HUMAN MOBILITY MODELS FOR INDOORS

Bachelorarbeit
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

Daniel Moser
2013

Leiter der Arbeit:
Professor Dr. Torsten Braun
Dr. Desislava Dimitrova
Institut fOr Informatik und angewandte Mathematik

Contents

2~ Mobility Models|
[2.1 Random Waypoint Mobility Model|.

[2.2 Random Walk Mobility Model|,
2.3 Constrained Mobility Model]

[3.3.1 Roomba Vacuum Cleaning Robots|.
2 1R reatel

3.4.1 Gumstix Overo Fire Computer-on-Module]
3.4.2 Gumstix TurtleCore Expansion Board|

iii

4_Robot Software]

1

neral OVervIeW| o . oo e e
4.1.1 Operating System|. e
4.1.2 Robot Operating System|

%)

Mobility Model Implementations|.

4.2.2 Constrained Mobility| 0000,

A3

Extensibility|.

[5.1.1 Creating a Root File System|
5.1.2 Creating a bootable microSD-card|
5.1.3 Writing all required files to microSD|.
[5.1.4 Additional Configurations|
5.1.5 Installing ROS|
[5.1.6 Adding TurtleBot PackagestoROS|

52

Using an Implemented Mobility Model|

53

Creating Network Traffic|

6 Evaluation|

6.1

Scenario Descriptions| L. Lo e

|6.1.1 ~ Scenario I: Distance Accuracy|
[6.1.2 Scenario II: Angular Accuracy|
|6.1.3 Scenario III: Returning to Starting Position|

[6.1.5 Scenario V: Connectivity|,

6.2 Evaluation Results|o

[6.2.1 Scenario I: Distance Accuracy|
[6.2.2 Scenario II: Angular Accuracy|,
[6.2.3 Scenario III: Returning to Starting Position|

ii

19
19
19
20
22
22
23
24

27
27
27
29
31
32
36
40
41
41
41
42

43
43
44
45
45
46
48
49
49
49
50
50
51

53
53
54

55

65

List of Figures

[2.1 ~Example of the random waypointmodel| 6
[2.2 Example of the random walk model| 7
[2.3 Example of the constrained mobility model| 8
3.1 iRobotRoomba560Modello 12
B2 dRobotCreafel 13
B3 OveroFirel. o e 14
[3.4 TurtleCore expansion board|. 14
B35 iClebo Kobukil. oo 15
B _TurteBol v et e 16
3.7 TurtleBot2] e 16
B8 TurtleBotPowerBoard 17
[3.9 Schematic representation of the Kinect| 18
[3.10 Size comparison between Kinect and Xtion| 18
4.1 Architecture of a ROSsystem| 20
|4.2 Example process of node communication| 21
|4.3 Visualisation of the example graph| 24
[6.1 Conceptof Scenarios land Il 44
|6.2 Sketch of the square experiment, Scenarto IIIl 46
|6.3 Sensor positions on the second floor, Scenario IV| 46
|6.4 Graph layout for the combined experiment, Scenario IV|. 47
|6.5 ‘Travelled path in connectivity test, Scenario V|. 48

iii

List of Tables

[6.1 Conducted experiments| 44
[6.2 Parameters for Scenariol] oL oL oo 45
[6.3 Parameters for Scenarto Il 45
[6.4 Parameters for Scenario III| 45
6.5 Parameters for Scenario IV] L 48
[6.6 Parameters for Scenario VI L oo 48
[6.7 Distance accuracy ataspeedof O.1m/s| 49
|6.8 Distance accuracy ataspeedof O.5m/s| 49
[6.9 Angular deviation from the 1deal straightlinef 49
|6.10 Deviation between starting and end position after driving in a square| 50
|6.11 Deviation between intended and actual end position with the constrained mobil- |

itymodel|] 50
|6.12 Picked up signals and average signal strength per sensor] 51
|6.13 Average signal strength of the robot’s and phone’s wifi signall 51
|6.14 Number of picked up network packets of robot and phone|. 51
[8.1 Datapoints from the linear accuracy test| 63
[8.2 Datapoints of the angular accuracy test| 64

Listings

|4.1 Random distributions inside random_walk.py| 22
|4.2 Example content of graph.txt| L. 23
|4.3 Example content of coordinates.txt| 23
[5.1 Installing debootstrap| L 27
[5.2 First stage execution of the bootstrapping| 28
[5.3 Installing the syscall emulation| 28
[5.4 Check the status of gemu-arm| 28
[5.5 Copy the ARM interpreter to the root file system| 28
[5.6 Trigger the second stage| Lo 28
[5.7 Unmount eventually mounted partitions of the microSD|. 29
[5.8 Get the exact bytes count of the microSD| 29

Zer he first MBl 30
[5.10 Creating the partitiontable] L. 30
[5.11 Example of the partitioning dialog| 30
[5.12 Format first partitionas FAT| 31
[5.13 Format second partition alsext3| 31
BI4 MountthemicroSD] 31
[5.15 Copying everythingover] 32
[5.16 Untar the Gumstix tmage| 32
[5.17 Copying kernel modules and firmware| 32
5.18 Contents of /etc/hostnamel.o oo 33
[5.19 Changed line inside /etc/hosts| oL 33
[5.20 Contents of /etc/imit/ttyO2.conf] 33
[5.21 Added contents of /etc/network/interfacesl oL 33
[5.22 Adjusted line inside /etc/shadow| L. 34
[5.23 Usercreationdialog|. 34
[5.24 Adding a user to the sudoers group| Lol 35
[5.25 Creating apassword|. 35
[5.26 Contents of /etc/resolv.confl oo 35
[5.27 Give write access for /ftmp toallusers| 35
[5.28 Contents of /etc/apt/sources.list]. 35
[5.29 Updating the system| oL 36
[5.30 Adding ROS software sources| 36
[5.31 Adding the ROS repository key|. 36

vii

[5.32 Update the software sources| 36

[5.33 Install ROS administration toolsl oL, 36
[5.34 Initialize dependency system| 36
[5.35 Create catkin workspace folder{ 37
[5.36 Fetch core packages|. 37
[5.37 Installing Collada] 37
B38 Tnstalling ASSIMP| o o o oo oo 38
[5.39 Installing system dependencies for ROS| 38
15.40 Compile and 1nstall all the robot core packages| 38
[5.41 Source the setup.bashfile] o oL 39
[5.42 Create separate workspace| 39
[5.43 Merge the robot variant to your workspace| L. 39
[5.44 Building all packages| L. 40
[5.45 Adding turtlebot_create package| oL 40
[5.46 Check for system dependencies on create_node| 40
547 Buildcreatenodel 40
[5.48 Starting of roscore|. 42
15.49 Changing port and starting the robot’s driver| 42
[5.50 Starting the random walk model] 42
[5.51 Creating network traffic with bash one-liners|. 42
[8.1 Implementation of the Random Path Model] 55
[8.2 Implementation of the Constrained Mobility Model| 58

viii

Summary

The ability to determine the position of persons of interest and to follow them as they move is in
the core of personalising services such as targeted advertisement, real-time discount offering and
navigation in indoor premises. To achieve such tracking through wireless devices a localisation
system should be thoroughly tested prior to deployment. Simulations or emulations are not
appropriate to achieve that since they make abstractions of the real world and test beds are a
much better option. A test bed should be able to represent the system behaviour as well as the
human mobility behaviour.

With this thesis, the author addresses the problem of representing human mobility accurately
by robots in order to enable repeatability and increase the reliability of testing with wireless
networks. The thesis provides the means to deploy mobile robotic-based platforms for testing of
localisation systems. The platforms are relevant for other research areas dealing with mobility
as well.

To achieve the goal, the author implements two mobility models on a low end robotic system
and evaluates multiple aspects of the robot’s desired behaviour (e.g. driving accuracy, following
implemented model). The findings of the thesis show that using basic robotic hardware poses
some challenges related to movement accuracy and sensoric feedback. In the context of mobility
accuracy some linear and angular distortions were observed in the followed path. Also the ability
to cope with even small obstacles and the issue of battery lifetime pose challenges. Hence,
depending on the choice of robotic platform one should expect certain inaccuracy in location.
The wireless connectivity, however, remains unaffected, as we will also show.

Chapter 1

Overview

1.1 Introduction

The process of manual testing can be tedious, time consuming and prone to human errors. This
applies to any field of operations: be it software, hardware, complex systems, such as wireless
test beds, or many other fields in computer science. Moreover, testing and evaluation scenarios
should be reproducible for statistical reliability and result replication. Achieving this by manual
testing is challenging. Automated testing can significantly improve evaluation repeatability.
Simulations, for example, offer such means but often cannot reflect real-life aspects. Test beds
are a better approach concerning the latter but repeatability is more difficult to achieve. In the
context of wireless network experimentation, varying propagation conditions and node mobility
are among the most important aspects to reproduce, when feasible.

Within this thesis the author investigates approaches to provide replication of node mobility
in wireless sensor test beds. The scope of the thesis involves the preparation of a robotics
platform acting as a mobility platform and the implementation of appropriate mobility models.

The author first takes a look at different state-of-the-art indoor human mobility models.
The constrained mobility model was selected for implementation since it has the potential to
realistically reflect a person’s movement thanks to the fact that it only accounts for possible
paths in a real environment. The more commonly referred in literature random walk model is
used as benchmark. The mobility models are further described in Chapter 2}

Due to the evolution in electronics during the last years, robotics hardware in the low cost
range has emerged and gives many choices for small scale robotics experiments. In addition,
to support the unfamiliar developer, the hardware should best provide a plug and play hardware
interface. In Chapter [3|the author evaluates different available robots below $1000 according to
the available specifications and takes a look at some possible extensions for the chosen platform.

In terms of software, discussed in Chapter[4] the goal is to provide a standard system easy to
operate and modify requiring only basic Linux knowledge. Also, in case of new hardware being
bought, the implemented mobility model should work with as little adjustments as possible. The
Robot Operating System provides these possibilities, owing to the fact that the implementations
are abstracted from hardware and can be easily adapted to new platforms.

Chapter [5]takes a look at the practical part of the thesis and provides detailed information on
how to install Linux and the Robot Operating System on the Gumstix platform. Additionally, the

Chapter provides the reader with the basic knowledge on how to run the implemented mobility
models.

After the complete implementation and installation of the system, the author evaluates the
accuracy of the robot (see Chapter [6)). Special focus will be put onto the accuracy of driving
distance and angular deviation due to their importance in accurately reproducing any mobility
model, especially concerning indoor spaces. The findings reveal that the system’s low price
comes at the cost of low accuracy.

The implemented mobility models can be modified to introduce variation in the waiting time
distribution and, in the case of the constrained reality model, to adapt the probabilistic model
according to which path is selected next, e.g., allowing some path to have higher chances to be
selected.

1.2 Contributions

The author first evaluated several papers dealing with human mobility models to find out which
models are currently used in different scientific areas of computer science and which would be
feasible to be implemented. The contributions in the hardware section (see Chapter [3) included
searching for documentation and information on different low cost robotics platforms and addi-
tional hardware extensions.

In terms of software platforms (see Chapter {)) an overview of different Linux distributions
is provided. The purpose was to find the most compatible system to work with the Gumstix
Overo Fire. The author investigated the installation possibilities of the Robot Operating System
for both the Fuerte and Groovy variants and decided to compile the whole framework by hand.

The thesis also offers a possibility to use an additional package (turtlebot_apps) in
Fuerte to enable remote steering by an Android phone. Due to the broken backwards compat-
ibility and a new setup routine in Groovy the installation of this package could not be recon-
structed and will not be described in detail. However, the author will provide an image of his
experimentation system with a working version of the Fuerte version of the Robot Operating
System including remote steering.

A central contribution of the thesis is the implementation and testing of two mobility models,
namely, random walk and constrained mobility. The mobility models were implemented on top
of the Robot Operating System and written in Python. Moreover, the author conducted detailed
tests on the robot’s ability to reproduce the intended movements. That allowed him to validate
the controlling and movements of the robot.

Working on a new project including new hardware poses many challenges and brings up a
vast list of lessions learned. This list includes, but is not limited to:

e Rapid innovation in the consumer grade, low cost electronics and robotics sector might
spoil one’s set-up routine;

e Inexpensive robotics platforms tend to lack of accuracy in displacement;
o Difficult to find balance between cost and practicability of computation devices;

e Radio connectivity between the mobile platform and a static testbed is not an issue.

Chapter 2

Mobility Models

There is a wide variety of papers available, discussing human mobility models for wireless
networks. The scope of this thesis requires a model that can present human mobility in distance,
speed and direction. The majority of papers on the topic of node mobility focuses on contact and
inter-contact times between different nodes [[1} 2| 3]], which is of high relevance for connectivity
mechanism and protocols [4} 5]. Contact time defines the duration two nodes stay in sight
without losing contact, while inter-contact time describes the time between two sightings [[1]].

The authors of [[1] use real life data traces in a shopping mall environment to model human
mobility. They oppose to using a simulated environment, as most human mobility models do not
reflect real human behaviour. Especially the random walk model, used by many researchers as a
reference, was rejected for being “unnatural”. The technology used to measure device contacts
is Bluetooth and based on the measurements the authors recommend possible ways to introduce
different forwarding algorithms.

In [2] a pocket switched network is proposed, where different mobile network nodes can
communicate with each other without the need of internet access. To collect data, the authors
gave a Bluetooth communication device to conference attendees at IEEE INFOCOM 2005. Con-
tact and inter-contact times can be approximated with the power law with an exponent smaller
than one. They found that often proposed forwarding algorithms are not optimal. This is espe-
cially the case if a member of another group should be contacted which reduces the exponent of
the power function significally.

The contribution [3]] describes a program to simulate human mobility in different fashions
to test various routing algorithms. The algorithms were evaluated by the normalized packet
delivery ratio. It was shown that it can be dangerous to propose a routing algorithm based on too
simple human mobility models. Hence, also our goal in this work is to strive for realism.

However, such models do not take into account the actual movements of the individual
nodes. Although there are other models that simulate human movements based on different
activities during the day and across wide areas (eg. cities), these are less appropriate for the
current study since the thesis interest is in mobility within buildings. The author chooses the
random walk model as a rather basic model, but nevertheless used by many researches, and the
constrained mobility model as a more realistic model.

2.1 Random Waypoint Mobility Model

Figure 2.1: Example of the random waypoint model[7]]

The first and most straightforward model considered for this thesis is the random waypoint
model. It is extensively used by many different research groups for simulations in virtual envi-
ronments [5,(6].

The authors of [5] used the random waypoint model in simulations for the evaluation of
different routing alogrithms. However, the paper offers no critical argument against the use of
the random waypoint model.

Just like [5], [6] used the random waypoint model inside a simulated environment. After
multiple unrealistic results, they resorted to using a model they called random direction model,
which is fairly similar to the model described in Section [2.2] Their reason was that the nodes
started to converge to similar areas.

