
GEZORA: A SELF-SCALABLE CONTENT
DISTRIBUTION NETWORK

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Milan Nikolic
2010

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Abstract

Content Distribution Networks (CDNs) are cooperative server environments, which assist
popular web sites in being resilient against so-called flash crowds - instantaneous traffic spikes,
generated by concurrent user accesses to the same web content. Today’s CDNs have substan-
tially improved the content delivery. Still many of them have disadvantages regarding the adap-
tivity to sudden and fast growing client request rates.

In this Master thesis, we designed a novel CDN, codenamed Gezora [1], which addresses
common CDNs issues, such as: the unpredictability of client requests, self-adaptivity to the
fast request frequency changes, robustness, and on-demand scalability. Using a request fre-
quency monitoring system, based on the exponential weighted moving average, feedback con-
trol loop [2], random early redirection algorithm [3] and a URL-based content clustering, Gezora
establishes a hybrid self-reactive CDN, which is capable of changing server’s role dynamically
for every content subset, from the normal content provider to the pure load balancer (reverse
proxy) and achieves the load balancing while distributing the web content in the same time. The
main requirement for Gezora is to avoid server overloading and to minimize the response time at
the peak client request rates. The main advantage over other CDNs, is the ability to change the
server role dynamically at the run-time and the self-adaptive request routing mechanism which
is able to achieve fast on-demand scaling without applying any predictive models or Markov
chains [4].

The current Gezora prototype is implemented using Java-based Apache Tomcat web server,
J2EE technology and Java servlets, which are the Java classes whose instances accept and answer
client requests within a Java based web server. The evaluation of Gezora is accomplished using
web server stress tests. The evaluation results show significant improvements regarding the
server response times during the peak request rates. More specifically, the test scenario applied
on the Gezora prototype, outperformed a pure single-server approach with a 30% lower average
request time.

Acknowledgment

I would like to thank Prof. Dr. Torsten Braun for giving me the opportunity to do my Master
thesis in his research group. During the course of my thesis, he was always very patient and
supportive and for this I am very grateful.

I am also very grateful to Dr. Dragan Milic for giving me an in-depth insight into the techni-
cal aspects of PlanetLab and J2EE. Dragan’s innovative ideas for the J2EE implementation have
helped steer my thesis in the right direction and I really appreciate it.

I would like to thank all members of Prof. Braun’s research group for the friendly working
environment and for making my master’s thesis a memorable experience.

I would like to express my genuine gratitude to Philipp Hurni, for correcting my thesis and
for his invaluable tips about scientific writing. You are a true friend.

Special thanks go to my sister, Milica Nikolic, for the final spelling revision of my thesis
and her constant support.

Last but not least, I would like to express my utter gratitude to my parents, for their uncon-
ditional love and constant support. I couldn’t have done this without you.

Milan Nikolic, 2010

iii

Contents

Contents v

List of Figures ix

Listings xi

1 Introduction and Motivation 1
1.1 The Emergence of Content Distribution Systems 1
1.2 CDN - Technological Improvement for new Internet Trends 2
1.3 Limitations of Existing CDNs . 2
1.4 Thesis Description . 3
1.5 Thesis Contribution . 4
1.6 Thesis Outline . 5

2 Structure and Classification of Content Distribution Networks 7
2.1 Introduction . 7
2.2 Primary CDN Goals . 8

2.2.1 Scalability . 9
2.2.2 Content Transfer Reliability . 9
2.2.3 Responsiveness . 10
2.2.4 Performance . 10

2.3 Requirements on CDNs . 10
2.4 CDN Components . 11

2.4.1 Content Provider . 11
2.4.2 CDN Provider and End users . 11

2.5 Content Distribution and Management . 12
2.5.1 Content selection and delivery in CDNs 12
2.5.2 Content outsourcing . 14

2.6 Request Forwarding in CDNs . 15
2.6.1 Request Forwarding Algorithms . 16

2.7 Similar Systems to CDNs . 17
2.7.1 Data grids . 17
2.7.2 Distributed databases . 19
2.7.3 P2P Networks . 20

v

2.7.4 Multicast Networks . 21
2.7.5 Content Centric Networks . 21

3 Related Academic CDNs and Technologies used for Gezora CDN 25
3.1 CoDeeN . 25

3.1.1 Introduction . 25
3.1.2 Deployment of CoDeeN on PlanetLab and its Advantages 25
3.1.3 Architecture and Design of CoDeeN 26
3.1.4 Differences To Gezora . 27
3.1.5 Conclusion . 28

3.2 Coral Content Distribution Network . 28
3.2.1 Corals Architecture and Design . 28
3.2.2 Differences To Gezora . 30
3.2.3 Conclusion . 30

3.3 Shark . 31
3.3.1 Introduction . 31
3.3.2 Use Cases . 31
3.3.3 Design . 32
3.3.4 Differences to Gezora . 32
3.3.5 Conclusion . 33

3.4 Jellyfish . 33
3.4.1 Introduction . 33
3.4.2 Architecture and Design of Jellyfish CDN 33
3.4.3 Jellyfish Node/Super node Structure 34
3.4.4 Jellyfish Request Routing and Service Discovery 35
3.4.5 Differences to Gezora . 36

3.5 Java Servlets . 36
3.5.1 Introduction . 36
3.5.2 Servlet’s Web Container . 37
3.5.3 Servlet’s Communication Flow and Libraries 38
3.5.4 Building and functioning of Java HTTP servlets 38
3.5.5 Security Considerations . 40

3.6 Technologies and Algorithms applied in Gezora CDN 40
3.6.1 Introduction . 40
3.6.2 Weighted Fair Queuing (WFQ) . 41
3.6.3 Impact of Feedback Control Theory on the Server Performance 41
3.6.4 Example of a WFQ System . 41
3.6.5 Transient Behavior of the Feedback Control Loop 42
3.6.6 Frequency Noise Filtering . 42
3.6.7 Adaptation Interval and the Impact of the α Parameter in EWMA . . . 43
3.6.8 Random Early Detection . 43
3.6.9 Request Forwarding Mechanisms . 44

3.7 Methodologies used for the Gezora Evaluation 46

vi

3.7.1 Client Satisfaction through Request Time 46
3.7.2 CDNs Performance Measurement Overview 46

4 Gezora Architecture 51
4.1 Introduction . 51
4.2 Deployment of Gezora and its Benefits . 52
4.3 Gezora Architecture . 53
4.4 Gezora’s Random Early Redirection . 57
4.5 Request Forwarding in Gezora . 60

5 Gezora Prototype Implementation 63
5.1 Introduction . 63
5.2 Design Overview: First Gezora Prototype . 64
5.3 First Gezora Prototype Implementation . 66

5.3.1 Servlet . 67
5.3.2 Access-Meter . 71
5.3.3 Random Early Redirection . 73
5.3.4 Request Forwarding . 74
5.3.5 Content Transfer Implementation . 74

5.4 Second Gezora Prototype Architecture and Design 75
5.4.1 Request Forwarding . 76
5.4.2 Disadvantages of the Second Gezora Prototype 77

6 Gezora Prototype Evaluation 79
6.1 Introduction . 79
6.2 CDNs Evaluation Methodologies Overview 80

6.2.1 Important Parameters for CDN Evaluation 80
6.2.2 Network Traffic Analyzing and it’s Benefits 80
6.2.3 Surrogate Utilization Monitoring . 81
6.2.4 User Surveys and a Real-life Evaluation Methods 82
6.2.5 Conclusion and the CDN’s Evaluation Methods Comparison 82

6.3 Java Client Model and Gezora’s RER Evaluation 83
6.4 Gezora Performance Evaluation . 86

6.4.1 Web Server Performance Evaluation Types 87
6.4.2 Evaluation Scenarios using Web Server Stress Tests 89
6.4.3 Evaluation Results with Web Server Stress Tests 90

7 Conclusions and Outlook 95

Bibliography 97

A UML and Sequence Diagrams: Gezora Prototype 101

B UML and Sequence Diagrams: Java Client Model 107

vii

C Summary Log 111

viii

List of Figures

2.1 Content Distribution Network Example . 8
2.2 Request Forwarding in Content Distribution Networks 16
2.3 A Data Grid Architecture . 18
2.4 Distributed Database Architecture . 19
2.5 P2P Network Architecture . 21
2.6 Content Centric Network Architecture . 23

3.1 Graphical Representation of the Random Early Detection Algorithm 44
3.2 How Users Experience the Web Server Response Time 46

4.1 Conventional Load Balancer and Gezora Application 52
4.2 Full Directory Structure on the Central Server 54
4.3 Directory Structure for a Specific Content Category on the First Surrogate Server 54
4.4 Directory Structure for a Specific Content Category on the Second Surrogate

Server . 55
4.5 Gezora Architecture Overview . 56
4.6 Load Balancing on Gezora CDN . 57
4.7 Changing Server Roles with RER . 59
4.8 Gezora’s Request Forwarding Mechanism . 61

5.1 Content Categorization Overview . 65
5.2 EWMA Filter’s Frequency Applied to RER 65
5.3 First Gezora prototype in the ISO/OSI Network Diagram 66
5.4 The Structure of the Gezora Prototype Implementation as UML Diagram 67
5.5 EWMA Access Frequency Calculated using Java Servlets 71
5.6 EWMA Filter . 72
5.7 Second Gezora Prototype in the ISO/OSI Layer Diagram 75
5.8 Flow Diagram . 76

6.1 RER Test Scenario with Java Client Model . 84
6.2 Client Communication Scenario with Origin and Surrogate Server 84
6.3 RER Evaluation Results . 86
6.4 Gezora Web Server Stress Tests Scenario . 89

ix

6.5 Average Request Time [ms] in Correlation with the Request Number per Time
Unit [s] . 91

6.6 Percentage of Users with a Request Time less than 20 ms 92
6.7 Percentage of Users with a Request Time less than 60 ms 92
6.8 Percentage of Users with a Request Time less than 100 ms 93
6.9 Percentage of Users with a Request Time less than 140 ms 93
6.10 Percentage of Users with a Request Time less than 200 ms 94

A.1 Getting Content Name . 102
A.2 Java Stream Implementation for Content Transfer 103
A.3 HTTP doPost Method . 103
A.4 Java Method for Cutting the URL Path . 104
A.5 Probability Calculation Implemented in Java 105
A.6 Java Object with two Parameters Holding the Time and Frequency of Client

Requests . 105

B.1 The Core of the Java Client Model . 107
B.2 Time Scheduling with Threads at Java Client Model 108
B.3 Full Sequence Diagram of Java Client Model 109

x

Listings

3.1 HTTP Request Header . 45
3.2 HTTP Redirect Header . 45
5.1 Java Servlet Get Method in the Gezora Prototype Implementation 68
5.2 Access Meter . 72
5.3 Java Code for Random Early Redirection Implementation 73
6.1 Java Code for Following the Request Redirections on Central Server 85
C.1 Example: Summary Log . 111

xi

Chapter 1

Introduction and Motivation

1.1 The Emergence of Content Distribution Systems

Since the Internet has been established as a key technology in our everyday life, traffic has been
constantly increasing, enhanced by the acceptance of broadband access. Content has become
much more complex, and user traffic variable and unpredictable. The ever evolving nature of
the Internet presents new challenges in content management and delivery. For example, many
of the most popular web services suffer from congestion due to the heavy demands made upon
their services. A sudden increase, or spike, in the demand for web content can often cause an
overload on particular web servers and, as a result, a performance bottleneck can arise, causing
high server response times. Such unexpected peaks in the demand cause significant strain on a
web server. Subsequently, many web servers become overwhelmed with a sudden increase in
traffic, and the host web site content becomes temporarily unavailable.

Researchers are becoming more and more aware of this fact. Most content providers view
the Internet as a key vehicle in their aim to bring goods to end users. Therefore, a decrease in
the quality of the service due to high levels of demand which results in longer download times
will leave the end users frustrated. Modern companies expect significant financial revenues from
web based e-business. As a result, in the past few years, an evolution of technologies aimed at
improving content delivery and service provision over the web has been seen. A combination of
structures and the supporting technologies form a new type of network, which is often referred to
as a Content Network (CN). Single web servers evolved to a complex cooperative environments,
which are more resilient to the sudden traffic changes. The main priority of a number of CNs
is to address the levels of performance and to minimize problems and to maintain the Quality
of Service (QoS) by employing a variety of mechanisms. One such approach is to modify the
network infrastructure, e.g. by improving the web server hardware by adding a high-speed
processor, more memory, disk space, or even a multi-processor system. However, this approach
is not an optimal solution, since the small enhancements are generally not viable for a long time
period, which results in complete server infrastructure needing to be replaced.

1

1.2 CDN - Technological Improvement for new Internet Trends

With the development of the Internet the end users have changed too. Today’s users are becom-
ing more and more content providers while they are primarily content consumers. The main
reason for this trend is, that the Internet today consists in more content publishing using web
platforms such as Youtube [5] and Facebook [6], or even content sharing using Peer to Peer
(P2P) networks, rather than a classical server-client usage. As the technical infrastructure in-
creases both in physical terms and by capacity, it is becoming easier for the private users to
maintain their own permanent Internet node on a broadband connection and run various types
of servers such as e-mail, file transfer, web content, remote login, etc. The usual option for
users or small organizations who wish to maintain a web site is to place it under the regime of
a commercial web hosting service. This approach is functioning well under low load. In case
of high demands, web hosting companies additionally utilize the Content Distribution Networks
(CDN) [7, 8, 9]. A CDN is a group of globally distributed servers networked together across the
Internet to cooperate transparently, in order to assure fast and reliable content-delivery to end
users. A CDN also uses smart request routing mechanisms, which help today’s web sites to be
resilient against flash crowds: quick increases of user requests that lead to server overloading
situations. Some of web hosting services use also caching proxies or server farms as alternative
solution for pushing the popular content closer to the end users.

1.3 Limitations of Existing CDNs

Today’s large server farms and hierarchical caching mechanisms are useful techniques to ad-
dress Internet web performance problems, they have a variety of limitations. First, as the servers
are deployed close to the origin server, they actually do very little to improve the network per-
formance when congestion occurs. Furthermore, although caching proxies can be beneficial,
they cache objects based on the client’s demands. This often forces the providers of the most
popular content to invest in large server farms, offering load balancing and high bandwidth con-
nections, so as to maintain performance to keep up with the demand. In order to address the
existing content distribution limitations, CDNs were deployed in the late 1990s. Naturally, the
introduction of CDNs meant, that content providers began to put their web sites onto CDN,
as they quickly realized the benefits of increased reliability and scalability without the need to
maintain an expensive infrastructure, and consequently, several initiatives coincided with the
development of CDNs. Still, today’s CDNs have a variety of issues considering the adaptivity
on fast request number changes and scaling. Currently, medium to large-scale CDNs suffer from
such issues. The size and amount of provided data grows every year, so the servers providing it
must grow accordingly. Some hosts, like sourceforge.net, provide data in excess of one terabyte.
The biggest and most often used mirror server in Switzerland, the SWITCH mirror service, has
passed 3.6 terabyte data and is still growing. The mirrors for the Linux OS are mostly provided
by universities and large Internet Service Providers (ISPs). Obviously, the bandwidth must grow
at the same rate, so the network connections to web servers can become bottlenecks due to large
number of client requests within a short time interval. This situation implies the server scalabil-
ity issues, since a single server can not meet the client requirements during the high load rate.

2

Popular web sites get easily overloaded with the huge number of user requests. With the increase
of the number of user requests, either the server’s processing capacity (CPU, RAM) or the avail-
able bandwidth (Internet Connection) are exceeded. If such a situation occurs, user requests
are usually dropped. This results in increased access delay or even unavailability of the server.
Scalability issues become even more severe when sudden or unique events occur, that are of big
interest to the public, such as breaking news or new software (updates/patches). The easiest but
not optimal way to increase the scalability of CDNs is to increase the amount and capacity of
servers (e.g. server farms). One example of such services are the Amazon Elastic Cloud services
with it’s innovative cloud auto-scaling service, called Scalr [10], which uses a number of elastic
load balancers to handle spikes in demand, or Akamai CDN [11], which applies a DNS-based
adaptive request routing mechanism for load balancing and web caching, applied on their host
infrastructure. The described solutions are solving the existing issues for content distribution
very well, but they are suboptimal, due to high hardware costs and the lack of change-dynamics
in the server infrastructure, which has to occur very fast. Another issue relates to the network
distance between server and client, the so called communication latency. Even if the server is
able to handle all client requests alone, the big network distance from server to client can cause
big communication delay. Using servers with such communication delay (e.g. users in Switzer-
land, which are connecting to a server in Sweden, can be connected through a major peering
point in the USA), can increase the load on important links (e.g. a transatlantic link), but can
also result in increased transmission delay. Today’s CDNs have significantly contributed to more
flexible and efficient content distribution and content availability, but still there are many open
issues regarding the problem of sudden network traffic spikes (flash crowds). The main problem
of the insufficient adaptivity of current systems lies in the inherent unpredictability of fast traffic
changes. Hardware and software constraints on the servers with respect to limited processing
power and memory often cause poor performance. Usually, web servers are not capable of han-
dling different hit ratios for different web content categories. The lack of performance in the
communication protocols, like TCP/IP and HTTP can also be seen as a significant factor for
poor web server performance.

1.4 Thesis Description

This Master thesis describes the design, the implementation and the evaluation of a novel CDN,
codenamed Gezora [1]. Gezora is a server side application, which establishes an overlay net-
work among the group of servers (usually volunteer-servers) and utilizes them for temporarily
outsourcing the popular and frequently accessed web content. This is required in order to be able
to fulfill the client’s Quality of Service (QoS) requirements during the peak request rates, where
the origin server is not able to handle such a request number at once. The users QoS require-
ments generally consist in guaranteed content delivery and a low request time. The volunteer
servers, distributed on different geographic locations, also called surrogate servers are used not
only for content outsourcing, but also as the contributors for the request routing and load bal-
ancing. More precisely, the volunteer servers in the Gezora CDN are able to change their role
dynamically, at the run-time, dynamically shifting from the role of pure content provider, where

3

a server retrieves 100% of client requests, to the double server’s role, where a server acts as con-
tent provider and a reverse proxy (load balancer) at the same time, and finally to the pure load
balancer role, where a server redirects 100% of the client requests. Using this approach, Gezora
provides a self-adaptive and on-demand scalable CDN. The state of the art real-time request rate
monitoring system, which consists of an Exponential Wighted Moving Average (EWMA) filter,
used for the request frequency calculation, and of the feedback control loop, used for weight
adaptation, are responsible for these properties of Gezora. Gezora addresses the current CDNs
issues, such as the issues in the current Internet transport protocols (e.g. TCP/IP), as also the
hardware constraints (large number of CPU interrupts, slow I/O, low network bandwidth), that
are mostly exhibited at high client request rates. The novel request forwarding mechanism im-
plemented in Gezora is based on the Random Early Detection (RED) [3] algorithm, a commonly
used algorithm for congestion control in the TCP/IP transport protocol [12]. But instead of con-
trolling the packet congestion, we concentrate on client requests congestion. This algorithm is
combined with the simple URL rewriting mechanism, responsible for changing of the URL ad-
dress from the origin host name to surrogate and the HTTP redirection mechanisms, which was
used to force the clients to temporary request the surrogate servers. All described mechanisms
make Gezora CDN very robust to sudden traffic spikes.

1.5 Thesis Contribution

We designed and implemented the first Gezora prototype using J2EE technology and Java
servlets. We found Java servlets to be the most appropriate technology for the Gezora proto-
type implementation, since the HTTP requests can be handled easily using Java servlets. This
allowed us to implement the efficient frequency monitoring mechanisms used as basis for the
request redirection logic. The second Gezora prototype was designed and implemented in the
C/C++ programming language in the kernel space of the Windows Server operating system. For
this implementation, we used a MS Windows server operating system and an Ethernet packet
capturing library, called WinPcap [13]. The second Gezora prototype differs from the first one in
different architecture, which focuses more on the raw Ethernet packet monitoring, compared to
the Java prototype, where the HTTP request monitoring was used. In fact, the main idea behind
the second approach is nearly equivalent to the first one, since the HTTP request frequency is
also monitored, but here the monitoring occurs in kernel space, which is positioned in a different
network layer (Layer 2), compared to the first approach, where HTTP request frequency moni-
toring occurs on the application layer (Layer 7). Due to the complexity of TCP/IP, which is the
core communication protocol in HTTP, the second approach did not function as expected. Nev-
ertheless, it was an interesting attempt to pursue load balancing on the network layer 2, which
may be further studied in the future.

The preliminary evaluation of the RED based request forwarding in Gezora was accom-
plished using a virtual Java based client model, which was able to simulate client requests with
a variable request rate per time unit as a parameter. The preliminary tests gave us the general
feedback about the RED efficiency and approved the next steps in the Gezora prototype develop-

4

ment. The main evaluation of the Gezora prototype is accomplished using the web stress tests.
With this evaluation method, we were able to measure various parameters during the client-
server communication, such as the client request time duration in ms, the % of clients waiting
for web content fetching during some time period, and much more. The principle of web server
stress test is very simple. In such tests, a large number n of virtual clients with predetermined
URL address and access frequency rate are generated. The clients are polling the content from
server with variable rate and the system measures the time communication gap between server
and client, in order to assess how long the client had to wait for accessing the content.

In the second evaluation scenario, we compared two systems: a system with one origin server
and a system with two servers, connected with the Gezora server application. The evaluation
results show, that the system with the Gezora had a 30% lower average request time than the the
origin server alone, during the high load rate. The difference between system with and without
Gezora shows also the limits of a single server when handling a big number of requests. A single
server had large response times, when the number of requests was bigger than a 1000 requests/s.
This shows Gezora’s benefits regarding the on-demand scalability with a minimum number of
deployed surrogates.

1.6 Thesis Outline

This thesis is organized in the following manner: Section 2 provides a detailed insight into the
world of CDNs and other aspects in their development. It also identifies the unique qualities
associated with CDNs, which distinguishes them from other distributed computing paradigms
and presents the structure, classification of CDNs as also the insight into the current content
distribution and management techniques. Section 3 describes similar academic CDNs, such as:
CoDeen, Coral CDN, Shark and Jellyfish. Furthermore, this section describes the following
technologies used in Gezora:

• Exponential Weighted Moving Average (EWMA)

• Feedback Control Loop

• Random Early Detection Algorithm (RED)

• Request Forwarding Mechanisms: HTTP Redirection / URL-Rewriting

This section gives also a brief introduction into the Java servlets technology framework (a vital
part of J2EE), which is used for the implementation of the first Gezora prototype. In Section
4, we describe the conceptual design of Gezora. Section 5 describes the Gezora prototype im-
plementation with Java Sevlets and J2EE as also the implementation of the second prototype,
accomplished using Ethernet packet capturing framework, called WinPcap [13]. Section 6 cat-
egorizes the general CDNs performance evaluation methodologies, describes evaluation scenar-
ios as well as the evaluation results. Finally, Section 7 outlines the conclusion and the possible
directions in the future development process of Gezora.

