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Abstract—We study the problem of distributing loads in mobile
crowdsensing systems (MCS). In this context, we present a multi-
commodity network game, more explicitly, an atomic routing
game, to depict the linking of several crowd participants into
bundles that are capable of successfully completing desired
sensing tasks. The nodes of the network correspond to the
resources of the crowd participants and the players of our game
are sensing service requesters that wish to route their demand
along paths trough the network. One resource may serve several
requests at the same time, which can be modeled efficiently using
the network structure. Resource usage involves load-dependent
costs. Our model caters for the uncertainty inherent from crowd
involvement and mobility by incorporating certainty parameters
in the model. These certainty parameters describe the quality of
the partial result a participant can produce. Requesters may set
a minimum certainty level for the successful completion of their
overall sensing tasks that has to be met.

In our model, we analyze four different solution concepts for
balancing loads with respect to costs and quality of results:
(1) a distributed brute force approach (engaging all suitable
crowd participants), (2) a random selection of suitable crowd
participants, (3) a Nash equilibrium (as result of decentral-
ized selfish cost-minimizing game play) and (4) a (centralized)
social optimum. All considered distributed solutions or an ε-
approximation of a solution can be computed efficiently (for affine
cost functions). Furthermore, well-known results for the price of
anarchy of atomic routing games can be transfered to our model,
i.e., the relative solution quality of a Nash equilibrium compared
to a social optimum is provably bounded. In addition, we provide
an extensive experimental study that supports theoretical results
and gives further suggestions on the impact of uncertainty. We
merge the findings of our analysis into a truthful distributed
mechanism such that requesters have no incentive to deviate
from an efficient solution.

I. INTRODUCTION

Mobile crowdsensing systems (MCS) are a recent and
emerging paradigm, which leverages the sensing data from the
mobile devices of people (the crowd) to serve various goals.
These include business goals as for example designing and
evaluating a health care product by using the cumulative data
gathered by a crowd through the powerful sensors integrated
in smartphones. Moreover, MCS are used to improve public
and individual services. Concrete examples include weather
monitoring in rural areas of East Africa [1] as well as par-
ticipatory citizen sensing systems for sharing information on
water conditions and flooding in Vicenza, Italy and Doncaster,
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UK [2]. In MCS, a fundamental and non-trivial issue is the
distribution of loads in terms of time and energy consumption
as well as computational effort among heterogeneous mobile
personal devices. These loads should be balanced to optimize
short- and long-term system performance with respect to costs,
quality of results, user satisfaction and further application-
specific metrics. In this paper, we study the issue of balancing
loads in MCS more specifically: A requester wants to collect
sensing data about an area, but implementing commercial sen-
sors is not feasible or expensive. Instead, the requester engages
a number of people present in this area that are equipped
with personal mobile devices that have sensing capabilities.
Mobile devices usually have a lower computing performance
and limited power supply compared to standard personal
computers. Data generation and data transfer via the Internet
involves load-dependent costs. The question, we would like
to answer is “How should tasks be assigned to participants
for the efficient completion of the tasks?” The overall sensing
task (covering the area) should be successfully completed with
high probability and the involved costs should be minimized. A
concrete real-world MCS application that would benefit from
the efficient balancing of loads is for example the area-related
MCS application on weather monitoring presented in [1]. Load
balancing in MCS helps allocating tasks in a cost and quality
balancing manner.

In this paper, we present an atomic routing game to depict
and analyze the problem of balancing loads in MCS. Each
provider (crowd participant) owns a node (resource) in a multi-
commodity network. On the other side, requesters route their
demand over feasible paths (resource bundles that are capable
of successfully completing desired sensing tasks). A resource
may serve several requests at the same time, which can be
modeled efficiently using the network model. Resource usage
involves load-dependent costs. From the computed costs, we
may infer minimal rewards to engage participants. Special
aspects of our problem are the mobility and the autonomy
of crowd participants. Theses aspects produce uncertainty
about the suitability of a participant to complete a sensing
task. We address these aspects by incorporating certainty
parameters in the model. The exact values of these parameters
in practice could for example be derived from the results
of mobility prediction algorithms (see e.g., [3] and [4]). We
furthermore include participation constraints for the crowd
(when a personal costs limit is exceeded).