Using this model in simulations rather than real life experiments makes sense. There are
no hardware caused restrictions and anomalies of the virtual nodes, which would prevent them
from traveling to the defined coordinates.

The basic model consists of a mobility domain as a convex set A C R, a node that moves
from waypoint P; to P;;1 with speed v = 1 and uniformly distributed waypoints, P; ~ U(A).
A scenario is depicted in Figure[2.1] The standard extensions include the possibility of a random
pause time at each waypoint before starting to move further on and the possibility of having
random velocities for each section of the path [].

2.2 Random Walk Mobility Model

The random walk model contains a mobile node that behaves in an random manner regarding
to movement. From the randomness point of view it resembles the random waypoint model
but it does not feature any pause time. This means that the node is constantly driving and
only changing direction and speed after a certain time interval. In each interval the current
direction and speed are independent of the preceding and following directions and speed, with
the direction being uniformly distributed between 0 and 27 and the speed being distributed either
uniformly or Gaussian between 0 and v,,,4; [10]. An example of a track generated by the random

-20F

-30F

-40

-20 -10 4] 10 20

Figure 2.2: Example of the random walk model[9]]

path model is shown in Figure[2.2]

The author considers this model for a standard comparison to be able to evaluate if a more
complex model like the constrained mobility model provides more useful data. Many other stud-
ies use either the random waypoint or the random walk model as a baseline for first experiments
and feasibility testing.

2.3 Constrained Mobility Model

The constrained mobility model offers a very appropriate way to cope with obstacle-rich envi-
ronments. In its core, it uses a mobility graph consisting of vertices, standing for valid locations
that can be visited, and edges as the valid paths between vertices [[11]. It falls into the group of
mobility models that consider geographic restrictions when computing the mobility path [12]].
From a practical perspective this knowledge also minimizes the possibilities of the robot getting
stuck.

There are two main groups of studies when working on human mobility models in obstacle
rich environments. The first group uses maps to validate the correctness of localisation results
(13} [14].

H. Liu et al. [13] provide a general overview over different localisation technologies for
indoors and analize different location estimation techniques. They describe, e.g., a grid-based
Bayesian robot localisation algorithm using WiFi to compute the probability of a calculated
location.

In [14], D. Fox et al. recognize that all kinds of sensors (e.g. GPS, Infrared) are subordinated
to bias. They propose Bayes filters to estimate the probability of a location based on previous
informations and measurements.

Figure 2.3: Example of the constrained mobility model[11]]

The second group actively uses maps to predetermine movements within the spacial con-
straints [[11]. The constrained mobility model falls into the second group. Due to its design the
constrained mobility model can take into account obstacles such as walls, tables and others in
the robot movement.

Constrained mobility uses concepts from graph theory. A graph G consists of vertices V and
edges E, where E C V' x V applies. Self-loops, meaning edges that start and end at the same
vertex, are normally not part of a graph. Graphs can either be directed or undirected. A directed
graph has an edge set consisting of ordered vertex pairs. A graph is weighted if it consists of
either vertices, edges or both, tagged with a weight value [[15].

The implemented constrained mobility model (see Section consists of a non-weighted
graph, which can be directed or undirected by choice, without self-loops. It offers many different
possibilities for extensions. Introducing a weighted graph could be mapped to probabilities of
movement and pausing patterns. A weighted graph can represent a node’s (and the related
user’s) individual preferences, diversity in targeted end locations and variety of motivations in
mobility. For instance, a female customer in a shopping mall can exhibit a different mobility
pattern compared to a male customer. This difference can be easily reflected by the constrained
mobility model by adjusting weights on the edges.

For a visual example, see Figure which depicts a mobility graph overlaid over a floor
plan.

2.4 Related research

Extensive research on the topic of human mobility related with network applications and wireless
sensor networks has been conducted in the last several years. Some papers have already been
discussed in the previous sections.

The Scuola universitaria professionale delle Svizzera italiana does extensive research on
sensor networks and distributed systems. In [[16], Forster et al. propose a wireless sensor network
called MOTEL, where small robots equipped with sensors can be deployed and are used to do
experiments related to wireless sensor networks. They use cameras for the robot localisation
tracking, because autonomous robots with complex localisation and path finding algorithms
often prove to be unreliable and slow.

As described in Section [2.1] many researchers use simulation software to evaluate different
network systems. At UPC, E. Zola et al. [17] use OMNeT++ to simulate random waypoint and
gauss-markov mobility models and evaluate cell residence time and changes between access-
points (handoffs). They build a virtual 802.11 WLAN infrastructure environment where all
access point have overlapping reception areas. The access points are all interconnected with one
switch and a host that is constantly pinged by the simulated mobile nodes. The findings show an
impact of the mobility models on handovers and network performance.

C. Fok [18]] from the University of Texas introduced a test bed named Pharos, which consists
of different mobile sensor nodes. Like this thesis, they use inexpensive, consumer grade robots.
Through a special programming interface abstracted from hardware they implement network
applications in simulation environments and can port them to physical hardware with only little
work. The main focus of the Pharos test bed is repeatability and movement accuracy of the
robots. More information on the Pharos test bed can be found at the wiki of the project’s website
[19].

Researchers at the University of Uppsala [20] developed a nomadic sensor network test bed
called Sensei. The main characteristic of Sensei that distinguishes it from many other works on
WSNs is the possibility to easily relocate the test bed from lab environments up to prototype
deployment. Rensfelt et al. use wireless access points running a customized distribution of
Linux as sensor hosts. The moving nodes can either be humans equipped with laptops or small
robots with laser range finding for localisation and implemented mobility models. The focus of
the publication is on repeatability of localisation testing of the WSN.

Chapter 3

Robot Hardware

3.1 Selection of Robot Platform

Making a choice of robotic hardware platform faces many challenges. The available technical
specifications of the assessed platforms, especially concerning the robots, tend to be limited and
incomplete. Incomplete information about a product makes selecting a specific system difficult.

A further challenge is the general availability and delivery of the products. There is a fast
development in the low-cost electronics and robotics sector, which inevitably leads to many new
models continuously appearing on the market. In addition, some hardware platforms might not
be shipped world wide, which needs to be taken into account.

With small dimensions and a light weight platform in mind, the author faced many chal-
lenges. Mounting a notebook on top of a robotic platform would offer more computational
power at the cost of more weight (around 1 kg for a standard notebook) and results in bigger
dimensions and requires a cargo bay. This is, e.g., not supported by the Kobuki platform. The
iRobot Create platform on the other hand offers a cargo bay and a connector for an embedded
system, at no dimensional cost and nearly no additional weight.

Finally, after several consultations with fellow researchers, the author has chosen for the
iRobot Create (see Section [3.3.2) platform available at the start of the research. It comes at
low cost and acceptable physical dimensions and capabilities. One issue we expected is the
manuverability-accuracy and moving over different terrain, which the author evaluates in Sec-
tion[6] The iRobot Create was equipped with a TurtleCore expansion board (see Section [3.4.2)
including an Overo Fire embedded computer (see Section [3.4.1), to allow high customisability
in both hardware and software.

3.2 Basic Robots

There are many advanced robots out on the market. For example the PR2 (Personal Robot 2)
built and sold by Willow Garage. It is one of the more advanced robotics systems. Featuring
two arms including gripers, a vast variety of sensors (eg. IMU, SMP camera...), WiFi and even
two on-board Xeon servers with 8 cores i7 and 25 GB RAM each, makes the PR2 attractive for
research. However, such extended and complex systems come with a major downside: a price

11

of $400,000.00 [21]]. For the purpose of research in wireless networks other, more financially
feasible solutions are a better alternative. Affordable solutions in the low cost sector (around
$500) are more appropriate.

3.3 iRobot

The American based company iRobot was founded in 1990 by robotics researchers of the Mas-
sachusetts Institute of Technology. iRobot offers robots in mainly two categories: home robots
available to the general public for cleaning work; and defence and security robots offered to
military and civil defence forces [22].

3.3.1 Roomba Vacuum Cleaning Robots

Figure 3.1: iRobot Roomba 560 Model[23]]

The iRobot Roomba (shown in Figure [3.I)) vacuum cleaning robots are a consumer product
sold by the company iRobot. They are intended for autonomous vacuuming, featuring path
finding and obstacle detection [24]. Models manufactured after October 2005 offer a serial
command interface so developers can easily extend the robots functionality and behaviour [25].

The University of Bonn created a museum guide robot called Robotinho for the Deutsches
Museum in Bonn. Its base consists of four Roomba robots placed side by side with a servo
actuator, which gives it the possibility of moving omni-directionally [26]].

3.3.2 iRobot Create

The iRobot Create is a trimmed down, developer only version of the Roomba 400 series product
line. All the cleaning related parts have been removed and instead replaced by a cargo bay and
a DB-25 connector to extend development possibilities [28]].

The Create features the same serial command interface, called Open Interface, the consumer
versions of Roomba offers. Although the wheels’ actuators might offer higher speeds, the Open

12

Figure 3.2: iRobot Create[27]

Interface sets the boundaries at 500mm/sec for forward and backward movements. Over the
Open Interface the wheels can also be controlled individually [29].

A major advantage to the Roomba is the cargo bay for storing sensors and embedded com-
puters. Another advantage is the existence of a dedicated embedded solution for steering and
controlling the Create (see Section [3.4.2).

A somewhat big disadvantage of the Create was discovered after the robot was purchased
and first driven. When driving the robot, it is very often a little bit off track. This occurs for
example when starting to drive forward from standing still, in which case the two wheels do not
start turning at exactly the same time. This results in a slight turn in the moment it starts driving.
This would not be a big problem, if there was a gyroscope reporting back the real turning and
driving values.

Unfortunately, the Create only features a low precision odometry controller. It uses the motor
power information of the wheels to calculate the distance and directions, which the Create has
moved. Also the motors, or just one of them, might report inaccurate values at some speeds
while at others it would be very accurate [30]].

3.4 Hardware Extensions

As the robots themselves only offer limited computational power, a developer requires either an
embedded computing platform or a notebook allowing access to larger amounts of memory and
faster processing units. Computational platforms also offer interfaces for further extensions, i.e.,
vision sensors or input devices.

13

Figure 3.3: Overo Fire COM[31]] Figure 3.4: TurtleCore expansion board[32]]

3.4.1 Gumstix Overo Fire Computer-on-Module

The Gumstix Computer-on-Module (COM) platform offers a small and embedded computing
platform, powered through so called expansion boards. The particular model used for this thesis
is the Overo Fire. It is equipped with a Texas Instruments ARM processor running on 720MHz,
512 MB of RAM and connectivity through Bluetooth and 802.11 b/g WiFi (see Figure [3.3). It
can be run out of the box, when connected to an expansion board, with a pre-installed copy of
Angstrom Linux on its ROM. If a microSD-card is inserted and contains all necessary files, the
Overo Fire COM resorts to booting from the microSD-card, hence allowing custom images to
be loaded [33]].

The Overo uses a multi-stage booting architecture. The first stage bootloader, called x-
Loader, is in charge of setting up the pin multiplexing, clock and memory initialization and the
loading of the second stage bootloader. It is a minimized version of the second stage, built to
run in the processors on-chip SRAM.

The U-Boot (the second stage bootloader) is responsible for setting the boot arguments and
loading the kernel image. All these three stages (x-Loader, U-Boot and Kernel) are located in a
separate file. So, for example trying out different Linux kernels is just a matter of downloading
and copying a different kernel file to the microSD-card [34]].

Advantages of Gumstix like embedded computers are their small size and lower costs. As
a downside, they might need customized Linux images for lightweight operations, which might
not be directly obtainable.

3.4.2 Gumstix TurtleCore Expansion Board

The TurtleCore expansion board offers the developer multiple USB ports, current and general
purpose data pins on the board for adding sensors and other electronic elements. In combination

14

with an Overo Fire COM, for WiFi connectivity, it offers the developers great freedom in de-
veloping remote steering and real-time controlling solutions. Another convenience is the direct
power supply from the robot’s battery via the DB-25 connector [33]. This way a developer only
has one battery that has to be charged, instead of having an additional notebook battery.

3.5 Alternative Solutions
3.5.1 iClebo Kobuki

Figure 3.5: iClebo Kobuki[36]

The Korean company Yujin Robot, following the success of the iRobot Create, in 2013
started delivery of their new, relatively low-cost, robotics platform. It resembles the Create
but offers several more accurate sensors (like the gyroscope) and easy to use power plugs for
additional hardware (notebook, cameras, etc). All the additions and improvements come at the
cost that the Kobuki does not feature a cargo bay.

With a maximum translational speed of 70 cm/s the Kobuki is 40% faster than the Create.
It can turn with 180 deg/s with the limitation that the gyroscopes accuracy drops with speeds
greater than 110 deg/s. On hard floors the Kobuki can carry up to 5 kg of payload, placed or
mounted on top of its even top surface. Equipped with the small battery its expected time of
operation tops at 3 hours, a large battery extends the operating time to around 7 hours.

From the basic safety sensors point of view the Create and Kobuki are similarly equipped:

o left, center and right bumper sensors

e left, center and right cliff sensors

o left and right wheel drop sensors

All the information stated inside this section can be found on the specifications web page of

the Kobuki Yujin Robot [37].

15

3.5.2 Prebuilt Robot Systems

A pre-built, complete robot platform offers several advantages to self-crafted basic systems.
First of all, these robots come pre-installed with all software to use it out-of-the-box and if not,
there is a way to get pre-installed images of the system. The software packages for the turtlebot
are available as open source via github and thus can be easily acquired and modified to
one’s own needs.

Also, all the hardware combined is meant to work as-is. There is no need for tinkering with
sensors, cameras and robots, until an acceptable interplay is found. Equipped with carrying
platforms, these systems also offer a great way of extending them with additional sensors, input
devices etc.

Of course, this all comes at a cost of larger dimensions (mostly with more height). Another
downside is the price, when compared to a basic setup of a self-crafted solution. A TurtleBot
2 equipped with a Laptop, an ASUS Xtion 3D sensor, a docking station and additional battery
comes in at around $1800 [39]]. An iRobot Create [40] with a Gumstix Overo Fire COM [33]]
and a TurtleCore Expansion Board[35]] costs around $530.

3.5.3 TurtleBot First and Second Generation

Figure 3.6: First generation TurtleBot[41]] Figure 3.7: Second generation TurtleBot[42]

The TurtleBot is an extension to the basic iRobot Create. It is equipped with a netbook (Asus
EeePc 1215n), a Microsoft Kinect camera (see Section @, the TurtleBot power board (see
Section [3.5.4) and trays built from laser cut plates [43]].

16

The first generation TurtleBot is built up from an iRobot Create, the second generation uses
the iClebo Kobuki as a robot base. Furthermore, there is the option to upgrade from the Kinect
camera to the Asus Xtion [44]. A comparison of the Microsoft Kinect and Asus Xtion can be
found in Section

3.5.4 TurtleBot Power Board

Figure 3.8: TurtleBot Power Board[45]]

To compensate the inaccuracy of the odometry device built into the iRobot Create the Turtle-
Bot Power Board can be connected to the DB-25 port inside the cargo bay. It offers a 12 volts
power output for the Kinect system (see Section[3.5.3)) as well as a gyroscope with 3 degrees of
freedom and a resolution of 250 deg/s [46].