5

Chapter 2

Structure and Classification of Content
Distribution Networks

2.1 Introduction

Content Delivery Networks (CDNs) have been designed to offer improved performance with
respect to bandwidth and accessibility through content replication. CDNs offer fast, reliable
services by redirecting the web content to cache or edge servers situated close to the users,
as also a number of features and benefits, including content-delivery, request forwarding and
distribution, as well as complex accounting structures. CDNs usually consist of a set of edge
servers (which can also be referred to as surrogates), that deliver copies of the original content
to the end users. The request forwarding structure is responsible for client requests redirection
to the appropriate edge servers. It exchanges the information with the distribution system to
maintain the current record of the web content stored in the CDN’s caches. The distribution
system has the task to transfer web content from the origin server to the CDN’s servers, while the
accounting infrastructure looks after a detailed usage record of the various clients, which have
had accessed the CDN servers. This information is used to create traffic usage reports. Typically,
CDN’s host static content such as images, media and video material such as advertisements, and
other objects which can be embedded for dynamic web content. CDNs are regularly used by
Internet and media companies to advertise their products, as well as data centers, Internet Service
Providers (ISPs), on-line music retailers, mobile phone operators, manufacturers of consumer
electronics, and hosts of other businesses who need to publish content on the Internet in a secure
and timely manner. CDNs focus on providing the following services:

1. Network infrastructure for the storage and management of content

2. Distribution of content among the surrogates and content cache management

3. Timely delivery of the static, dynamic and other streamed content

4. Network workload monitoring, performance management and reporting

7

An example of CDN, where the web server surrogates are located on the various locations,
is shown in Figure 2.1.

Figure 2.1: Content Distribution Network Example

2.2 Primary CDN Goals

Today’s CDN providers guarantee the fast delivery of digital content. They host a variety of
third-party content, including static content such as HTML pages, images, files, and software
patches, as well as streaming media (e.g. audio and time video), and providing content services,
like directory services, e-commerce, and file transfer services. These third parties include large
enterprises, a wealth of web service providers, media companies and news broadcasters. The
end users are able to communicate with the CDN in a number of different ways, by specify-
ing the content or service request via mobile devices or a desktop computer. Naturally, CDN
providers charge their clients in accordance with the content or traffic delivered to the end users

8

via their surrogate servers. CDNs support complex accounting mechanisms which collect and
track information on the client’s usage, relevant to the request forwarding, as well as the distri-
bution and delivery. This system gathers information in real time for each CDN component. The
information can be used within the CDNs for account billing and for maintenance purposes. The
cost for charging of CDN services is high, often beyond the budget of most small to medium
enterprises or not-profit organizations. The factor which most influences and affects the costs of
CDN services include:

1. The bandwidth costs

2. The variety of traffic distribution

3. The size of the content replicated across the surrogate servers

4. The number of surrogate servers required

5. The reliability and stability of the system as a whole and the issues of security when
outsourcing content delivery

CDNs are designed to enable content providers (or customers) to guarantee a high level of
QoS to the end users who access their web content. As pointed in [7], CDNs focus on the
optimization of the following CDN parameters:

1. Scalability

2. Content transfer reliability

3. Responsiveness and performance on peak request rates

2.2.1 Scalability

The primary CDN goal is to achieve scalability. Scalability is the term to describe the ability of
the system to expand in order to handle large increases in data, users and transactions without any
noticeable decline in performance. To be able to expand on a global scale, both time and money
needs to be invested by CDNs in securing additional network connections and infrastructures.
This provisioning of resources is required to dynamically address flash crowds and varying levels
of traffic. A CDN has to be able to absorb the increased traffic levels, caused by flash crowds, by
automatically providing capacity on demand. This increased capability allows a CDN to avoid
costly over-provisioning of resources and guarantees a high level of performance to each user.

2.2.2 Content Transfer Reliability

Reliability can be defined as the service availability and the boundaries to which a service outage
might be expected. A CDN provider can improve customer access to confidential content by
delivering it from a multitude of different locations. For this purpose, a network with fault-
tolerance and the appropriate load balancing has to be implemented.

9

2.2.3 Responsiveness

Responsiveness defines the reaction to possible outages and how quickly the normal state is
reached in the course of operation. The responsiveness can also mean how fast CDNs can adapt
to the changes (i.e. request frequency changes).

2.2.4 Performance

The performance of a CDN can generally be described by the response time of requests delivered
to the end users. A slow response time is the single greatest contributory factor in customers
abandoning web sites and their processes. The overall reliability and performance of a CDN
is influenced by the location of the web content and request routing mechanism, as well as the
replication of data and the caching strategies.

2.3 Requirements on CDNs

CDNs assume that in a network with a large number of nodes, there are some willing to cooper-
ate, with their owners providing web resources voluntarily to the network community. From this
assumption a conclusion can be drawn which illustrates how diverse these nodes are in terms
of hardware, software and network characteristics. Most probably the nodes in such a network
are connected by a Digital Subscriber Line (DSL) or cable provider, as end user machines are
not expected to be highly available. Many nodes are in fact mobile devices, such as laptops
or mobile phones, what in turn makes the nodes usually available for at most a few hours as
shown by some researches. The goal of a CDN is to replicate web content in order to increase
performance and availability, what raises the issues, assumptions and tasks listed below, which
must be taken into the consideration when contemplating the design of the system:

• A CDN should appear to its clients as a single and reliable super server, enabling the
clients to use standard web browsers with ordinary plug ins or applications, which run in
the background, also called daemons.

• Each client should be automatically redirected to the replica server, that is the best for it
considering client’s characteristics and requests.

• If a lot of attention and importance is given to the document replication which has the
performance as a main task, those documents should be placed close to their clients in
order to achieve the desired performance.

• Multiple replicas require some sort of consistency management in order to determine
when, how and which replicas are to be kept consistent.

• A CDN server needs to know something about the network topology and organization in
order to be able to effectively replicate its documents, send and receive requests. This
would most probably require some sort of brokerage system to permit automated resource
discovery and allocation.

10

• Resource usage and provisioning should be fair among the nodes in order for them to
collaborate.

• Joining a collaborative CDN should be easy and simple. Installing and configuring the
necessary software should not require specific technical knowledge. All that is necessary
should be a simple web based registration process, so the users would be able to register
their machines and resources, make changes and if desired, terminate their membership.

• Security among the members should be enforced viciously so that malicious users can not
attack the system.

All these concepts should enable simplicity of distribution and replication of web content
for users desiring to trust their site to a CDN, making the hosting of a user’s web site
transparent and no different than hosting it on a single machine.

2.4 CDN Components

There are three main components within a CDN architecture, being:

1. The content provider

2. The CDN provider

3. The end users

2.4.1 Content Provider

A content provider or client is is the component that delegates the URI name space associ-
ated with the web objects, that are to be distributed. The content provider maintains these
objects on the original server.

2.4.2 CDN Provider and End users

A CDN provider is an entity which provides the basic infrastructure and facilities to the
content providers, in order to deliver the content in a secure and timely manner. End users
or customers are the bodies who access content from the content provider’s website. CDN
providers use caching and/or replicating the web content on servers, which are located in
various locations. CDN cache servers are also referred to as surrogate or edge servers.
Throughout this description we will use both of these terms interchangeably. The surro-
gates within a CDN are also generally called web clusters. CDNs distribute content to
the surrogates in a way, that allows all cache servers to share the same content and URL.
The customer’s requests are redirected to the nearest surrogate, and the surrogate server
which has been selected then delivers the requested content to the end users. This sys-
tem provides transparency to the end users. In addition to the above, surrogates also send
accounting information to the CDN provider.

11

2.5 Content Distribution and Management

Content distribution and management are vital within Gezora for the efficient delivery of
content and the overall performance. Content distribution includes the following occur-
rences:

1. The placement of surrogates at strategic positions: The main requirement is that edge
servers are as close as possible to the various clients in terms of latency.

2. Content selection and delivery (based on the type and frequency of specific end user
requests).

3. Content outsourcing (main requirement: timely content outsourcing/replication and
minimum client waiting time).

Generally, content management is dependent on the techniques for cache organization (i.e.
caching techniques, cache maintenance and cache update). In [7], content selection and
replication mechanisms are summarized. We rely on this work to briefly describe various
mechanisms for efficient content selection and delivery in CDNs.

2.5.1 Content selection and delivery in CDNs

The efficient delivery of content is determined by the right selection of content to be
delivered to the various end users. A suitable approach to content selection can assist in
reducing the client download time and the load on the server. Content can be delivered to
the customers in full or in parts.

2.5.1.1 Full-site content selection and delivery

Full-site content selection is a very simple approach, where the complete set of ressources
is outsourced to surrogate servers. In short, with this approach, the surrogate servers
perform the entire replication to deliver the total content of the site to the end users. A
content provider configures its DNS in such a way, that all requests are processed by a
CDN server. The main advantage is the simplicity of this approach. However, such a
solution is not feasible considering the ongoing increase in the size of many web objects.
Furthermore, as the web content is not static, the problem of having to update a huge
collection of web objects is unmanageable.

2.5.1.2 Partial site content selection and delivery

As an alternative, a partial-site content selection uses surrogate servers to perform the
partial replication to deliver the embedded objects only. The embedded objects can be
web page images, or other static content. With partial-site content delivery, a content
provider modifies its content so that links to specific objects have host names in a domain

12

for which the CDN provider is an authority. Therefore, the base HTML page is retrieved
from the origin server, while the embedded objects are retrieved from CDN cache servers.
The partial-site approach is better than the full-site approach in respect to the fact that the
former approach reduces the load on the origin server and on the site’s content generation
infrastructure. Furthermore, the infrequent change of embedded content means, that a
partial-site approach exhibits better performance.

The selection of content is dependent on a suitable management strategy for the replication
of web content. Assuming that the approach is to select embedded objects so as to perform
replication, the partial-site approach can be further divided into:

1. Empirical-based Replication

2. Popularity-based Replication

3. Object-based Replication

4. Cluster-based Replication

2.5.1.3 Empirical-based Replication

In the empirical-based approach, the administrator chooses, which content is to be repli-
cated. Heuristics are used in the making of such an empirical decision. The main draw-
back of this approach is the uncertainty in choosing the right heuristics.

2.5.1.4 Popularity-based Replication

With the popularity-based approach, the popular content is copied to the surrogates. This
process needs more time, because the statistics about the specific access patterns needs to
be generated periodically, as the popularity of each content category changes. In addition,
statistics are not always available for the new content category.

2.5.1.5 Object-based Replication

In the object-based approach, the content is replicated in units of objects. This approach
is greedy, as each object is replicated to the surrogate servers (under storage constraints).
Despite the fact that a greedy approach can achieve the best performance, it suffers from
high complexity when implemented on real applications.

2.5.1.6 Cluster-based Replication

In the cluster-based approach, web content is collected in groups based on either corre-
lation or access frequency, and is replicated in units of content clusters. This procedure
is performed either by specifying the cluster number, or by determining the maximum
cluster amount. The content clustering can be divided into:

13

– User’s sessions-based content clustering: With the user’s session-based content
clustering approach, the web log files collected from the server are used for clus-
tering of end user’s navigation sessions that show similar characteristics. This ap-
proach is highly beneficial in scenarios where the classification and clustering of the
frequently accessed web content is highly required, as it helps to determine both the
groups of users with similar browsing patterns and the groups of pages which have
related content.

– URL-based content clustering: The URL-based content clustering [14, 15, 16] al-
lows for the clustering of web content to be undertaken based on the structure of con-
nections between pages on a website (e.g. hierarchical or full mesh structure). The
popular content is determined from a web site, and is replicated in units of clusters
where correlation between two URLs is determined using some correlation metric
(e.g. correlation coefficients between URLs, described in [17]). This URL-based
content clustering is a very important activity at web mining [18] and URL normal-
ization [19] techniques. Evaluation results show that content replication based on
the URL clustering approach reduces the client download time as well as the load
on servers. However, these schemes suffer from the complexity involved in deploy-
ing them. For example, the web site can be developed in such a way that one URL
address has dependencies to other URL addresses, which are not clustered at that
moment.

2.5.2 Content outsourcing

For the content outsorcing is very important that the right surrogate servers within a CDN
infrastructure are selected for content delivery. Content outsourcing is performed using
either cooperative push-based, non-cooperative pull-based and cooperative pull-based ap-
proaches.

– Cooperative push-based content outsourcing

– Non-cooperative pull-based content outsourcing

– Cooperative pull-based content outsourcing

2.5.2.1 Cooperative Push-based Content Outsourcing

This approach is primarily based on the pre-delivery of content to the surrogates. The
content is pushed to the surrogate servers from the origin, and the surrogate servers com-
municate together to reduce the costs of the replication. This scheme allows the CDN
to maintain a mapping between the content and the surrogate servers, as each request is
forwarded to the closest surrogate server, or is otherwise routed to the origin server. With
this approach, the greedy algorithm can be used to decide whether the content replication
to surrogate servers should be accomplished or not. However, this is still considered a
theoretical approach, as it has not yet been adopted by a CDN provider.

14

2.5.2.2 Non-cooperative Pull-based Content Outsourcing

In the non-cooperative pull-based approach, the requests are forwarded to the nearest sur-
rogate server, using either a DNS redirection or a URL rewriting . If a cache miss oc-
curs, the surrogate servers extract content from the origin server. The most popular CDN
providers, such as Akamai [11, 20] and Mirror Image [21], use this approach. The main
drawback of the non-cooperative pull-based content outsourcing approach is that an opti-
mal server, regarding the communication latency (network distance), is not always chosen
to serve the content request. The cooperative push-based approach is still at an experi-
mental stage.

2.5.2.3 Cooperative Pull-based Content Outsourcing

In the cooperative pull-based approach, client requests are directed to the nearest surrogate
via DNS redirection. Surrogate servers are communicating with each other to obtain the
requested content in the event of a cache miss. Using a distributed index, the surrogate
servers locate nearby copies of requested content and store it in the cache. The cooperative
pull-based approach is reactive, whereby a data object is cached only when the client
requests it. An academic CDN, named Coral [22] has implemented the cooperative pull-
based approach using a variation of a Distribution Hash Table (DHT).

2.6 Request Forwarding in CDNs

A request forwarding system is responsible for routing requests to a suited surrogate server
for the delivery of content. It directs requests to the replica server nearest to the client,
although the nearest server may not be the optimal surrogate server for the servicing of the
request. A request forwarding system uses various metrics, such as the client perceived la-
tency, network proximity and replica server load in order to direct end users to the nearest
surrogate that can best serve their request. The content selection and delivery techniques,
such as full-site and partial-site, used by a CDN, have a direct impact on the design of
the request forwarding system. Alternatively, if a partial-site approach is employed, the
request forwarding system has to be designed so as to receive the customer’s requests,
so that the origin server can deliver the basic content while the surrogate servers deliver
embedded objects. The request forwarding system in a CDN has two constituent parts:

1. Request forwarding algorithm

2. Request forwarding mechanism

A request forwarding algorithm is activated upon receipt of a customer’s request. This
specifies how an edge server should be selected in response to the associated request. A
request forwarding mechanism is a method, by which the client is informed of the selec-
tion. The mechanism initially invokes a request forwarding algorithm and then informs

15

the client about the election result it obtains. A typical request routing mechanism in CDN
is shown in Figure 2.2.

Figure 2.2: Request Forwarding in Content Distribution Networks

Figure 2.2 illustrates the following interaction flow in a CDN during the server-client
communication:

1. The client sends one HTTP request using the URL-address. Initially, this request is
sent to its origin server.

2. When the origin server receives this request, it makes a decision to provide only the
basic content, such as the index page of the web site, which then can be served from
its origin server.

3. To serve high bandwidth demanding and frequently accessed content, like pictures,
the origin server, which initially distributes the content, redirects the client’s request
to the relevant CDN provider.

4. By using the proprietary selection algorithm, the CDN provider then selects the
replica server nearest to the client to serve the requested embedded objects.

5. The selected replica server receives the embedded objects from the origin server, and
then serves the client requests and caches it for subsequent request servicing.

2.6.1 Request Forwarding Algorithms

The algorithms activated by request forwarding mechanisms can be categorized as fol-
lows:

– Adaptive request forwarding algorithm

– Non-adaptive request forwarding algorithm

16

2.6.1.1 Adaptive request forwarding algorithm

The adaptive request forwarding algorithm monitors the current system state, and accord-
ingly decides whether to select a cache server for content delivery or not. The current
system state is obtained by estimating a number of metrics, such as the current load on
surrogate servers, or the traffic congestion. The complexity of adaptive algorithms comes
from their ability to change behavior in order to cope with an enduring situation. An adap-
tive algorithm demonstrates high system robustness in the face of events like flash crowds.
Akamai [11] and Jellyfish (c.f. Section 3.4) CDNs apply adaptive request forwarding al-
gorithms.

2.6.1.2 Non-adaptive request forwarding algorithm

The non-adaptive request forwarding algorithm uses heuristics for the selection of a cache
server rather than considering the current system condition. A non-adaptive algorithm is
very easy to implement, while the former is significantly more complex. Non-adaptive
algorithms work more efficiently when the assumptions made by the heuristics are met.
A commonly used non-adaptive request forwarding algorithm is the Round Robin algo-
rithm [23]. To achieve optimal load balancing, a non-adaptive request forwarding algo-
rithm considers all surrogate servers in the CDN, giving every surrogate server a certain
time slot, where the corresponding resources can be used. The non-adaptive request rout-
ing mechanism has also some disadvantages. The first disadvantage is, that this approach
does not consider the latency (network distance) from clients to surrogates. The second
disadvantage is, that the non-adaptive request forwarding is not able to distinguish differ-
ent types of client requests.

2.7 Similar Systems to CDNs

Four distribution systems have similar characteristics with CDNs. These are:

– Data grids

– Distributed databases (DDB’s)

– Peer-to-peer Networks

– Multicast Networks

– Content Centric Networks (CCN’s)

2.7.1 Data grids

A data grid is a data-intensive computing environment that provides services to end
users in different locations so as to identify, transfer and manipulate large repositories
of stored data. In the minimum application, a data grid provides two basic functions:

17

high-performance, secure data transfer, and scalable replica discovery and management.
A data grid is composed of computational and storage resources placed in different loca-
tions, which are connected by various high-speed networks. Data grids are particularly
orientated to large-scale scientific applications, such as high energy physics experiments
at the Large Hadron Collidor [24], astronomy projects - Virtual Observatories [25], and
protein simulation, e.g. BioGrid [26], which require a huge amount of data analysis. The
data generated from an instrument, an experiment or a network of sensors is subsequently
stored within a principle site and transferred to other storage sites around the world on re-
quest through the data replication mechanism. End users access the local replica records
for locating of the data which they need. Once the appropriate permission and rights to
access have been granted, the dataset is collected from the local repository, if present, or it
is fetched from a remote repository. The data may be transmitted to another computational
unit for processing. After the data processing is accomplished, the outcome is sent to a
shared repository or to individual end users desktops. The resources found within a data
grid are heterogeneous and can be distributed over several domains. The large datasets,
distributed data collections sharing, which have the same logical name space, and the re-
stricted distribution of data can be considered as the unique characteristics of data grids.
They also contain some application specific characteristics. The overall goal of data grids
is to bring together existing resources in order to achieve a certain performance benefit
through data distribution. Data grids are invariably created by institutions which come
together to share resources with common goal, by forming a Virtual Organization (VO).
An example of a data grid is shown in the Figure 2.3.

Figure 2.3: A Data Grid Architecture

18

2.7.2 Distributed databases

A distributed database (DDB) is a collection of logically organized databases and their cor-
responding data, distributed across a number of physical locations. A distributed database
may be stored within several servers located at the same physical location, or dispersed
across a wide network of interconnected computers. Each of the computers in a distributed
database system acts as a node. In a distributed database, a node acts as either a client,
a server or both, depending on the situation. Each location has a reasonable degree of
autonomy and is capable of processing local queries, as well as participating in the execu-
tion of global queries. A distributed database can be constructed by separation of a single
database or by unification of existing databases. The distribution of a system in this man-
ner is transparent to the end users, as they interact with the system as an isolated logical
system. DDBs have primary evolved to serve the needs of large organizations as a more
performant solution than a single database systems. The main idea was to interconnect
the existing databases and add new databases to organizational units. The usage provided
by DDB includes the transaction distribution process, query and optimization, and the ef-
ficient management of resources. DDBs are dedicated to integrate existing and diverse
databases and to provide a uniform interface for query processing with increased security
and throughput. One example of distributed databases are the Oracle Exadata Storage
Servers [27]. DDBs are similar with CDNs regarding the distributed transactions. But
CDNs differ from DDBs, because CDN servers lacks autonomy, which is an important
property in DDB web sites. Moreover, the main goal of CDNs is content caching, while
DDBs are used primarily for query processing and transactions. The DDB architecture is
shown in the Figure 2.4.

Figure 2.4: Distributed Database Architecture

19

2.7.3 P2P Networks

P2P networks [28] are primarily designed for directly sharing computer resources, as op-
posed to having an intermediate or central authority. Within a P2P system, each peer is
autonomous and relies on other peers for resources, information and request forwarding.
In an ideal environment, there would be no point of central control in a P2P network:
Therefore, each of the participating nodes would collaborate to perform such tasks as
searching for other nodes, the locating or caching of content, request forwarding, encrypt-
ing/decrypting, retrieving, and verifying the content. Today’s P2P systems are also more
tolerant on connection failures and scale better than the traditional centralized systems,
because they have no single point which can be subject to failure. A single entity in a P2P
network may join or leave at anytime. P2P networks are invariably suited to the individ-
ual content providers who are unable to access or to afford common CDNs. The content
and file sharing found within P2P networks is mainly focused on the creation of efficient
strategies so as to locate files within a particular group of peers, and to provide secure
transfers of these files in case of high volatility, as well as managing high volumes of
traffic (i.e. flash crowds), which are caused by heavy demand for popular files, in contrast
to CDNs, whose primary goal is respecting the client’s performance requirements, rather
than the efficient searching of a peer with the required content and low network latency.
Moreover, CDNs differ from P2P networks because the number of nodes which can join
and leave the network per unit time is negligible, whereas the bandwidth rate is important
in P2P networks. The known issues of P2P networks are: scalability problems arising at
large numbers of participating peers, complexity (end user implementation required), se-
curity (peers cannot trust themselves inherently, few integrity checks), performance (due
to the asymmetric network connections), routing overhead, and suboptimal use of avail-
able bandwidth (most P2P networks are not topology aware). The content availability is
also questionable, since there is no guarantee that every content part is available. Figure
2.5 illustrates a classical P2P network architecture.

2.7.3.1 BitTorrent P2P Network

An example of such a system is BitTorrent [29], a P2P content distribution application,
which has increased greatly in popularity in the last years. BitTorrent has certain advan-
tages when used with peers, which have fast network connections (high upload rate) and
it does have solutions for certain P2P issues, such as:

– Integrity checking

– Decentralization problem (uses Tracker and .torrent files for meta-data)

However, BitTorrent still has a problems with large, heterogeneous P2P networks (high
upload utilization, fairness, etc.), which arises at distributing a big amount of smaller
objects. The segmentation of many objects increases the routing overhead and does not
scale well during the flash crowds, since the peers are interconnected with asymmetric

20

Figure 2.5: P2P Network Architecture

bandwidth connections, and they have different network latencies to each other. For this
reason, BitTorrent has an advantage only when distributing large objects, such as ISO
images.