In our model, we analyze four different solution concepts
with respect to costs and quality of results: (1) a distributed
brute force approach (engaging all suitable crowd partici-
pants), (2) a random selection of suitable crowd participants,
(3) a Nash equilibrium (as result of decentralized selfish cost-
minimizing game play) and (4) a (centralized) social optimum.
A brute force solution and a random solution can be computed
efficiently in polynomial time and in an environment with
uncertainty, these methods cannot be dismissed as disadvan-
tageous approaches without testing. Brute force may lead to
an expensive but certain solution and a random solution is
very easily generated and may in an environment with little
knowledge about the participants be the best choice. An ε-
approximation of a Nash equilibrium can also be computed in
polynomial time for all ε > 0, given that the cost functions on
the resources are affine [5]. Furthermore, in the atomic routing
model, well-known results regarding the price of anarchy (the
welfare ratio between a worst-case equilibrium and a social
optimum of a game) apply, i.e., the solution quality of the
Nash equilibrium in relation to the social optimum is provably
bounded. We will describe how to compute solutions and
provide an extensive experimental study comparing solutions
and giving further suggestions on the impact of uncertainty.
We will merge the results of our evaluation into a decentralized
mechanism for MCS that produces efficient distributed Nash
equilibrium solutions. Our model and mechanisms are in
particular suitable for MCS that deal with gathering sensing
data about an area.

A. Our Contribution

In this work, we make the following major contributions:
(1) We present an analysis of MCS involving complemen-
tary sensing resources using a game theoretical model that
explicitly incorporates strategic behavior and uncertainty. (2)
We present an efficient model in which participants may take
part in several sensing tasks at the same time. (3) Using
our model, distributed allocations of sensing tasks can be
generated efficiently and the chosen atomic routing model al-
lows furthermore the transfer of well-known theoretical results
on the existence and quality of some solutions. In addition,
(4) we provide an extensive experimental study that supports
theoretical results and gives further suggestions on the impact
of uncertainty. Furthermore, (5) we derive a decentralized load
balancing mechanism such that requesters have no incentive to
deviate from an efficient distributed Nash equilibrium solution.
Our model and mechanism are easy to employ and suitable
for various MCS.

B. Outline

In the following Sec. II, we give a brief overview on
related work. In Sec. III, we present a formal definition of
our model and considered solution concepts. In Sec. IV, we
give a theoretical and experimental evaluation. In Sec. V, we
propose a decentralized mechanism and in Sec. VI, we give a
conclusion and an outlook to our work.

II. RELATED WORK

There exists an increased interest in load balancing algo-
rithms for MCS in recent years. Load balancing comes in
different facets depending on the considered problems and
issues introduced by the system designer. It is important
whenever data is collected from multiple people and has
frequently been studied in the field of game theory in relation
to congestion control in communication networks (see e.g.,
[6], [7], [8]) and in crowdsourcing systems (see e.g., [9], [10],
[11]). In MCS, notably [12], [13] and [14] deal with the issue
of load balancing. In [12], an auction formulation for the
distributed generation of task allocations in MCS is presented.
Participants can offer bids for undertaking sensing tasks. A
centralized operator selects winners based on the bids and pays
them after the completion of the tasks. In contrast to [12], not
only our experimental tests suggest close-to-optimal solutions,
the quality of these solutions is actually provably bounded.
[13] presents cost-minimal mechanisms that provide a certain
quality level. In contrast to our work, in [13], participants
may only be involved in one sensing task at a time. Also
[14] proposes an auction mechanism rather than an efficient
network formulation as presented in our work. In [11], the
authors provide a resource allocation problem formulation for
more general crowdsourcing systems. Nevertheless, they, as
well as [9] and [10], do not exploit the efficient structure of
network routing games.