As this device occupies the DB-25 port inside the cargo bay of the Create, using it would
restrain us to use a Gumstix COM with the TurtleCore expansion board.

3.5.5 Vision Sensors

A vision sensor enables the robot to scan its surroundings to estimate the current position and
heading, in addition to its own sensors. Furthermore, the robot can map the surrounding area in
case it is operated in an unknown environment.

Reading image and depth information from the sensor and processing them require a strong
computational platform. As the Gumstix and other embedded devices lack of computational
power, the developer would need to resort to a notebook.

Kinect

In June 2009 Microsoft announced and demonstrated its newest and state-of-the-art game con-
troller. First known under the codename Natal, the Kinect controller was released in November
2010 [47]. The Kinect controller is fully packed with many sensors and other electronic devices
[48] (shown in Figure [3.9), including:

e an RGB camera with a resolution of 1280x960 pixels and a frame rate of 30 fps;
e an infrared emitter and sensor for capturing a depth image of the surroundings;
e a microphone array consisting of four microphones to record audio and locating the source

of it;

17

e a 3 axis accelerometer to determine the orientation of the Kinect in space.

IR Emitter Color Sensor

IR Depth Sensor

Tilt Motor

-

Microphone Array

Figure 3.9: Schematic representation of the Kinect[49]

Asus Xtion

B

Figure 3.10: Size comparison between Kinect and Xtion[50]]

Another system for recording RGB and depth imaging is produced by Asus and is shown in
Figure[3.10] An obvious advantage of the Xtion to the Kinect is its size as seen in the figure. In
terms of specifications, the Asus Xtion is somewhat similar to the Microsoft Kinect:

e an RGB camera with a resolution of 1280x1024 pixels;

e an infrared emitter and sensor with resolutions of 640x480 and 320x240 pixels and a
framerate of 30 and 60 fps, respectively;

e two microphones for sound recording.

The Xtion platform comes bundled with its own SDK and supports writing programs in
C++, C# and Java for Windows, Linux and Android [51]]. A clear advantage of the Asus Xtion
over the Microsoft Kinect is the standard USB plug. Whereas the Microsoft Kinect only offers
a proprietary, customized USB plug, for which an adapter is required, the Asus Xtion can be
plugged into any system that offers an USB port.

18

Chapter 4

Robot Software

41 General Overview

4.1.1 Operating System

From the operating system point of view, there is a wide variety of Linux distributions available
to choose from. Without modification, the Gumstix Overo COM runs an embedded Linux called
Angstrom, which is installed on the computers ROM chip [52]. Different operating systems can
be booted on the Overo using the on-board MicroSD slot [53]].

An organisation called Linaro develops open source software to bring better support for
ARM-based computers to Linux. Linaro was founded by several big players in the electronics
industry, including ARM, IBM, Samsung and TI. The companies within Linaro try to bring
broader compatibility for open-source software running on ARM-based CPUs. The operating
system images provided by this company are not directly an independent system but rather a
renamed Ubuntu with ARM-specific patches and specifically built with the drivers for several
embedded devices (PandaBoard, OrigenBoard) [54]].

After some tinkering with the Linaro images for the Overo Fire COMs, the author decided
not to use this Linux distribution for the following reasons:

e Most of the images were built with a GUI (even the pre-installed Angstrom image). Since
our hardware runs on small capacities and has no video port this was not a good choice.

o The last available image for the Overo Fire was version 12.03 (built upon Ubuntu 11.10).
So it lacked actuality.

e Many errors arose during the installation of the Robot Operating System (see Sec-
tion 4.1.2) due to campatibility issues with Linaro.

After a detailed search for a feasible solution, the author chose for a self-crafted minimal
Ubuntu with ARM optimizations and the minimum required software to be productive.

This is where a program called debootstrap comes into place. It offers the possi-
bility to create a minimal root file system for many different CPU-architectures. More on
debootstrap and the procedure of creating a root file system will follow in Section [5.1.1]
[55].

19

Contribution

e Evaluating different Linux distributions and binary packages for use with the Gumstix
platform;

e Building a basic and small Ubuntu image.

4.1.2 Robot Operating System

While the name can be a little misleading, the Robot Operating System (short: ROS) is not an
operating system per se, but rather a complex open-source framework for robotics. It is being
developed by Willow Garage, a company that also develops robotics hardware like the Personal
Robot 2. Due to the open-source manner of ROS there are extensive additional packages for
robotics, vision and many other applications available [56].

The following description about the inner workings of the Robot Operating System is based
on the information from the technical overview [57]].

ROS Node ROS Node ROS Node

ROS Master
roscore

Operating System
(Windows, OSX, Linux)

Figure 4.1: Architecture of a ROS system

This framework uses a modular architecture of many different programs. These programs
are called nodes. A special case of node is the ROS master, which runs on top of the actual
operating system (Windows, OSX or Linux). It operates as a central service to provide an envi-
ronment for other nodes to comunicate with eachother (see Figure.T). Nodes can be distributed
onto different machines, so calculation intensive tasks can run on high-performance computers
while device drivers run on the robot itself. They are distributed alone or multiple nodes together
in packages.

Nodes can publish and subscribe to topics. A topic describes a type of information a node
shares in a standard form (e.g. steering commands or sensor data). The master acts as a broker
between the different publishing and subscribing nodes. Formal communication between nodes
happens through an HTML-based protocol called XMLRPC.

When a node sends a subscription package for a desired topic to the master node, the master
returns the URI of the publisher and all communication after this point happens directly between
the publisher and the subscriber. After an initial connect the XMLRPC protocol is dropped and

20

the desired data is streamed over TCP to the subscriber. For a visual example of this process,
have a look at Figure 4.2]

O AN

&
<
ﬁ?' *— XMLRPC 4 %%
=)
& |
A2 |

&

e T 3 t - f \.\\,
\ £

. N 1
/ hokuyo \‘ TCP server: foo:2345 : |
(XML.’RPG:foo:1234 | viewer |
 TCP data: fo0:2345 |, connect(foo:2345) ;J
\\\ / LaserScan data messages = /‘
e - ' -

TCP
Figure 4.2: Example process of node communication[358]

The upside in using the iRobot Create coupled with ROS is that the packages written for the
TurtleBot (see Section[3.5.3) can also be used for the steering and sensoric feedback.

In the course of writing this thesis, Willow Garage released a new version of ROS named
Groovy in December of 2012 [59]. This new version introduced changes leading to backwards
incompatibility. Especially the installation of ROS itself and also its packages have now a com-
pletely different procedure. The turtlebot package has undergone major refactoring towards
a more modular approach. The driver for the iRobot Create was moved to a seperate package
(create_node) and an additional package was constructed featuring the driver for the iClebo
Kobuki.

Due to these changes, only the setup to use the implemented mobility models on the Create
will be described in more detail.

Because of the rather unique hardware setup and only few basic tutorials on the installation
of ROS, the author had to combine many online sources and his own knowledge of Linux to
come up with a feasible setup routine on the Gumstix platform. The installation process in
Chapter [5] describes the installation of version Groovy. A binary image of the previous Fuerte
version is available on the enclosed DVD.

Contribution

e Research installation process of two different versions of ROS (including relevant pack-
ages);

e Compiling ROS on the Gumstix platform.

21

0 IO N B~ W~

—_— = =
N = O O

4.2 Mobility Model Implementations

During the work on this thesis, the author programmed several basic nodes for testing purposes
(see Chapter [6) and two, more complex nodes with the implementation of the two mobility
models described in Section and

The driver for the iRobot Create named create_node (turtlebot_node in ROS ver-
sions prior to groovy) subscribes to a topic called Twist. This topic holds two vectors; one for
linear speed in meters per second and one for angular speeds in radian units. The implemented
mobility models publish to the Twist topic and send the appropriate vectors for turning and
driving according to the selected mobility model’s properties.

All newly implemented nodes are distributed through the package turtle_mover on the
enclosed DVD.

Contribution
e Programming test nodes for evaluation purposes;

e Implementing two nodes with the random waypoint and the constrained mobility model.

421 Random Walk

The implemented random walk mobility model (see Section [2.2) also includes some traits of the
random waypoint model (see Section [2.T)).

An important requirement towards the implemented model was a random distributed waiting
period after each driving interval. Also, neither driving time nor driving distance should be
constant. Listing shows the methods that calculate the random distributed variables. As
seen, the speed is normally distributed around half the maximum speed of the iRobot Create
(0.25m/s) with a variance of 0.1m/s. For the driving time a mean of 5s with a variance of
2s has been chosen. When the robot stops, it will wait for a normally distributed pause time
around a mean of 10s with a variance of 2s. The turning direction and the turning time are both
uniformly distributed so that any driving angle between 0°and 360°are similarly possible.

Listing 4.1: Random distributions inside random_walk.py

def calc_waiting_time () :
return random.normalvariate (10,2)

def calc_turning_direction ():
return random. choice([1,—1])

def calc_turning_time ():
return random.uniform (0 ,4)

def calc_driving_speed ():
return random.normalvariate (0.5,0.2)

22

13
14

def calc_driving_time ():
return random.normalvariate (5,2)

4.2.2 Constrained Mobility

The constrained mobility model was implemented for two different use-cases. In the first case,
the robot visits the vertices using the uniformly distributed choice algorithm from the Python
random module. This way, it mimics the movements of a human seeking for a room or location
in unknown surroundings. The second possibility lets the user give the program a specified path
in a vertex-by-vertex manner. So it is possible to have a re-run of a previous experiment where
the vertices were visited randomly and compare the results.

The graph specification for the constrained mobility model happens with two dif-
ferent files named graph.txt and coordinates.txt. The graph.txt file de-
fines the edges of the graph in the format <current vertex>:<neighbour vertex
1>, <neighbour vertex 2>. An example of this can be seen in listing The
file coordinates.txt contains the informations of the coordinates of each vertex, spec-
ified as <current vertex>:<x-coordinate in meters>, <y-coordinate in
meters>. For a practical example, see listing[4.3]

Listing 4.2: Example content of graph.txt

Listing 4.3: Example content of coordinates.txt
A:0,0

2

TmYQw
[NST NS SR
N = O = O

2

The specification of the driving speed during the execution is given with the file
speed. txt. The speed is entered in units of m /s and the maximum possible value is 0.5m/ s,
limited by the maximum speed of the iRobot Create.

As stated before, the program can be given an optional file containing a predefined path. The
file, named path.txt, contains a vertex per line and the path is defined in a vertex-by-vertex
manner. Path finding to a remote vertex has not been implemented. Keep in mind that the robot
will always start at vertex A, looking towards the positive x-axis.

To simplify computation and due to accuracy limitations, only right angled edges are allowed
in the graph. The author’s implementation uses two variables to keep track of the facing direction

23

F=1(2 2}

c=1(1.1) E=(21)

A=1(0 0) B=1(1,0) D=1(20)

L]

Figure 4.3: Visualisation of the example graph

of the robot and to calculate the required turning angles. The variable facing_coordinates
can either contain a value of x or y. It tells whether the robot is facing towards the x- or y-axis
in the coordinate system. The second variable, facing_ direction, holds a value of either
-1 or 1, describing if the robot is looking towards the negative or the positive area of the facing
axis.

4.3 Extensibility

With a limited time budget, only basic functionality for the mobility models was implemented.
Extensibility is ensured with the usage of the Robot Operating System and with an easy to
learn language such as Python as the programming language. With basic programming skills
in Python and knowledge of the Robot Operating System, one could extend the implemented
mobility models in many different ways.

A possibility is to introduce a different pause time scheme to the constrained mobility model.
The pause time could be randomly distributed at each stop, which includes the need of logging
them and implementing a way to reintroduce them in a predefined path run. Also each vertex
could have its own individual pause time, which would be easier to implement and would not
pose an issue with predefined re-runs.

Another way to extend the constrained mobility model is to add weight values, representing
traversing probabilities, to the edges of the graph. Resulting in a non uniformly distributed

24

chance that the robot will visit a specific neighbouring vertex. This scenario corresponds to,
e.g., a shopping mall where male and female shoppers would not frequent the same stores with
the same probability.

25

Chapter 5

Installation Process

5.1 Setup

All instructions in the following subsections are expected to work on Ubuntu (10.04 Lucid Lynx
or newer) and similar flavours of Linux (e.g. Mint). The author expects the reader to have an
understanding of these platforms and also the reader must bring the ability to install software by
him-/herself (in case a basic program out of the scope of the following guide is not present on
his/her system). Furthermore, a $ or > sign at the beginning of a listings-line of the Bash-shell
signals a user issued command and lines without a preceding sign stand for output.

The basic setup instructions described on the following pages are the results of extensive
online research. The creation of a root file system[S5] and the serial console[60] is taken from
the Ubuntu wiki, the creation of a bootable SD-card[53] has its origin on the Gumstix developer
pages. The rest of knowledge brought to paper originates from the research blog of a computer
science student[l61]] and the author’s personal knowledge of Linux systems.

5.1.1 Creating a Root File System

The console program deboot st rap can be used to build custom root file systems for a variety
of different CPU architectures. The installation is initiated with issuing the following command.

$ sudo apt—-get install debootstrap

Listing 5.1: Installing debootstrap

The bootstrapping process for the new file system consists of two stages. For the first
stage the deboot st rap command with some additional arguments is entered into the shell.
The ——arch armel argument tells the program to use binaries built for ARM processors,
——include=[...] adds specific additional software and with ——keyring=[...] the
Ubuntu keyring is used. To see the progress, ——verbose prints out additional informa-
tions. ——foreign tells debootstrap only to do the first stage of the bootstrapping and
—-—variant=buildd adds software-building specific packages, as this system will be used
to compile programs. Finally, precise is the project name of the Ubuntu version to be used
(here Ubuntu 12.04 LTS) and root fs specifies a folder where the file system will be written
to.

27

$ sudo debootstrap \
——arch armel \
——include=sudo, wget,net-tools,wireless-tools,vim, openssh-server
,lsb-release \
--keyring=/usr/share/keyrings/ubuntu-archive-keyring.gpg \
—-—verbose \
-—foreign \
—-—variant=buildd \
precise \
rootfs

VvV Vv

vV V. V V V V

Listing 5.2: First stage execution of the bootstrapping

This already concludes the first stage. For the second stage, the QEMU virtualisation soft-
ware will be used. The easiest way in this particular situation is to use syscall emulation, mean-
ing machine-codes will be translated and system calls remapped from the virtual machine to the
kernel of the actual machine.

Install the syscall emulation functionality of gemu.