2.7.4 Multicast Networks

Another content distribution approach, application level or IP multicast, can have benefits
in the situations where a big number of clients fetches the same content at the exactly
same time (e.g. video broadcasting of a football match). The successful deployment of
the multicast paradigm requires to provide the same level of reliability and manageability
as existing unicast networks, which is not the case. The complex installation, configura-
tion and debugging is still one big issue. Another issue is the establishment of multicast
groups for a specific content category. In case many small objects, multicast networks
would not be able to hold their scalability, since the multicast trees would not hold the fast
and reliable content replication to many clients at the same time, using only unicast con-
nections in the background. Still, multicast networks are very interesting and may have
many useful deployments in the future.

2.7.5 Content Centric Networks

Content Centric Networks (CCNs) are a quite new content distribution approach proposed
by the American sociologist and philosopher, Ted Nelson and promoted by Van Jacob-
son, the research scientist from the XEROX Palo Alto Research Center [30]. The basic

21

idea behind this novel communication paradigm is that the data is observed as a primitive,
whereas the content location is separated from its locality, identity, security and access.
The communication is not host-name based (IP, net, subnet, host-name) like in today’s In-
ternet communication. It is based on the content’s name. This changes the communication
scheme significantly and moves the whole network stack from IP to a chunk-model, where
the content is classified by name and accordingly separated in chunks. The communica-
tion in CCNs is regulated by content consumers. Here we distinguish two main packet
types, namely the interest packets and data packets. The consumer, which is interested in
one content type, is starting to broadcast the interest packets through the network. Any
node that received interest packets, which contains the required content, responds with a
data packet. Since at this communication paradigm, the content is exchanged by name, we
call it Content-aware content distribution. The Figure 2.6 illustrates the CCN architecture
and the work-flow during the interest request. The main advantage of this approach is that
multiple nodes, which have interest in the same content, can share transmissions over the
broadcast communication. Other advantages lie in the interest broadcasting for the con-
tent, which does not exist yet. This can activate a dynamic on-the-fly content generation
in response. This makes CCNs ideal for unreliable packet delivery services as for mo-
bile or ubiquitous computing. CCNs can also be applied in on-demand multimedia data
distribution, such as video on-demand, Voice-over-IP. The main CCN disadvantage is the
way of data retransmission. Unlike TCP, the CCN data-transport moves the responsibility
to the content consumers regarding the data-retransmission. The content-consumers are
responsible for re-expressing the interest for the content and it’s retransmission, if they
still require it. The content providers are further assumed to be stateless.

22

Figure 2.6: Content Centric Network Architecture

23

Chapter 3

Related Academic CDNs and
Technologies used for Gezora CDN

3.1 CoDeeN

3.1.1 Introduction

CoDeeN [31] is a proxy server developed at the Princeton university, which is installed
on the PlanetLab testbed [32, 33]. CoDeeN utilizes a group of caching web proxy servers
in order to distribute and cache requests from a variety of clients. The system is open for
a very wide array of clients, allowing the access from any client in the world. It is the
most used service one the PlanetLab and it handles more than four million accesses daily.
Usually, most open proxies have a number of problems: failing nodes, nodes performing
malicious activities, node health, and much more.

3.1.2 Deployment of CoDeeN on PlanetLab and its Advantages

The Internet and wide area network testbeds have emerged in the past couple of years.
The best example for this is the PlanetLab, which is mentioned in the introduction. The
testbeds, like Planetlab have real traffic conditions. This is the most important require-
ment for the researchers. A CoDeeN is an attempt to utilize a decentralized design to
address a latency sensitive problem. In order to address the latency reduction problem,
other systems utilize geographically distributed server surrogates. These surrogates cache
content from the origin server and request redirectors to send client requests to other sur-
rogates. The advantage of CoDeen is that it is not a commercial testbed and as such it
engages clients and not content providers. Because of this characteristic, CoDeeN is able
to capture more information on the client’s access behavior. CoDeen’s future development
might be going in the direction of the non commercial content providers which would be
able to automatically send their HTTP traffic by transparent proxying, because of the in-
frastructural overlap. The CoDeen system is intended to consist of proxies operating in

25

both forward (intermediate surrogate accomplishes the content requests from the origin
server, and retrieves them to clients) and reverse directions (surrogate servers act as load
balancers or firewalls and are fully transparent to clients).

3.1.3 Architecture and Design of CoDeeN

CoDeeN is a latency sensitive environment, and the preferences are to avoid the problem-
atic nodes even if they can give correct results. The reliability of CoDeeN CDN depends
on the resource utilization during the run time. It is regulated by a timely state information
exchange between various redirectors. According to the exact state of other proxies, the
redirectors can decide which reverse proxies are used for the request forwarding.
The CoDeeN communication scenario can be described as follows: When a CoDeeN node
accepts a client’s request, it tries to satisfy it locally. In case of a cache miss, requests are
handled by the redirector, which is determining where to send the request. Redirectors are
usually other CoDeeN nodes which are utilized as reverse proxy servers (load balancers).
CoDeeN is designed to use a node health monitoring mechanism for providing a reliable
content distribution service. Using heartbeat messages, CoDeeN is able to estimate when
the nodes can be utilized.

3.1.3.1 CoDeeN’s Local Monitoring

In CoDeeN, local monitoring is used for collecting information about the state of
CoDeeN’s host environment. Local monitoring periodically checks the CoDeeN’s pri-
mary resources, like CPU cycles, free file descriptors or queued incoming requests, but
also the non critical information, like system load averages, classified traffic rates or free
disk space. If a node does not have enough resources, it is marked as a failure node. To
decide if a node is a failure node is not easy. There are many external factors involved
in disrupting service health and they are usually outside of PlanetLab. Typically, the load
averages of nodes are read every 30 seconds and updated inside CoDeeN, and the pro-
cessor time in the operating system is also queried every 30 seconds, for up to 3 minutes.
Some applications spend a lot of time inside the operating system but rarely more than
90%. All applications spending more time than 95% are considered as failures. Some
faulty occurrences at nodes were also determined by the experience. For example, assume
that some experiment consumed all available sockets. The local node was not only inca-
pable to determine the existence of contact requests, but it was also unable to report the
failure as well, since incoming requests were indefinitely queued inside the kernel. Home
users can benefit from CoDeeN’s local monitoring mechanisms on PlanetLab. Most Plan-
etLab nodes host some active projects at any time. Although this concept may lack virtual
machines, it is still performing better than multitasking home systems.

3.1.3.2 Peer monitoring

In CoDeeN, peer monitoring is performed in two ways:

26

– By lightweight UDP heartbeats

– Heavy HTTP/TCP level helper

3.1.3.3 UDP heartbeats

UDP heartbeats are simple estimations to measure the status of the unhealthy peers. UDP
is used when sockets are exhausted and as a result, TCP-based communication is blocked.
Each proxy sends a UDP heartbeat message to the peer, which returns information about
its local state. The generated UDP heartbeat traffic is small but in case of a need to
reduce the traffic, the heartbeat frequency can be reduced. Each instance of CoDeeN
independently assesses the health of other nodes by monitoring acknowledgments. If the
acknowledgments are sent and arrive late, the node is determined to be a failure node. If
the acknowledgments are sent and not received at all, the node is considered to be a dead
node. This information is used to determine which node is a good candidate for handling
forward requests.

3.1.3.4 HTTP / TCP Heartbeat

HTTP / TCP Heartbeat is a very useful method to determine the node health. Employing
the tool to fetch pages over HTTP / TCP using proxy specifies what fails when the page
can not be retrieved. The reasons are manifold and can range from socket allocation
failure, slow / failed DNS lookup, incomplete connection setup and failure to receive data
from the remote system. Each CoDeeN instance uses a dummy web server, as a good
server of origin, so that the fetch tool could be able to test the proxying capabilities of the
peers. The local node picks one of its peers to act as an origin server, tests all other peers
as proxies using the fetch tool. During run time, all CoDeeN nodes will be tested once,
and will have a function as origin server, used for proxy testing.

3.1.4 Differences To Gezora

The main difference between CoDeen and Gezora is that CoDeeN redirects the request
only on a cache miss. Gezora accomplishes the request forwarding using the Random
Early Redirection mechanism (described in Section 4.4), even if there is a cache hit. The
amount of forwarded requests depends directly on the request frequency. At a very high
request frequency, all incoming requests are redirected (100% reverse proxy modus). This
makes Gezora more robust to fast changes in the client request rate than CoDeen. The
request routing mechanism is accomplished in the same way in both systems, using a
simple URL-rewriting mechanism.

27

3.1.5 Conclusion

CoDeeN does not have its own infrastructure like other commercial CDNs (e.g. Akamai),
so it has to compete for resources with other experiments on PlanetLab sites. Depend-
ing on the general system usage, hardware resources might be exhausted as well as the
network bandwidth, thus creating problems in availability, functioning and reliability of
services provided by CoDeeN. The success of monitoring in the distributed environment
depends on the difference between monitoring frequency and service failures. The ma-
jority of the failures in CoDeeN are longer than the monitoring frequency. Short failures
can be avoided by the constant update of the node’s history. Simultaneous requests are
not used, because a forward proxy cannot determine whether or not the request has been
sent to the origin server. Using the multiple parallel requests and waiting for the fastest
answer is not an optimal solution, because it is often bound with errors. Unfortunately,
practice has shown that the reliability of the CoDeeN system has decreased with more
nodes being added. CoDeeN is currently operating on approximately 100 nodes and their
status is much more dynamic and unpredictable than expected. Beside the technical dis-
advantages, CoDeeN has also an organizational problem. This problem arises in making
the decision, which nodes should be allowed to act as open proxies. The nodes have not
just to deal with the local requests, but with any client in the world as well, which led to
the increased traffic. These issues emerging from open architecture include: system abuse,
system unavailability because of the node disconnection, spam, service- and identity theft.

3.2 Coral Content Distribution Network

Coral CDN [22] is a decentralized and self-organizing CDN, similar to P2P networks.
It allows clients to run a web site that offers high performance whilst meeting a huge
demand. The costs for this are in the range of a medium-priced broadband Internet service.
Coral CDN uses a latency optimized hierarchical indexing infrastructure, based on a novel
abstraction called a distributed sloppy hash table - DSHT [34]. The positive side of Coral
CDN is that its simple interface has led it to widespread application so that many sites
began to use Coral as elastic load balancing solution, which dynamically redirects the
network traffic. Coral CDN has been operational on PlanetLab since March 2004 and it
was running until the end of 2009.

3.2.1 Corals Architecture and Design

Coral is built on top of the novel key-value indexing infrastructure and is made of three
stand alone applications:

1. Indexing Layer

2. Corals HTTP Proxy Servers

3. DNS Server

28

Web content is automatically replicated by volunteer sites as a side effect of users using it.
In order to use a Coral CDN properly, clients just need to make a change to the visited web
object’s host-name in its URL and they will be redirected transparently to nearby nodes
by a peer to peer DNS layer. The participating volunteer nodes work together in order to
reduce traffic load on the origin server.

Two main characteristics make Coral ideal for efficient content distribution:

1. Coral allows nodes to locate nearby cache copies of web objects instead of querying
for ones further away and secondly to prevent server overloading in the infrastruc-
ture.

2. Coral uses routing techniques popularized by P2P DHTs, where a traditional URL
to node mapping is achieved. Still, it is a different approach than with DHTs, since
Coral uses a novel Distributed Sloppy Hash Table, which lets nodes locate and fetch
the required content from each other by name (similar to CCNs). The main idea
behind this approach is that a node does not need to know the exact location of every
replicated resource, it only needs a single, valid, nearby resource copy.

Reasons for using P2P DHTs in Coral are various. The most important are: locality, server
overloading prevention, which is not possible on normal DHTs, and the fact that Coral’s
architecture is based on the clusters of well connected machines. Because of all these
properties, it provides a weaker consistency than traditional DHTs. For this reason, Corals
DHT can be called Distributed Sloppy Hash Table (DSHT). Unmodified web browsers can
operate with the system normally because Coral employs a P2P DNS redirection infras-
tructure and utilizes an algorithm for epidemic clustering, which exploits the distributed
network. Epidemic clustering is a progressive exponential clustering, which correlates di-
rectly to the number of established connections between peers. This phenomenon is very
similar to the spreading process of the human virus, which also correlates to the number
of human contacts.

Coral CDN consists of three main parts:

1. Network of DNS name-servers for nyud.net with the main task of mapping clients
that are near to Coral HTTP proxies.

2. Underlying Coral indexing infrastructure and clustering machinery, with the main
task to represent the platform for other two components.

3. A network of cooperative HTTP proxies that handles requests from users.

Coral can be used by publishers, third parties or end users, without any software installa-
tion. The system functioning can be outlined in the next steps:

1. When the client sends the DNS request to the Coral name-server, Coral probes the
client to measure the round trip time and uses this information to determine an ap-
propriate name-server and proxy to return.

2. The client sends the HTTP request to one of the returned proxies and if a web object
is cached locally, the process is finished. If the web object is not cached locally, the

29

proxy attempts to find the object on another Coral CDN proxy, which is nearest to
the client.

3. The proxy searches for the object’s URL in the Coral indexing layer and if the object
is found, the proxy returns it to the client from the node where it is cached. If the
object is not found than the proxy fetches it from the origin server.

4. After the process, the proxy stores the reference of it self and the object in Coral,
announcing the fact that it is now caching the object.

3.2.2 Differences To Gezora

The main difference between Coral CDN and Gezora is, that Coral requires user action for
for changing of the URL address, which points to the Coral CDN nodes. The redirection
is accomplished using a P2P DNS layer. On the other side, Gezora uses a simple URL
rewriting and HTTP Redirection for Request routing and does not require any action in
order to use it. It is fully transparent to clients.

3.2.3 Conclusion

Coral CDN being a P2P web content distribution network utilizes people’s willingness to
redistribute data, which they find useful. Indexing of cached web content is achieved by
distributed storage abstraction called a DSHT. Traffic congestions are avoided by DSHTs
mapping of a key to multiple values and scaling many stores of the same key. Node
clustering by network diameter in Coral CDN can be described as follows: Each Coral
node is mapped to several distinct DSHTs called clusters. Each cluster is denoted by a
maximum desired network round trip time (RTT), also called a network diameter. Fur-
thermore, it uses a hierarchical structure of fixed diameters. At each hierarchy level, every
node is a member of one DSHT. A group of nodes can actually form one cluster at one
hierarchy level (level a), if their network diameters are below the diameter threshold at the
same hierarchy level (level a). Coral uses a three-level hierarchal structure. Some similar
approaches are described in [35]. Successful clustering of nodes by network diameter en-
sures that nearby data replication can be located and retrieved by Coral, without querying
more distant nodes. A peer to peer DNS layer redirects clients to nearby Coral proxies and
allows unmodified web browsers to benefit from Coral CDN and in turn avoid overloading
origin servers. Disadvantages in the Coral CDN architecture is an intention to trade the
server load for latency and in the process mask the temporary failures at origin servers.
Coral CDN may not be ideally suited for smaller scale platform like PlanetLab [36, 37],
but it provides the interesting self-organizing and hierarchical properties.

30

3.3 Shark

3.3.1 Introduction

For accessing remote data, network file systems can offer a transparent and very powerful
interface to a wide public. In the current network file systems like NFS [38], clients fetch
data from a central server, which is connected to other servers in the network file system.
This, unfortunately, limits the system’s ability to provide the service for a large number of
clients, since the single server cannot handle all requests at once during the high load rate.

Recently developed systems, designed as peer to peer systems, have managed to reduce
this scalability bottleneck, but they are often too complex and provide non standard mod-
els for accountability and administration. The designers of the Shark [39] system have
tried to give to the wider public the scalability of distributed systems with the simplic-
ity of systems with central servers. The Shark system is an attempt to merge the best
characteristics of a distributed file system for large scale - wide area deployment, with
characteristics of local area file systems.

Shark introduces a new concept, where clients mutually exploit each others file caches in
order to reduce the load on the origin server. Clients can find nearby copies of data using
a distributed index even if the files are located on different origin severs. Shark has proven
that it can retain competitiveness for clients in local area network while reducing the
latency for reading heavy workloads in both local and wide area networks. To summarize,
it can be stated that Shark has the ability to help servers with modest characteristics,
service hundreds of clients while keeping the usability, consistency and accountability, on
a satisfactory level.

3.3.2 Use Cases

Users of distributed environments often launch similar processes on hundreds of machines
almost simultaneously, what can create difficulties in debugging. Distributed web hosting
and network measurement require software with low level network control and resource
allocation. Testbeds such as PlanetLab [36, 37, 32, 33], provide users a possibility to repli-
cate their programs along with some minimal execution environment before they launch
a distributed application.

Shark is especially designed to provide a support for widely distributed applications.
Rather than to manually replicate program files, users can place a distributed application
and its entire run time environment in an exported file system and execute the program
directly from the file system on all nodes. Shark deals successfully with a large number of
client requests by locality aware cooperative cache. Shark will enable clients to download
nearby cached copies of identical desired files or even chunks of desired files from other
clients instead of contacting the origin. Shark coordinates client caching by leveraging a
locality aware, P2P distributed index thus forming the client machines into self organizing
clusters.

31

Clients, who attempt to simultaneously read identical data, are directed to nearby replicas
and can fetch the content from each other in parallel. This represents the main idea of
the Shark system. Because of its characteristics, Shark has become a satisfactory tool in
environments where other systems have been previously inefficient. Shark and local hosts
interact by using existing network file system protocols, but Shark runs in user space.

3.3.3 Design

The design of the Shark system incorporates several ideas aimed at reducing the load on
servers, thus improving client perceived latencies, enabling clients of mounting remote file
systems and efficiently accessing them. The Shark system enables the client’s equipment
to become multi-functional machines. They act as a client (when handling a local applica-
tion file system access), as a proxy (when they are serving cached data to others), or as a
node (within the distributed index overlay). Generally, such a system would traditionally
use different machines for every role.

When the client fetches the file from the origin or a nearby proxy, Shark caches it and
registers itself in the distributed index. When another client attempts to access the content,
it discovers the pieces of the content near itself and downloads the content in parallel via
a secure channel and then registers itself in the distributed index, thus becoming another
available source and decreasing the load on the origin server. A Shark server divides a
content into pieces by using the Rabin fingerprint algorithm [40].

A client discovers replica proxies with the content pieces via Shark’s distributed index and
other Shark clients, which cache content pieces, organize themselves into a key / value
indexing infrastructure (built on a peer to peer routing overlay) in order to enable a client
to retrieve the desired content. All security issues that might compromise the process (like
a malicious proxy breaking data integrity and altering the content) are regulated by tokens
generated by the file server.

If a malicious proxy compromises the data, the client is able to detect a change. Tokens
serve as a shared secret between the proxy and the client for deriving keys for data trans-
mission. Indexing keys are only derived from a token and they do not compromise in any
way a token’s shared secret. Shark allows the clients to freely exchange data segments
that are not entire files without use of the tokens. In this way, one can still act as a proxy
and transmit data to others, because small portions of the files are identical even if the file
versions are different.

3.3.4 Differences to Gezora

The Shark system is very similar to P2P Networks. The most important feature is that the
client, which fetches some content, caches its parts locally. The content chunks are being
discovered from the other clients, if they fetch the same web content, and are positioned
very near (i.e. latency) to the client with the same content chunk. On the other side,
Gezora does not use client machines for content caching. The content is being replicated

32

only on volunteer servers, which are the part of the Gezora’s cloud infrastructure, similar
to CCNs 2.7.5.

3.3.5 Conclusion

The designers of the Shark system have attempted do create a network utility file system,
which can provide services to hundreds of clients, while simultaneously replacing local
area file systems. Shark exploits existing local file systems, ensures compatibility with
existing administrative procedures and provides a performance, which is competitive with
other secure networks beyond expectations.

Clients on a Shark system form a locally optimized cooperative cache by constructing self-
organizing clusters of very well connected machines in order to achieve improved wide
area performance. They efficiently locate nearby copies of data using a distributed index.
They download files or parts of the files from multiple proxies in parallel. This reduces
the load on the origin servers and delivers much improved (much reduced) latency for the
clients. Because of all these characteristics, Shark achieves a scalable, efficient, secure yet
easily administrated file distribution system.

3.4 Jellyfish

3.4.1 Introduction

The expenses of running a popular web site are often in the range of hundreds of thousands
of dollars. This is not affordable for many small companies, non-profit organizations and
individuals. At the present moment there is no easy way for an Internet site to lighten
the load of hosting to the volunteers, such as private PC owners. Practice has shown that
many people would like to donate their idle computing resources in order to help a good
cause, thus reducing the sites hosting costs. Ordinary PCs are geographically dispersed,
unreliable, possibly malicious and could have low-bandwidth connection. One of the
possible solutions is Jellyfish [41], a distributed web caching system, which is intended to
run across ordinary unreliable PCs while maintaining a high performance. Jellyfish is the
most similar CDN system to Gezora, since it allows volunteers to assist at request routing
and content replication with available resources.

3.4.2 Architecture and Design of Jellyfish CDN

Jellyfish [41] is intended to be a cooperative, decentralized and P2P CDN. The scien-
tists who designed Jellyfish have started from the assumption that systems for distributive
caching are using the nodes, which are reliable in terms of malicious behavior, perfor-
mance and bandwidth. This assumption will hold in the perfect environment where one
overlay network has a big number of machines, which have a high bandwidth and pro-
cessing power. The main requirement for Jellyfish was to retain the best possible content

33

distribution performance regardless of the degree of relative centralization. In most cases,
decentralization implies the existence of the shared routing or object placement proto-
col, which provides the robustness and scalability at content delivery systems. Object’s
lookup and retrieval is the product of deterministic, non-hierarchical caching structure. On
the contrary, a Jellyfish CDN is intended to use the hierarchical overlay caching structure.
Generally, the utilization of the Jellyfish system is categorized by different groups:

– Content Providers

– Volunteers

– End users

3.4.2.1 Content Providers

In order to use the Jellyfish software, content providers (organizations or individuals)
must supply at least one reliable and trusted machine on which Jellyfish can be run as a
server. Jellyfish can be used only if the server software is properly setup to reconfigure
their name servers without changing their actual code. A good side of the process is that
one can create a sub-domain and make the changes on the main domain only when the
sub-domain is fully tested and running.

3.4.2.2 Volunteers

Anyone who is willing to dedicate server resources, primarily broadband connection and
to download the Jellyfish client can become a volunteer. Such persons select which web-
site they would like to help and they can choose from a list of approved choices. When
the machine of the volunteer is idle, it will connect to the main Jellyfish servers and reg-
ister itself as an available node, what will in turn, immediately trigger the requests to be
forwarded to it.

3.4.2.3 End users

It is intended that the users do not see any apparent difference between browsing the site
conventionally and with the support of the Jellyfish. Unlike in Jellyfish, other systems (i.e.
Coral) leave no choice for users to opt in or out of the caching system, because the content
provider controls the choice. In the case of Jellyfish, content provider might make inde-
pendently accessible cached site thus enabling users to choose which distribution system
they would like to use.

3.4.3 Jellyfish Node/Super node Structure

The node/super node structure of Jellyfish is chosen to be based on a DHT overlay be-
cause the designers have felt that for the low latency applications this structural design

34

has advantages and achieves better performance. Some existing P2P applications like
Skype [42], are applying the node/super-node structure. Generally, two key issues arise at
distributed caching systems:

– A large portion of the PCs are behind restrictive firewalls, requiring the assistance of
the unrestricted peers to initiate TCP connection with normal users.

– Big hardware and bandwidth differences at nodes in the overlay networks.