Related to our work are furthermore models of crowdsourc-
ing contests. The authors of [15] study such crowdsourcing
contests and present a mechanism that calls for competition
in the crowd to produce a product within a limited time
frame with a hard deadline. Only the product with maximum
quality will be of value for the principal. Nevertheless, every
participant that spends effort receives a payment. The authors
of [16] model crowdsourcing contests as variation of all-
pay auctions and compare crowdsourcing contests to more
conventional means of procurements. In contrast to our work,
in the latter works, each participant produces one complete
end-product. We focus on crowdsensing of complementary
resources, instead. Both of the latter works extend ideas of
[17], which established the connection between crowdsourcing
and all-pay auctions.

Also related to our work is [18], which analyzes crowd-
sourcing with focus on innovation. In [18], the problem of
assigning tasks of unknown difficulty to crowd participants of
unknown skill is modeled as an extended resource allocation
problem. The authors present a decentralized mechanism,
which produces a hierarchy such that participant skill levels
and task difficulty levels are matched properly. Due to the
special properties of MCS (complementary goods and data
collection limited by the abilities of sensors and mobile
devices), we present a simple efficient network flow model
depicting the crowdsourcing environment, instead.

Finally, we emphasize that one of the roots of MCS lies in
wireless sensor networks (WSNs). WSNs can be envisioned as
large collections of autonomous smart sensor nodes, which can



distributively form an ad hoc wireless communication network.
The nodes can be deployed in a region of interest in order to
monitor crucial events and propagate sensed data to a base
station, but classical WSNs do not integrate personal mobile
devices such as smartphones. Many fundamentals have been
established for WSNs regarding load balancing algorithms,
which maximize network lifetime (see e.g., [19] and [20]).
In MCS, load balancing plays a different role, i.e., we usually
do not have multi-hop communication with the high potential
of causing early fall-outs of bottleneck nodes. Instead, we
have a higher degree of unpredictability and unreliability due
to (a different level of) mobility and the human factor. The
design of incentive mechanisms to engage crowd participants
while taking into consideration preferences and individual
behavior is necessary. The purpose of load balancing in MCS
is to optimize short- and long-term system performance with
respect to costs, quality of results, user satisfaction and further
application-specific metrics.

III. MODEL AND SOLUTION CONCEPTS

To motivate our model, we present a simple example
instance of our problem in Fig. 1 with four crowd participants
and two sensing service requesters. In Fig. 1a, we give an area
coverage representation of the considered problem instance.
Each requester wants to cover an area of interest, i.e., requester
1 wants to cover Area 1 and requester 2 wants to cover Area
2. In these areas several participants are present (with certain
probability). Several combinations of crowd participants, or
more explicitly, the resources they own (indicated by r1, r2,
r3, r4), yield feasible coverage of the areas of interest. A single
participant covers the area within a certain radius around her.
It is rather unlikely that she will be able to set her sensors to
only cover a smaller subarea within this radius. Hence, when
engaging several participants that have overlapping radii, it
is not possible to decrease costs by assigning them smaller
subareas. When contributing to the application, a participant
will have to spend the full effort to cover the area within her
radius. The table in Fig. 1b indicates the feasible resource
bundles covering Area 1 and Area 2, respectively. A network
representation as given in Fig. 1c can be used to indicate
feasible resource bundles as network paths. For requester 1
(Area 1), choosing a feasible resource bundle corresponds
to choosing a path in the network from source 1 to sink 1.
Accordingly, requester 2 (Area 2) chooses a path from source
2 to sink 2.

We turn to the formal definition of our model. The problem
of allocating resources of crowd participants to requesters
that desire bundles of complementary goods can be mod-
eled as atomic splittable routing game G = {N,R,Q =⋃

i∈N Qi, (cr)r∈R, (di)i∈N , (πi)i∈N}. (See e.g., [21] for an
introduction to atomic routing games.) The finite set of re-
questers is denoted by N = {1, ..., n} and the finite set of
crowd participants each owning one resource is denoted by
R = {1, ...,m}. Since each participant is uniquely tied to a
resource and this resource to her, we will denote a participant
simply as a resource when convenient. In our game, a requester

r1 r2 r3

r4

Area 2

Area 1

(a) Area Coverage Representation

Bundle Area 1 Area 2

r1r2r3r4 yes yes
r1r2r3 yes no
r1r2r4 no no
r1r3r4 yes yes
r2r3r4 yes yes
r1r2 no no
r1r3 yes no
r1r4 no no
r2r3 yes no
r2r4 no no
r3r4 no yes
r1 no no
r2 no no
r3 no no
r4 no no

