes (see e.g., [33]).

Definition 4 (Truthful MCS Mechanism): A MCS mech-
anism is truthful if announcing true values for the willing-
ness to pay and the areas of interest in the MCS system is
a dominant strategy for every requester, i.e., if it is always
better to give true values than lying about values.

Theorem 1: The mechanism presented in Algorithm 1
is truthful under the condition that the whole area under
consideration in the MCS system is covered by crowd par-
ticipants and requesters costs are bounded by the willingness
to pay.

Proof: We prove the theorem by contradiction. Assume
that it can be more lucrative for a requester to announce an
untruthful value of her willingness to pay or her area of
interest or a combination of both.

Case 1: Announce an untruthful value of the willingness
to pay and a truthful value about the area of interest:
There is a value for the willingness to pay that is fixed by
the mechanism operator. Any announcement of a lower or
higher willingness to pay will not change the utility (true
willingness to pay minus effective costs) of a player.

Case 2: Announce a truthful value of the willingness
to pay and an untruthful value about the area of interest:
It could be that a player announces (1) an area that includes
the true area of interest but is greater or (2) an area that only
includes parts of the true area, or (3) an area that does not
include the area of interest. The willingness to pay is fixed

and we assume that all players have positive values for every
subarea of their true area of interest. Obviously, the choice
of (3) is irrational as the whole area under consideration in
the MCS system is covered by crowd participants and the
requester will have to pay for areas that are not of interest for
her while receiving no useful data. If the area is greater than
the actual area of interest as described in (1), the requester
will pay for areas that are not of interest for her which is
less lucrative than announcing her true value for the area
of interest. If, as described in (2), the area announced only
includes parts of the area of interest, the requester will not
receive positive value for the rest of her area of interest and
in addition pays for areas that are not of interest.

Case 3: Announce untruthful values about the willing-
ness to pay and the area of interest: If a player actually
has a higher willingness to pay than the value fixed by
the mechanism operator, she could consider announcing an
untruthful value about her area of interest. This cannot be
lucrative, because all players are selfish and because of
the assumption that costs are limited such that no (other)
player will drop out (i.e., requesters costs are bounded by
the willingness to pay). If (1) the area announced is greater,
the effective costs may be below her willingness to pay but
in any case higher than if she would announce her true area.
In our game, feasible sets are tied to areas. This means, even
if certain players place some demand in some subareas that
are not of interest to them, this will never increase the costs
in a fashion that another player drops out. So, costs for a
player announcing a false area of interest will only be higher
than for the true value. If (2) the area announced only holds
parts of the area of interest or (3) the area announced does
not include the area of interest, the player can increase her
utility by shifting to the true area of interest. Announcing
a lower willingness to pay cannot influence the system in
any way has there exists a fixed value set by the mechanism
operator.

IV. CONCLUSION

To the best of our knowledge, together with [11] our
analysis is among the first initiatives to explicitly investigate
task allocation in MCS systems using a game-theoretic
selfish routing model. After the presentation of theoretical
results for the Nash equilibrium, we outlined a distributed
mechanism for the operation of MCS systems and proved
its truthfulness. The costs of the generated distributed Nash
equilibrium solutions are provably bounded. We conclude
that selfish routing can be useful to model MCS systems.
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