$ sudo apt—-get install gemu—-kvm-extras-—-static

Listing 5.3: Installing the syscall emulation

Check that QEMU registered the ARM format properly inside the binfmt-support package
with:

$ cat /proc/sys/fs/binfmt_msisc/gemu—-arm
enabled

interpreter /usr/bin/gemu-arm-static

flags: OC

offset 0

magic 7f454c4601010100000000000000000002002800
mask ffffffffffffffO0fffffffffffffffffeffffff

Listing 5.4: Check the status of gemu-arm

Since the chroot program (change root) will be looking for the ARM-interpreter inside
the root f's folder, the interpreter needs to be copied over.

$ sudo cp /usr/bin/gemu-arm-static rootfs/usr/bin/

Listing 5.5: Copy the ARM interpreter to the root file system

Next, use chroot to start the (not yet fully finished) root file system inside a virtual envi-
ronment and trigger the second stage.

$ sudo chroot rootfs /bin/bash
$ /debootstrap/debootstrap —--second-stage

Listing 5.6: Trigger the second stage

After the successful completion of the second stage, close the virtual machine with the exit
command.

28

5.1.2 Creating a bootable microSD-card
Preparation

Insert the microSD, using an SD-card or USB adapter, into a computer running your choice of
Linux. The microSD will most likely show up as /dev/sdX (where X can be any letter from b to
z). On bash use df or mount to show the mounted partitions and verify the microSDs device
name. If your system automounts plugged in storage devices unmount it first, with ’n” being the
partition number.

S sudo umount /dev/sdXn

Listing 5.7: Unmount eventually mounted partitions of the microSD

Calculating Card Size

To ensure accessibility of the data on the microSD, the required number of cylinders for your
particular card has to be calculated using the fdi sk command.

$ sudo fdisk -1 /dev/sdX

Disk /dev/sdX: 3974 MB, 3974103040 bytes

70 heads, 5 sectors/track, 22176 cylinders, total 7761920 sectors
Units = sectors of 1 « 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

Device Boot Start End Blocks Id System
/dev/sdX1 8192 7761919 3876864 b W95 FAT32

Listing 5.8: Get the exact bytes count of the microSD

Calculate the count of cylinders by dividing the card size in bytes by 255 heads, 63 sectors
and 512 bytes per sector and rounding down to the next integer.

card size
255 heads x 63 sectors x 512 bytes

I

| = cylinders

Partitioning

There are a minimum of two partitions required to be able to boot the Overo from the microSD:
a FAT partition for the bootloader and an ext3 Linux partition where the root file system created
in Section 5. .1l will be stored.

First of all, any existing partition data on the microSD needs to be deleted.

29

$ sudo dd if =/dev/zero of=/dev/sdX bs=1024 count=1024
1024+0 records in

1024+0 records out

1048576 bytes (1.0 MB) copied, 0.28741 s, 3.6 MB/s

Listing 5.9: Zero out the first MB

The required partitioning can be done using sfdisk:

$ sudo sfdisk --force -D -uS -H 255 -3 63 -C <cylinders> /dev/sdX

Listing 5.10: Creating the partition table

For <cylinders>insert the calculated cylinder count from above without the brackets.

At the first prompt from the program, type 128,130944,0x0C,* and press the enter key.
This will create the first, 64MB bootable FAT partition. At the second prompt insert 131072,,,-
and press enter another three times to create the second (Linux) partition and complete the
partitioning process. When asked to write the new partition table, type y to confirm.

Example output (with user-input marked bold):

Checking that no-one is using this disk right now
OK

Disk /dev/sdX: 483 cylinders, 255 heads, 63 sectors/track

sfdisk: ERROR: sector 0 does not have an msdos signature
/dev/sdX: unrecognized partition table type

0Old situation:

No partitions found

Input in the following format; absent fields get a default value.

<start> <size> <type [E,S,L,X,hex]> <bootable [-,*]> <c,h,s> <c,h,s>
Usually you only need to specify <start> and <size> (and perhaps <
type>) .

/dev/sdX1l :128,1309344, 0x0C,

/dev/sdX1 * 128 131071 130944 c W95 FAT32 (LBA)
/dev/sdX2 :131072,,,-
/dev/sdX2 131072 7761919 7630848 83 Linux
/dev/sdX3 :
/dev/sdX3 1 127 127 83 Linux
/dev/sdX4 :
/dev/sdx4 0 - 0 0 Empty
New situation:
Units = sectors of 512 bytes, counting from 0

Device Boot Start End #sectors Id System
/dev/sdX1 * 128 131071 130944 c W95 FAT32 (LBA)
/dev/sdX2 131072 7761919 7630848 83 Linux
/dev/sdX3 1 127 127 83 Linux
/dev/sdx4 0 - 0 0 Empty

30

Warning: partition 1 does not end at a cylinder boundary

Warning: partition 2 does not start at a cylinder boundary

Warning: partition 2 does not end at a cylinder boundary

Warning: partition 3 does not end at a cylinder boundary

end of partition 2 has impossible value for cylinders: 483 (should be
in 0-482)

Do you want to write this to disk? [yndg] y

Successfully wrote the new partition table

Re-reading the partition table

If you created or changed a DOS partition, /dev/foo7, say, then use
dd (1)

to zero the first 512 bytes: dd if=/dev/zero of=/dev/foo7 bs=512
count=1

(See fdisk (8).)

Listing 5.11: Example of the partitioning dialog

Formatting

After the creation of the partition table, the partitions need to be formatted according to their
specific file system.
Set up the first partition to be formatted as a FAT file system with the label "boot”.

$ sudo mkfs.vfat -F 32 /dev/sdXl —-n boot
mkfs.vfat 3.0.13 (30 Jun 2012)

Listing 5.12: Format first partition as FAT

To format the second partition for Linux with the label “rootfs”, issue the following com-
mand:

$ sudo mke2fs —j -L rootfs /dev/sdX2
mke2fs 1.42.5 (29-Jul-2012)
[Output cut]

Listing 5.13: Format second partition als ext3

5.1.3 Writing all required files to microSD

Create two mountpoints and mount the two partitions into your system.

S sudo mkdir —-/media/{boot, rootfs}
$ sudo mount -t vfat /dev/sdXl /media/robot/
$ sudo mount -t ext3 /dev/sdX2 /media/rootfs/

Listing 5.14: Mount the microSD

Before proceeding, make sure you have all of the following files:

31

e aroot file system (in our case self crafted, see Section[5.1.1))

e a kernel binary image named ’uImage’E]

e a u-boot bootloader binary image ’u—boot.img’

e a x-loader binary image ’MLO’EI

If all of the required files are present they can be copied over to the microSD. Navigate

the shell to the location where these files are located, copy them all over and issue the sync
command so everything will be written to the disk.

sudo cp MLO /media/boot/MLO

sudo cp u-boot.img /media/u-boot/u-boot.img
sudo cp ulmage /media/boot/ulmage

sudo cp -rf rootfs/+ /media/rootfs/

Uy Uy Ur U

Listing 5.15: Copying everything over

5.1.4 Additional Configurations
Copy Hardware-specific Files

Download the file gumst ix—console-image-overo—-20120930223122.rootfs.tar.bz2
from http://cumulus.gumstix.orqg/images/angstrom/developer/yocto/
and extract it to a temporary folder.

$ sudo tar xjf gumstix—-console-image-overo—20120930223122.rocotfs.tar.
bz2

Listing 5.16: Untar the Gumstix image

Change into the extracted folder and copy the kernel modules and drivers firmware to the
microSD.

$ sudo cp -rf lib/firmware/ /media/rootfs/lib/
$ sudo cp -rf lib/modules/ /media/rootfs/lib/

Listing 5.17: Copying kernel modules and firmware

'downloaded from |http://cumulus.gumstix.orqg/images/angstrom/developer/yocto/ on
02.02.2013

2downloaded from http://cumulus.gumstix.orqg/images/angstrom/developer/yocto/ on
02.02.2013

3downloaded from http://cumulus.qumstix.orqg/images/angstrom/developer/yocto/ on
02.02.2013

32

http://cumulus.gumstix.org/images/angstrom/developer/yocto/
http://cumulus.gumstix.org/images/angstrom/developer/yocto/
http://cumulus.gumstix.org/images/angstrom/developer/yocto/
http://cumulus.gumstix.org/images/angstrom/developer/yocto/

Hostname

Create a file inside /media/rootfs/etc called hostname and save the desired name of
the machine into it.

robot

Listing 5.18: Contents of /etc/hostname

Also add the name to the /media/rootfs/etc/hosts file as an alias for localhost.

127.0.0.1 localhost robot

Listing 5.19: Changed line inside /etc/hosts

Serial Console

To be able to log in over the serial port of a typical Gumstix expansion board, the get ty process
needs to be configured accordingly.
Create a file called /etc/init/tty02.conf with the following content:

tty02 - getty

#

This service maintains a getty on ttyO2 from the point the system
is started until it is shut down again.

start on stopped rc or RUNLEVEL=[2345]
stop on runlevel [!2345]

respawn
exec /sbin/getty —-L 115200 ttyO02 wvt1l02

Listing 5.20: Contents of /etc/init/ttyO2.conf

WiFi Connectivity

For ease of operation and for an easy setup, this project uses an unprotected WiFi network. Turn
towww .google. comto find out how to set up a connection to a WPA/WPA2 or WEP secured
network. Append the following lines to /etc/network/interfaces with the according
values of <static-ip>, <gateway-ip>and <network-name >for your network:

auto wlanO
iface wlanO inet static
address <static-ip>
netmask 255.255.255.0
gateway <gateway-ip>
wireless—essid <network—-name>

Listing 5.21: Added contents of /etc/network/interfaces

33

www.google.com

Enable Root Account for Login

Since there is no ordinary user set up until now, the root account can be enabled to have
a valid login on the first boot-up. Open up the shadow file on the microSD (found at
/mount /rootfs/etc/shadow) and delete the content between the first and second colon
on the line of the root user. The result should look similar to the next listing.

root::15713:0:99999:7:::

Listing 5.22: Adjusted line inside /etc/shadow

First Bootup

For the final configurations of the system, the easiest way to access the Gumstix is through the
serial console (configured in Section [5.1.4). Connect a mini-B to standard-A USB-cable to the
console port of the expansion board and point your preferred terminal program (eg. kermit,
minicom, screen) to the serial device on the computer (/dev/tty00 or /dev/ttyUSBO).
The connection parameters include: no flow control, 115200 bps and 8N1 parity [62]].

Now connect the TurtleCore expansion board to the iRobot Create and wait for the system
to finish its boot process. At the login prompt enter root and login without a password.

User Management

The Linux-savvy reader may already be alarmed that we are working on the root account and
have not yet setup a standard user. We are going to fix that right now.

$ adduser <username>

Adding user ‘<username>'...

Adding new group ‘<username>’ (1001).

Adding new user ‘<username>’ (1001) with group ‘<username>’.
Creating home directory ‘/home/<username>’.

Copying files from ‘/etc/skel’

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

Changing the user information for <username>

Enter the new value, or press ENTER for the default
Full Name []:

Room Number []:

Work Phone []:

Home Phone []:

Other []:

Is the information correct? [y/N] y

Listing 5.23: User creation dialog

The new user also needs to be added to the sudoers group, so we do not need the real root
account for administrative stuff like installing software and so on.

34

$ adduser <username> sudo

Listing 5.24: Adding a user to the sudoers group

After adding the new user and adding it to the sudoers group, create a password to the root
account and logout to use your newly created user.

S passwd

Listing 5.25: Creating a password

DNS

On some networks the Gumstix with the current configuration does not get any nameservers,
so we are going to add the free and public nameservers from www.google.comn to the
/etc/resolv.conf file.

nameserver 8.8.8.8
nameserver 8.8.4.4

Listing 5.26: Contents of /etc/resolv.conf

Change rights for /tmp

During the bootstrapping process of the root file system, the rights for the temporary folder
/tmp were not properly set and only the root user can write to it. Since the installation scripts of
ROS(see Section [5.1.5) require write permissions to /tmp, the permissions need to be adjusted.
Issue the following command to add write access:

$ sudo chmod a+w /tmp

Listing 5.27: Give write access for /tmp to all users

Updating

Next, Ubuntu needs to be told from where to fetch new programs or system updates. This is
specified inside the /etc/apt/source.list file.

deb http://ports.ubuntu.com/ubuntu-ports precise main

deb http://ports.ubuntu.com/ubuntu-ports precise-updates main

deb http://ports.ubuntu.com/ubuntu-ports precise-security main

deb http://ports.ubuntu.com/ubuntu-ports precise universe multiverse

deb http://ports.ubuntu.com/ubuntu-ports precise-updates universe
multiverse

deb http://ports.ubuntu.com/ubuntu-ports precise-security universe
multiverse

Listing 5.28: Contents of /etc/apt/sources.list

35

www.google.com

To finish the basic system setup, issue the update and upgrade commands of apt-get.

$ sudo apt-get update && sudo apt-get upgrade

Listing 5.29: Updating the system

You have now a fully configured and working operating system on your Gumstix COM.

5.1.5 Installing ROS

In order to sucessfully install ROS on the Gumstix Overo Fire combining several sources was
necessary. First, describing the installation from source[63] adding the ROS repository to
apt[64] installing Collada and ASSIMP for the Raspberry Pi (and other ARM computers)[65]]
creating an overlay workspace[66] and finding the create_node package repository [67]].

The reader may also visit the general installation page of ROS [[68] and check if there are
new tutorials on installing the Robot Operating System on ARM systems.

Prerequisites

First add the software sources from ROS to the apt sources list.

$ sudo sh —-c ’'echo "deb http://packages.ros.org/ros/ubuntu precise
main" > /etc/apt/sources.list.d/ros-latest.list’

Listing 5.30: Adding ROS software sources

After that these software sources need to be verified with the key from the ROS repositories.

$ wget http://packages.ros.org/ros.key -O - | sudo apt-key add -
OK

Listing 5.31: Adding the ROS repository key

With the key added, update the sources so that ROS specific packages can be installed.

$ sudo apt-get update

Listing 5.32: Update the software sources

Install the dependency and workspace administration tools to your system.

$ sudo apt-get install python-rosdep python-wstool

Listing 5.33: Install ROS administration tools

Initialize the ROS dependency system which checks dependencies between ROS packages.

$ sudo rosdep init
Wrote /etc/ros/rosdep/sources.list.d/20-default.list
Recommended: please run

rosdep update

36

S rosdep update

reading in sources list data from /etc/ros/rosdep/sources.list.d

Hit https://github.com/ros/rosdistro/raw/master/rosdep/osx-homebrew.
yaml

Hit https://github.com/ros/rosdistro/raw/master/rosdep/gentoo.yaml

Hit https://github.com/ros/rosdistro/raw/master/rosdep/base.yaml

Hit https://github.com/ros/rosdistro/raw/master/rosdep/python.yaml

Hit https://github.com/ros/rosdistro/raw/master/rosdep/ruby.yaml

Hit https://github.com/ros/rosdistro/raw/master/releases/fuerte.yaml

Hit https://github.com/ros/rosdistro/raw/master/releases/groovy.yaml

updated cache in /home/robot/.ros/rosdep/sources.cache

Listing 5.34: Initialize dependency system

Download the core ROS packages

Create a catkin workspace folder, catkin is the build system for the core packages.