In Jellyfish, super nodes are considered to be all volunteer nodes, which are not behind
firewalls and NATs with reasonably high capacities and uptime. Other volunteers without
these characteristics are considered to be ordinary nodes. Super-nodes can act also as
ordinary nodes or shift their role back and forth in time. Jellyfish assigns ordinary nodes
to a super-node with a minimum network latency. The super-nodes can alternate their role
as HTTP or DNS servers while the ordinary nodes can only act as HTTP servers without
a choice.

3.4.4 Jellyfish Request Routing and Service Discovery

Request routing in Jellyfish is performed by using DNS, much like in many other systems.
Generally, the entire cached web site is assigned to its own sub-domain (main HTML
files, associated images, javascript and css files), which represent the simple translation
of its URL. When the user sends the request for a page, the super-node determines which
ordinary node should serve the request. If necessary, the super-node will also coordinate
the communication between the user and the ordinary node, which acts as ordinary HTTP
server. If the ordinary node has the requested content, it will answer the user. In another
case, it will attempt to retrieve the content from a central server before forwarding it to
the client. If the nearby nodes do not cache the content, a Jellyfish is designed to declare
such requests as a cache misses, rather than searching for the cached content on the nodes,
which are on the other side of the world. In order to find a solution to this problem and
to reduce the number of cache misses, Jellyfish employs the cache digests, which are the
bloom filter [43, 44, 45] based methods for efficiently reporting which content can be
found in the cache of different nodes. Every super-node runs the bloom filter on its state
representation of the cache content of its sub nodes, obtains the cache digest and sends
the results to its nearby super-nodes. When a super-node receives the request that none of
its ordinary nodes can fulfill, it starts to search among the cache digests of its super-node
neighbors and forwards the client’s DNS request to the super-node, whose ordinary node
caches the file and creates the near cache miss in the process. The disadvantage of this
procedure is that single bloom filters can give false feedback. The negative influence of
this false feedback is acceptable, because it does not make much difference if it has not
been used in the first place and the result would be the cache miss anyway. For eliminating
the possibility of false cache digest results, some other methods can be employed, but
those methods come with higher computational costs. After a described scenario occurs,
the super-node, which originally got the request, will instruct his ordinary node to cache

35

the content, retrieved from the ordinary node of another super-node. As described, in this
way the cache digest method is able to reduce costs and utilize resources more efficiently
than gossip-based notification method deployed on some other systems.

3.4.5 Differences to Gezora

Jellyfish is the most similar CDN system to Gezora. It applies the very same principles of
using the resources of the volunteer servers to establish a fully-distributed overlay network
for efficient and load-insusceptible content distribution. Though, the hierarchical super-
node/node structure as the bloom filter based cache digest differs from the principles of
design proposed in the Gezora. At Jellyfish CDN, when the client sends a request for
some web content, the super node is looking for the best appropriate node (in terms of
load and network latency), which can deliver the content. The super-node can act either
as the DNS- or a HTTP-server. This mechanism is very similar to Gezora’s dynamically
changing server roles (content provider / load balancer). Further, if the normal nodes do
not cache the content, Jellyfish declares the client request as a cache miss. This method
prohibits further searching for the content on the nodes, which have a bigger network
latency (i.e. nodes on the other side of the continent). This can increase the response time,
since the qualified cache miss triggers the further searching for the content and node-
traversing. If the super-node receives the request that none of the other nodes can fulfill
it, it search in the cache digest for it. This mechanism is very complex and can have
benefits on large CDNs, but it’s adaptivity to sudden traffic spikes is questionable. On the
other side, Gezora does not use the hierarchical node structure, as also the cache digests,
since it is not a pull-based CDN. Gezora uses a chained node structure, where every node
forwards requests to other nodes, depending on the request frequency level. This system
is much simpler and avoids the unnecessary node-traversing during one client request.

3.5 Java Servlets

3.5.1 Introduction

A Java servlet is a kind of server-side software, which handles the messaging between a
client and the server. The Java servlet API [46] is used by to respond to the HTTP requests.
The Java servlet API is an interface, used by a program to enable interaction with other
software. It includes routines specifications, data structures, object classes and protocols,
usually implemented by applications, libraries, and operating systems to determine their
vocabularies, calling conventions and to enable access to their services.

The main characteristics of Java servlets are:

– Servlets are portable across platforms and across different web servers
– A servlet is persistent, because it remains in the memory between requests and it can

maintain system resources, such as a database connection

36

– The servlet is loaded and created only once by a server, when the client initiates calls
to a servlet, what makes it very efficient. Additional calls perform only the business
logic processing unlike the CGI processes, which are loaded with each request, what
decreases the performance. A Java virtual machine uses the lightweight Java threads
to handle servlet requests unlike CGI, which uses the heavy operating system process

– A servlet is able to access a library of HTTP specific calls in order to benefit from the
development of the Java language and servlet also separates the presentation from
business logic. This separation makes it easier to split a project into pieces for easier
maintenance and development

The Java class is a sort of blueprint or a template, used to create objects of the same class.
This template describes the state and the behavior, that objects of the same class have
in common. Speaking in more technical terms, the class is the cohesive package, which
consists of a particular kind of meta data. Servlets may be uses to generate a dynamic
content to a web server. Most commonly the generated content is a HTML, but it may be
other data i.e. XML.

3.5.2 Servlet’s Web Container

Servlets are representing the counterpart to non Java dynamic web content technologies.
Servlets use HTTP cookies or URL rewriting in order to maintain the session variables
during the server transactions. All API servlets, contained in the Java package hierarchy
like javax.servlet, describes the expected interaction of a web container and a servlet.

Essentially, the web container is a web component, which communicates with servlets. In
order to run a servlet the servlet container is needed. It is responsible for managing other
aspects of the servlet life cycle such as:

– User sessions

– Class loading

– Servlet contexts

– Servlet configuration information

– Servlet persistence

– Temporary storage

Communication with the servlets occurs exclusively through a web browser, so servlet
engines are useless on their own. They can be divided into three groups: those embed-
ded into web servers servlet engines, which can be used as standalone web servers or
connected to the other servers and as add-ons to the existing web servers. Some of the
responsibilities of the web container are:

– Managing the life cycle of servlets

37

– Mapping a URL to a particular servlet

– Ensuring that the URL request has the correct access rights

3.5.3 Servlet’s Communication Flow and Libraries

At servlets, the Java objects are defined by the servlet package, and represent the servlet
requests and responses, as well as the objects, which reflect the servlet’s configuration and
execution environment. The javax.servlet.http package defines HTTP specific subclasses
of generic elements, which include objects for session management. These objects in-
clude requests and responses between the server and client. Servlets have the ability to be
packaged in a WAR file as a web application. A WAR file (web application archive) is a
file used for distribution of: servlets, Java server pages, Java clases, XML files and static
web pages, which all constitute web applications. Automatic generation of the servlets is
possible with the Java server pages complier or by template engines such as WebMacro
or Apache Velocity, in order to create HTML. Java server pages and servlets are used
together in a pattern called Model 2. Model 2 is a kind of a model view controller pattern.

The following steps comprise the servlet life cycle:

– On start up, the web container loads the servlet class.

– The init method is called by the web container. This method initializes the servlet
and must be called prior to the servlet serving any request. The init method is called
only once within the whole life cycle of the servlet.

– Each request is served in its own separate thread. The service method of the servlet
is called for every request by the web container. The service method determines of
what kind the request is, and dispatches it to an appropriate method to handle it. It
is the duty of the servlet developer to implement these methods. If a request is made
for the unimplemented method, the parent class is called and the resulting error is
returned to the client.

– After all is done, the web container calls the destroy method that takes the servlet out
of the operation. Both init and destroy methods are called only once in the servlet’s
life cycle.

3.5.4 Building and functioning of Java HTTP servlets

In order to build the servlet, an editing environment is needed as well as the profound
knowledge about object oriented programming and procedural programming. The com-
pilation of the servlets requires a Java compiler and Java server development kit, which
is an extension of the Java development kit. The Java servlet API [46] defines a standard
interface for request and response messages. Because of this, the servlet can be portable
across platforms and different application servers. Servlets have the ability to respond to
client requests by dynamically constructing a response, which is sent back to the client.

38

Written in the Java programming language, servlets have full access to the variety of the
Java APIs, what makes them ideal for implementation of complex business application
logic and accessing data in different parts of the IT system’s architecture. A servlet can
be called multiple times to serve requests from many clients and can simultaneously han-
dle and synchronize requests. Servlets can also forward the requests to the other servlets.
A servlet runs inside of a special type of applciation web server to handle requests from
other servlets, enterprise nodes and web applications. While both the web and application
servers can run in the same machine, there is a big difference between them. The web
server runs the client’s code (applets) and the application server runs the servlet code.
The server alone loads, executes and manages the servlets. Servlets are called either as
an explicit URL reference or they are embedded in the HTML and called from the web
application. It is not needed to execute a Java command to run a servlet, but instead the
URL command is issued to point to the location of the servlet, which are generally located
in any directory on a machine where an application server is running.

3.5.4.1 The Java servlet API

The Java servlet API [46] represents a set of the classes that defines the standard interface
between a web client and a web servlet. Essentially the API encapsulates the HTTP re-
quests as objects such that the server can pass them to the servlet and the responses are
coated in the same way, so that they can be passed back to the client. The Java servlet API
has two packages: the javax.servlet package, which contains classes to support a generic
servlets and the javax.servlet.http package, which includes specific support for the HTTP
protocol. The interface of the servlet class it the central abstraction of the Java servlet
API. This class defines the methods that manage servlets and its client communication. A
client request to the servlet is represented by the HTTPservletRequest object, which en-
capsulates the communication from the client to the server. It can contain the information
about the client environment and data, which are sent from the client to the servlet. The
response from the servlet to the client is represented by an HTTPservletResponse object,
which is a dynamically generated object (HTML page). This response is built both with
the data from the client’s request and the data from the servlet’s accessed resources. A
simple example of the request/response scenario is a parameter passing by appending it
to an URL. In this way, web administrators are able to track a session, what is extremely
important when the client does not accept cookies. The servlet redirector takes the target
URL and referring origin as an input and redirects the client’s web browser to the target
URL. Servlets override the doGet and doPost methods. HTTP GET requests are typically
browser requests for web pages, which are issued when a user follows the link. The HTTP
POST request is generated when a user submits an HTML form, which specifies the post
and that in turn allows client to send data of unlimited length to the web server in a sin-
gle attempt. The HTTP POST method is also useful when a client is posting information,
which is confidential, such as a credit card number. The same servlet can handle both GET
and POST methods, choosing between GET and POST calls. Other methods in common
use are:

39

– Service - the lowest common denominator method for servlet implementation. How-
ever, developers mostly use the doGET or doPOST methods.

– doGET is used for HTTP GET requests.

– doPUT is used for HTTP PUT requests.

– doPOST is used for HTTP POST requests.

– doDELETE is used for HTTP DELETE requests.

– HTTP INIT and DESTROY are used to manage resources, which are held during the
life of the servlet.

– getServletInfo is used by the servlet to provide information about itself.

Generally the two things that differentiate the free from the commercial servers are the
complexity of the setup and configuration compatibility with the products and techni-
cal support. Typical examples of free web servers are: Apache Tomcat [47], JBoss En-
terprise [48], etc. The today’s commercial web servers are: MS Windows Server OS
(IIS) [49], Red Hat Enterprise Linux Server OS [50] and others.

3.5.5 Security Considerations

Servlets do not have to handle security on their own, because they can rely on the capa-
bilities of the web server to limit the user’s access. The security capabilities of most web
servers are based on the user and password or digital certificate for authentication, which
determines the privileges. Web servers can use encryption in user name and password
transmission via SSL connection or they can use more advanced methods (like digest
authentication protocol, which transmits a hash of the user’s password and server gener-
ated value). Both of these approaches are transparent to the end users and their browsers.
Newer versions of the servlet API use the web.xml file, which can be used to define which
servlets and resources are protected and which are allowed. This method divides users
into categories and assigns roles to the users, which are the basis for their permissions.

3.6 Technologies and Algorithms applied in Gezora CDN

3.6.1 Introduction

Despite modeling errors and uncertainty, robustness and feedback control of QoS aware
servers has gained much popularity. Server performance and availability is predominantly
characterized by queues behavior. This behavior is a key element of the control loop. The
main motivation for the understanding the behavior of queues in the context of feedback
control schematics is their central role. The one part of the feedback control loop theory
is implemented in Gezora, namely the Exponential Weighted Moving Average filter, de-
scribed in the Figure 3.6.6, which is used for the request frequency noise filtering. The
other parts of feedback control loop theory, like Weighted Fair Queuing, can also be a very

40

important component of Gezora. In [51, 52], the feedback control theory and weighted
fair queuing are summarized. We rely on this work to briefly describe the impact of feed-
back control theory on request routing mechanisms.

3.6.2 Weighted Fair Queuing (WFQ)

The WFQ is a popular queuing method, when different traffic classes must be allowed
access to the different share of a common resource on servers. The WFQ element brings
many challenges, which make the simple feedback control ineffective, unstable and un-
reliable with a higher predictability and responsiveness. Robustness of simple feedback
controllers with respect to modeling errors and large fluctuations in load on servers and
resources has made control theoretic approaches very successful.

3.6.3 Impact of Feedback Control Theory on the Server Performance

The main reason for the control theory’s ability for application across computing servers
is that server queues can be modeled by difference equations and are amendable to con-
trol theoretic analysis. The server performance depends mainly on the flow of requests
through the queues. Requests must pass through a series of stages first, where they are
queued for service. Desired performance improvements can be achieved by understanding
and changing the relationship between feedback controllers and queuing element. This is
accomplished with the allocation of the server’s bottleneck resource to each traffic class.
A certain server performance is achieved by control of each portion of traffic class. The
main disadvantage is that many resources (i.e. HDD head, CPU, system bus, communi-
cation channel etc.) can not be physically partitioned as disk space and memory. Feed-
back control theory determines the resource allocation to different classes by passing the
appropriate weights to each class. Multi-class web traffic is believed to be more gen-
erally applicable and intended for use of WFQ, wherever the weights must be changed
dynamically. Also, in order to improve transient performance, feedback driven adaptive
algorithms must be analyzed and tested for future development.

3.6.4 Example of a WFQ System

A classical example of the WFQ system is the self scaling web server in which many
clients request different services. Requests for incoming connections are classified by a
SYN classifier, which used for the classification of incoming TCP connections. Based
on certain rules, the classifier uses the client’s IP address and port number to sort the
incoming connections requests into different service classes.

After the required actions are performed, the connection is shiftes from the SYN queue
to the accept queue. The system maintains a separate queue for each class, rather than to
share same FIFO queue for all classes. Threads perform eviction of the requests from the

41

queue and in turn threads get queued for the CPU. If the TCP does not accept the queues
of the requests, the CPU will become the bottleneck. The WFQ element is introduced into
a system in order to perform control of the rate of accepting requests of each class. The
operating system’s kernel could be modified in such a way that each class is assigned a
weight, which determines the rate of accepting requests of that class. Core of the problem
is to assign weights efficiently, using the feedback control scheme with a goal to achieve
system stability, needed for per class delay in the conditions of the varying input load.

For the weight assignment functioning, the kernel maintains a request frequency, a queue-
ing delay and a request service frequency for each category. The share of resources given
to each class is determined by its weight, so for every arrival rate the class queuing delay
decreases when they have been allocated a bigger part of the resources, thus making the
effect of the resource sharing on the queuing delay becoming less predominant as a class
receives more of the shared resources. With each changing of the request frequency, the
ratio between the delay and the resource allocation share also changes. This relationship
is easily predicted by a queuing theory and it is nonlinear.

The prediction is simple, because of the weight adaptation algorithm, which keeps track
of operating points on the functions curve. An operating point of the queue for a class
depends on the arrival rate and on the share of resource for the class in question. An
algorithm approximates the small segment of the curve around the operating point with a
line and this represents the gain of the process. It determines the class delay (change in
output) as a function of the change in input (class weight) and the weight of each class
is then recalculated for each adjustment. This calculation is based on the approximated
linear relationship in such a way that under new weight the delay is set exactly equal as the
set point. This algorithm is invoked in every single adaptation interval, which is a fixed
already determined quantity.

3.6.5 Transient Behavior of the Feedback Control Loop

While the control loop should converge to the right resource allocation and achieve the
desired delay decrease, tests indicate the undesirable interaction between feedback con-
troller and the WFQ scheduler. The feedback control of the WFQ scheduler has two key
parameters, which have the most effects on it and need to be kept in mind (the α parameter
of the Exponential Wighted Moving Average filter, described in 3.6.6 and the adaptation
interval, described in 3.6.7). There is a difference between the theoretical expectations
and practical performance. This deviation is explained by an interaction between the
scheduler and the controller.

3.6.6 Frequency Noise Filtering

To be able to mitigate the overreaction on the noise in the frequency calculation, the
Exponential Weighted Moving Average (EWMA) filter is applied. The EWMA filter is

42

equivalent to a 1st order low pass filter of an auto regression process. The mathematical
function of EWMA can be denoted as follows:

Fr(t) =α ·Fr−1(t) + (1−α) · 1
tr−tr−1

Feedback control theory tells us that EWMA has the tendency to produce lags what slows
down the system response. The system slow down depends on α value. Regardless of
α being a small value, it allows enough noise to enter the system, so the right value of
α should be chosen based on the noise level not on the principle the smaller the better.
This decision is connected to the variability in the system load, which in majority of the
Internet servers is highly variable, making α value fairly large. A large α, results in the
slower control system response. In order to overcome this problem, the separate filter for
feedback and the parameter estimation are used, represented in two values of α - the high
and low. For the feedback path filter α, a low value is used (α = 0.3). To improve the
responsiveness and to improve the parameter estimation and noise reduction the higher α
value is set to α = 0.5.

3.6.7 Adaptation Interval and the Impact of the α Parameter in EWMA

The second key parameter of the feedback control loop is the adaptation interval, which
is often referred as the sampling period. The adaptation time depends on the EWMA
parameter α, which determines the number of the sampling periods that the system needs
to settle. If the settling time is perceived in the absolute time units, it is determined by the
number of S periods, multiplied with the length of the period. In accordance with the valid
theory, the fixed α should lead to a smaller sampling period and a faster absolute settling
time.

3.6.8 Random Early Detection

The Random Early Detection (RED) algorithm is a commonly used algorithm for con-
gestion control in the TCP/IP protocol. The current TCP transport protocol, which is a
most frequently used communication protocol in the Internet, starts with network packet
congestion control only after a network packet has been dropped. We can notice, that an
initial feedback is required to trigger the RED controlling process. This is the main reason
why other more proactive solutions are being pursued. RED function uses two thresholds:
(Min/Max redirection thresholds).

– p(F)→ rejection probability

– f(F)→ access frequency

Mathematical definition of RED function is defined as following:

43

Figure 3.1: Graphical Representation of the Random Early Detection Algorithm

p(F) =

p(F) = 0 ifF (t) < min.thr
p(F) = 1 ifF (t) > max.thr

p(F) =
(

(F (t)−min.thr)
(max.thr−min.thr)

)
otherwise

3.6.9 Request Forwarding Mechanisms

Request forwarding mechanisms inform clients about the selection of a replica server,
which is generated by the request forwarding algorithms. We will describe the HTTP
redirection and URL rewriting mechanisms, which are applied in the Gezora application.

3.6.9.1 HTTP redirection

HTTP redirection spreads information on the replica server sets in HTTP headers. The
HTTP protocol permits a web server to answer a client request with a special message,
which informs the client to re-submit the request to an alternative server. HTTP redirec-
tion may be used with both full-site and partial-site content selection and delivery. The
client requests must also be modified to implement a replica server selection. The primary
advantage with this approach is the flexibility and simplicity. Another key advantage
is that the replication can be managed at a fine granularity. However, the most signifi-
cant disadvantage with HTTP redirection is the distinct lack of transparency. The over-
head perceived through this approach is also significant, as it introduces an extra message

44

round-trip into the request processing, as well as over the HTTP. The HTTP Redirection is
accomplished using the HTTP response code: 307 Temporary Redirect. This mechanism
is illustrated in the Listings 3.1 and 3.2.

Listing 3.1: HTTP Request Header

−−
POST / webSi t e4 / D e f a u l t . aspx HTTP / 1 . 1
Ac t i on : ” h t t p : / / 1 3 0 . 9 2 . 6 5 . 1 3 0 : 2 7 2 4 6 / webSi t e4 / D e f a u l t . a sp ”
Conten t−Type : t e x t / xml ; c h a r s e t =”UTF−8”
Conten t−Length : 582
C o n n e c t i o n : Keep−A l i v e
Cache−C o n t r o l : no−cache
−−

Listing 3.2: HTTP Redirect Header

−−
HTTP / 1 . 1 307 Temporary R e d i r e c t
L o c a t i o n : h t t p : / / 1 3 0 . 9 2 . 6 5 . 4 0 : 2 7 2 4 6 / webSi t e4 / D e f a u l t . a spx
Conten t−Type : t e x t / h tml
Cache−C o n t r o l : p r i v a t e
C o n n e c t i o n : c l o s e
−−

3.6.9.2 URL Rewriting

Despite the fact that most CDN systems use a DNS based routing scheme, many systems
use URL rewriting. This system is mainly used with partial-site content selection and
delivery, where embedded objects are sent as a response to a client’s request. With this
approach, the origin server redirects the clients to a number of many surrogate servers
by the URL rewriting. Therefore, with a web page containing an HTML file along with
embedded objects, the web server modifies references to embedded objects so that the
client can fetch them from the best surrogate server. Furthermore, URL rewriting can be:

– Pro-active URL rewriting

– Reactive URL rewriting

In the pro-active URL rewriting, the URLs embedded for objects within the main HTML
page are formulated before the content is loaded into the origin server, whereas in the
reactive approach, rewriting involves the embedded URLs of a HTML page when the
request arrives at the origin server. The primary advantage of URL rewriting is that clients
are not bound to a single surrogate server, as the rewritten URLs contain DNS names,
which point to a group of surrogate servers.

45

3.7 Methodologies used for the Gezora Evaluation

3.7.1 Client Satisfaction through Request Time

As we could notice from the Figure 3.2, the time which users are willing to wait for
the system response is relatively low. Recent research in Marketing is indicating that
the range in costs is three to seven times greater if the company wishes to get a new
user instead of keeping the existing one. This information indicates that the system and
network performance can have a huge impact on the profit of every company, which is
based on enterprise web hosting (cloud services), and that the difference (in the age of the
computer technology) between losses and gains for any company is measured in seconds.
All other conclusions and comments about latency and speed of request processing in
the age of the computer technology are unnecessary. The speed of satisfying the client’s
request, nowadays, simply equals quality. The content consumer habits (access patterns)
are the main concern for the content provider. There are several ways for companies to
try to keep the user’s attention on the content. For example, if the web page is large and
it needs a lot of time to download, a company might choose to put some fast downloading
content at the beginning. This will keep the user’s attention on the page, until the other
content is downloaded in the background. In another scenario the user might be willing
to wait more for the desired content, if there is a promise that content will be important to
the user. This could be accomplished by better textual or graphic fast loading description
of the content. Previously described solutions are representing the attempt to mask the
latency of a system or a network but the optimal solution for the content provider is to find
a way, which will physically and absolutely reduce the system or network latency and not
to try to deceive the user.