(b) Table indicating feasible bundles

source 1

source 2

sink 1

sink 2r1 r2 r3

r4

(c) Network Representation

Fig. 1. Graphical representations of a MCS problem instance with two
requesters and four crowd participants. Every participant owns one resource
indicated by r1, r2, r3, r4. In (a) the areas that the requesters wish to examine
are represented as boxes. Requester 1 wants to cover Area 1 and requester
2 wants to cover Area 2. The radius of the subarea covered by a resource
is indicated by the dotted circle surrounding it. In (b) a table is given that
indicates whether resource bundles cover an area or not. In (c) a network
representation of the problem instance is given. For requester 1 (Area 1),
choosing a feasible resource bundle corresponds to choosing a path in the
network from source 1 to sink 1. Accordingly, requester 2 (Area 2) chooses
a path from source 2 to sink 2.

i ∈ N has a total demand of di ∈ Z+ units of feasible resource
bundles. Let set Qi denote the set of all feasible resource
bundles of requester i. If a player decides to use resources, she
must distribute (split) demand in integral parts over feasible
resource bundles Qi

j ∈ Qi. Such a combination of feasible
resource bundles corresponds to a strategy of requester i. (Note



that Qi
j ⊆ R .) For resource usage, there are load-dependent

costs, i.e., costs are not fixed per unit of demand but depend on
the total amount of demand the resource is serving. Resource
costs are given by functions cr : R+ → R+ for all r ∈ R. We
consider non-negative, non-decreasing, and normalized (in the
sense that for all r ∈ R, we have cr(0) = 0) polynomial
cost functions. Every requester i has a willingness to pay
π ∈ R+. This value indicates the maximum amount a requester
is willing to spend.

A strategy may also be interpreted as a combination of paths
in a multi-commodity network. In that network, the resources
in R correspond to nodes. In addition, for each requester i ∈
N , there exists a distinct source node si and a distinct sink
node ti. A feasible bundle Qi

j corresponds to a path going
from si to ti passing exactly through the resources of set Qi

j .
Let DG = (V,E) be the multi-commodity network associated
with game G. The set of network nodes is given by V =
R ∪ {si, ti}i∈N and the set of network edges is given by E
holding the edges of all paths. A feasible outcome of G is
a feasible flow x = (xQi

j
)Qi

j∈Q in multi-commodity network
DG with ∑

Qi
j∈Qi

xQi
j
≤ di ∀i ∈ N , (1a)

xQi
j
∈ Z+ ∀Qi

j ∈ Q . (1b)

Variable xQi
j

denotes the amount of flow on path Qi
j . Equa-

tions (1a) and (1b) indicate that a feasible flow is non-
negative, integral and does not exceed the total demand of
a requester. (Recall that di is also a non-negative integer.)
Given a feasible flow x, the load xr =

∑
Qi

j∈Q: r∈Qi
j
xQi

j
of

resource r ∈ R corresponds to the total flow running through
the corresponding node r in network DG. The implied costs
for the crowd participant owning resource r are cr(xr) · xr .
The effective costs for a requester i, given flow x, equal the
sum of load-dependent costs of resources contained in the
chosen paths multiplied by the amount of flow belonging to
the requester, i.e.,

∑
Qi

j∈Qi

∑
r∈Qi

j
cr(xr)xQi

j
. If all feasible

combinations of paths have costs higher than the requesters
willingness to pay, she will reduce the amount of demand to
be routed, so in addition we have∑

Qi
j∈Qi

∑
r∈Qi

j

cr(xr)xQi
j
≤ πi ∀i ∈ N . (2)

Note that we defined a feasible flow explicitly over the
feasible paths and not over the edges it contains. Therefore,
edges connecting resources, source, and sink of a requester
such that a path is created that does not correspond to a
feasible bundle, do not pose a problem. The other way around,
a feasible bundle corresponds to a feasible path in the network.