S mkdir “/ros_catkin_ws
$ cd ros_catkin_ws/

Listing 5.35: Create catkin workspace folder

Fetch the core packages for a robot system using wstool, the argument —j1 tells the
program only to download one package at a time. Higher values can cause errors with the
Gumstix.

$ wstool init src -jl http://packages.ros.org/web/rosinstall/generate
/raw/groovy/robot

Using initial elements from: http://packages.ros.org/web/rosinstall/
generate/raw/groovy/robot

Writing /home/robot/ros_catkin_ws/src/.rosinstall

[Output cut]

update complete.

Listing 5.36: Fetch core packages

Installing Collada and ASSIMP

Because collada—-dom—-dev is not available for the armel architecture over apt it needs to
be built by hand. First create the folder /opt/collada, then download the sources from
sourceforge.net, compile and install them.

$ sudo apt—-get install libxml2-dev

$ sudo mkdir /opt/collada

$ sudo chown <username> /opt/collada

$ cd /opt/collada

$ wget http://sourceforge.net/projects/collada-dom/files/latest/
download -0 collada.tgz

37

sourceforge.net

$ tar —-xf colladax*; rm colladaxtgz; cd collada*; mkdir build; cd
build
$ cmake .. ; make -jl; sudo make install

Listing 5.37: Installing Collada

The compilation and installation takes up some time because of the limited hardware capa-
bilities of the Gumstix.

Collada relays on ASSIMP and the standard binary causes the build process inside ROS to
fail, so we are going to install this package manually as well.

$ mkdir /opt/ros/assimp

$ cd /opt/ros/assimp

$ wget http://sourceforge.net/projects/assimp/files/assimp-3.0/assimp
--3.0.1270-source-only.zip/download -O assimp.zip

$ unzip assimp*; rm assimpxzipx; cd assimpx; mkdir build; cd build

$ cmake ..; make -jl; sudo make install

Listing 5.38: Installing ASSIMP

Afterwards remove the dependency declaration of collada-dom inside
collada_urdf/package.xml, collada_parser/package.xml and
robot_model/package.xml in /home/robot/ros_catkin_.ws/src/. This is
due to the fact that rosdep can not notice dependencies installed outside of apt.

Build the catkin Workspace

Next resolve all still unmet dependencies with rosdep. The argument ——-from-paths
src specifies to install all system dependencies of the packages in the src folder and
-—ignore-src specifies that we are building the packages inside src by ourselves.

$ rosdep install --from-paths src --ignore-src --rosdistro groovy -y
[Output cut]
#A1l1l required rosdeps installed successfully

Listing 5.39: Installing system dependencies for ROS

After rosdep has finished installing the dependencies, the catkin workspace needs to be
installed. This might take some time (up to several hours on the Gumstix): go and grab some
coffee.

S ./src/catkin/bin/catkin_make isolated —--install

Base path: /home/robot/ros_catkin_ws

Source space: /home/robot/ros_catkin_ws/src

Build space: /home/robot/ros_catkin_ws/build_isolated
Devel space: /home/robot/ros_catkin_ws/devel isolated
Install space: /home/robot/ros_catkin_ws/install_isolated
[Output cut]

Listing 5.40: Compile and install all the robot core packages

38

To enable the bash to know the ROS commands, source the setup.bash file generated
by the catkin workspace installation.

$ source ~/ros_catkin_ws/install_isolated/setup.bash

Listing 5.41: Source the setup.bash file

Create an Overlay Workspace

Make a separate folder to have a workspace to build existing third-party and your own packages
and initialize it with rosws.

$ mkdir ~/ros_ws

$ cd "/ros_ws/

S rosws 1init . “/ros_catkin_ws/install_isolated/

Using ROS_ROOT: /home/robot/ros_catkin_ws/install_isolated

Writing /home/robot/ros_ws/.rosinstall

(Over—)Writing setup.sh, setup.bash, and setup.zsh in /home/robot/
rOS_Ws

rosinstall update complete.

Type ’'source /home/robot/ros_ws/setup.bash’ to change into this
environment. Add that source command to the bottom of your 7/.
bashrc to set it up every time you log in.

If you are not using bash please see http://www.ros.org/wiki/
rosinstall/NonBashShells
$ source ~/ros_ws/setup.bash

Listing 5.42: Create separate workspace

Afterwards, merge the components of the ROS variant chosen before and download them to
the overlay workspace.

$ rosws merge http://packages.ros.org/web/rosinstall/generate/raw/
groovy/robot

[Output cut]

update complete.

$ rosws update -jl

Listing 5.43: Merge the robot variant to your workspace

Build the ROS Stack

Finally, source the newly created setup .bash in the overlay workspace and build all pack-
ages using rosmake.

39

$ source "~ /ros_ws/setup.bash

$ rosmake -a

[rosmake] rosmake starting...

[rosmake] Building all packages
[Output cut]

Listing 5.44: Building all packages

5.1.6 Adding TurtleBot Packages to ROS

If ROS was installed as the robot variant, all dependencies for the turtlebot_create
package are already met. It is sufficient to just directly get the package from github. com.

$ wstool set turtelbot_create —-—-git https://github.com/turtlebot/
turtlebot_create.git

Add new elements:
turtlebot_create git https://github.com/turtlebot/
turtlebot_create.git

Continue: (y)es, (n)o: Q@\textbf{y}@
Overwriting /home/robot/ros_ws/.rosinstall

Do not forget to do

$ source /home/robot/ros_ws/setup.sh
in every open terminal.

Config changed, remember to run ’rosws update turtlebot_create’ to
update the folder from git

$ wstool update turtlebot_create

[turtlebot_create] Updating /home/robot/ros_ws/turtlebot_create

[turtlebot_create] Done.

Listing 5.45: Adding turtlebot_create package

Next, let rosdep check for any system dependencies on create_node, as this subpack-
age is responsible for communicating with the Create, and install them, if any.

$ rosdep install create_node

Listing 5.46: Check for system dependencies on create_node

After all system dependencies were resolved, build the package.

S rosmake create_node

[rosmake] rosmake starting...
[rosmake] Building [’create_node’]
[rosmake] Packages requested are: ['create_node’]

[Output cut]

40

github.com

[rosmake] Results:
[rosmake] Built 43 packages with 0 failures.
[rosmake] Summary output to directory

Listing 5.47: Build create_node

5.1.7 turtle_mover

To install the turt le_mover package developed in the course of this thesis, simply clone the
package from a versioning server (via git, mercurial or svn), if provided. Otherwise, just copy
the folder turtle_mover over to your ROS workspace.

In case the reader wants to use a ROS version before Groovy Galapagos, adjust the depen-
dency in the manifest . xml file from create_node to turtlebot_node.

5.1.8 Android Phone

With the development of version groovy, Willow Garage is also reorganizing its Android appli-
cations for steering and controlling ROS enabled robots [[69].

The following statements are valid under the pretence that the overall workflow with the
ROS Android apps will not change too severely and the apps will only be redesigned but not
renamed.

Provided the reader managed to install the full turtlebot package, there are two apps
from the Google Play Store needed to drive the Create with the smartphone:

o ROS Application Chooser[70]
e Android Teleop[/71]

First of all, the phone needs to be connected to the same wireless network the robot uses.
When the robot is running and enlisted into the app with its IP, the ROS Application Chooser
should list it as the TurtleBot. On selecting the robot, the app shows different applications the
TurtleBot can run. Select Teleop, this will open the app Android Teleop and the robot will
signalize he is ready with turning off all three LEDs.

5.2 Using an Implemented Mobility Model

The easiest way to run the implemented mobility models is to use the program screen which
emulates several terminal sessions in one. For the basic controls, Ct r1-A followed by c creates
a new terminal session, change the session with Ct r1 -2 followed by the number of the session
and for exiting a session just issue the exit command.

Because of the nature of the Robot Operating System, there are multiple programs that need
to be started. First of all, the core of the ROS framework needs to be run with the roscore
command.

41

$ roscore

Checking log directory for disk usage. This may take awhile.
Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

[...]

Listing 5.48: Starting of roscore

In a new session, the connection to the robot needs to be specified, rosparam set
create_node/port /dev/tty00 and the node for communicating with the robot needs
to be started with rosrun turtlebot_create/create_node create_node.py.

$ rosparam set create_node/port /dev/ttyOO0
$ rosrun turtlebot_create/create_node create_node.py

Listing 5.49: Changing port and starting the robot’s driver

The next step, in a new screen terminal, is starting the desired mobility model. First
navigate to the folder the parameter files lay (in case of the constrained mobility model) or
where the log of random mobility should go. Afterwards issue rosrun turtle_mover
<model>.py and have fun.

$ rosrun turtle_mover random_walk.py

Listing 5.50: Starting the random walk model

To stop the execution of a model, press Ct r1-C and the program will halt.

5.3 Creating Network Traffic

While steering the robot with a mobile phone, wifi traffic is created through the communication
between the robot and the mobile phone. This enables a wireless test bed to pick up the robots
signals. If the robot is run using an implemented moblity model there is little to no traffic. In
order to create network traffic, several possibilities to create network traffic from the bash shell
are shown in the following listing.

$ while true; do echo "something"; sleep 0.1; done
$ watch -n 0.1 echo "something"
$ ping x.x.x.Xx

Listing 5.51: Creating network traffic with bash one-liners

42

Chapter 6

Evaluation

The purpose of the conducted work was to offer a mobility platform to a WSN test bed. The
requirements towards a mobile sensor node are mainly two: the ability to follow a predefined
path and to connect to the test bed via the chosen radio technology.

After the successful installation of the robotic system and the finished implementation of
the mobility models, the evaluation of the robot’s accuracy came into focus. The software can
only ensure the proper processing of the given mobility model but it cannot perform the tasks
of execution and provide reliable signal strength measurement for localisation without accurate
hardware.

The experiments were arranged in two sets. The first set, containing Scenarios I to III, for
the purpose of hardware accuracy testing and the second, with Scenario V, for connectivity.
Scenario IV falls into both sets since driving accuracy as well as connectivity data was recorded.

The first set of experiments began with Scenario I, which examines the ability of the robot
to accurately move forward by a certain number meters, i.e., distance accuracy. In a later exper-
iment (Scenario II), the ability of the robot to drive a straight line was examined, i.e., angular
accuracy. Scenario II was conducted because of the observations of the author during initial
driving experiments. The observation was that the two wheels, which are powered by two indi-
vidual actuators, did not respond simultaneously to a driving command. This behaviour resulted
the robot to be off by some degrees from the intended straight line especially when driving at
higher speeds. A later test (Scenario III) was done to see the effect of the accumulation of the
previous encountered deflexions.

The second set of experiments included the validation that the robot can be picked up by the
wireless test bed. One experiment included steering the robot via commands sent over wifi from
a cellular phone (Scenario V). In another experiment, the robot was run independently with an
implemented mobility model (Scenario IV).

6.1 Scenario Descriptions
There are many different error sources with a physical robot running on physical hardware com-

pared to a simulated model. The robot needs to travel pre-defined distances to some degree of
accuracy; also it needs to be able to follow a straight line. Additionally, inaccuracy in turning an-

43

gles might introduce accumulated errors over multiple turns, which could result in unacceptable
path deviations.

In order to evaluate the impact of external, hardware related factors on the performance of
the mobility models testing, we conducted a set of experiments, outlined in Table [6.1]

Scenario Evaluated parameter | Description | Findings
I distance [m] 6.1.1 6.2.1
II deviation from straight [m] 6.1.2 6.2.2
III deviation from origin [m] 6.1.3 6.2.3
v constrained mobility model test 6.1.4 6.2.4
v connectivity 6.1.5 6.2.5

Table 6.1: Conducted experiments

All tests were conducted indoors at the Institute for Applied Mathematics and Computer
Science at Neubriickstrasse 10 in Berne on floors two and three.

6.1.1 Scenario I: Distance Accuracy

Ad

Figure 6.1: Concept of Scenarios I (left) and II (right)

The purpose of the test is to validate whether the distance defined in software is followed
by the hardware. The test for distance accuracy was run with a rather low (0.1m/s) and the
highest speed supported by the robot (0.5m/s). The author used a set of distances from 1 to 5
meters with 10 data points collected for each tuple of speed-distance to check if the robot can
accurately cover the chosen distance. Figure [6.1] shows the experimental set-up. The detailed

44

measurements are listed in the Appendix in Table The evaluated data can be found in
Table [6.7) for the speed of 0.1m/s and Table[6.8| for 0.5m /s.

Script linear.py
par. | metric | values

v ms~1 | 0.1,0.5
d m 1-5

n — 10

Table 6.2: Parameters for Scenario I

6.1.2 Scenario Il: Angular Accuracy

The purpose of the test is to show if the robot will follow a straight line. The speeds used in this
experiment were again 0.1m/s and 0.5m/s. For the experimental set-up, the robot was placed
inside a square marked on the floor with the robot’s dimensions (35cm diameter). A straight
line in front of the robot labelled the desired path the robot should take to its distance of 5m (see
Figure [6.1). For both speeds the author made 10 experiments which can be found in Table
The evaluation results are shown in Table [6.9] The measured deviation of the robot equals the
distance from the straight line to the robot’s center point in a right angle from the line.

Script linear.py
par. | metric | values

v ms~! [0.1,0.5
d m 5

n — 10

Table 6.3: Parameters for Scenario II

6.1.3 Scenario lll: Returning to Starting Position

To see the effect of the accumulation of the angular deviations in a more complex situation, the
robot was run in a square with lateral length of 2m(a), turning clockwise. The deviation from
the starting and the end position was measured from the center of the robots back. The program
was written so that in a perfect run the robot would stand exactly in the same location as it
started, facing the same direction. Concerning speed worst-case scenario was chosen, meaning
full speed at 5m/s.

Script square.py
par. | metric | values

v ms~1 | 0.5

a m 2

Table 6.4: Parameters for Scenario III

45

B
B
P mm——— o _
i -
I S~
~ -
i -
1 ~.
! S
1 S
1 S '
i "-.C
1
[
1 i
1 1
| i
1 ’
1 1
1 ’
Al 1 7
I ’
~ 1 !
o 1 ’.r
~ |1 ’
S ’
I~ 7
Ad\ p ’
~ ’
S ’
~
’
. ’
A ~ ’ D
<
~o ’
’

Figure 6.2: Sketch of the square experiment, Scenario IIT

6.1.4 Scenario IV: Small Scale Test

Floor 2
§259 #260
— [}
[=F] 1]
&2 s
E E
| o o
#2 ,
(T
B n
8 g - IR
E #ZEEE E .3
0 #

Figure 6.3: Sensor positions on the second floor, Scenario IV

This experiment was conducted in the hallway of the second floor at the Institute for Applied
Mathematics and Computer Science at Neubriickstrasse 10 in Berne. The graph for this experi-

46

ment is shown in Figure[6.4] The robot runs two different paths with the same total distance but
with different numbers of turning points from vertex A to vertex F, namely: A — B - D - E
- FandA - B - C - E - F.