Figure 3.2: How Users Experience the Web Server Response Time

3.7.2 CDNs Performance Measurement Overview

The measurement of CDN performance is undertaken to test its ability for serving of the
desired content or service to the end users, at the different request rates. A server has to
be able to provide an excellent QoS in every situation, also during the high request rates.
It needs to scale very fast and has to be flexible on request rate changes. End users who

46

utilize the service, need feedback on the performance of the CDN. Performance measure-
ments provide the ability to predict, monitor and ensure the end-to-end performance of a
CDN. A measurement is generally achieved by a combination of hardware and software-
based probes distributed within the CDN, along with logs from various servers from the
CDN. Generally, five principle metrics are used by the content providers to evaluate the
performance of a CDN. These are:

1. Cache hit ratio: This can be defined as the ratio of the number of cached documents
applied against the total number of documents requested. A high hit rate demon-
strates that a CDN is using an effective cache policy to manage its caches.

2. Reserved bandwidth: This is the measurement of the bandwidth used by the origin
server. It is measured in bytes and is retrieved from the origin server.

3. Latency: This relates to the end user’s perceived response time. A reduction in
latency signifies a decrease in the bandwidth reserved by the origin server.

4. Surrogate server utilization: This refers to the fraction of time during which the
surrogate servers remain busy. It is a metric used by the administrators to calculate
the CPU load, the number of requests served and the storage I/O usage.

5. Reliability: Here, measurements are used to determine the reliability of the CDN.
High reliability indicates that the CDN incurs less packet loss and is always available
to the clients.

The measurement of the CDN performance can be accomplished based on internal per-
formance measures as well as the customers perspective. This involves the use of internal
measurement technologies as well as external services, such as MediaMetrics and Nielsen
ratings. However, a CDN provider’s own performance testing can often be misleading, as
it can perform well for a particular web site and/or content, yet poorly for others. There-
fore, to ensure reliable and efficient performance measurement, performance measurement
can also be performed by independent third-parties, such as Keynote Systems [53] or Giga
Information Group [54].

3.7.2.1 Internal measurement

Internal measurement includes all network monitoring and log analyzing techniques that
help the network administrators in finding the potential performance bottlenecks in a net-
work, or to check the node health. The measurement of content delivery throughout the
network may be undertaken by collecting and analyzing the logs from the various caches
and streaming media servers. All CDN servers can be equipped with the capability to
collect statistics to receive end-to-end measurements of its performance. Furthermore, the
deployment of probes (either hardware or software) within the network and the correla-
tion of the information collected by probes from the cache and server logs can be used to
measure the end-to-end performance of a CDN. The third-party tools can also be used to
perform internal measurements and to produce graphical representations of performance
data.

47

3.7.2.2 External measurement

An external performance measurement is an evaluation technique, where the performance
measurements and log analysis are accomplished by an independent third-party, usually
from within some distance (taking the end user perspective). Usually, the third-party
informs the CDN customers of the verified and guaranteed performance. Using this eval-
uation method, an efficient and independent performance evaluation can be achieved. The
computers measure the manner a particular web site performs from the end user’s perspec-
tive, taking into consideration meaningful metrics on web site application performance as
part of the criteria. Giga Information Group [54] is common evaluator, that measures per-
formance by analyzing a number of CDN’s parameters during the communication with
clients.

3.7.2.3 Network Statistics Acquisition

For internal and external performance measurements, different network statistics acquisi-
tion techniques are deployed based on several parameters. Such techniques may involve
network probing, traffic monitoring, and feedback from surrogate servers. Typical param-
eters in the network statistics acquisition process include geographical proximity, network
proximity, latency, server load, and server performance as a whole.

3.7.2.4 Network probing

Network probing is a measurement technique where the servers are periodically probed
using a ICMP communication protocol. Active probing techniques are sometimes not
suitable and limited for some reasons. It introduces additional network latency, which
may be significant for small web requests. Moreover, simultaneous server probing can
often activate intrusion-detection alerts, resulting in abuse complaints. Probing sometimes
may lead to an inaccurate metric as ICMP traffic can be ignored or re prioritized due to
concerns of DDoS (Distributed Denial of Service) attacks.

3.7.2.5 Traffic monitoring

Traffic monitoring is a measurement technique where the traffic between the client and the
surrogate is monitored to determine the performance metrics. Once the client connects,
the actual performance of the transfer is measured. This data is then fed back into the
request forwarding system. An example of such traffic monitoring is to watch the packet
loss from a client to a surrogate or the user perceived latency by observing the TCP behav-
ior. The response time (latency) is the simplest and commonly used distance metric, which
can be estimated by monitoring the number of packets (i.e. traffic) traveled along the route
between client and the surrogate. A metric estimation system such as IDMaps [55] mea-
sures and disseminates distance information on the global Internet in terms of latency and

48

bandwidth. This system considers two types of distance information based on timeliness
load sensitive and raw (where distance information is obtained considering no load on the
network). The estimation of this information is performed through traffic monitoring with
an update frequency in the order of days, or if necessary, hours.

3.7.2.6 Feedback from Surrogates

Feedback information can be obtained by periodically probing a surrogate by issuing ap-
plication specific requests (e.g. HTTP) and taking related measures. Feedback informa-
tion can also be obtained from agents that are deployed in the surrogates. These agents can
communicate a variety of metrics about their nodes. Methods for obtaining feedback in-
formation can be static or dynamic. Static methods select a route to minimize the number
of hops or to optimize other static parameters. Dynamic probing allows computing round-
trip time or other QoS parameters in real time. Network statistics acquisition methods rely
on a number of metrics to obtain CDN status information. Geographical proximity is a
measure of identifying a user’s location within a certain region. It is often used to redirect
all users within a certain region to the same Point of Presence (POP). The measurement of
such network proximity is typically derived through probing of Border Gateway Protocol
(BGP) routing tables. The end user perceived response time (latency) is a useful metric
to select the suitable surrogate (i.e. POP) for that user. Packet loss information through
the network path is a measurement metric that is used to select the path with lowest error
rate. The average bandwidth, startup time and frame rate are the metrics used to select the
best path for streaming media delivery. The server load state can be computed based on
metrics such as CPU load, network interface load, active connection and storage I/O load.
Those metrics are used to select the server with the least aggregated load.

3.7.2.7 Performance Measurement through Simulation

Researchers often use simulation tools to measure a CDNs performance. The CDN sim-
ulators implemented in software are valuable tools for researchers to develop, test and
diagnose a CDN’s performance, since accessing the usage patterns and logs is not easy,
due to the proprietary nature of commercial CDNs. Such a simulation process is economi-
cal because of no involvement of actual hardware to carry out the experiments. Moreover,
it is flexible because it is possible to simulate a link with any bandwidth and propaga-
tion delay and a router with any queue size and queue management policy. A simulated
network environment is free of any uncontrollable factors such as unwanted external traf-
fic, which the researchers may experience while running experiments in real networks.
Hence, simulation results are reproducible and easy to analyze. A wide range of network
simulators such as OMNET++/INET [56, 57] are available, which can be used to simulate
a CDN to measure its performance. However, the results obtained from a simulation may
be misleading if a CDN simulation system does not take into account several critical fac-
tors such as the bottlenecks, that are likely to occur in a network, the number of sessions,

49

that can serve each network element (e.g. router, surrogate server), and the number of
traversed nodes considering the TCP/IP network infrastructure.

50

Chapter 4

Gezora Architecture

4.1 Introduction

Gezora is a server side application which establishes a CDN among a group of inter-
connected servers. The main role of Gezora is to avoid fast server overloading, caused
by sudden traffic spikes. As seen in the introduction, the servers cannot handle the fast
growing of requests number due to hardware, software and the communication protocol
(TCP/IP) constraints and they need a cooperative environment where they can temporarily
outsource one subset of content for a certain time period and redirect the client requests to
it. Gezora reacts upon traffic pattern changes before the actual server congestion occurs.
This is achieved with the request frequency monitoring Random Early Detection (RED)
algorithm, with which Gezora achieves the request-forwarding for a specific content sub-
set, unrelated to the server congestion. The redirection decision is based on two thresholds
(min and max thresholds) and a probability function. Using the described mechanisms for
request rate monitoring and request routing, Gezora acts as conventional load balancing
system, but only at the specific load rates. Generally, the load balancing role is distributed
among other servers in the overlay network and it is mixed with the content providing role.
The conventional load balancer is a pure centralistic approach, where a fix load balancer
(usually one server) is placed between the clients and the server-group and forwards client
requests randomly or according some decision rule, whereas Gezora acts on the every
server in the CDN and dynamically alternates the role of it, from the content provider to a
pure load balancer.

The Gezora Architecture is divided into several subsystems. The main part is the client
request frequency monitoring service. The main task for this service is to calculate the
request rate frequency and estimate metrics needed for the reactive service. The calcu-
lation of the client requests frequency per unit time is accomplished using EWMA, an
autoregressive process used in time series analysis. The second part of Gezora is the feed-
back control and the RED algorithm, a very common algorithm, which is often used for
network traffic congestion control, and applied in the TCP/IP protocol. The third part is
the request routing (request-forwarding) mechanism, which is the combination of the two

51

Figure 4.1: Conventional Load Balancer and Gezora Application

request routing mechanisms:

1. HTTP redirection described in 3.6.9.1

2. URL rewriting described in 3.6.9.2

4.2 Deployment of Gezora and its Benefits

The main advantage of Gezora is that it is located already on the servers and that it uses
the server’s resources. No additional network hardware is necessary, so there is much
less work that needs to be done in choosing, buying, setting and connecting equipment
with other elements on the network. This clearly is speaking in favor of using Gezora
because of the great cost reduction. In this way Gezora is effectively acting as a cheap
but functional shield which servers have against flash crowds and system congestion. The
physical architecture of a Gezora deployment can be realized in two different ways. Both
ways are effective and are transparent to the end user. In the first case, users can be directly
connected to the servers on which Gezora is running and their requests will be served or
redirected as if they are communicating with a single server (see the Figure 4.6). The
advantage in this case is greater parallel computing power and greater bandwidth. In the
other case, the end user is communicating physically with one server on which Gezora
is running. A drawback in this case could be the bottleneck created by communication
through the single server, but this can be overcome by extending the server’s characteris-
tics. In real life, a number of servers with weaker characteristics (less computing power
and less bandwidth) can perform tasks in same way as the server with better characteris-
tics. As mentioned before, the most important requirement for the end users is that their

52

requests are served as quickly as possible. It makes no difference if the requests are served
by a single server, or a number of servers. The design of Gezora and the use of the overlay
network server cloud is providing the end user’s computers with much more options and
points of access. In this way, the latency is greatly reduced and the client machines are
better connected because of the sheer number of connections between replica servers in-
side the network cloud. If a client’s machine is connected to the single replica server in the
cloud, it has the ability to access any content on any replica server by the same conditions
as if it would be connecting to the cloud via multiple access points.

4.3 Gezora Architecture

The main task of this master thesis was to design and develop a new type of CDN that
would minimize the overall latency and response time of existing central web servers
and relieve them during the flash crowds. This is achieved using volunteer servers as
contributors for the content distribution and load balancing. Volunteer servers are used for
temporary storage (caching) of the most frequent requested content, although the server
administrators can choose which content subset they want to contribute in the overlay
network. The request rates of the web content category will be monitored and the requests
will be then forwarded to the surrogates before the actual server overloading occurs. This
keeps the whole Gezora CDN in balance and avoids congestion. The Gezora CDN is
able to allow volunteer-servers with high bandwidth rate (high upload rate) to support the
content distribution even if they can’t cache all data. It would allow the request forwarding
for specific content category on-demand, which means, a generic proxy caching occurs
within smaller space. This implies a higher hit-rate per content category. The content-
categorization and replication of specific categories should minimize the overall response
time and latency of existing mirror servers. A larger number of servers with small working
sets increases the scalability during the large number of requests, because clients will have
more optional servers to pick for the same content subset.

A few features make this different from existing proxy servers and CDNs:

– Specialized on mirroring only certain data (category), no generic proxy caching for
all data, but generic proxy caching within one category

– On-demand request forwarding

– Clients are not involved in content distribution (no end user implementation re-
quired).

– The whole system is transparent to clients (appears as one origin server)

– P2P concepts implemented only on server-side

– The content is not splitted into chunks as in the P2P networks

– URL-based content categorization: splitting a big content working set into content
categories. every content category (resource) is denoted with an appropriate URL-
address.

53

Figure 4.2: Full Directory Structure on the Central Server

Figure 4.3: Directory Structure for a Specific Content Category on the First Surrogate Server

54

Figure 4.4: Directory Structure for a Specific Content Category on the Second Surrogate Server

– Creating per category overlay networks with exchanging of messages, which contain
a server name with a corresponding resource list and their availability (in terms of
load frequency)

– Every unique data source can use a category name as URL address. Only accepted
categories will be distributed. Smart per-category limits to allow the administrators
to limit resource usage.

The Figures 4.2, 4.3 and 4.4 illustrate the caching of the specific content categories in
the URL. Here, we distinguish the host-name of the origin server, denoted in the URL
address and the surrogate host names, using the same resource names in the URL address.
This method allows Gezora to use fast on the fly URL rewriting mechanism, and redirect
clients to other servers within a few milliseconds and before the real request congestion
occurs. The information, which is exchanged between servers in Gezora CDN are the
host names and the resource path names. With the given resource pathnames, the origin
server is able to generate a new URL using the new host name from the surrogate server
and the given path name of the resource. For the caching of the replicated content, Gezora
reserves some amount of the disk space on the participating servers. The directory struc-
ture with the chosen web content for supporting the content distribution will be copied to
the reserved disk space. The volunteer servers are now ready to accept any content from
the central server, classified for replication with help of the real time monitoring system.
This makes the whole content distribution more dynamic and more adaptable to changes.
Obviously, the old mirror architecture cannot fulfill this requirement, since it fetches the
1:1 image of the other servers at some fixed time interval. The new system differs from
existing P2P networks because it makes a cloud of servers (overlay networks), which is
placed between the central mirror server and the clients (See Figure 4.5). To be able to
decide, which content category should be replicated, as also when should the chosen cate-
gory be replicated, Gezora uses request frequency monitoring per content category. If the
frequency of a specific content category is above the first threshold, the request forwarding
is triggered automatically. With this principle, the decision about content outsourcing is
made dynamically, at run time, and Gezora does not require any heuristics (except request
frequency per time unit) for the decision about content outsourcing. The decision about
content replication and request forwarding is actively controlled by clients, because their
request frequency per content category is a crucial parameter for the content outsourcing

55

and request forwarding.

Figure 4.5: Gezora Architecture Overview

The information about the overlay network participants (server host-names), together with
the directory structure of the content subset supported on the node is being exchanged be-
tween nodes in the overlay network. This information is very important for the efficient
request redirection, because the server with a high request rate on one content subset can
use any host-name for new URL address generation. As mentioned, the new URL address
points to the other source and its replicated content. If a client requests a specific content
category, he might be redirected to the surrogate, dependent on the monitored request fre-
quency at that moment. The decision about request forwarding is made using the RED
algorithm. Pulling the content from surrogates is fully transparent to end users and is
accomplished using URL rewriting. The modified URL is sent back to the clients using
the HTTP redirection mechanism, described in 3.6.9. The modified URL address is used
for client redirection to the surrogates. This is accomplished within a few milliseconds.
Using the described communication process, Gezora provides a loosely coupled network
of proxy servers, that allows distributing large amounts of data with little investment for
the data provider and every proxy maintainer. At the same time the concept of content
categorization in subsets using the URL address hierarchy structure allows to use one sur-
rogate for multiple data sets, reducing the amount of servers and server processes needed.

56

For example, one surrogate can contribute to the distribution of several resources, which
are not located at the same origin server.

4.4 Gezora’s Random Early Redirection

We apply the RED algorithm in Gezora to the number of requests per unit time, using an
EWMA filter. We must emphasize that the RED algorithm is the core of Gezora’s proac-
tivity. EWMA and RED are described in Sections 3.6.6 and 3.6.8. In order to achieve
QoS and mitigate overloading, Gezora is redirecting the requests (instead of dropping) to
the surrogate (replica) servers using a simple URL rewriting mechanism in combination
with the HTTP redirection. For this reason, our algorithm in Gezora is called Random
Early Redirection (RER). The principle of RER combined with the EWMA filter, used for
frequency calculation, is very efficient and tries to establish a balance in the whole CDN.
If the request frequency reaches the first threshold, it will start to redirect the requests to
the second server, which will also start to monitor request frequency. If the request fre-
quency at the second server is above the threshold, the second server will also start with
request redirection to the third server. This chain reaction tries to use all system resources
at once without a big effort for all servers in the group. If the request frequency at one of
the servers reaches the second threshold, this server will take the role of pure load balancer
and will spread 100% of request to other server, which will also do the same process for
his neighbors. Figure 4.6 illustrates load balancing of a Gezora CDN. Here we can see
the the client redirection to the two different surrogate servers, dependent on the min/max
RER’s thresholds.

Figure 4.6: Load Balancing on Gezora CDN

On the graph in Figure 3.1 we can notice the mentioned minimum and the maximum
thresholds (moments). The minimum moment represents the situation where the access
frequency of requests is low as well as the redirection probability. This is natural, because
if the need for system’s resources is low, the probability that the request will be redirected
is also low, and the incoming requests are most probably not going to be redirected. In this
case the redirection probability equals zero despite the request access frequency having
some, perhaps even more significant value (F (t) > 0; p(F) = 0). Unlike the request redi-
rection probability or some other kind of probability, the cache hit ratio can be computed

57

exactly and it does not contain any degree of probability. Easily mistaken for request
redirection probability, it actually represents the system’s ability to retrieve the requested
content and not the probability that the content will be retrieved. The next scenario is the
situation where the access frequency of the requests has increased somewhat and that the
redirection probability has also relatively risen. In this scenario, the access frequency and
the redirection probability are in direct correlation, since the redirection probability grows
proportional to the growth of the request frequency. This is understandable and this is the
moment when the proactivity of the system is starting to take effect. At this moment, as the
system is getting loaded, some of the requests are timely being redirected in order to pre-
vent the congestion and save the system resources (F (t) > 0; p(F) > 0). If we consider
yet another jump the in request access frequency, we can notice that the RER’s second
threshold (max threshold) is reached, and the redirection probability equals 1. In this mo-
ment the congestion of the origin server or redirect server is absolute and all requests are
being redirected. This effectively means that every single request is being redirected, that
all system resources are already employed in some process and that it is 100% sure that
all new incoming requests are going to be redirected (F (t) = +∞; p(F) = 1). Since the
server cannot send the requested content to the clients and only achieves the requests redi-
rection, the server’s role is changed at this point, from the content provider to the pure load
balancer. The following Figure 4.7 is displaying the situations and correlations described
above.

Bearing this in mind, we can conclude that the redirection probability is directly depen-
dent and a less important factor than the access frequency. This portability of Gezora is
greatly increasing Gezora’s interoperability, which means that all hardware and software
components can cooperate at all levels. In a CDN environment, the interoperability is
especially important because of the sheer size of the number of different components:
servers, clients and other type of equipment on the network. The interoperability is mak-
ing sure that clients have the freedom to choose their own type, version and manufacturer
of the components and still interact with others on the Internet. The early redirection is
significantly reducing the amount of requests, which could overload already well loaded
servers. The process of choosing the appropriate surrogate server for clients requests,
which are sufficient at some time period, is accomplished using a simple message ex-
change service between servers. The messages are containing the URL addresses of all
content categories, that are supported by a specific surrogate server. The main idea of the
random early redirection has two aspects:

– The first part of the idea is to try to redirect requests from flash crowds to the less
loaded servers, thus, keeping the origin servers uncongested. This greatly reduces
the network latency and enhances the client’s experience, perception and satisfaction
of using the system.

– The second aspect of the method is randomness. The idea here is to enable the
redirection server to use as little resources as possible. This aspect is aimed mostly
at increasing the productivity of the server by saving its memory and processor re-
sources. If a redirection server is randomly redirecting the flash crowd’s requests,

58

Figure 4.7: Changing Server Roles with RER

59

it does not have to use the additional memory and processor resources to determine
the best or nearest replica server, but it simply passes the request on.

Naturally, the nearest server or the fastest (less loaded) will receive or manage to process
the received requests, thus enabling the redirect server to utilize the available resources
for more important tasks, or serving the already received requests. This greatly reduces
the load on the redirect or origin servers and simplifies the tasks presented to them by
flash crowds and sudden surge of requests. In this way, with these two aspects work-
ing together, the random early redirection makes the system appear much more powerful
and pleasant for clients to use, resolving some of the issues which occur at other CDNs.
The random early redirection method is one of the most proactive tools for reducing the
network latency.

4.5 Request Forwarding in Gezora

Request forwarding in Gezora is realized using both HTTP Redirection and URL Rewrit-
ing mechanisms as described in the Section 3.6.9. Using URL rewriting, Gezora is able
to change the server’s host name to the host name of the surrogate and send the redi-
rect request to client over HTTP. Basically, the EWMA Filter in the Feedback Control
Loop (FCL) is giving the core information: a client request frequency per time unit. This
information is used by the RER algorithm. The RER algorithm decides if the normal
HTTP response should be accomplished or the HTTP redirection has to be triggered. If
the RER’s probability value is above the minimum threshold, the request routing, based
on the HTTP redirection of the URL-rewriting mechanisms is being activated. Hence,
the request forwarding is not occurring the whole time, only if the server load exceeds
the first threshold. The probability function is compared with a random number and if a
certain condition is satisfied, the request is being forwarded. With growing request fre-
quency, the RER’s probability value grows also and the request forwarding probability
grows accordingly. In the request routing mechanisms, the URL-rewriting exchanges the
central server host name with the one of the surrogate server. The modified URL address
is used for the HTTP redirection and to inform the end user about the new source for
the requested content. This process is transparent to the end user. The functionality of
Gezora’s request routing mechanism is shown in Figure 4.8. Here we can see the sce-
nario, where a client requests some content from the origin server(1). It uses a given URL
address, which contains also the host name of the origin server. The EWMA based request
frequency monitoring is recording the time stamps of occurring requests, and calculates
the request rate. Based on the request rate, the RER algorithm decides, if the request for-
warding should be accomplished or not. If the request forwarding has to be accomplished,
the URL address is being modified with inserting the host name of the surrogate server
and sent back to the client using a HTTP redirection code and the modified URL address
(2). The client’s browser can automatically understand the HTTP protocol codes and can
redirect the client to the new source (3). The surrogate servers (new source) are retrieving
the content to the client (4).

