
Implementing Opportunistic Routing
Algorithms in OMNeT++ 4.1

Bachelorarbeit

der Philosophisch-naturwissenschaftlichen Fakultät der

Universität Bern

vorgelegt von

Björn Mosler
Februar 2012

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Contents

Contents i

List of Figures iii

List of Tables iii

1 Introduction 1

1.1 Background . 1

1.1.1 Mobile Ad Hoc Networks . 1

1.1.2 MANET routing protocols . 1

1.1.3 Opportunistic routing . 2

1.2 Task/Problem Formulation . 3

1.3 Motivation . 3

1.4 Contribution . 3

1.5 Outline . 3

2 Related Work 5

2.1 OMNet++ Simulator . 5

2.2 INETMANET . 5

2.3 Opponet . 5

2.4 OR framework . 6

2.5 ETX . 6

3 Opportunistic routing protocols 7

3.1 MORE . 7

3.1.1 Terminology . 7

3.1.2 Node roles . 7

3.1.3 Network coding . 8

3.1.4 Forwarder list . 8

3.1.5 Traffic control . 8

3.2 ExOR . 9

3.2.1 Terminology . 9

3.2.2 Batch map . 9

3.2.3 Medium access . 11

i

4 Design and Implementation 13
4.1 OR Framework . 13

4.1.1 Neighbor management . 13
4.1.2 Network metrics . 13
4.1.3 ETX reader . 14
4.1.4 Problems . 14

4.2 MORE . 14
4.2.1 Basics . 14
4.2.2 Network coding . 17
4.2.3 Packet buffer . 18
4.2.4 Batch transmission . 21
4.2.5 Matrix and Vector . 21

4.3 ExOR . 21
4.3.1 Basics . 21
4.3.2 PacketBuffer . 26

5 Simulation and Evaluation 29
5.1 Simulation Setup . 29
5.2 Metric & Results . 29

5.2.1 Metrics . 29
5.2.2 Results . 30

6 Conclusion 41
6.1 Summary & Conclusion . 41
6.2 Future work . 41

Bibliography 43

ii

Abstract

The primary challenge in building a MANET is equipping each device to continuously maintain
the information required to properly route traffic. MANET routing protocols are traditionally
using a fixed route and a pre-defined next-hop. Opportunistic routing offers a new approach
by neither enforcing a fixed route nor a particular next hop. Instead, the routing decision is
delegated to the receivers.

In this thesis we implement two opportunistic routing protocols MORE and ExOR. MORE
randomly mixes packets before forwarding them. This randomness ensures that routers that
hear the same transmission do not forward the same packets. Thus, MORE needs no special
scheduler to coordinate routers and can run directly on top of 802.11.

In ExOR the source node includes a list of candidate forwarders in each packet, prioritized
by closeness to the destination. The highest priority forwarder then broadcasts the packets in
its buffer and remaining forwarders then transmit in order, sending only packets which were not
acknowledged by higher priority nodes. The forwarders continue to cycle through the priority
list until the destination has received enough packets.

We then evaluate MORE, ExOR and OLSR and compare their performance based on through-
put, round-trip and transmission delay. Finally we discuss the results and try to give an expla-
nation as to why the results are not as expected.

List of Figures

3.1 How MORE maps onto the framework’s methods. 10

3.2 How the batch map is updated. 11

3.3 How ExOR maps onto the framework’s methods. 12

5.1 Simulation network topology . 30

5.2 Plot transmission delay batch size 16 . 32

5.3 Plot transmission delay batch size 32 . 33

5.4 Plot round-trip delay batch size 16 . 34

5.5 Plot round-trip delay batch size 32 . 35

5.6 Throughput plot batch size 16 . 36

5.7 Throughput plot batch size 32 . 37

5.8 Collisions plot MORE . 38

5.9 Collisions plot ExOR . 39

List of Tables

3.1 MORE terminology . 7

3.2 ExOR terminology . 9

5.1 Simulation parameters . 29

iii

Listings

4.1 How nodes are represented within the framework 13
4.2 Snippet of MORE.h . 15
4.3 How coded packets are handled by MORE . 15
4.4 Decide whether to store or discard a packet . 18
4.5 Decode payload . 19
4.6 Add newly received packet to pre-encoded packet 20
4.7 Snippet of ExOR.h . 22
4.8 Forwarding fragment . 22
4.9 How received packets are handled by ExOR . 23
4.10 Estimate data rate . 24
4.11 Estimate when to forward fragment . 25
4.12 Update batch map and compute fragment size 26