In the following subsections, we present several routing
options for the requesters (solution concepts) and how to
model aspects relevant in the interaction with the crowd. We
will assume that a requester will always route the highest
possible demand such that the corresponding solution adheres

to her willingness to pay and to the chosen solution concept.
Later in our evaluation in Sec. IV, we will then analyze
induced costs and the impact of introducing uncertainty and
quality guarantees.

A. Brute Force

Every requester chooses to engage all available participants
within her area of interest and, hence, to route demand along
her longest feasible path (going through all resources within
her area of interest).

B. Random Choice

Every requester randomly chooses a set of participants
covering her area of interest and, hence, to route demand along
some randomly chosen feasible path.

C. Nash Equilibrium

Every requester i chooses a feasible combination of paths
that will minimize her effective costs (while routing the max-
imum amount of demand through the network). A requester
may split her demand into integral parts over feasible paths to
minimize costs. A stable outcome in this scenario is a Nash
equilibrium of our defined atomic splittable routing game G.

Definition 1 (Nash Equilibrium): A feasible flow xNE is a
Nash equilibrium (NE), if for all i ∈ N and for all Qi

j , Q
i
k ∈

Qi with xNE
Qi

j
> 0, we have∑

r∈Qi
jrQi

k

cr(x
NE
r ) ≤

∑
r∈Qi

krQi
j

cr(x
NE
r ) . (3)

Equation (3) indicates that the costs would increase if flow was
shifted from path Qi

j (with positive flow in the NE) to path Qi
k.

As cost functions are non-decreasing, existence of an NE is
guaranteed (see e.g., [21]). For tighter conditions on the cost
functions, we can even guarantee uniqueness, i.e., when all
cost functions cr are polynomials of degree at most three (see
[22]). A Nash equilibrium of our game can be computed via a
Best-Response Dynamic (see e.g., [23]). An ε-approximation
of a Nash equilibrium can be computed in polynomial time
for all ε > 0, given that the cost functions on the resources are
affine [5]. Under certain symmetry conditions on the network
structure, [24] furthermore presents an exact polynomial time
algorithm to compute a Nash equilibrium in atomic splittable
routing games with affine cost functions.

D. Social Welfare and Social Optimum

The social optimum of our game corresponds to a solution
of a central planner optimizing social welfare. In our model
social welfare corresponds to the difference between the will-
ingness to pay of the requesters and the total load-dependent
costs.

Definition 2 (Social Welfare and Social Optimum): Given
feasible flow x, the value of function

S(x) =
∑
i∈N

πi − ∑
Qi

j∈Qi

xQi
j

∑
r∈Qi

j

cr(xr)

 (4)



is called the social welfare of x. A social optimum corresponds
to a vector xS maximizing the social welfare function S over
all feasible flow vectors.

E. Aspects of the Crowd

1) Engagement Constraints (Incentivization): In cases
where participation is not voluntary, participants may only
engage when a certain wage level (monetary, idealistic or other
form of a reward) is reached. In monetary terms, the lowest
wage level for engagement should be one that covers the costs
for resource usage. From the costs of the solutions (that can
be generated using the approaches described in Sec. III-A
to III-D), we may infer these minimum rewards to engage
crowd participants. The costs, respectively, rewards, may vary
depending on the chosen solution approach but in any case
correspond to the burden laid on the participants for using
their resources during the operation of MCS.

As an extension of our model, additional rewards that are
not related to load-dependent costs could be integrated by
adding terms to the existing resource cost functions. More
complex pricing schemes in our model will be the subject of
a planned follow-up work.