60

Figure 4.8: Gezora’s Request Forwarding Mechanism

61

Chapter 5

Gezora Prototype Implementation

5.1 Introduction

Over the last several years, Java has become the predominant programming language for
server-side programming. The main reason for this trend is that the Java Servlet Appli-
cation Programming Interface (API) provides a standardized method for enabling web
servers to provide support for dynamic content generation. Nowadays, servlets are a natu-
ral choice as a development platform for web programming. In this environment, a user is
making the request to a web server, which invokes a servlet designed to handle the partic-
ular request. The servlet fulfills the request and returns a response to the client. The fact
that the servlet is dealing with a single request at a time ensures the exclusivity of system
resources for that request. This is a guarantee that the client’s request will get the best pos-
sible treatment and access to the required resources. While the mere concept of servlets
may seem similar to other technologies for dynamic content, they demonstrate several
important advantages. Servlets are persistent in memory between invocations, which im-
proves the performances significantly. Furthermore, servlets are portable across operating
systems and servers and they have the access to all APIs of the Java platform, which makes
it easy to create a servlet, that interacts with a database. The portability of the servlets has
greatly increased its interoperability, which allows all hardware and software components
to cooperate at various levels. This interoperability of servlets is especially important in
an environment with a large number of different components, such as a CDN environment.
The interoperability is making sure that clients have the freedom to choose the type, ver-
sion and manufacturer of the components and still interact with others on Internet. All
these characteristics have contributed to a very fast spread of the servlet technology on
the World Wide Web. For this reason, we chose to implement the first Gezora prototype
using J2EE and Java Servlets. In addition to the first Gezora prototype, we implemented
also a second Gezora prototype, which has a different architecture. It consists of the same
algorithms used in the prototype 1 (FCL and RER), but instead of applying the algorithms
on the HTTP protocol layer, we applied them on the Ethernet packet layer (Layer 2). The
main idea was to intercept the raw Ethernet packets and to search for the HTTP requests
of the specific content category. This would trigger the HTTP redirection on the network

63

layer 2. Due to using the C++ programming language for the implementation, this whole
concept offered several performance benefits, most importantly for the traffic monitoring
and reactive algorithms. Another important aspect was the fact that this approach did not
interfere with the big Garbage Collector overhead of Java. Nevertheless, the implementa-
tion of this prototype imposed a few challenges regarding the complexity of the TCP/IP
protocol and further development.

5.2 Design Overview: First Gezora Prototype

As mentioned in Section 4.3, the main application of Gezora is the content categoriza-
tion in the overlay network to minimize the overhead for the content replication. Namely,
when a client’s request is received, the time stamp of the reception is being calculated
and used as a parameter for the frequency calculation with EWMA, described in Sec-
tion 3.6.6. For the request frequency calculation with EWMA filter, two requests with
different time stamps are required. The request frequency calculation is accomplished
using a mathematical expression defined in Section 4.3. The request monitoring system
is tracking the request frequency and when the conditions in the RER algorithm are met,
the request is being forwarded to the surrogate using a request routing mechanism (HTTP
redirection and URL rewriting). If the request frequency values are indicating that there
should be no congestion in the near future, the client’s request is being served and the de-
sired web content is returned to the client. If the request frequency of the one web content
category is growing very fast, it is indicating a partial congestion within one web content
category (request frequency monitoring and RER are active for every content category,
which is supported by surrogates). This should not mean that the whole server system is
congested. The server allows low request frequencies at the other web content categories.
At the content category where the potential congestion is being indicated, the request is
redirected out of the system to a surrogate server. Because the content could be dispersed
on many replica servers in the overlay network (server cloud), all required content could
be retrieved from one or a number of replica servers in one or several iterations. End users
are able to perceive all these processes only in the form of a greater or a lesser latency as
the difference in the content retrieval from one and several replica servers remains unde-
tectable to them. The figure 5.1 illustrates different processes within Gezora CDN, which
are set in motion upon a client’s request.

64

Figure 5.1: Content Categorization Overview

Figure 5.2: EWMA Filter’s Frequency Applied to RER

65

5.3 First Gezora Prototype Implementation

The first Gezora prototype is implemented using Java servlets technology, described in
3.5. It typically runs on the server side as a background process and tracks the client
requests time using Java servlets. The core of the Gezora prototype is a Java based server
implementation, better known as Apache Tomcat Server [47]. Since the Apache Tomcat
Server is positioned in the application layer (network layer 7), the Gezora prototype also
acts in the same network layer. Figure 5.3 illustrates the position of the Gezora prototype
in the ISO/OSI network layer architecture.

Figure 5.3: First Gezora prototype in the ISO/OSI Network Diagram

Other Gezora components, like EWMA filter, RER and request routing mechanism are
implemented in Java and bound to the Java servlets. Java servlets are very important for
the request forwarding implementation, since they have already implemented methods for
HTTP redirection and URL retrieval. Figure 5.4 shows the structure of the Gezora im-
plementation in the Unified Modeling Language (UML), which consists of the following
implementation elements:

1. Servlet: The core of the Gezora implementation with Java methods for HTTP re-
quest/response handling

2. Random Early Redirection: Request Redirection Logic

3. Access Meter: Request Frequency Monitoring System

66

4. Util: Additional Methods

Figure 5.4: The Structure of the Gezora Prototype Implementation as UML Diagram

5.3.1 Servlet

A servlet class is the core of each Gezora prototype implementation. It contains all meth-
ods necessary for the client’s HTTP requests and server response handling. Thus, servlets
allow us to use the HttpServletRequest and HttpServletResponse classes as arguments in
doGet Java method and apply their methods for URL retrieval of the requested content,
HTTP redirection, content transfer, etc. For the description of the HTTP protocol, please
refer to the RFC on ietf.org.

The first step in the communication process on the server side is to get an URL address of
the requested content as a string. In response to the client’s request, the full URL path is
being constructed with the concatenation of two strings: RequestURL and RequestURI.
In the next step, the AccessCounter class is generated for the request frequency calcula-
tion. A new instance of the AccessMeter class is generated for every client request. This
class is then added in one container, using the full URL path as a key. In the next step,
a random number is generated and compared with the value calculated with the RER al-
gorithm. If the generated random number is smaller than the RER value, the so called
redirection flag is set, which will be further used for indicating the client’s redirection.
On the other hand, if the generated random number is higher than the calculated value
from the RER algorithm, the request frequency is calculated using the AccessMeter class.

67

This mechanism allows us to avoid the unnecessary frequency calculation, even in case of
redirection. If the redirection flag is set, the host name of the origin server is exchanged
for the host name of the surrogate server in the full URL path (URL rewriting), and this
modified URL is used as a parameter for the HTTP redirection. The HTTP redirection is
implemented in Java servlets. The method sendRedirect initiates the HTTP redirection,
using the new URL address as argument. In case of the lack of redirection, the content is
transferred to the client, using the data stream as byte array. This can be done using the
write method in the HttpServletResponse class. The listing 5.1 shows the described Java
methods and algorithms, applied in the communication process, during one client request.

Listing 5.1: Java Servlet Get Method in the Gezora Prototype Implementation

p u b l i c vo id doGet (H t t p S e r v l e t R e q u e s t req , H t t p S e r v l e t R e s p o n s e r e s)
t h ro ws S e r v l e t E x c e p t i o n , IOExcep t ion
{

F u l l U r l P a t h = r e q . getRequestURL () + r e q . ge tReques tURI () ;

i f (r e q . g e t P a r a m e t e r (” reqType ”) != n u l l)
{

i f (r e q . g e t P a r a m e t e r (” reqType ”) . e q u a l s (” c l i e n t ”))
{

System . o u t . p r i n t l n (” C l i e n t ”) ;

s y n c h r o n i z e d (t h i s)
{

i f (t h i s . g e t A c c e s s M e t e r (F u l l U r l P a t h) == n u l l)
{

t h i s . p u t A c c e s s M e t e r (F u l l U r l P a t h , new AccessMete r ()) ;
}

p r o b a b i l i t y = r e r . c a l c u l a t e P r o b a b i l i t y F u n c (minTresho ld ,
maxTreshold ,
t h i s . g e t A c c e s s M e t e r (t h i s . F u l l U r l P a t h) . g e t F r e q u e n c y ()) ;

i f (random . nex tDoub le () < p r o b a b i l i t y)
{

r e d i r e c t = t r u e ;
} e l s e

{
t h i s . g e t A c c e s s M e t e r (F u l l U r l P a t h) . a c c e s s () ;

}
}

i f (t h i s . r e d i r e c t)
{

c l i e n t A d d r e s s = r e q . getRemoteAddr () ;
c l i e n t P o r t = r e q . g e t R e m o t e P o r t () ;

S t r i n g l o c a l A d d r e s s = r e q . g e t L o c a l A d d r () ;
i n t l o c a l P o r t = r e q . g e t L o c a l P o r t () ;

68

r e s . s e n d R e d i r e c t (r e s . encodeRedi rec tURL
(” h t t p : / / ” + s u r r o g a t e . g e t I n e t A d d r e s s
(c l o s e s t N o d e A d d r e s s) . getHostName ()) +
” : ” + r e q . g e t L o c a l P o r t () + r e q . ge tReques tURI ()
+ ” ? reqType = c l i e n t ”) ;

t h i s . r e d i r e c t = f a l s e ;
} e l s e
{

t empReqPa th In fo = r e q . g e t P a t h I n f o () ;
i n p u t S t r e a m =
t h i s . g e t S e r v l e t C o n t e x t () . ge t Re s ou r ce A sS t r e a m (r e q . g e t P a t h I n f o ()) ;

i f (i n p u t S t r e a m != n u l l)
{

System . o u t . p r i n t l n (” T r a n s f e r i n g C o n t e n t t o C l i e n t ”) ;
u t i l . T r a n s f e r C o n t e n t (i n p u t S t r e a m , r e s . g e t O u t p u t S t r e a m ()) ;
i f (l r u . e l e m e n t s . c o n t a i n s (t h i s . ge tContentName (r e q . ge tReques tURI ())))
{

l r u . moveToHead (t h i s . ge tContentName (r e q . ge tReques tURI ())) ;
}

e l s e
{

l r u . p u t E l e m e n t (t h i s . ge tContentName (r e q . ge tReques tURI ())) ;
}

} e l s e
{

System . o u t . p r i n t l n (r e q . getLocalName () . t o S t r i n g ()) ;
i f (r e q . getLocalName () !=

t h i s . g e t S e r v l e t C o n t e x t () .
g e t I n i t P a r a m e t e r (” m a s t e r S e r v e r ”))

{
F i l e f i l e = new F i l e (” ”) ;
System . o u t . p r i n t l n (t h i s . c u t P a t h (f i l e . g e t C a n o n i c a l P a t h ())) ;
F i l e O u t p u t S t r e a m o u t =
new F i l e O u t p u t S t r e a m (new F i l e (t h i s . c u t P a t h (f i l e . g e t C a n o n i c a l P a t h ()) +
” / apache−tomcat −6 . 0 . 1 8 / webapps / S i m p l e S e r v l e t / ” +
t h i s . ge tContentName (r e q . ge tReques tURI ()))) ;

i n t r e a d B y t e s ;
b y t e [] b y t e A r r a y = new b y t e [2 0 4 8] ;

System . o u t . p r i n t l n (” c o n n e c t i n g t o M a s t e r S e r v e r ”) ;
u r l = new URL(” h t t p : / / ” +

t h i s . g e t S e r v l e t C o n t e x t () . g e t I n i t P a r a m e t e r (” m a s t e r S e r v e r ”) + ” : ”
+ r e q . g e t L o c a l P o r t () + r e q . ge tReques tURI () + ” ? reqType = s e r v e r ”) ;

u r l C o n n e c t i o n = (HttpURLConnect ion) u r l . openConnec t ion () ;
I n p u t S t r e a m i S t r e a m = u r l C o n n e c t i o n . g e t I n p u t S t r e a m () ;

w h i l e ((r e a d B y t e s = i S t r e a m . r e a d (b y t e A r r a y)) > 0)
{

o u t . w r i t e (by teAr ray , 0 , r e a d B y t e s) ;
}

l r u . p u t E l e m e n t (t h i s . ge tContentName (r e q . ge tReques tURI ())) ;
F i l e f l = new F i l e (t h i s . c u t P a t h (f i l e . g e t C a n o n i c a l P a t h ())

+ ” / apache−tomcat −6 . 0 . 1 8 / webapps / S i m p l e S e r v l e t / ”
+ t h i s . ge tContentName (r e q . ge tReques tURI ())) ;

r e s . g e t O u t p u t S t r e a m () . w r i t e (u t i l . g e t B y t e s F r o m F i l e (f l)) ;

69

i S t r e a m . c l o s e () ;
o u t . c l o s e () ;

}
}

}

} e l s e i f (r e q . g e t P a r a m e t e r (” reqType ”) . e q u a l s (” s e r v e r ”))
{

System . o u t . p r i n t l n (” S e r v e r ”) ;

i n p u t S t r e a m = t h i s . g e t S e r v l e t C o n t e x t () .
g e t R es o u r c eA s S t r e a m (r e q . g e t P a t h I n f o ()) ;

i f (i n p u t S t r e a m != n u l l)
{

System . o u t . p r i n t l n (” T r a n s f e r i n g C o n t e n t t o S e r v e r ”) ;
u t i l . T r a n s f e r C o n t e n t (i n p u t S t r e a m , r e s . g e t O u t p u t S t r e a m ()) ;

} e l s e
{

i f (! r e q . getLocalName () . e q u a l s (
t h i s . g e t S e r v l e t C o n t e x t () . g e t I n i t P a r a m e t e r (” m a s t e r S e r v e r ”)))

{

F i l e f i l e = new F i l e (” ”) ;
System . o u t . p r i n t l n (” C a n o n i c a l Pa th : ” + f i l e . g e t C a n o n i c a l P a t h ()) ;
System . o u t . p r i n t l n (” A b s o l u t e Pa th : ” + f i l e . g e t A b s o l u t e P a t h ()) ;

F i l e O u t p u t S t r e a m o u t =
new F i l e O u t p u t S t r e a m (new F i l e (t h i s . c u t P a t h (f i l e . g e t C a n o n i c a l P a t h ()) +
” / apache−tomcat −6 . 0 . 1 8 / webapps / S i m p l e S e r v l e t / ”
+ t h i s . ge tContentName (r e q . ge tReques tURI ()))) ;

i n t r e a d B y t e s ;
b y t e [] b y t e A r r a y = new b y t e [2 0 4 8] ;

u r l = new URL(” h t t p : / / ” +
t h i s . g e t S e r v l e t C o n t e x t () . g e t I n i t P a r a m e t e r (” m a s t e r S e r v e r ”)

+ ” : ” + r e q . g e t L o c a l P o r t () + r e q . ge tReques tURI () + ” ? reqType = s e r v e r ”) ;
u r l C o n n e c t i o n = (HttpURLConnect ion) u r l . openConnec t ion () ;

I n p u t S t r e a m i S t r e a m = u r l C o n n e c t i o n . g e t I n p u t S t r e a m () ;

w h i l e ((r e a d B y t e s = i S t r e a m . r e a d (b y t e A r r a y)) > 0)
{

o u t . w r i t e (by teAr ray , 0 , r e a d B y t e s) ;
r e s . g e t O u t p u t S t r e a m () . w r i t e (by teAr ray , 0 , r e a d B y t e s) ;

}

i n p u t S t r e a m . c l o s e () ;
i S t r e a m . c l o s e () ;
o u t . c l o s e () ;

}
}
}
}
}

70

5.3.2 Access-Meter

The Access-Meter is a Java implementation of the request frequency calculation with the
EWMA filter (See Figure 5.6). For this purpose, a time-stamp of the incoming client
request is used for the request frequency calculation. In response to a client request, a
time-stamp is recorded and used as a first parameter for EWMA calculation. Since the
frequency cannot be calculated using only one parameter, the EWMA calculation requires
another client request for request frequency calculation using an EWMA filter and one
frequency parameter from the previous time period. With the next incoming request, the
new time-stamp is recorded and used as the second time-parameter for the EWMA cal-
culation. Since the EWMA filter needs one old frequency sample, the time-stamps from
the first two client requests need to be recorded in order to be used for the frequency
calculation, which will in turn be the base for the next frequency calculation. This im-
plementation is based on the principles of mathematical induction. For the simplicity
reasons, the initial frequency equals 0. This frequency is applied for the time period t[r-
1]. Started with the value 0, the first two client requests are captured by the Java servlets
and their time-stamps are recorded. Subtracting the two time-stamps allows the tie gap
between those two client requests. The reciprocal value of the calculated time gap is then
multiplied with the constant α and added to the old time period frequency value, which is
subsequently multiplied with the second constant (1-α). The Figure 5.5 illustrates the re-
quest frequency calculation with EWMA using Java servlets and recorded time-stamps as
time parameters. Code listing 5.2 denotes the Java implementation for the EWMA-based
request frequency calculation.

Figure 5.5: EWMA Access Frequency Calculated using Java Servlets

71

Figure 5.6: EWMA Filter

Listing 5.2: Access Meter

p u b l i c c l a s s AccessMete r
{

i n t a c c e s s C o u n t e r ;
l ong t ime ;
do ub l e f r e q u e n c y ;
long l a s t t i m e ;
do ub l e l a s t f r e q u e n c y ;

p u b l i c AccessMete r ()
{

t h i s . a c c e s s C o u n t e r = 1 ;
t h i s . f r e q u e n c y = 0 ;
t h i s . l a s t t i m e =0;

}

p u b l i c vo id a c c e s s ()
{

a c c e s s C o u n t e r ++;
t h i s . c a l c u l a t e F r e q u e n c y () ;
t h i s . l a s t t i m e = t h i s . t ime ;
t h i s . l a s t f r e q u e n c y = t h i s . f r e q u e n c y ;

}

p u b l i c i n t g e t A c c e s s C o u n t e r ()
{

r e t u r n a c c e s s C o u n t e r ;
}

p u b l i c long C a l c u l a t e D e l t a ()
{

r e t u r n (t h i s . t ime = System . nanoTime ()) − t h i s . l a s t t i m e ;
}

p u b l i c vo id c a l c u l a t e F r e q u e n c y ()
{

72

do ub l e newFreq = g e t F r e q u e n c y () ;
t h i s . f r e q u e n c y = newFreq ;

}

p u b l i c d ou b l e g e t F r e q u e n c y ()
{

l ong d e l t a = t h i s . C a l c u l a t e D e l t a () ;
do ub l e newFreq = 0 . 5 ∗ t h i s . l a s t f r e q u e n c y +
0 . 5 ∗ (1 0 0 0 0 0 0 0 0 0 . 0 / d e l t a) ;
r e t u r n newFreq ;
}

5.3.3 Random Early Redirection

This implementation features the RER algorithm as a function of three parameters. The
first parameter is the request frequency, which is used for comparison of the thresholds of
the other two parameters. The RER functioning principle is very simple. If the frequency
is above the first threshold, a server changes its role from the pure content provider to the
semi content provider and semi load balancer. The request frequency value is subtracted
by the first threshold and divided by the difference of the first and second thresholds.
This value is then compared with the probability number, generated with the Java random
number generator. If the probability is smaller, it indicates that the client request has to
be redirected, in order to be served by a surrogate. If the request frequency value grows
further and is above the second threshold, the server’s role is changed from the mixed,
to the pure load balancer. The return code 1 indicates the client’s redirection. If the
frequency starts decreasing, the server’s role is changed again to the mixed mode and vice
versa. This operating mode assures the flexible changing of the server roles in the overlay
network and self-adaptivity, as well as fast reaction to the peak client request rates. Code
listing 5.3 denotes the Java implementation of the RER algorithm.

Listing 5.3: Java Code for Random Early Redirection Implementation

do ub l e c a l c u l a t e P r o b a b i l i t y F u n c (d ou b l e minTresho ld , d ou b l e maxTreshold ,
do ub l e f r e q u e n c y)
{

i f (f r e q u e n c y < minTresho ld)
{

r e t u r n 0 ;
}
e l s e i f (f r e q u e n c y > maxTreshold)
{

r e t u r n 1 ;
} e l s e
{

r e t u r n (f r e q u e n c y−minTresho ld) / (maxTreshold−minTresho ld) ;
}

}

73

5.3.4 Request Forwarding

The request forwarding implementation is accomplished using a simple URL-rewriting
mechanism, combined with the HTTP redirection mechanism, implemented in Java
servlets. For the content name retrieval the Java servlet methods: getURL() and getURI()
were implemented in the HttpServletRequest class. Namely, the origin server as well as
other servers in the overlay network exchange the host names of their neighbors period-
ically and use them for the request forwarding. If a new volunteer server establishes the
connection with a Gezora CDN, the name of this host will be recorded and forwarded to
every node in this network. The server administrator has the possibility to choose the size
of the hard-disk used for contributing to the content distribution, as well as the supported
content. The URL names of the content have to be standardized and the same goes for
every volunteer server. As soon as the volunteer server has this content, his host name
will be effectively used as a surrogate in case of a sudden peak in the request frequency.
The host name is easily replaced in the URL address, and the modified URL address can
be sent to the client, using a HTTP redirection.

5.3.5 Content Transfer Implementation

Gezora’s Util class comprises a method, which is responsible for the content transfer from
a server to the client and also to other servers. This method transfers the content as a
data stream using a byteArray buffer and write() method, implemented in HTTP response
class. The implementation and application of the content transfer can be seen in the code
listing 5.1.

74

5.4 Second Gezora Prototype Architecture and Design

The goal of the Second Gezora prototype implementation was to improve Gezora’s perfor-
mance and to avoid certain bottlenecks, which arise using the Java programming language
for implementation on the application layer. The main idea behind this prototype was
to parse and filter Ethernet for HTTP request containing packets in the payload and to
destroy them, in case of redirection. Destroying the sufficient Ethernet packets would
initiate the artificial generation of Ethernet packets, which contains the modified HTTP
header with the redirection code and modified URL address. Those packets are sent to
the client who initiated the HTTP request. The request frequency monitoring and random
early redirection are subsequently implemented on the second network layer (See Figure
5.7).

Figure 5.7: Second Gezora Prototype in the ISO/OSI Layer Diagram

Using this approach, the client would be informed about temporary request redirection,
as with the HTTP protocol, however the whole process would proceed much faster and
would spare server resources, since this system does not allow the Ethernet packets to be
transferred to the higher network layers. The figure 5.8 illustrates the flow occurrence
during the Ethernet packet monitoring and parsing.

75

5.4.1 Request Forwarding

The Ethernet packets intended for sending to the upper network layers would typically
be destroyed, whereas a new Ethernet packet would be generated with injecting of the
artificial generated HTTP header, which contains the HTTP redirection code with the new
URL address from the surrogate server. This packet would be sent back to the client, and
would initiate a HTTP redirection. This concept would benefit more in performance since
the redirection is accomplished earlier (on Network Layer 2). An additional advantage of
this prototype would be the lack of the Java garbage collector, which is active in the first
prototype using Java servlets.

Figure 5.8: Flow Diagram

76

5.4.2 Disadvantages of the Second Gezora Prototype

Besides numerous advantages, this approach also imposes new challenges, which are ex-
hibited in the lack of packet synchronization (data and ack) in the TCP/IP network pro-
tocol. Hence, the server response synchronization was not able to be carried out in the
same way, as in normal TCP during the HTTP communication. Basically, during the es-
tablishment of TCP connection, the session is being starting with a three way handshake
mechanism, and controlled by the following TCP flags:

– SYN = Synchronize

– ACK = Acknowledge

– PSH = Push

– URG = Urgent

– FIN = Final

– RST = Reset

The TCP session establishment can be described as follows:

1. A client sends a TCP Synchronize packet (SYN) to a server

2. A server receives the client’s SYN packet

3. A server sends a Synchronize-Acknowledgment (SYN-ACK) to the client

4. A client receives a servers’s SYN-ACK and sends ACK back to a server

5. A server receives ACK and the TCP connection is established

The TCP SYN packet is sent to the recipient to allow the TCP session establishment. This
consent is indicated by a TCP SYN-ACK packet. The problem arises during the capturing
of Ethernet packets and searching for the HTTP request. Assume the HTTP request is
found and a request forwarding initiated. TCP session will not be closed properly, and
the TCP SYN packets will be continually sent to the client, and SYN-ACK’s are received,
even if the request forwarding to the surrogate server already occurred. This leads to
a serious interference in the working capacity of server (and client also), and can lead
to a system crash. For this reason, the second prototype was not considered for further
performance analysis of Gezora.