Vertices indicate different rooms or locations in the hallway. Vertex A is close to the door of
office N201, vertices B, C and E are in the middle of the hallway and offer an alternative path
around vertex D besides the door of meeting room N206. Finally, vertex F is positioned in front
of the door to office N205 (see Figure [6.4)).

During the test runs, we also attempted to pick up the robot’s signals with a wireless test bed
to verify the robot’s connectivity. Wireless network traffic was created with the ping command
as described in Section [5.3] The positions of sensors are shown in Figure [6.3] Sensors 256,
257 and 263 are positioned outside the group’s hallway and thereafter not shown in the figure.
Moreover, the robot’s position is measured after each experiment in order to test if more turns
equal less accuracy.

Office N205
—_—T.
F=1(2,4)
C=(1,2) E=1(22)
A=(0,0) B = (1, 0) D =(2,0)
® 4 @
- —_—
Office N201 Meeting Room

N206

Figure 6.4: Graph layout for the combined experiment, Scenario IV

47

constrained_mobility.py

values

Script

par. metric
v ms1
path —
patho —

0.5
A-B-D-E-F
A-B-C-E-F

Table 6.5: Parameters for Scenario IV

6.1.5 Scenario V: Connectivity

Floor 2

Figure 6.5: Travelled path in connectivity test, Scenario V

The evaluation was concluded by a pure connectivity test to show if the robot can be picked
up by the wireless test bed. Again taking place on the second floor of the institute’s building.
The robot was driven by phone from the front of office 3 nearly to the end of the hallway, back
and entering office 3 (see Figure [6.3). Wireless sensor nodes were placed in offices 1 and 3-5 to
see if the robot can be picked up while receiving driving commands over wifi. For comparison
of signal strength and collected packets by the test bed, a mobile phone with enabled wifi was

placed in the robot’s cargo bay.

@sn
- (4]
8 8
£ £
\ o) e}
I [
- w0
3 2 T @
g E & 8
& o = =
«n o o
SN2 —
SN4&5 — SN3 —

Script custom.launch
par. | metric | values
v ms~! | var.

Table 6.6: Parameters for Scenario V

48

6.2 Evaluation Resulis

6.2.1 Scenario I: Distance Accuracy

Distance [m] 1 2 3 4 5
Avg [m] 0.908 | 1.843 | 2.778 | 3.714 | 4.650
% 924 | 786 | 739 | 7.5 | 7.01
Stddev [m] 0.005 | 0.004 | 0.003 | 0.003 | 0.004

Table 6.7: Distance accuracy at a speed of 0.1 m/s

Distance [m] 1 2 3 4 5
Avg [m] 0.864 | 1.873 | 2.723 | 3.631 | 4.473
% 1360 | 634 | 9.24 | 923 | 10.54
Stddev [m] 0.021 | 0.124 | 0.029 | 0.127 | 0.020

Table 6.8: Distance accuracy at a speed of 0.5 m/s

When looking at the evaluated data, an obvious result is that the robot constantly drives too short
distances. This would not be a problem when the robot is run at slow speeds around 0.1m/s.
The difference in distance is merely 7 — 10% with a standard deviation of 3 — 5mm.

With higher speeds, the robot becomes less reliable (see Table [6.8)). Not only does it drive
even shorter distances as with 0.1m/s but the fluctuations in the covered distance do not allow
for corrections in software. Even if the average of the driven distances could be calibrated
to match the expected distance, the standard deviations still range from 2cm to 12.7cm. In a
single straight line run these deviations do not pose a real problem. The problems arise with the
accumulated errors in the course of running the implemented models for even a short period of
time.

It can be concluded to avoid the use of the maximum supported speed.

6.2.2 Scenario Il: Angular Accuracy

Speed [m/s] 0.1 0.5
Avg [m] 0.100 | 1.094
Side left | right
Stddev [m] 0.080 | 0.181

Table 6.9: Angular deviation from the ideal straight line

This experiment confirmed the author’s earlier expectation and is concurrent with the data from
the first experiment. While a deviation of 0.1m at 0.1m /s can be acceptable, at higher speeds
the robot drifts to over 1 meter away from the ideal line. These deviations have two main

49

causes, which come from one error source: the two wheels of the robot are controlled by two
separate actuators. The author observed that the wheels do not start driving simultaneously,
which resulted the robot to be slightly off already from the start. The second problem was that
the robot drove in a curve and not as intended in a straight line. This problem is due to the fact
that the robot’s wheels are driven by two individual actuators. Cheap actuators exhibit varying
accuracy when identical current and voltage are applied, resulting in deviating wheel speeds.

6.2.3 Scenario lll: Returning to Starting Position

Run # 1 2 3 4 5 6 7 8 9 10
Ad[m] | 1.017 | 0.834 | 0.792 | 0.897 | 0.911 | 1.105 | 1.036 | 0.737 | 0.769 | 0.476

Table 6.10: Deviation between starting and end position after driving in a square

The data in Table shows that a maximum speed, where the robot tends to drift to the right,
paired with multiple right turns affects seriously the robot’s accuracy. The situation is depicted
in Figure [6.2] The full arrows show the desired path whereas the dashed path depicts the way
the robot actually drove.

It can be stated that with this experiment the usual shortcomings in distance accuracy of the
robot do not affect the accuracy in this case as the final position was measured and not the indi-
vidual corners of the square. So the robot drove a slightly smaller square but the deviation from
the final position came mostly from the fact that it can not keep a straight line (see Section[6.1.2).

6.2.4 Scenario IV: Small Scale Test

Experiment # 1 2 3 4 5] Avg
Displacement 0.621 | 1.108 | 1.016 | 0.717 | 0.770 | 0.846
w/ one turn [m]

Displacement 1.305 | 1.236 | 1.204 | 1.048 | 0.729 | 1.104
w/ three turns [m]

Table 6.11: Deviation between intended and actual end position with the constrained mobility model

50

Sensor | Count | Avg. Signal [dB]
#

255 0 -
256 139 -63.7
257 0 -
258 140 -31.5
259 176 -48.9
260 99 -56.3
261 157 -57.9
262 186 -53.3
263 0 -

Table 6.12: Picked up signals and average signal strength per sensor

The data in Table confirms the initial assumption that with the same distance travelled and
the same number of stops, more turns mean less accuracy. During a run with three turns, the
robot was off from the desired position around an average of 1.104m. This is 0.258m more than
with only one turn at vertex D. The individual data points also confirm this observation. While
with one turn only two deviations were above 1 meter, with three turns only a single run achieve
a deviation below 1 meter.

When running the robot in confined spaces (e.g. hallways, through doors, etc) one has to
keep in mind to put the vertices and edges as far enough from the walls as possible. While
conducting this experiment, the robot hit the wall once and scratched it twice in eleven runs.

The result of the communications part of this experiment is shown in Table During
the experiment, which lasted for 22 minutes, the robot’s signal was picked up around 900 times.
The data reveals that the robot can be picked up the test bed and thus is suitable for testing it.

6.2.5 Scenario V: Connectivity

Node # 1 2 3 4 5
Phone [dB] 779 | -63.2 | -75.1 | -76.0 | -75.8
Robot [dB] -1 -694 | -729 | -68.3 | -68.2

Table 6.13: Average signal strength of the robot’s and phone’s wifi signal

Node # 1 2 3 4 5
Phone 28 | 144 | 169 | 190 | 148
Robot -] 58 | 132 | 111 | 112

Table 6.14: Number of picked up network packets of robot and phone

As shown in Table[6.13] the robot was picked up by the test bed but its signal strength was mostly
significantly lower than the one of the phone. A possible explanation would be that the Gumstix

51

antennas were not mounted on top of the robot but were inside the cargo bay, thus not having the
best possible signal coverage. Another factor could be that the phone has a more powerful wifi
chip and antenna, hence the better reception. Table [6.14] backs up the theory of worse coverage
by the robot. Although there was constant communication back and forth between the robot and
the steering phone, the test bed shows a much lower count of sightings of the robot than of the
phone in the cargo bay.

52

Chapter 7

Conclusions and Outlook

7.1 Conclusions

The addressed topic of this thesis was providing a mobile platform for mobility tests in wireless
sensor networks.

The author evaluated the applicability of the iRobot Create platform in terms of mobility
and wireless connectivity. To test its use for experimentation with realistic human mobility,
the author implemented two mobility models. The implementations include the random walk
mobility model, which is often used in academic research, and the constrained mobility model
as a more realistic approach in modeling human mobility.

When evaluating mobility models for implementation, one has to keep in mind the hard-
ware’s capabilities to follow said mobility model’s properties. Furthermore, the testing envi-
ronment has to be taken into account in measures of obstacle richness, dimensions and floor
conditions. Obstacle rich environments require mobility models with predefined maps or possi-
ble locations and paths. Otherwise, the mobility platform might only visit small portions of the
whole testing environment.

This thesis underlines the fact that working with low-end and small robots yields both distor-
tions in accuracy as well as difficulties in mobility due to small obstacles. During the evaluation
phase of this thesis (see Chapter|[6) the author found that the robot tends to drift from the straight
line. Furthermore, accuracy of the driven distance declines with higher speeds. However, con-
nectivity poses no challenge as the robot can be picked up by the wireless test bed and thus is
suitable for testing purposes.

It can be concluded that the hardware set-up for this thesis is best suited for obstacle free
environments with medium to large dimensions (e.g. the size of a meeting room). Equipping the
robot with additional sensors could also allow more confined spaces to be traversed and might
introduce autonomous path finding.

53

7.2 QOutlook

There are many possible ways to extend the robot’s abilities in both hardware and software.

With the successful implementation of the mobility models (see Section 4.2), specifically
the constrained mobility model, these models could be enriched with additional features and
extensions of said models.

With intermediate programming knowledge in Python, the constrained mobility model could
be extended to include weights to the graph’s edges. These weights could correspond to the
probabilities that a certain path is chosen for traversal. In turn this knowledge can be based on
real world observations, e.g., location of type A (bakery) get visited more often than location of
type B (kid’s store). Also, other mobility models could be implemented for comparison reasons.

As noted in Chapter [3|the low cost sector in robotics and electronics has been emerging in the
last several years and will presumably keep emerging in the future. With new hardware coming
to the market constantly, the human mobility models could be transferred to another hardware
platform. Furthermore, the option of making the implemented models independent of the Robot
Operating System could be considered, for even more lightweight operation of the robot.

The inaccuracy experienced in following straight lines may be compensated by adding addi-
tional sensors such as depth cameras. The outcome of this upgrade would be improved checking
of how and where the robot really is headed and on-the-fly correction if it deviates by a cer-
tain amount. Another advantage could be that the robot would be more autonomous and could
explore areas without the need of a human constantly watching over it.

A different approach could be introduced by transforming the robot from a testing device for
the test bed into a mobile node, integrated into the test bed. As the robot uses similar hardware
with the Gumstix Overo Fire, it is nearly self evident to come to this conclusion. An advantage
of this approach is that localising individual devices inside a crowded room could be done more
dynamically and with better resolution.

54

0NN N W=

15
16
17
18
19
20
21
22
23
24
25
26
27

Chapter 8

Appendix

Listing 8.1: Implementation of the Random Path Model

#!/usr/bin/env python

import roslib; roslib.load_manifest(’ turtle_mover’)
import rospy

import math

import random

import datetime

from geometry_msgs.msg import Twist
from turtlebot_node.msg import x
from turtlebot_node.srv import x

def sensor_callback (msg):
global stuck
if (twist.linear.x > 0) and ((msg.bumps_wheeldrops > 0) or
msg.cliff_left or msg.cliff_front_left or msg.
cliff _front_right or msg.cliff_right):
stuck = True

def move_callback(event):
global pub
global twist
global start_time
global driving_time
global timer
global stuck

if stuck:
if twist.linear.x > O:
driving _time = rospy.get_time () — start_time
twist.linear.x = 0

55

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58

59
60
61
62

63
64
65

66

def

def

def

def

def

def

timer . shutdown ()
pub.publish (twist)

calc_waiting_time () :
return random.normalvariate (10,2)

calc_turning_direction () :
return random.choice([1,—1])

calc_turning_time () :
return random.uniform (0,4)

calc_driving_speed () :
return random.normalvariate (0.5,0.2)

calc_driving_time () :
return random.normalvariate (5,2)

execute () :

global pub

global twist

global timer

global driving_time
global start_time
global stuck

rospy.init_node (’random_walk)

open(’path{}.txt’.format(datetime.datetime .now ()

print(’turn_direction ;turn_time ; waiting_time ;driving_time ;
driving_speed’, file=log_file)

log_file . flush ()

rospy.wait_for_service (’turtlebot/set_operation_mode)

mode = rospy.ServiceProxy(’turtlebot/set_operation_mode’,
SetTurtlebotMode)

mode (3)

rospy.Subscriber(’turtlebot/sensor_state ’,
TurtlebotSensorState ,sensor_callback)

56

67 pub = rospy.Publisher(’cmd_vel’, Twist)

68 twist = Twist ()

69 pub.publish (Twist())

70

71 waiting _time = 0

72 turning_time = 0

73 turning _direction = 0

74 driving_speed = 0

75 driving_time = 0

76 stuck = False

77

78 direction_.name = {—1: ’right’,1: “left’}

79

80 random . seed ()

81

82 while not rospy.is_shutdown ():

83 waiting_time = calc_waiting_time ()

84 turning_time = calc_turning_time ()

85 turning_direction = calc_turning_direction ()
86 driving _speed = calc_driving_speed ()

87 driving_time = calc_driving_time ()

88

89 twist.angular.z = turning_direction * math.radians (45)
90 twist.linear.x = 0

91 stuck = False

92 pub. publish (twist)

93 timer = rospy.Timer(rospy.Duration(0.1) ,move_callback)
94 rospy.sleep (turning_time)

95 timer . shutdown ()

96 pub.publish (Twist())

97

98 waiting_time = waiting_time — turning_time
99 if waiting_time < O0:

100 waiting_time = 0

101 rospy.sleep(waiting_time)

102

103 twist.linear.x = driving_speed

104 twist.angular.z = 0

105 pub.publish (twist)

106 start_time = rospy.get_time ()

107 timer = rospy.Timer(rospy.Duration(0.1) ,move_callback)
108 rospy.sleep(driving_time)

109 timer .shutdown ()

57

110
111

112
113
114
115
116
117
118
119
120

0N DN kAW~

DN NN = = = = = e = = e
D= O 0 0N N K Wi = OO

23

24

25

pub.publish (Twist())

print (" {};{}:;{}:;{};{} .format(turning_direction ,
turning _time , waiting_time ,driving_time ,driving_speed
),file=log_file)

log_file . flush ()

if __name__ == ’__main__":
try:
execute ()
except rospy.ROSInterruptException:
rospy.loginfo (’Stopped!’)
rospy.loginfo (’Node_exiting.’)