2) Withdrawal Constraints: Crowd participants may with-
draw from the MCS application, respectively, network, if
certain costs are exceeded. To avoid this, for each resource
r ∈ R, we introduce a threshold br ∈ R+. If the costs of a flow
unit passing through r would exceed br, the participant would
withdraw from the application. Solutions for this extension
of our model can be computed by adding the following
constraints to the flow formulation in Equations (1a), (1b),
and (2):

cr(xr) ≤ br ∀r ∈ R . (5)

3) Quality under Uncertainty: When engaging participants
in a MCS application, there may exist uncertainty about the
quality of the results. We include uncertainty in our model
by introducing a certainty γr for every resource r ∈ R. This
certainty corresponds to the probability that a resource delivers
a full quality result for its subtask. From the certainty of the
resources, we can derive the certainty of a path Qi

j ∈ Q as

γQi
j
=

∏
r∈Qi

j

γr . (6)

Note that alternative measures for certainty are possible (see
e.g., [12]). Every requester i ∈ N will have a level of certainty
δi for the average quality of her results that needs to be met.
Solutions for this extension of our model can be computed
by adding the following constraints to the flow formulation in
Equations (1a), (1b), and (2):∑

Qi
j∈Qi xQi

j
γQi

j

di
≥ δi ∀i ∈ N , (7)

i.e., the average certainty of one unit of demand routed must
be greater or equal than the desired level of certainty for every
requester.

IV. EVALUATION

In this section, we present a theoretical and an experimental
evaluation our model and the various solution concepts.

A. Theoretical Evaluation

We begin with a theoretical analysis. We are interested
in the efficiency of solutions, i.e., the relation between the
social welfare of a solution and the social optimum. Of
particular interest for us is the relation between the social
optimum and the Nash equilibrium, which will be included
in our mechanism to balance loads in MCS in Sec. V. As
efficiency measure, we choose the price of anarchy (PoA),
introduced by Koutsoupias and Papadimitriou [25] and ever
since frequently studied in selfish routing games (see e.g.,
[21] for an introduction). The PoA corresponds to the worst
possible ratio of social welfare of a social optimum and social
welfare of an equilibrium.

Definition 3 (Efficiency and Price of Anarchy): For an in-
stance I of game G, let xNE denote the requesters flow vector
at the instance’s NE. Given furthermore a social optimum xS

of I , the quotient

PoA(I) =
S(xS)

S(xNE)

denotes the efficiency of instance I . The price of anarchy
(PoA) is defined to be the maximum possible ratio over
considered instances:

PoA = max
I∈G

S(xS)

S(xNE)
.

Recently, in [26], a set of exact bounds for atomic split-
table routing games in the special case of a bounded-degree
polynomial cost function with non-negative coefficients were
presented. For a polynomial cost function of degree three this
bound is 5.063, for degree two it is 2.549, and for degree one it
is even as low as 1.5. In practical terms this means that we can
provide distributed solutions of a proven level of quality that
(or rather an ε-approximation of it) can be computed efficiently
as described in Sec. III-C.

B. Experimental Evaluation

In this subsection we present a comprehensive simulation
study. We use experimental tests to draw conclusions on the
induced costs of the distributed solutions and the impact of
introducing quality guarantees under uncertainty. Simulations
are performed using Python 2.7.12. Linear and quadratic
programs to compute solutions are solved using Gurobi 7.0.1.

1) Simulation Settings: In our simulations, we are looking
at square fields with width A = 100 (e.g., in meters), and
thus fields of size A2 = 10, 000 (e.g., in square meters).
The width w of a subsquare covered by a single crowd
participant is set to 10 (for simplicity reasons, we assume
that subareas covered by participants equal squares instead
of circles). We set the demand of every requester equal to
d = 1 in order to simplify the evaluation of other aspects



(a) Social Welfare

(b) Maximum Costs per Participant

Fig. 2. Social welfare (positive total costs) and maximum costs imposed on a
participant in the distributed solution concepts of the Nash equilibrium (with-
out and with certainty constraints), the Random Choice approach (without and
with certainty constraints) and Brute Force versus the number of requesters
in the MCS.