77

Chapter 6

Gezora Prototype Evaluation

6.1 Introduction

As previously described in chapter 3.7.2.5, the evaluation of the Gezora Prototype was
accomplished using the traffic monitoring evaluation, which gives a valuable feedback
regarding the Gezora prototype implementation performance. For this purpose, the fol-
lowing evaluation models were applied:

1. Java Client Model (Used for RER Evaluation)

2. Web Stress Tests (Used for Gezora Evaluation)

The Java client model applied for evaluation of the RER algorithm allowed us an in-depth
insight into the RER implementation behavior implemented in the Java programming lan-
guage. Using this approach we were able to characterize the RER’s behavior, which influ-
enced the flexibility and on-demand scalability of the systems with the minimal resources.
The first evaluation scenario included employing one origin server and several nodes for
the client simulation. The client model was implemented in Java programming language,
whereas for simulating the client requests, Java servlets were used.

The second form of evaluation was performed using web server stress tests from
Paessler [58], which were focused on Gezora CDN. This network monitoring applica-
tion simulates real-life client requests and applies them directly to the origin server using
a given URL address. The client’s request frequency can be parametrized and changed
during the evaluation time period.

The following sections will give a brief overview of various CDN evaluation methodolo-
gies followed by a more detailed description of employed evaluation models. Finally, the
Gezora evaluation results will be presented.

79

6.2 CDNs Evaluation Methodologies Overview

6.2.1 Important Parameters for CDN Evaluation

One of the most important parameters influencing the stability and performance of the
CDN system is the cache hit ratio, a metric describing the frequency of a successful re-
sponse to a client request and timely delivery of the requested content. The cache hit ratio
is directly connected with the system design and it indicates the excellence with which the
system design is performing the task for which it is designed (content distribution). The ef-
fectiveness of the cache hit ratio is directly indicating the design quality and it represents
one of the most important system characteristics. Every origin server has a designated
bandwidth, determined either physically or logically by content providers and network
engineers. For the network bandwidth to be optimally used as a network resource, peri-
odic analysis is needed in order to set the appropriate amount of bandwidth for the needs
of users and to retain the lowest possible costs for the content providers. If the bandwidth
is greater than the client’s needs are, the content providers are loosing money and paying
for something that is not fully utilized. If the bandwidth is lower than the client’s needs
are, the content might not reach all users in need and low bandwidth would significantly
decrease the experience of using the system. Having this in mind, the engineers and pro-
grammers need to periodically analyze bandwidth utilization, which is tightly connected
to the issue of bandwidth management. Different algorithms are entrusted to manage the
bandwidth in an automatic manner.

6.2.2 Network Traffic Analyzing and it’s Benefits

Network traffic should be analyzed periodically both in the volume and in the structure.
If the findings show that the algorithm is handling all requests from flash crowds and
other redirection needs in a satisfying manner, it can be concluded that the algorithm is
handling tasks satisfactorily and that the additional adjustments are not necessary. If the
bandwidth is dedicated logically to a server and if the comprehensive network analysis
shows the frequent need for a higher bandwidth, the adjustments in the network software
could be made in order to allocate more bandwidth to the server. With time, engineers and
content providers could even start acting proactively and allocate more network resources
to more popular content and thus prevent congestions in advance. If experience shows
that some content is highly popular, more bandwidth could be allocated to these particular
servers. On the other hand, an analysis of the traffic structure could prove to be more
complex. For example, if such an analysis suggests that more popular content should
be packed, made available in some other format, divided into smaller parts or copied to
different servers, which are more appropriate for storing particular content types. These
forms of analysis would contribute to adjusting the optimal bandwidth consumption for
the users and content providers. Good bandwidth management and careful planning of
the system design can reduce the client perceived latency to the minimum or at least to an
acceptable level. Nevertheless, in certain cases the system or network latency can impose

80

a major obstacle. From the viewpoint of the average user, it makes no difference whether
the latency has occurred on the server or somewhere in the network or a node. Because
of this, we will not insist on a distinction between these two sources of latency and will
address the latency problem regardless of the source of origin in the following text. In
the first case due to latency (regardless of its source) the users may loose patience and
give up on attempts to download certain desired content. In the second case, the system
could be so congested that the distribution of the content could be impossible even if users
have the patience to wait for the download. In the first case, which is easier to resolve,
the solution could be to mirror the content on the other server which has less congestion
and in the other case, little could be done without physical intervention or natural request
dissipation. The utilization of surrogate servers is not something that the average user
would be much concerned about directly. End users are only interested in the latency as
a whole being as minimal as possible and not how it is achieved, and how the network
resources are organized and utilized.

6.2.3 Surrogate Utilization Monitoring

The monitoring of the surrogate server utilization is helping the network administrators to
plan more precisely the network design and network resources. Accurate planning ensures
distribution of content with the minimal latency and optimal usage, once the system is
deployed in a real life situation. Optimal utilization of all resources can be sometimes
very important in three aspects: user satisfaction, content provider’s cost reduction and
importance for interest group in general. A lot has been said about the importance of user
satisfaction so it is needless to say that it is the core reason for all the efforts. Any content
provider has the interest to enable their content to be available to the end users. The
motivation can range from profit making to information sharing in order to achieve social
prestige and spreading of ideology. Sometimes, in certain cases it could be important to
the local community or an interest group to get much needed information not regarding
profit generation. For example a university professor might need to distribute materials for
exam preparation, a football club might want to distribute content to the fans, etc. All this
is pointing to the importance of easy and fast content distribution, for which all sides have
interest in (content providers, network administrators and end users). All measurements
(cache hit ratio, request time, reserved bandwidth, latency, surrogate server utilization)
are important, but if the reliability or the network or a system is not satisfying the main
requirement, all previous factors are worthless. It makes not much difference if the latency
and server load are low, if cache hit ratio and bandwidth are high if the system is not on
line 24/7 or if the connection is breaking often. The most important requirement is to
provide the same performance to the end users, regardless which factor is influencing the
system.

81

6.2.4 User Surveys and a Real-life Evaluation Methods

In order to get the performance information of the system, network administrators need to
monitor all server characteristics and set parameters for the optimal server performance.
Both, the content providers and end users share the same need for optimum performance
from the system and network, regardless how it is achieved. Independent third parties can
utilize user panels (predetermined groups of users) for conducting user surveys, which can
be selected over and over again, each time the survey is being performed. The importance
of each survey lies in the wide number of tests performed with a large number of users.
This evaluation method is optimal, since it corresponds to the real-life environment. The
main drawback of this evaluation method is a long time period for results collection. Usu-
ally, we need to get the evaluation results as fast as possible. To be able to accomplish
this requirement in a short time period, we usually use mathematical models to simulate
real life situations. Nowadays a very powerful mathematical models could be employed
to analyze the system performance and model a possible future behavior based on the
gathered data. Environment simulation and computer models although very accurate, still
cannot substitute a real life testing. Hardware testing is usually performed by manufac-
turers whereas the network component testing is done mainly by network administrators.
Whereas the software testing can be automated with unit tests, the main difficulty is to de-
fine initial requirements before the software engineering and implementation starts. This
is a rather challenging task, since a large number of parameters are influencing the imple-
mentation. In certain cases it is more efficient to apply real-life tests using beta versions.
The probability of one user finding a use case, which is not covered, is higher than when a
software engineer tries to locate the same use case. Third party guarantees by its name the
results of the testing and provides trustworthiness for both the users and system creators.
In this way users have more confidence in the system and its performance and the system
creators can achieve a great marketing advantage just by simply employing third party for
system testing.

6.2.5 Conclusion and the CDN’s Evaluation Methods Comparison

Although network statistics acquisition is complex and important, it is not less complex
or important than data analysis. Data analysis, such as access pattern, bandwidth usage
and response time examination, usually requires employment of teams of experts, which
include information technology experts as well as the experts in other fields such as statis-
tics, mathematics, social science, behavioral experts etc. Due to reasons listed above,
network probing must be approached with care and the results are ought to be analyzed
with great care. It is up to the network administrators, system administrators and end users
to choose which parameter is the most important to them but all values of parameters are
indicating the state of the system as a whole.

82

6.3 Java Client Model and Gezora’s RER Evaluation

The Java client model was initially implemented for the RER Evaluation, but it also gave
the basic idea about the evaluation concept of the Gezora system. This simple core tests
are aimed at testing the basic system functionality and the responsiveness of the RER
algorithm. If a basic system functionality is flawed, there is no reason to test the whole
system with more complicated tools.

In the evaluation scenario, we are trying to stress the server by putting it under a very high
request load. When the server is almost or totally jammed with requests, the time gaps
in response are monitored and we can determine the systems behavior on the occurring
situation. Here, we want to evaluate, if the implemented mechanisms are going to resolve
the client’s request congestion in the satisfying manner. In the evaluation scenario with a
Java client model, we are trying to simulate the build up of flash crowds and to monitor
the system’s behavior in the situation, which represents the normal working environment
and the most common practice.

The Java client model consists of the HTTP protocol implementation for establishing the
HTTP connection with the server, time scheduler and the redirection following mechanism
(See Code Listing 6.1). The HTTP connection is initiated from virtual clients and sent to
the target server using the URL address. The frequency of sending the URL Requests is
controlled by the time scheduler, which is implemented in Java.

The time scheduler is a simple Java implementation of the timer, that is used for schedul-
ing of the client requests. The time scheduler can be set up with parameters, which denote
the time period between two client requests. If we use a smaller time gap between two
client requests, the request rate will be higher, and vice versa. For achieving a high time
scheduling precisions, we used a nanosecond timer for client request scheduling. Once the
HTTP response is received from the server side, the information about the request comple-
tion can be extracted and used for statistics. In Java there is a flag called setFollowRedi-
rects, which can be set when using the HTTP protocol implementation for establishing
the HTTP connection. This flag is implemented in the URLConnection Java class. In this
evaluation scenario, several machines on the academic testbed, called PlanetLab [36, 37],
were used to start the Java Client Model and access the central server positioned in the
IAM institute, University of Bern. The surrogate server was also positioned in the IAM
institute. The Java client model simulated many instances of the client requests. The
number of requests per time unit was parametrized and was changed during the evaluation
period. In this scenario, the surrogate server’s role was not important. The main focus
here was to measure the ratio between the number of redirected client requests and the
total client requests send to the origin server. Figure 6.1 illustrates the RER test scenario
with a Java Client Model.

Code listing 6.1 represents the Java client model implementation and demonstrates the
Java class, which is responsible for establishing the HTTP HTTP connection with the

83

Figure 6.1: RER Test Scenario with Java Client Model

Figure 6.2: Client Communication Scenario with Origin and Surrogate Server

84

server using the URL address. The table also shows the setFollowRedirects flag used
to count the number of redirects on the HTTP connection, the so called HTTP response
code, taken as parameter from the HTTP connection class, and the if/else statement, which
is used for distinguishing of the HTTP response code. The HTTP response code 302
indicates that a client request has been redirected, whereas the HTTP response code 200
stands for the served client requests. With the if/else statement, we can add counters,
which collect evaluation results for different request rates. The typical content size on
the origin server amounted to a few Megabytes. Figure 6.2 shows the communication
scenario between the client and origin server. The origin server has two possibilities,
either to response to the HTTP request or to send the redirect code to client, which will be
automatically redirected to the surrogate server.

Listing 6.1: Java Code for Following the Request Redirections on Central Server

u r l C o n n e c t i o n = (HttpURLConnect ion) u r l . openConnec t ion () ;
u r l C o n n e c t i o n . s e t F o l l o w R e d i r e c t s (f a l s e) ;
i n t r e sponceCode = u r l C o n n e c t i o n . ge tResponseCode () ;

i f (r e sponceCode == 302)
{

r e d i r e c t C o u n t ++;
System . o u t . p r i n t l n (” r e d i r e c t C o u n t : ” + r e d i r e c t C o u n t) ;

} e l s e i f (r e sponceCode == 200)
{

d e l i v e r e d C o u n t ++;
System . o u t . p r i n t l n (” d e l i v e r e d C o u n t : ” + d e l i v e r e d C o u n t) ;

}

In our evaluation scenario, we measured the percentage of redirected requests in correla-
tion with the number of requests per unit time in seconds. The evaluation was initiated
with 50 client requests per second with an increase of 10 client requests. During the eval-
uation period, this increase was added repeatedly to the existing number of client requests
per unit time until 300 requests per second were reached. To avoid the measurement errors,
the evaluation with the Java client model was repeated 50 times. According to the statisti-
cal calculations, all measurements greater than 30 tends to assume a normal distribution.
The evaluation results are illustrated in the Figure 6.3. The graph in the Figure 6.3 shows
the confidence interval of +/- one standard deviation higher/lower than the mean value. At
the normal distribution, the confidence interval of +/- one standard deviation compared to
the mean value includes about 68% of statistical measurement data. The graph also shows
that the percentage of redirects equals 0 in the first few steps (from 50 to 90 requests per
sec.). This illustrates the minimum threshold applied in the RER algorithm. In the range
from 50 to 90 seconds, the server’s role is pure content provider, which fulfills every client
request. From 100 to 300 requests per second, the server’s role changes to partial load bal-
ancer and content provider and the ratio between the number of redirects and the number
of total requests is rising. Here we can see clearly the very similar function line behavior
as in the Figure 3.1, although the results are not equivalent to the real RED graph, since
there is a timing gap in the Java scheduler. Obviously the Java performance bottlenecks,

85

like garbage collector, are influencing the RED behavior. Nevertheless, this result gives
us a valuable feedback about the RER implementation in Gezora and its responsiveness,
which permitted further Gezora implementation- and evaluation steps.

Figure 6.3: RER Evaluation Results

The Figures B.1, B.2 and B.3 give the detailed overview about the Java client evaluation
model, presented as the sequence diagrams.

6.4 Gezora Performance Evaluation

A web server stress tool emulates the client activity using a realistic client simulation. It
generates the so-called virtual clients and measures the various server performance pa-
rameters. The web server stress tool is designed to determine the system’s behavior in
case of congestion. In other words, this test is designed to test the system dynamically,
which emphasizes the importance of the test. Its task is to simulate the most common sit-
uations, which the system will encounter in real life exploitations, most notably the build
up of flash crowds. The measured parameters can give a meaningful feedback about the
server’s performance bottlenecks. The main functionality of web stress tests reflects the

86

fact that each virtual client with his emulated functions acts as a real user. Still, this kind
of simulation has certain limits, regarding the maximum number of the emulated simulta-
neous client requests. Using a web stress tool, a maximum of 10’000 simultaneous client
requests can be simulated without suffering from the limitations of the single computer
test environment.

One web server test can emulate the load of thousands of virtual users experienced by a
web site when the corresponding number of real users accesses it. User profiles describe
the behavior of virtual users. This allows us to emulate a real workload on the server.
One user profile consists of a specific number of virtual clients who process the HTTP
transactions during the specified time period. For each user profile, the web page URL
addresses are specified. We applied a test scenario, where a load increase is made after
specified time intervals. The test duration and the maximum number of virtual clients per
time unit for each user profile can also be determined. At the end of the tests, the sum-
mary reports and graphs are generated. With the help of the summary reports and graphs,
we obtained a specific estimation of Gezora’s performance during the high demand time
periods. More specifically, with help of the web stress tool, we are able to answer the
following questions:

1. Is the web server prepared for the expected traffic?

2. Is the web server prepared for increasing visitors over time?

3. Can the web server survive sudden traffic spikes?

4. How many users can the web server handle before error messages and server time-
outs occur?

5. How much time does it take for a client to receive a page after clicking on a link?

6. Are the scripts and databases optimized to run as quickly as possible and do they
interact with each other correctly under heavy web server loads?

7. Is the web server bandwidth and hardware sufficient?

6.4.1 Web Server Performance Evaluation Types

The most prominent test types in the web server stress application are:

1. Performance Tests

2. Stress Tests

3. Ramp Tests

6.4.1.1 Performance Tests

Performance tests are applied to the web server to determine the web server performance
under increased web traffic. During the test period, several simultaneous requests are sent

87

to one URL and the average client request time is recorded. Usually, performance tests
run without requesting web page content like images. They are concentrated on the script
and code testing itself. This simple core tests are aimed at testing the basic functioning
of the system. If a basic functioning of the system is flawed, there is not much sense in
testing the system further with more complicated tools.

6.4.1.2 Stress Tests

Stress tests are simulated denial of service attacks. With stress tests, the real situations,
like sudden traffic spikes, can be easily generated and sent to the web server. The purpose
of a stress test is to estimate the maximum load at which the web server can handle and
also to learn the web server’s traffic thresholds and determine the response behavior after
exceeding the thresholds. This kind of test is intended to test the system performance
statically. The maximum number of users is determined and the behavior of the system
is monitored. In this scenario administrators are trying to test the server by putting it into
the border line situation. When the server is almost or totally jammed with requests, it
is monitored in order to determine how the system will handle the situation. This is the
situation where the system is already congested and administrators need to see is it going
to resolve the situation in the satisfying manner.

6.4.1.3 Ramp Tests

Ramp Tests are a subcategory of stress tests. The main difference to stress tests is that
ramp tests increase the number of users during the test time dynamically, from one to
thousands of users, compared to the stress tests, where one fix amount of requests is
generated to trigger the server overloading. Ramp tests are more flexible than standard
stress tests, since they are able to test various load rates on the server. With the help of
ramp tests, we can determine what the maximum load of one server can handle while
providing optimal access time to web content. The acceptable web server response time
should be less than 10 seconds. When users experience poor performance on a web site,
they are dissatisfied, and may leave never to return again. In this scenario, the test is
designed to determine the system behavior in the case of traffic congestion.

Perhaps this is the most important kind of test, because its task is to simulate the most
common situations, which the system will encounter in real life exploitations the build up
of flash crowds. System and network administrators are trying to simulate the build up
of flash crowds and to monitor the system’s behavior in the situation which represent the
normal working environment and the most common case in practice. Because of this, a
ramp test is probably the most interesting kind of test which also generates the highest
data volume, the most complex data and is the closest to real life exploitation test results.

88

6.4.2 Evaluation Scenarios using Web Server Stress Tests

For Gezora performance testing, we applied RAMP Tests, described in the Section 6.4.1.3.
Our evaluation scenario consisted of a variable number of emulated client requests rang-
ing from minimum 1 request per second to a maximum of 1500 requests per second. A
simulated request number is increased during the test period adding the variable of request
number every 30 seconds. The web stress tool was running on two different servers, posi-
tioned in the IAM institute at University of Bern. This doubled the emulated request rate
up to 3000 simultaneous requests per second. The origin server was also positioned in
the IAM institute and connected with a surrogate server. Figure 6.4 illustrates the Gezora
performance evaluation scenario using web server stress tests.

Figure 6.4: Gezora Web Server Stress Tests Scenario

For evaluation purposes, we implemented a small web page with an estimated content of
ca. 26 MB. The structure of the web site had a very simple design and contained only
static content (text and pictures). With referencing of the main URL address of the web
page (Main.jsp), the web content of 26 MB was transferred to the client and showed on
the web page. The data transfer was accomplished using HTTP communication protocol
previously described in the Section 5.3.5.

89

6.4.3 Evaluation Results with Web Server Stress Tests

In order to avoid potential measurements errors, the same web stress evaluation was re-
peated 100 times, using the test scenario described in the Section 6.4.2.

Figure 6.5 illustrates Gezora evaluation results and shows the average request time in
correlation with the request number per time unit (second), after applying 100 RAMP tests
to the original web server without Gezora CDN and to the Gezora CDN, which consisted
of one original and one surrogate server. The graph in the Figure 6.5 shows a clear
difference in the average request time when Gezora is utilized and when only one origin
server is utilized. In the range from 200 requests/sec to around 1400 requests/sec, the
average request time of one origin server without Gezora increases drastically as compared
to the average request time measurements of a Gezora CDN with one surrogate, which is
increases slightly and remains below 100 ms. In the range from 1300 requests/sec to
1500 requests/sec the request time of one origin server without Gezora is increasing even
faster and achieves a maximum request time of 600 ms, whereas the Gezora CDN request
time reaches the maximum value of 180 ms. This is a very important evaluation result,
which shows the difference in the request time between one origin server and Gezora
CDN with minimal resources, namely only one surrogate. The difference in the client’s
request time during the peak request rate was about 30% smaller using a Gezora CDN.
This proves that our request frequency monitoring mechanism, based on EWMA and RER
redirection mechanism reacts fast to the request frequency changes, which can use the
volunteer server’s resource for the mitigation of the request congestion. This mechanism is
very flexible, and it can be applied not only for large server scaling, but also for moderate
CPU scaling using many CPU cores. The resources from every participating volunteer
server should be used from the beginning, before a real congestion occurs.

90

Figure 6.5: Average Request Time [ms] in Correlation with the Request Number per Time Unit [s]

Further Gezora evaluation results, presented in Figures 6.6, 6.7, 6.8, 6.9 and 6.10
illustrate the percentage of clients who waited for the some web content during the specific
time period.

Most importantly, the correlation between the waiting time during the request and the
number of clients is presented. This graph shows the percentage of users (compared to
the total number of user requests), who waited a certain time period. Figures 6.6, 6.7,
6.8, 6.9 and 6.10 clearly state the difference between the results with and without Gezora
application.

For example, we can notice on Figure 6.6 the difference between two lines (with and
without Gezora). A green line denotes the percentage of users who waited less than 20 ms
with Gezora, and the red line denotes the percentage of users who waited less than 20 ms
without Gezora. Here we can see that the green line is holding the 100% of users up to
around 600 requests per second. After this value, it starts to fall down. This indicated the
changing of the request time in correlation with the increase of request number per unit
time (s). On the other side, the red line behavior differs from the first one. It starts to fall
already at 200 requests per second, and is falling faster than the first one.

Other figures show exactly the same behavior of lines for the different waiting times. If
we compare the results in Figure 6.10, a clear difference in trends is visible. Namely, the
percentage of users who waited less than 200 ms in the range of a high user request rate
was much higher than in the system with one origin server, without Gezora CDN. The
green line is holding 100% of users all time, whereas the red line starts to fall from 800
request/s on.

91

Figure 6.6: Percentage of Users with a Request Time less than 20 ms

Figure 6.7: Percentage of Users with a Request Time less than 60 ms

92

Figure 6.8: Percentage of Users with a Request Time less than 100 ms

Figure 6.9: Percentage of Users with a Request Time less than 140 ms

93

Figure 6.10: Percentage of Users with a Request Time less than 200 ms

The described evaluation results give a clear statement and an important feedback about
Gezora’s scalability during the high demand period.

94

Chapter 7

Conclusions and Outlook

The main goal of this master thesis was to present the main aspects of Gezora’s design and
functionality as well as the advantages over other systems. The main efforts as well as the
complex design were developed in order to accomplish only one requirement, which is
serving user’s requests as fast and as easy as possible. This aspect is important not just
for users, which demand a high system and network performance, but for the content
providers as well.