Listing 8.2: Implementation of the Constrained Mobility Model

#!/usr/bin/env python

import roslib; roslib.load_manifest(’turtle_mover’)
import rospy

import math

import random

import os

from geometry_msgs.msg import Twist
from turtlebot_node.msg import =
from turtlebot_node.srv import x

def move_callback(event):
global pub
global twist
pub.publish (twist)

def choose_next_node (node, graph):
return random.choice (graph[node])

def needs_turn(facing_coordinates ,facing_direction ,current_node
,next_node , graph,coordinates):

dx = coordinates[next_node][0] — coordinates[current_node
110]

dy = coordinates[next_.node][1] — coordinates[current_node
101]

if facing_coordinates == ’x’:

58

26

27
28

29
30

31
32

33
34
35

36
37

38
39

40
41

42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59

elif facing_coordinates

if ((facing_direction > 0) and (dy > 0)) or ((

facing_direction < 0) and
return 1

elif ((facing_direction < 0)
facing_direction > 0) and
return —1

elif ((facing_direction > 0)
facing_direction < 0) and
return 2

elif ((facing_direction > 0)
facing_direction < 0) and
return 0

s s .,

== y

(dy

and
(dy

and
(dx

and
(dx

< 0)):

(dy > 0)) or ((
< 0)):

(dx < 0)) or ((
> 0)):

(dx > 0)) or ((
< 0)):

if ((facing_direction > 0) and (dx > 0)) or ((

facing_direction < 0) and
return —1

elif ((facing_direction < 0)
facing_direction > 0) and
return 1

elif ((facing_direction > 0)
facing_direction < 0) and
return 2

elif ((facing_direction > 0)
facing_direction < 0) and
return 0

def execute ():
global pub
global twist

rospy.init_node (’turtle_mover’)

rospy.wait_for_service (’turtlebot/set_operation_mode ’)
mode = rospy.ServiceProxy(’turtlebot/set_operation_mode’,

(dx

and
(dx

and
(dy

and
(dy

< 0)):

(dx > 0)) or ((
< 0)):

(dy < 0)) or ((
> 0)):

(dy > 0)) or ((
< 0)):

SetTurtlebotMode)
mode (3)
pub = rospy.Publisher(’ cmd_vel’, Twist)
twist = Twist()
speed_file = open(”speed.txt”,”r”)

linear_speed =

59

float(speed_file.readline ())

60 speed_file.close ()

61 max_speed = 0.5

62 angular_speed = math.radians (45)

63 # either x or y

64 facing_coordinates = ’'x’

65 # either +1 or —I

66 facing_direction = 1

67 # a node in the graph

68 current_node = A’

69 next_node = ’’

70

71 graph = {}

72 # read in the graphs edges

73 with open(”graph.txt”) as graph_file:
74 for line in graph_file:

75 (key, val) = line.split(”:”)

76 val = val.strip ()

77 graph[key] = val.split(”,”)

78

79 graph _file.close ()

80

81 # read in the graphs coordinates

82 coordinates = {}

83 with open(”coordinates.txt”) as coordinates_file:
84 for line in coordinates_file:

85 (key, val) = line.split(”:”)

86 coordinates [key] = map(int, val.split(”,”))
87

88 coordinates_file.close ()

89

90 predefined = os.path.exists(”path.txt”)
91 if predefined:

92 predefined_node_list = []

93 path_file = open(”path.txt”,”r”)

94 for line in path_file:

95 predefined_node_list.append(line.strip ())
96 predefined_node_list.append(”exit”)
97 nodes = iter(predefined_node_list)
98

99 while (not rospy.is_shutdown()):

100 if predefined:

101 next_node = nodes.next()

102 else:

60

103
104
105
106

107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140

next_-node = choose_next_node (current_-node , graph)
if next_node == “exit”:
rospy.signal_shutdown (”Reached_end_of_path”)
rospy .loginfo (> Current_Node: _{}.\n_Next_Node: _{}".
format (current_node ,next_node))
turn_direction = needs_turn(facing_coordinates ,
facing_direction ,current_node ,next_node , graph,
coordinates)

if turn_direction != O:
turn_time = 0
twist.linear.x = 0
if turn_direction == 1:
twist.angular.z = angular_speed
turn_time = 2
if facing_coordinates == ’x’:
facing_coordinates = 'y’
elif facing_coordinates == 'y’ :
facing_coordinates = ’'x’
facing_direction = —1 % facing_direction
elif turn_direction == —1:
twist.angular.z = —1 * angular_speed
turn_time = 2
if facing_coordinates == ’y’:
facing _coordinates = ’x’
elif facing_coordinates == ’x’:
facing _coordinates = 'y’
facing_direction = —1 % facing_direction
elif turn_direction == 2:
twist.angular.z = angular_speed
turn_time = 4
facing_direction = —1 % facing_direction

pub. publish (twist)

timer = rospy.Timer(rospy.Duration(0.1),
move_callback)

rospy.sleep (turn_time)

timer .shutdown ()

twist.angular.z = 0

pub. publish (Twist())

rospy.sleep (2)

distance = coordinates[next_node][0] — coordinates|
current_node][0] + coordinates[next_node][1] —

61

coordinates [current_node J[1]

141 driving_time = distance/linear_speed
142 if driving_time < O:

143 driving _time = —1 % driving_time
144 twist.angular.z = 0

145 twist.linear.x = linear_speed

146 timer = rospy.Timer(rospy.Duration(0.1) ,move_callback)
147 rospy.sleep(driving_time)

148 timer .shutdown ()

149 pub. publish (Twist())

150 current_node = next_node

151 next_node = ’’

152 rospy.sleep (2)

153

154 if __name__ == ’__main__":

155 try:

156 execute ()

157 except rospy.ROSInterruptException: pass

62

Expected [m] 0.1 m/s [m] | 0.5 m/s [m]
1 0.895 0.871
1 0.910 0.869
1 0.911 0.853
1 0.909 0.868
1 0.906 0.822
1 0.907 0.864
1 0.911 0.865
1 0911 0.860
1 0.907 0.861
1 0.909 0.907
2 1.847 1.788
2 1.844 1.823
2 1.848 1.861
2 1.845 1.818
2 1.838 1.795
2 1.842 2.114
2 1.833 1.813
2 1.846 1.807
2 1.842 1.816
2 1.843 2.097
3 2.782 2.754
3 2.778 2.734
3 2.775 2.727
3 2.779 2.785
3 2.774 2.721
3 2.780 2.713
3 2.776 2.704
3 2.781 2.707
3 2.780 2.713
3 2.778 2.690
4 3712 3.606
4 3.715 3.599
4 3.721 3.524
4 3.717 3.600
4 3.713 3.616
4 3714 3.596
4 3.712 3.570
4 3.710 3.622
4 3.715 3.592
4 3.713 3.982
5 4.650 4.486
5 4.654 4.455
5 _4.652 4.494
5 934,650 4.487
5 4.654 4.477
5 4.639 4.489
5 4.650 4.491
5 4.648 4.448
5 4.649 4.463
5 4.651 4.440

Table 8.1: Datapoints from the linear accuracy test

Speed | linear deviation [m] | deviation side
[m/s]

0.1 0.211 | left
0.1 0.251 | left
0.1 0.055 | left
0.1 0.01 | left
0.1 0.02 | left
0.1 0.054 | left
0.1 0.050 | left
0.1 0.122 | left
0.1 0.093 | left
0.1 0.134 | left
0.5 1.101 | right
0.5 1.077 | right
0.5 1.366 | right
0.5 1.361 | right
0.5 0.980 | right
0.5 0.892 | right
0.5 0.899 | right
0.5 1.250 | right
0.5 1.100 | right
0.5 0.910 | right

Table 8.2: Datapoints of the angular accuracy test

64

Bibliography

[1]

(2]

[5]

[7]

(8]

A. Galati and C. Greenhalgh, "Human mobility in shopping mall environments”, in Pro-
ceedings of the Second International Workshop on Mobile Opportunistic Networking, ser.
MobiOpp *10, New York, NY, USA: ACM, 2010, pp. 1-7. [Online]. Available: http:
//doil.acm.org/10.1145/1755743.1755745

P. Hui, A, Chaintreau, J. Scott, R. Gass, J. Crowcroft and C. Diot, "Pocket switched net-
works and human mobility in conference environments”, in Proceedings of the 2005 ACM
SIGCOMM workshop on Delay-tolerant networking, ser. WDTN *05, New York, NY, USA:
ACM, 2005, pp. 244-251. [Online]. Available: http://doi.acm.org/10.1145/
1080139.1080142

M. J. Feeley, N. Hutchinson, and S. Ray, "Realistic mobility for mobile ad hoc network
simulation”, in Ad-Hoc, Mobile, and Wireless Networks, ser. Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2004, pp. 324-329. [Online]. Available: http://
dx.doi.org/10.1007/978-3-540-28634-9_28

A. Jardosh et al., "Towards realistic mobility models for mobile ad hoc networks”, in Pro-
ceedings of the 9th annual international conference on Mobile computing and networking,
ser. MobiCom ’03, New York, NY, USA: ACM, 2003, pp. 217-229. [Online]. Available:
http://doi.acm.org/10.1145/938985.939008

J. Broch et al., ”A performance comparison of multi-hop wireless ad hoc network routing
protocols”, in Proceedings of the 4th annual ACM/IEEE international conference on Mobile
computing and networking, ser. MobiCom *98, New York, NY, USA: ACM, 1998, pp. 85-
97. [Online]. Available: http://doi.acm.org/10.1145/288235.288256

E.M. Royer et al., ”An analysis of the optimum node density for ad hoc mobile networks”, in
Communications, 2001. ICC 2001. IEEE International Conference on, vol.3, 2001, pp. 857-
861 vol.3. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
Jjsp?tp=&arnumber=937360&1isnumber=20263

http://www.netlab.tkk.fi/~esa/java/rwp/rwp—sample.gif on
27.02.2013

E. Hyytid et al., "Random Waypoint Model in Wireless Networks”, Slide 6, Helsinki
University of Technology, Helsinki, June 2005, http://www.math.helsinki.fi/
mathphys/EVERGROW/virtamo.pdf on 27.02.2013

65

http://doi.acm.org/10.1145/1755743.1755745
http://doi.acm.org/10.1145/1755743.1755745
http://doi.acm.org/10.1145/1080139.1080142
http://doi.acm.org/10.1145/1080139.1080142
http://dx.doi.org/10.1007/978-3-540-28634-9_28
http://dx.doi.org/10.1007/978-3-540-28634-9_28
http://doi.acm.org/10.1145/938985.939008
http://doi.acm.org/10.1145/288235.288256
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=937360&isnumber=20263
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=937360&isnumber=20263
http://www.netlab.tkk.fi/~esa/java/rwp/rwp-sample.gif
http://www.math.helsinki.fi/mathphys/EVERGROW/virtamo.pdf
http://www.math.helsinki.fi/mathphys/EVERGROW/virtamo.pdf

[9] http://upload.wikimedia.org/wikipedia/commons/thumb/6/66/
BrownianMotion.svg/1000px—-BrownianMotion.svqg.pngon 27.03.2013

[10] F. Bai and A. Helmy, ”A Survey of Mobility Models in Wireless Adhoc Networks”, Page
8, University of Southern California, U.S.A, http://www.cise.ufl.edu/~helmy/
papers/Survey-Mobility—-Chapter—1.pdf|/on 27.03.2013

[11] A.L. Cavilla et al., ”Simplified simulation models for indoor MANET evaluation are
not robust”, in Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON
2004. 2004 First Annual IEEE Communications Society Conference on, 2004, pp. 610-
620. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp. jsp?
tp=&arnumber=1381964&isnumber=30129

[12] M. de Berg et al., "Computational geometry: algorithms and applications”, Springer Ver-
lag, 2000

[13] H. Liu et al., "Survey of Wireless Indoor Positioning Techniques and Systems”, in Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
vol.37, no.6, 2007, pp.1067-1080. [Online]. Available: http://ieeexplore.iecee.
org/stamp/stamp. jsp?tp=&arnumber=4343996&1snumber=4343957

[14] D. Fox et al., ”Bayesian Filtering for Location Estimation”, in Pervasive Computing, IEEE,
vol.2, no.3, 2003, pp. 24-33. [Online]. Available: http://ieeexplore.ieee.org/
stamp/stamp. jsp?tp=&arnumber=1228524&1isnumber=27556

[15] P. Santi, ”Appendix B: Elements of Graph Theory, Asymptotic Notation, and Miscella-
neous Notions”, in Mobility Models for Next Generation Wireless Networks, John Wiley &
Sons Ltd, 2012, pp. 323-333. [Online]. Available: http://dx.doi.org/10.1002/
9781118344774 .app2

[16] A. Forster et al., "MOTEL — A Mobile Robotic-Assisted Wireless Sensor Networks
Testbed”, in Proceedings of the WISH seminar on Wireless Integration of Sensor net-
works in Hybrid architectures, University of Berne, 2012, pp. 13-15. [Online]. Available:
http://cds.unibe.ch/research/pub_files/DWB12.pdf

[17] E. Zola et al., “Impact of Mobility Models on the Cell Residence Time in WLAN Net-
works”, in Sarnoff Symposium, 2009. SARNOFF *09. IEEE, 2009, pp. 1-5. [Online]. Avail-
able: http://ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=
4850370&1isnumber=4850271

[18] C. Fok et al., "Pharos: A Testbed for Mobile Cyber-Physical Systems”, in Tech. Rep.
TR-ARiISE-2011-001, University of Texas at Austin, 2011. [Online]. Available: http://
pharos.ece.utexas.edu/pubs/TR-AR1SE-2011-001.pdf

[19] http://pharos.ece.utexas.edu/wiki/index.php/Main_Page on
17.08.2013

66

http://upload.wikimedia.org/wikipedia/commons/thumb/6/66/BrownianMotion.svg/1000px-BrownianMotion.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/66/BrownianMotion.svg/1000px-BrownianMotion.svg.png
http://www.cise.ufl.edu/~helmy/papers/Survey-Mobility-Chapter-1.pdf
http://www.cise.ufl.edu/~helmy/papers/Survey-Mobility-Chapter-1.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1381964&isnumber=30129
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1381964&isnumber=30129
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4343996&isnumber=4343957
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4343996&isnumber=4343957
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1228524&isnumber=27556
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1228524&isnumber=27556
http://dx.doi.org/10.1002/9781118344774.app2
http://dx.doi.org/10.1002/9781118344774.app2
http://cds.unibe.ch/research/pub_files/DWB12.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4850370&isnumber=4850271
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4850370&isnumber=4850271
http://pharos.ece.utexas.edu/pubs/TR-ARiSE-2011-001.pdf
http://pharos.ece.utexas.edu/pubs/TR-ARiSE-2011-001.pdf
http://pharos.ece.utexas.edu/wiki/index.php/Main_Page