such as quality under uncertainty and the difference between
the various solution concepts. We choose homogeneous linear
resource cost functions c(xr) = 1.2 · xr (with xr being the
load on resource r ∈ R in a solution). When uncertainty is
considered, we set the desired certainty parameter of every
requester to δ = 0.8. In our experimental tests, we will leave
out the withdrawal constraints of the participants (presented
as options in Sec. III-E2) as well as the willingness to pay of
the requesters (i.e., we set the willingness to pay to infinity for
every requester). In our experiments, these artificial thresholds
would disturb our results and analysis, which here rather
focuses on the aspects of costs and quality under uncertainty.
We set the average number k of crowd participants within a
subsquare of the overall area under consideration to 5. For
each number n of requesters between 2 and 30 (in steps
of 2), we randomly create 50 test instances and compute
resulting costs for the different distributed solution concepts

(with and without certainty constraints). Per instance, we
conduct 60 iterations of the simulation to compute the average
performance of a solution concept. We depict results for the
mean values for each metric as results demonstrate strong
concentration around the mean. An instance of our game is
generated as follows:

Given width A, we assume that the overall area under
consideration for potential sensing tasks is a square of size A2.
To determine the minimum number of participants needed to
make any request within the overall area feasible, we divide the
area into squares of width w, i.e., we tessellate the overall area
into m̂ = dA

2

w2 e squares of the same size and put a participant
in the middle of each square. We then randomly generate
(k − 1) · m̂ other points within the overall area and place a
participant there. Now, for each participant, we randomly draw
a certainty between 0.1 and 1.0 from a normal distribution. For
each requester, we randomly draw a central point within the
overall area from a uniform distribution as well as the width
of her subarea between 0.2 · A and 0.6 · A . (Note that with
this construction it is possible that a requester only needs data
from a single participant if her central point lies “close” to the
borders of the overall area). The following steps describe how
to determine the feasible resource bundles for the requesters
from here.

For every requester i:
1) Create the largest feasible resource bundle equivalent to

all the participants (resources) present in her subarea of
interest.

2) For every participant in the bundle, remove her and
verify if the result is still a feasible bundle, i.e., covers
the desired subarea.

3) If true, add the newly constructed bundle to the set
of feasible bundles and go to step 2), else dismiss the
bundle.

This finishes the description of the generation of a game in-
stance. For the computation of solutions, we use the according
equations presented in Sec. III.

2) Performance Measures and Evaluation: We evaluate our
solution concepts with respect to social welfare of a solution
and the maximum costs imposed on a participant. In Fig. 2,
the results of our experimental tests for different numbers
of requesters are displayed. Please note the differing scales
of the graphics in the figure. We show result for the Nash
equilibrium, the Random Choice approach (see Sec. III-B) and
the Brute Force approach (see Sec. III-A).

a) Social Welfare (Total Costs): In Sec. III-D, we gave
a formal definition of the social welfare of a solution. If a
willingness to pay for the requesters is given, it corresponds to
the difference between the willingness to pay of the requesters
and the total load-dependent costs. In our evaluation, we focus
on quality and costs of a solution, hence the willingness to
pay was not set for the requesters. Social welfare simply
corresponds to the (negative) total costs imposed on the
participants for the completion of sensing tasks. In Fig. 2a, the



social welfare (positive total costs) for the different distributed
solution concepts with respect to the number of requesters is
presented. Following a basic intuition, Brute Force performs
much worth than the other distributed approaches. With grow-
ing number of requesters in the application, total costs increase
to more than double of the costs of the other solutions. The
Nash equilibrium performs best and the distance between its
costs and the costs of the Random Choice approach increases
with growing number of requesters. Nevertheless, Random
Choice might not be a bad choice when information necessary
to generate an equilibrium is not given.

The certainty requirements introduced in the system, slightly
diminish the performances with respect to costs for all solution
concepts. We conclude that with a “balanced” distribution
of certainties in the instances (as done in the settings of
our experiments), quality under uncertainty can be achieved
without major cutbacks.

b) Maximum Costs per Participant: The maximum costs
per participant give us additional insides on the impact of a
solution on an individual of the crowd. In Fig. 2b, we present
the simulation results for the maximum costs imposed on a
crowd participant in a solution. Interestingly, in contrast to the
total costs imposed on the system, when looking at local costs
at the participants side, the choice of the solution approach has
a lower (worst-case) impact. Maximum individual costs are
clearly rising with the number of requesters in the system,
while even in the best social welfare solution among our
approaches (i.e., for the Nash equilibrium), a single participant
may have higher costs than in the Random Choice approach.
Still, also here the Brute Force approach is the one that
demands the most of an individual.