We implemented a new kind of CDN prototype, which consists of the request frequency
monitoring system (EWMA Filter), random early redirection (RER) and request routing
mechanisms, such as URL rewriting and HTTP redirection. The functional prototype
was implemented in Java programming language using J2EE and Java servlets. Gezora’s
essential task was to decrease the latency and increase the speed of serving the user’s
request, or to deliver the content to the end users as quickly and easily as possible.

The Gezora evaluation gave a very important feedback about performance regarding the
adapting to the fast request number changes (flash crowds). We applied a simulation of
a real-life scenario from the end user side and we applied a real-life server infrastructure
for our evaluations. As, mentioned earlier, there is no better way to test any kind of
system as in a real life testing environment. The downside of real-life testing is that it
is not always possible to test all border line cases and parameters, because those cases
occur very rarely, the evaluation costs for this kind of evaluation could be high, or time to
perform the testing could be very long. In such situations, the mathematical models and
computer simulations, which we have just mentioned, can give satisfying results, with a
high accuracy. Still, we must have in mind that the computer simulations are not 100%
reliable.

Considering other evaluation methods, the best solution would be to perform a mixed
testing, by testing the system off-line first and than allowing the users to test it on-line as a
beta version in more or less controlled or pre-determined conditions. This mixed approach
of modern mathematical, statistical and software tools and models with real life testing has

95

given the best and the most satisfying results so far, by the lowest costs possible and the
highest possible accuracy. Unfortunately, nothing is ever 100% error proof, but a mixed
approach experience has showed that it leaves the least work on system maintenance after
the system has been tested by this approach. Some other methods may be used for testing
and simulating the working environment prior to the actual system deployment. We leave
it to every researcher to choose their most preferred testing method, but one thing is clear
to all, and that is the importance of prior system testing. The importance of prior testing
is among the most important steps in system design and deployment as much as real life
smooth functioning and stability is. The latency perceived by the client is in the direct
correlation with the quality and one of system’s main quality factors (stability, decreased
latency, good experience during exploitation, system proactivity etc.).

According to the evaluation results, Gezora accomplished a roughly 30% better request
time across all access rates using only one surrogate server compared to the system with
one origin server. This indicates that a RER algorithm can be applied to the future CDNs
for mitigation of the fast changing request rates. All tests and graphs indicate that Gezora
is able to employ the modular design and existing technology in a new way and deliver
much needed performance by reasonable costs. Today in the information technology era,
when the user’s wish is the law, the primary request for any system is to satisfy user
requests in a minimum amount of time as reliably and as cheaply as possible, and Gezora
is surely up to the task.

During the Gezora prototype implementation and evaluation process we concluded that
there is much space for improvements in the Gezora design. For the future work we are
planning to implement the feedback control loop described in 3.6, which would addition-
ally include a weight-fairness (α parameter) in the EWMA frequency filter. In our future
work, we would also investigate the impact of the additional feedback control for weight
adaptation on the evaluation results. Further work would focus more on finding the scal-
ing factor, which correlates to the number of surrogate servers for different load rates and
to derive the mathematical expression for it.

96

Bibliography

[1] Wikipedia, “Gezora kaiju.” [Online]. Available: http://godzilla.wikia.com/wiki/
Gezora

[2] G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic
Systems, 4th ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[3] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-
ance,” 1993.

[4] D. Carra, “Content delivery in overlay networks: a stochastic graph,” in Processes
Perspective, in Proc. IEEE GLOBECOM 2006, Nov. 27, 2006.

[5] Wikipedia, “Youtube.” [Online]. Available: http://de.wikipedia.org/wiki/YouTube

[6] “Facebook.” [Online]. Available: http://de.wikipedia.org/wiki/Facebook

[7] A. mukaddim Khan Pathan and R. Buyya, “A taxonomy and survey of content de-
livery networks,” 2008.

[8] G. Pallis and A. Vakali, “Insight and perspectives for content delivery networks,”
Communications of the ACM, vol. 49, pp. 101–106, 2006.

[9] S. Androutsellis-theotokis and D. Spinellis, “A survey of peer-to-peer content distri-
bution technologies,” ACM Computing Surveys, vol. 36, pp. 335–371, 2004.

[10] “Scalr: An on-demand scaling system for amazon cloud services.” [Online].
Available: https://www.scalr.net/

[11] “Akamai: Web application acceleration and performance.” [Online]. Available:
http://www.akamai.com/

[12] Wikipedia, “Transmission control protocol.” [Online]. Available: http://de.
wikipedia.org/wiki/Transmission Control Protocol/Internet Protocol

[13] C. Technologies, “Winpcap: Windows packet capturing library.” [Online].
Available: http://www.winpcap.org/

[14] B. Mobasher, R. Cooley, and J. Srivastava, “Creating adaptive web sites through
usage-based clustering of urls,” in In IEEE Knowledge and Data Engineering Work-
shop (KDEX’99, 1999.

[15] Y. C. Uc, Y. Chen, L. Qiu, W. Chen, L. Nguyen, and Y. H. Katz, “Clustering web
content for efficient replication,” in Proceeding of the 10th IEEE International Con-
ference on Network Protocols. Society Press, pp. 165–174.

97

http://godzilla.wikia.com/wiki/Gezora
http://godzilla.wikia.com/wiki/Gezora
http://de.wikipedia.org/wiki/YouTube
http://de.wikipedia.org/wiki/Facebook
https://www.scalr.net/
http://www.akamai.com/
http://de.wikipedia.org/wiki/Transmission_Control_Protocol/Internet_Protocol
http://de.wikipedia.org/wiki/Transmission_Control_Protocol/Internet_Protocol
http://www.winpcap.org/

[16] Y. Chen, L. Qiu, W. Chen, L. Nguyen, R. H. Katz, and Y. H. Katz, “Efficient and
adaptive web replication using content clustering,” IEEE Journal on Selected Areas
in Communications, vol. 21, pp. 979–994, 2003.

[17] Y. M. Liu and I. Traore, “Systematic security analysis for service-oriented software
architectures,” in Proceedings of the IEEE International Conference on e-Business
Engineering, ser. ICEBE ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 612–621. [Online]. Available: http://dx.doi.org/10.1109/ICEBE.2007.137

[18] N. K. Nagwani, “Clustering based url normalization technique for web mining,”
Advances in Computer Engineering, International Conference on, vol. 0, pp. 349–
351, 2010.

[19] “Url normalisation.” [Online]. Available: http://en.wikipedia.org/wiki/
URL normalization

[20] A. Ailamaki, C. Garrod, C. Olston, B. Maggs, A. Manjhi, G. Inc, A. Tomasic, and
T. Mowry, “Akamai technologies.”

[21] “Mirror image: Digital media delivery.” [Online]. Available: http://www.
mirror-image.com/

[22] M. J. Freedman, E. Freudenthal, and D. M. Eres, “Democratizing content publication
with coral,” in In NSDI, 2004.

[23] Wikipedia, “Round robin algorithm.” [Online]. Available: http://en.wikipedia.org/
wiki/Round-robin

[24] C. C. Group, “Large hadron collider.” [Online]. Available: http://public.web.cern.
ch/public/en/lhc/lhc-en.html

[25] “European virtual observatory.” [Online]. Available: http://www.euro-vo.org/pub/

[26] “Biogrid: Database of protein and genetic interactions.” [Online]. Available:
http://thebiogrid.org/

[27] “Oracle exadata storage servers.” [Online]. Available: http://www.
oracle.com/technetwork/database/exadata/dbmachine-x2-8-datasheet-173705.pdf?
ssSourceSiteId=ocomen

[28] E. W. Biersack, P. Rodriguez, and P. Felber, “Performance analysis of peer-to-peer
networks for file distribution,” in In Proc. Fifth International Workshop on Quality
of Future Internet Services, 2004.

[29] Wikipedia, “Bittorrent p2p.” [Online]. Available: http://de.wikipedia.org/wiki/
BitTorrent

[30] “Xerox palo alto research center.” [Online]. Available: http://www.parc.com/

[31] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson, “Reliability and security in the
codeen content distribution network,” in In USENIX Annual Technical Conference,
General Track (2004, pp. 171–184.

[32] T. T. Proactive, P. Enterprise, and M. M. The, “Planetlab and its applicability,” 2004.

98

http://dx.doi.org/10.1109/ICEBE.2007.137
http://en.wikipedia.org/wiki/URL_normalization
http://en.wikipedia.org/wiki/URL_normalization
http://www.mirror-image.com/
http://www.mirror-image.com/
http://en.wikipedia.org/wiki/Round-robin
http://en.wikipedia.org/wiki/Round-robin
http://public.web.cern.ch/public/en/lhc/lhc-en.html
http://public.web.cern.ch/public/en/lhc/lhc-en.html
http://www.euro-vo.org/pub/
http://thebiogrid.org/
http://www.oracle.com/technetwork/database/exadata/dbmachine-x2-8-datasheet-173705.pdf?ssSourceSiteId=ocomen
http://www.oracle.com/technetwork/database/exadata/dbmachine-x2-8-datasheet-173705.pdf?ssSourceSiteId=ocomen
http://www.oracle.com/technetwork/database/exadata/dbmachine-x2-8-datasheet-173705.pdf?ssSourceSiteId=ocomen
http://de.wikipedia.org/wiki/BitTorrent
http://de.wikipedia.org/wiki/BitTorrent
http://www.parc.com/

[33] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson,
T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating system support for planetary-
scale network services,” 2004, pp. 253–266.

[34] M. Freedman and D. Mazieres, “Sloppy hashing and self-organizing clusters,” in In
IPTPS, 2003, pp. 45–55.

[35] U. d. G. Matteo Dell’Amico, Dipartimento di Informatica e
Scienze dell’Informazione, “Highly-clustered networks with preferential attachment
to close nodes,” 2006.

[36] N. Spring, L. Peterson, A. Bavier, and V. Pai, “Using planetlab for network research:
myths, realities, and best practices,” SIGOPS Oper. Syst. Rev., vol. 40, no. 1, pp.
17–24, 2006.

[37] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir, “Experiences building plan-
etlab,” in OSDI ’06: Proceedings of the 7th symposium on Operating systems design
and implementation. Berkeley, CA, USA: USENIX Association, 2006, pp. 351–
366.

[38] Wikipedia, “Network file system.” [Online]. Available: http://de.wikipedia.org/
wiki/Network File System

[39] S. Annapureddy and M. J. Freedman, “Shark: Scaling file servers via
cooperative caching,” in In Proc NSDI, 2005. [Online]. Available: http:
//www.scs.cs.nyu.edu/shark/

[40] M. O. Rabin, “Digitalized signatures and public-key functions as intractable as fac-
torization,” Cambridge, MA, USA, Tech. Rep., 1979.

[41] J. Friedman and E. Garrison, “Building a hierarchical content distribution network
with unreliable nodes.” [Online]. Available: http://www.scs.cs.nyu.edu/shark/

[42] S. L. Garfinkel, I. Voip, and S. Security, “Skype security overview, rev 1.6- 1/26/05
by.”

[43] P. Goering and G. Heijenk, “Service discovery using bloom filters,” in In: Proceed-
ings Twelfth annual conference of the Advanced School for Computing and Imaging,
pp. 14–16.

[44] Y. Matsumoto, H. Hazeyama, and Y. Kadobayashi, “Adaptive bloom filter: A
space-efficient counting algorithm for unpredictable network traffic,” IEICE -
Trans. Inf. Syst., vol. E91-D, pp. 1292–1299, May 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1522798.1522838

[45] A. A. J. Jehoshua Bruck, Jie Gaoy, “Adaptive bloom filter.”

[46] “Servlet api documentation.” [Online]. Available: http://tomcat.apache.org/
tomcat-5.5-doc/servletapi/index.html

[47] “Apache tomcat: An open source software implementation of the server.” [Online].
Available: http://tomcat.apache.org/

[48] “Jboss enterprise: A community-driven open source middleware.” [Online].
Available: http://www.jboss.org/

99

http://de.wikipedia.org/wiki/Network_File_System
http://de.wikipedia.org/wiki/Network_File_System
http://www.scs.cs.nyu.edu/shark/
http://www.scs.cs.nyu.edu/shark/
http://www.scs.cs.nyu.edu/shark/
http://portal.acm.org/citation.cfm?id=1522798.1522838
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/index.html
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/index.html
http://tomcat.apache.org/
http://www.jboss.org/

[49] M. Corporation, “Ms windows server 2008 r2 os.” [Online]. Available:
http://www.microsoft.com/windowsserver2008/en/us/default.aspx

[50] “Red hat enterprise linux server os.” [Online]. Available: http://www.redhat.com/
rhel/server/

[51] P. Pradhan, R. Tewari, S. Sahu, A. Ch, and P. Shenoy, “An observation-based ap-
proach towards self-managing web servers,” in In Proceedings of the Tenth Interna-
tional Workshop on Quality of Service (IWQoS 2002, 2002.

[52] R. Zhang, S. Parekh, Y. Diao, M. Surendra, T. Abdelzaher, J. Stankovic, R. Zhang,
Y. Diao, T. Abdelzaher, S. Parekh, M. Surendra, and J. Stankovic, “Control of
weighted fair queueing: Modeling, implementation, and experiences,” 2004.

[53] “Keynote systems: The mobile and internet performance authority.” [Online].
Available: http://www.keynote.com/

[54] “Giga information group.” [Online]. Available: http://www.business.com/directory/
computers and software/reference/giga information group/profile/

[55] P. Francis, S. Jamin, C. Jin, Y. Jin, V. Paxson, D. Raz, Y. Shavitt, and L. Zhang,
“Idmaps: A global internet host distance estimation service,” in In Proceedings of
IEEE INFOCOM, 2000, pp. 210–217.

[56] “Omnet++ network simulation framework.” [Online]. Available: http://www.
omnetpp.org/

[57] “Inet framework: An open-source communication networks simulation package for
the omnet++ simulation environment.” [Online]. Available: http://inet.omnetpp.org/

[58] I. Paessler, “Paessler: Network monitoring software, network performance
management.” [Online]. Available: http://www.paessler.com/webstress/

100

http://www.microsoft.com/windowsserver2008/en/us/default.aspx
http://www.redhat.com/rhel/server/
http://www.redhat.com/rhel/server/
http://www.keynote.com/
http://www.business.com/directory/computers_and_software/reference/giga_information_group/profile/
http://www.business.com/directory/computers_and_software/reference/giga_information_group/profile/
http://www.omnetpp.org/
http://www.omnetpp.org/
http://inet.omnetpp.org/
http://www.paessler.com/webstress/

Appendix A

UML and Sequence Diagrams: Gezora
Prototype

101

Figure A.1: Getting Content Name

102

Figure A.2: Java Stream Implementation for Content Transfer

Figure A.3: HTTP doPost Method

103

Figure A.4: Java Method for Cutting the URL Path

104

Figure A.5: Probability Calculation Implemented in Java

Figure A.6: Java Object with two Parameters Holding the Time and Frequency of Client Requests

105

Appendix B

UML and Sequence Diagrams: Java
Client Model

Figure B.1: The Core of the Java Client Model

107

Figure B.2: Time Scheduling with Threads at Java Client Model108

Figure B.3: Full Sequence Diagram of Java Client Model

109

Appendix C

Summary Log

Listing C.1: Example: Summary Log

R e s u l t s o f p e r i o d #1 (from 2 s e c t o 7 s e c) :
∗∗∗
Completed C l i c k s : 46 wi th 0 E r r o r s (=0 .00%)
Average C l i c k Time f o r 16 Use r s : 141 ms
S u c c e s s f u l c l i c k s p e r Second : 9 . 1 0
(e q u a l s 32 ’ 742 .43 C l i c k s p e r Hour)

R e s u l t s o f p e r i o d #2 (from 7 s e c t o 12 s e c) :
∗∗∗
Completed C l i c k s : 119 wi th 0 E r r o r s (=0 .00%)
Average C l i c k Time f o r 32 Use r s : 6 ms
S u c c e s s f u l c l i c k s p e r Second : 23 .44
(e q u a l s 84 ’ 364 .81 C l i c k s p e r Hour)

R e s u l t s o f p e r i o d #3 (from 12 s e c t o 17 s e c) :
∗∗∗
Completed C l i c k s : 201 wi th 0 E r r o r s (=0 .00%)
Average C l i c k Time f o r 48 Use r s : 6 ms
S u c c e s s f u l c l i c k s p e r Second : 39 .60
(e q u a l s 142 ’ 564 .05 C l i c k s p e r Hour)

R e s u l t s o f p e r i o d #4 (from 17 s e c t o 22 s e c) :
∗∗∗
Completed C l i c k s : 277 wi th 0 E r r o r s (=0 .00%)
Average C l i c k Time f o r 64 Use r s : 6 ms
S u c c e s s f u l c l i c k s p e r Second : 54 .53
(e q u a l s 196 ’ 318 .51 C l i c k s p e r Hour)

R e s u l t s o f p e r i o d #5 (from 22 s e c t o 27 s e c) :
∗∗∗
Completed C l i c k s : 353 wi th 0 E r r o r s (=0 .00%)
Average C l i c k Time f o r 80 Use r s : 6 ms
S u c c e s s f u l c l i c k s p e r Second : 69 .40
(e q u a l s 249 ’ 841 .85 C l i c k s p e r Hour)

R e s u l t s o f p e r i o d #6 (from 27 s e c t o 32 s e c) :
∗∗∗
Completed C l i c k s : 426 wi th 0 E r r o r s (=0 .00%)
Average C l i c k Time f o r 96 Use r s : 8 ms

111

S u c c e s s f u l c l i c k s p e r Second : 83 .69
(e q u a l s 301 ’ 291 .22 C l i c k s p e r Hour)

R e s u l t s o f p e r i o d #7 (from 32 s e c t o 37 s e c) :
∗∗∗
Completed C l i c k s : 504 wi th 0 E r r o r s (=0 .00%)
Average C l i c k Time f o r 111 Use r s : 7 ms
S u c c e s s f u l c l i c k s p e r Second : 99 .01
(e q u a l s 356 ’ 418 .59 C l i c k s p e r Hour)

R e s u l t s o f p e r i o d #8 (from 37 s e c t o 43 s e c) :
∗∗∗
Completed C l i c k s : 584 wi th 0 E r r o r s (=0 .00%)
Average C l i c k Time f o r 127 Use r s : 7 ms
S u c c e s s f u l c l i c k s p e r Second : 114 .00
(e q u a l s 410 ’ 409 .38 C l i c k s p e r Hour)

R e s u l t s o f p e r i o d #9 (from 43 s e c t o 48 s e c) :
∗∗∗
Completed C l i c k s : 662 wi th 0 E r r o r s (=0 .00%)
Average C l i c k Time f o r 143 Use r s : 8 ms
S u c c e s s f u l c l i c k s p e r Second : 129 .89
(e q u a l s 467 ’ 592 .19 C l i c k s p e r Hour)

R e s u l t s o f p e r i o d #10 (from 48 s e c t o 53 s e c) :
∗∗∗
Completed C l i c k s : 723 wi th 0 E r r o r s (=0 .00%)
Average C l i c k Time f o r 159 Use r s : 7 ms
S u c c e s s f u l c l i c k s p e r Second : 141 .07
(e q u a l s 507 ’ 866 .46 C l i c k s p e r Hour)

112

	Contents
	List of Figures
	Listings
	Introduction and Motivation
	The Emergence of Content Distribution Systems
	CDN - Technological Improvement for new Internet Trends
	Limitations of Existing CDNs
	Thesis Description
	Thesis Contribution
	Thesis Outline

	Structure and Classification of Content Distribution Networks
	Introduction
	Primary CDN Goals
	Scalability
	Content Transfer Reliability
	Responsiveness
	Performance

	Requirements on CDNs
	CDN Components
	Content Provider
	CDN Provider and End users

	Content Distribution and Management
	Content selection and delivery in CDNs
	Full-site content selection and delivery
	Partial site content selection and delivery
	Empirical-based Replication
	Popularity-based Replication
	Object-based Replication
	Cluster-based Replication

	Content outsourcing
	Cooperative Push-based Content Outsourcing
	Non-cooperative Pull-based Content Outsourcing
	Cooperative Pull-based Content Outsourcing

	Request Forwarding in CDNs
	Request Forwarding Algorithms
	Adaptive request forwarding algorithm
	Non-adaptive request forwarding algorithm

	Similar Systems to CDNs
	Data grids
	Distributed databases
	P2P Networks
	BitTorrent P2P Network

	Multicast Networks
	Content Centric Networks

	Related Academic CDNs and Technologies used for Gezora CDN
	CoDeeN
	Introduction
	Deployment of CoDeeN on PlanetLab and its Advantages
	Architecture and Design of CoDeeN
	CoDeeN's Local Monitoring
	Peer monitoring
	UDP heartbeats
	HTTP / TCP Heartbeat

	Differences To Gezora
	Conclusion

	Coral Content Distribution Network
	Corals Architecture and Design
	Differences To Gezora
	Conclusion

	Shark
	Introduction
	Use Cases
	Design
	Differences to Gezora
	Conclusion

	Jellyfish
	Introduction
	Architecture and Design of Jellyfish CDN
	Content Providers
	Volunteers
	End users

	Jellyfish Node/Super node Structure
	Jellyfish Request Routing and Service Discovery
	Differences to Gezora

	Java Servlets
	Introduction
	Servlet's Web Container
	Servlet's Communication Flow and Libraries
	Building and functioning of Java HTTP servlets
	The Java servlet API

	Security Considerations

	Technologies and Algorithms applied in Gezora CDN
	Introduction
	Weighted Fair Queuing (WFQ)
	Impact of Feedback Control Theory on the Server Performance
	Example of a WFQ System
	Transient Behavior of the Feedback Control Loop
	Frequency Noise Filtering
	Adaptation Interval and the Impact of the Parameter in EWMA
	Random Early Detection
	Request Forwarding Mechanisms
	HTTP redirection
	URL Rewriting

	Methodologies used for the Gezora Evaluation
	Client Satisfaction through Request Time
	CDNs Performance Measurement Overview
	Internal measurement
	External measurement
	Network Statistics Acquisition
	Network probing
	Traffic monitoring
	Feedback from Surrogates
	Performance Measurement through Simulation

	Gezora Architecture
	Introduction
	Deployment of Gezora and its Benefits
	Gezora Architecture
	Gezora's Random Early Redirection
	Request Forwarding in Gezora

	Gezora Prototype Implementation
	Introduction
	Design Overview: First Gezora Prototype
	First Gezora Prototype Implementation
	Servlet
	Access-Meter
	Random Early Redirection
	Request Forwarding
	Content Transfer Implementation

	Second Gezora Prototype Architecture and Design
	Request Forwarding
	Disadvantages of the Second Gezora Prototype

	Gezora Prototype Evaluation
	Introduction
	CDNs Evaluation Methodologies Overview
	Important Parameters for CDN Evaluation
	Network Traffic Analyzing and it's Benefits
	Surrogate Utilization Monitoring
	User Surveys and a Real-life Evaluation Methods
	Conclusion and the CDN's Evaluation Methods Comparison

	Java Client Model and Gezora's RER Evaluation
	Gezora Performance Evaluation
	Web Server Performance Evaluation Types
	Performance Tests
	Stress Tests
	Ramp Tests

	Evaluation Scenarios using Web Server Stress Tests
	Evaluation Results with Web Server Stress Tests

	Conclusions and Outlook
	Bibliography
	UML and Sequence Diagrams: Gezora Prototype
	UML and Sequence Diagrams: Java Client Model
	Summary Log