[20] O. Rensfelt et al., ”Sensei-UU: A Nomadic Sensor Network Testbed Supporting Mo-
bile Nodes”, Division of Computer Systems, Department of Information Technology, Up-
psala University 2009. [Online]. Available: http://user.it.uu.se/~frehed89/
docs/09_tech_report_sensei_uu.pdf

[21] http://www.willowgarage.com/pages/pr2/order on 24.02.2013
[22] http://www.irobot.com/en/us/Company/About.aspx/on 16.04.2013

[23] http://john.whelans.net/wp—content/uploads/2010/04/
roomba560_sideview. jpgon 02.02.2013

[24] http://www.ros.org/wiki/Robots/Roombalon 24.02.2013

[25] iRobot Roomba Serial Command Interface (SCI) Specification, Page 2, www.
irobot.com/images/consumer/hacker/Roomba_SCI_Spec_Manual.pdf
on 05.03.2013

[26] http://www.robotshop.com/blog/robotinho-on—-roomba-quaddrive—a—-robotic—guide-—
on 24.02.2013

[27] http://irbt.imageg.net/graphics/product_images/
PIRBT-3426567v380.png/on 02.02.2013

[28] http://store.irobot.com/product/index. jsp?productId=2586252
on 02.02.2013

[29] iRobot Create Open Interface (OI) Specification, Page 9, http://www.irobot.com/
filelibrary/pdfs/hrd/create/Create%200pen%20Interface_v2.pdf
on 30.1.2013

[30] http://answers.ros.org/question/12385/irobot-create-odometry-package/
on 27.02.2013

[31] https://d3iwea566nslnl.cloudfront.net/images/product/
GUM3503F.top. jpg/on 02.02.2013

[32] https://d3iwea566nslnl.cloudfront.net/images/product/
PKG30023.top. jpgon 02.02.2013

[33] https://www.gumstix.com/store/product_info.php?productsid=
227 0on 30.12.2012

[34] http://omappedia.org/wiki/BootloaderProject on 02.02.2013

[35] https://www.gumstix.com/store/product_info.php?products_id=
280/on 30.12.2012

[36] http://www.generationrobots.com/site/medias/
Mobile—Robot—Kobuki. jpgon 02.02.2013

67

http://user.it.uu.se/~frehe489/docs/09_tech_report_sensei_uu.pdf
http://user.it.uu.se/~frehe489/docs/09_tech_report_sensei_uu.pdf
http://www.willowgarage.com/pages/pr2/order
http://www.irobot.com/en/us/Company/About.aspx
http://john.whelans.net/wp-content/uploads/2010/04/roomba560_sideview.jpg
http://john.whelans.net/wp-content/uploads/2010/04/roomba560_sideview.jpg
http://www.ros.org/wiki/Robots/Roomba
www.irobot.com/images/consumer/hacker/Roomba_SCI_Spec_Manual.pdf
www.irobot.com/images/consumer/hacker/Roomba_SCI_Spec_Manual.pdf
http://www.robotshop.com/blog/robotinho-on-roomba-quaddrive-a-robotic-guide-on-4-roombas-646
http://irbt.imageg.net/graphics/product_images/pIRBT-3426567v380.png
http://irbt.imageg.net/graphics/product_images/pIRBT-3426567v380.png
http://store.irobot.com/product/index.jsp?productId=2586252
http://www.irobot.com/filelibrary/pdfs/hrd/create/Create%20Open%20Interface_v2.pdf
http://www.irobot.com/filelibrary/pdfs/hrd/create/Create%20Open%20Interface_v2.pdf
http://answers.ros.org/question/12385/irobot-create-odometry-package/
https://d3iwea566ns1n1.cloudfront.net/images/product/GUM3503F.top.jpg
https://d3iwea566ns1n1.cloudfront.net/images/product/GUM3503F.top.jpg
https://d3iwea566ns1n1.cloudfront.net/images/product/PKG30023.top.jpg
https://d3iwea566ns1n1.cloudfront.net/images/product/PKG30023.top.jpg
https://www.gumstix.com/store/product_info.php?products id=227
https://www.gumstix.com/store/product_info.php?products id=227
http://omappedia.org/wiki/Bootloader Project
https://www.gumstix.com/store/product_info.php?products_id=280
https://www.gumstix.com/store/product_info.php?products_id=280
http://www.generationrobots.com/site/medias/Mobile-Robot-Kobuki.jpg
http://www.generationrobots.com/site/medias/Mobile-Robot-Kobuki.jpg

[37] http://kobuki.yujinrobot.com/about/specifications/ on 30.01.2013
[38] https://github.com/turtlebot on 16.04.2013

[39] http://store.iheartengineering.com/robots/turtlebot/
1he-2700-000c—-0000.html|on 05.03.2013

[40] http://store.iheartengineering.com/robots/irobot/
ihe—-4710-0000-0000.html on 05.03.2013

[41] http://www.flickr.com/photos/willowgarage/5589373976/sizes/
o/in/photostream/ on 02.02.2013

[42] http://1.bp.blogspot.com/-3VYHwkvGa8U/UIVK/DSMhVI/
AAAAAAAACS80/r30HF04Mxhw/s1600/IHE-2700-000C-0000-00. jpg on
02.02.2013

[43] http://turtlebot.com//on 30.12.2012

[44] http://store.iheartengineering.com/robots/turtlebot/
1he-2700-000c—-0000.html/on 30.12.2012

[45] http://store.iheartengineering.com/catalog/product/gallery/
1d/334/image/614/on02.02.2013

[46] http://store.iheartengineering.com/robots/turtlebot/
accessories/i1he-0200-0000-fa00.html on 30.12.2012

[47] http://electronics.howstuffworks.com/microsoft—kinect.htm on

25.02.2013

[48] http://msdn.microsoft.com/en—-us/library/337131033.aspx on
25.02.2013

[49] http://i.msdn.microsoft.com/dynimg/IC584396.pngon 25.02.2013

[50] http://3.bp.blogspot.com/-Q-pB7CzbBgQ/Tm23QaqgSryI/
AAAAAAAACTA/_UwxBXGkhiw/s1600/xtion-open-03. jpgon 25.02.2013

[51] http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
#specifications/on 25.02.2013

[52] http://gumstix.org/add-software—packages.html on 02.02.2013

[53] http://gumstix.org/create—a-bootable-microsd—-card.html on
02.02.2013

[54] http://www.dailytech.com/IBM+Freescale+Samsung+Form+Linaro+
to+Aid+in+Developing+ARMcompatible+Software/articlel8611.htm
and http://www.linaro.org/downloads/1203on 02.02.2013

68

http://kobuki.yujinrobot.com/about/specifications/
https://github.com/turtlebot
http://store.iheartengineering.com/robots/turtlebot/ihe-2700-000c-0000.html
http://store.iheartengineering.com/robots/turtlebot/ihe-2700-000c-0000.html
http://store.iheartengineering.com/robots/irobot/ihe-4710-0000-0000.html
http://store.iheartengineering.com/robots/irobot/ihe-4710-0000-0000.html
http://www.flickr.com/photos/willowgarage/5589373976/sizes/o/in/photostream/
http://www.flickr.com/photos/willowgarage/5589373976/sizes/o/in/photostream/
http://1.bp.blogspot.com/-3VYHwkvGa8U/UIVK7DSMhVI/AAAAAAAAC8o/r3oHFO4Mxhw/s1600/IHE-2700-000C-0000-00.jpg
http://1.bp.blogspot.com/-3VYHwkvGa8U/UIVK7DSMhVI/AAAAAAAAC8o/r3oHFO4Mxhw/s1600/IHE-2700-000C-0000-00.jpg
http://turtlebot.com/
http://store.iheartengineering.com/robots/turtlebot/ihe-2700-000c-0000.html
http://store.iheartengineering.com/robots/turtlebot/ihe-2700-000c-0000.html
http://store.iheartengineering.com/catalog/product/gallery/id/334/image/614/
http://store.iheartengineering.com/catalog/product/gallery/id/334/image/614/
http://store.iheartengineering.com/robots/turtlebot/accessories/ihe-0200-0000-fa00.html
http://store.iheartengineering.com/robots/turtlebot/accessories/ihe-0200-0000-fa00.html
http://electronics.howstuffworks.com/microsoft-kinect.htm
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://i.msdn.microsoft.com/dynimg/IC584396.png
http://3.bp.blogspot.com/-Q-pB7CzbBgQ/Tm23QaqSryI/AAAAAAAACfA/_UwxBXGkhiw/s1600/xtion-open-03.jpg
http://3.bp.blogspot.com/-Q-pB7CzbBgQ/Tm23QaqSryI/AAAAAAAACfA/_UwxBXGkhiw/s1600/xtion-open-03.jpg
http://www.asus.com/Multimedia/Xtion_PRO_LIVE/#specifications
http://www.asus.com/Multimedia/Xtion_PRO_LIVE/#specifications
http://gumstix.org/add-software-packages.html
http://gumstix.org/create-a-bootable-microsd-card.html
http://www.dailytech.com/IBM+Freescale+Samsung+Form+Linaro+to+Aid+in+Developing+ARMcompatible+Software/article18611.htm
http://www.dailytech.com/IBM+Freescale+Samsung+Form+Linaro+to+Aid+in+Developing+ARMcompatible+Software/article18611.htm
http://www.linaro.org/downloads/1203

[55] https://wiki.ubuntu.com/ARM/RootfsFromScratch/
QemuDebootstrap on 30.12.2012

[56] http://www.willowgarage.com/pages/software/ros—-platform on
25.02.2013

[57] http://www.ros.org/wiki/ROS/Technical%200verview|/on 17.08.2013

[58] http://www.ros.org/wiki/ROS/Technical%200verview?action=
AttachFile&do=get&target=master—-node—-example.pngon 17.08.2013

[59] http://www.willowgarage.com/pages/software/ros—platform on
12.03.2012

[60] https://help.ubuntu.com/community/SerialConsoleHowto on
02.02.2013

[61] http://kfuresearch.wordpress.com/2011/08/05/
installing—-ubuntu-and-ros—-on-the-gumstix—overo—-fire/ on
02.02.2013

[62] http://gumstix.org/connect—to—-my—gumstix—system.html on
02.02.2013

[63] http://www.ros.org/wiki/groovy/Installation/Source/on 24.02.2013

[64] http://www.ros.org/wiki/groovy/Installation/Ubuntu#groovy.
2BAC8-Installation.2BAC8-Sources.Setup_your_sources.list on
26.02.2013

[65] http://ros.org/wiki/groovy/Installation/Raspbian/Source#
Colladalon 26.02.2013

[66] http://www.ros.org/wiki/catkin/Tutorials/workspace_
overlaying#Adding_ Packages_to_Your_ catkin_Workspace/on24.02.2013

[67] http://ros.org/wiki/turtlebot_create?distro=groovy# on
27.02.2013

[68] http://www.ros.org/wiki/ROS/Installation/on27.02.2013

[69] http://ros.org/wiki/turtlebot/Tutorials/AndroidControl on
05.03.2013

[70] https://play.google.com/store/apps/details?id=org.ros.
android.app_chooser on 30.12.2012

[71] https://play.google.com/store/apps/details?id=ros.android.
teleopon 30.12.2012

69

https://wiki.ubuntu.com/ARM/RootfsFromScratch/QemuDebootstrap
https://wiki.ubuntu.com/ARM/RootfsFromScratch/QemuDebootstrap
http://www.willowgarage.com/pages/software/ros-platform
http://www.ros.org/wiki/ROS/Technical%20Overview
http://www.ros.org/wiki/ROS/Technical%20Overview?action=AttachFile&do=get&target=master-node-example.png
http://www.ros.org/wiki/ROS/Technical%20Overview?action=AttachFile&do=get&target=master-node-example.png
http://www.willowgarage.com/pages/software/ros-platform
https://help.ubuntu.com/community/SerialConsoleHowto
http://kfuresearch.wordpress.com/2011/08/05/installing-ubuntu-and-ros-on-the-gumstix-overo-fire/
http://kfuresearch.wordpress.com/2011/08/05/installing-ubuntu-and-ros-on-the-gumstix-overo-fire/
http://gumstix.org/connect-to-my-gumstix-system.html
http://www.ros.org/wiki/groovy/Installation/Source
http://www.ros.org/wiki/groovy/Installation/Ubuntu#groovy.2BAC8-Installation.2BAC8-Sources.Setup_your_sources.list
http://www.ros.org/wiki/groovy/Installation/Ubuntu#groovy.2BAC8-Installation.2BAC8-Sources.Setup_your_sources.list
http://ros.org/wiki/groovy/Installation/Raspbian/Source#Collada
http://ros.org/wiki/groovy/Installation/Raspbian/Source#Collada
http://www.ros.org/wiki/catkin/Tutorials/workspace_overlaying#Adding_Packages_to_Your_catkin_Workspace
http://www.ros.org/wiki/catkin/Tutorials/workspace_overlaying#Adding_Packages_to_Your_catkin_Workspace
http://ros.org/wiki/turtlebot_create?distro=groovy#
http://www.ros.org/wiki/ROS/Installation
http://ros.org/wiki/turtlebot/Tutorials/AndroidControl
https://play.google.com/store/apps/details?id=org.ros.android.app_chooser
https://play.google.com/store/apps/details?id=org.ros.android.app_chooser
https://play.google.com/store/apps/details?id=ros.android.teleop
https://play.google.com/store/apps/details?id=ros.android.teleop

	Contents
	List of Figures
	List of Tables
	Overview
	Introduction
	Contributions

	Mobility Models
	Random Waypoint Mobility Model
	Random Walk Mobility Model
	Constrained Mobility Model
	Related research

	Robot Hardware
	Selection of Robot Platform
	Basic Robots
	iRobot
	Roomba Vacuum Cleaning Robots
	iRobot Create

	Hardware Extensions
	Gumstix Overo Fire Computer-on-Module
	Gumstix TurtleCore Expansion Board

	Alternative Solutions
	iClebo Kobuki
	Prebuilt Robot Systems
	TurtleBot First and Second Generation
	TurtleBot Power Board
	Vision Sensors

	Robot Software
	General Overview
	Operating System
	Robot Operating System

	Mobility Model Implementations
	Random Walk
	Constrained Mobility

	Extensibility

	Installation Process
	Setup
	Creating a Root File System
	Creating a bootable microSD-card
	Writing all required files to microSD
	Additional Configurations
	Installing ROS
	Adding TurtleBot Packages to ROS
	turtle_mover
	Android Phone

	Using an Implemented Mobility Model
	Creating Network Traffic

	Evaluation
	Scenario Descriptions
	Scenario I: Distance Accuracy
	Scenario II: Angular Accuracy
	Scenario III: Returning to Starting Position
	Scenario IV: Small Scale Test
	Scenario V: Connectivity

	Evaluation Results
	Scenario I: Distance Accuracy
	Scenario II: Angular Accuracy
	Scenario III: Returning to Starting Position
	Scenario IV: Small Scale Test
	Scenario V: Connectivity

	Conclusions and Outlook
	Conclusions
	Outlook

	Appendix
	Bibliography