In summary, we conclude that the Nash equilibrium outper-
forms the other two distributed approaches regarding social
welfare. When uncertainty is present and there are restrictions
to assure quality of the solutions, our experimental tests
suggest that the effect on costs is only minor as long as
certainty is “well-balanced” over all participants. Maximum
costs for a participant are very similar for all approaches.
For a participant, the choice of the solution approach may
not make a big difference, while for the requesters, the Nash
equilibrium is the best choice. In particular, for the requesters
this is also the case because, in addition, theoretical results
guarantee that costs are bounded in comparison to the social
optimum. As discussed in Sec. III-E1, the computed costs
may also be interpreted as the minimum rewards needed to
incentivize participants.

V. MECHANISM

In this section, we derive a simple mechanism to balance
quality and costs in MCS serving several requesters.

Our evaluation in Sec. IV yielded that the Nash equilibrium
provides favorable solutions for the load balancing problem in
MCS. The Nash equilibrium is a decentralized outcome that
gives no (selfish) requester an incentive to deviate from the

strategy chosen in the equilibrium. It is a stable outcome under
the assumption that requesters learn or have full knowledge
about their own and the other requesters available strategy
sets. It is an outcome of strategic, i.e., rational, selfish and
profit maximizing requesters. We will make use of these facts
to create a mechanism in which requesters will chose the equi-
librium strategies in a decentralized way. We add additional
aspects to the mechanism to make sure that requesters are
truthful about available strategies and their willingness to pay.

Our mechanism works as follows:
1) Demand and Willingness to Pay: Set a fixed price per

unit of demand (e.g., in time units) that every requester
using the MCS must agree on paying in the worst case.

2) Feasible Sets: The requesters must announce their areas
of interest and will only receive data for these areas.

3) Broadcast Knowledge: Provide full (anonymized)
knowledge about the strategies and costs of all requesters
to all requesters in the system.

The logical result of our mechanism is that requesters in-
dividually choose strategies that converge into an equilibrium
under the assumption that requesters are rational. Such a Nash
equilibrium could also be computed by a central operator of
the MCS and be given to the requesters as suggestion in order
to support a fast convergence towards an equilibrium. Note
that lying about her strategies would hurt a requester as she
would then either have to pay for coverage of the whole area
indicated and/or get data that does not satisfy her needs.

VI. CONCLUSION

To the best of our knowledge, our analysis represents
the first initiative to explicitly investigate load balancing in
MCS using a game-theoretic network flow model with load-
dependent costs. After the presentation of a theoretical and
experimental analysis that provided favorable results for the
Nash equilibrium as distributed solution concept in MCS,
we derived a distributed mechanism for the operation of
these systems. The costs of the distributed Nash equilibrium
solutions are provably bounded. Our experiments suggested
that even when uncertainty is present in the system and there
are restrictions to assure the quality of the solutions, the costs
do not drastically increase as long as the certainties of the
crowd participants follow a normal distribution. Extending
our mechanism to dynamic changes of the system (regarding
number of participants and requesters) is planned for future
work. Furthermore, in future work, we plan to investigate
how pricing schemes as presented in [16] and [12] improve
solution performance. Intuitively, setting prices should reduce
uncertainty in the model. To what extent this holds, would
also be an interesting topic for a real-world study. In addition,
in an extension of our model, we plan to integrate further
aspects related to the mobility and the autonomy of the
participants. E.g., participants could be empowered to choose
a position anticipating the requesters choice of resource usage.
More explicitly, in this scenario, the areas of interest of the
requesters would be announced to the participants such that the



participants could choose favorable positions maximizing their
profit. Changing positions may involve additional costs that
have to be included in the model and participants could choose
multiple positions over time. We also consider to explicitly
include mobility prediction algorithms for ad hoc scenarios of
MCS.
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