iv

Chapter 1

Introduction

1.1 Background

1.1.1 Mobile Ad Hoc Networks

A mobile ad-hoc network (MANET) is a self-configuring infrastructure-less network of mobile
devices connected by wireless links. The moving devices have the possibility to connect over a
wireless medium and form an arbitrary and dynamic network with wireless links. Each device
in a MANET is free to move independently in any direction, and will therefore change its links
to other devices frequently. This means that links between the nodes can change during time,
new nodes can join/leave the network. A MANET is expected to be of larger size than the radio
range of the wireless antennas, because of this fact it could be necessary to route the traffic
through a multi-hop path to give two nodes the ability to communicate. The primary challenge
in building a MANET is equipping each device to continuously maintain the information required
to properly route traffic. Such networks may operate by themselves or may be connected to the
larger Internet1.

1.1.2 MANET routing protocols

Routing is one of the most important issues for MANETs. Routing protocols for MANETs can
be divided into proactive and reactive routing protocols.

Proactive routing

This type of protocols maintains fresh lists of destinations and their routes by periodically dis-
tributing routing tables throughout the network. The main disadvantages of such algorithms
are high overhead because of constant route maintenance and slow reaction on restructuring and
failures. On the other hand there is little delay when sending a packet.

Reactive routing

This type of protocols finds a route on demand by flooding the network with Route Request
packets. The main disadvantages of such algorithms are a high latency time in route finding
and possible network clogging due to excessive flooding. On the other hand there is no constant
maintenance traffic.

1http://en.wikipedia.org/wiki/Mobile_ad_hoc_network

1

http://en.wikipedia.org/wiki/Mobile_ad_hoc_network

1.1.3 Opportunistic routing

Opportunistic routing protocols are a rather recently devised class of routing protocols for wire-
less multi-hop networks. What separates opportunistic routing protocols from fixed-route routing
protocols is the fact that a packet’s route is not pre-determined by its source before the packet
transmission. Because of its broadcast nature, a wireless transmission’s recipients are not neces-
sarily known at the moment of transmission. This is due to the ever-changing physical conditions
and in some cases also changes in the network’s topology. Enforcing a pre-determined, possibly
optimal route might produce the following outcomes:

(a) The transmission succeeds and the chosen route is still the optimal route.

(b) The transmission succeeds but some of the conditions have changed such that there is now
a shorter route or that the transmission reached further than expected. Both result in
unnecessary hops in order to reach the destination.

(c) The network topology or the physical conditions have changed in such a way that the chosen
route is rendered invalid, necessitating a re-transmission.

Since power consumption is usually a concern in mobile and sensors networks, cases (b) and
(c) are to be avoided. Opportunistic routing protocols leave it to a transmission’s recipients to
decide on who will be the forwarder of the received packets. This scheme has two advantages:

(a) The decision on who is going to be the next hop is made using the latest possible information.

(b) The sender does not have to make — possibly faulty — assumptions on radio range and
other physical conditions, thereby maximizing the progress made towards the destination.

But there are also some disadvantages. For instance the protocols have to make sure that no two
nodes might forward the same packet at the same time. As of now there have been two ways of
dealing with that:

(a) Strict coordination of medium access: At any given time, only one node in the entire network
may transmit. The first node to transmit would ideally be the one that is closest to the
destination. The other nodes listen to what is transmitted, so that they can discard already
sent packets. This is roughly the approach taken by ExOR.

(b) Mixing packets via network coding: Upon receiving a new packet a node “mixes”2 it with
already received packets and then transmits the mixed packet. Depending on the mixing
procedure, duplicate transmissions by independent nodes are unlikely. This is roughly the
approach taken by MORE.

MORE

MORE [3] is a MAC-independent opportunistic routing protocol. MORE randomly mixes packets
before forwarding them. This randomness ensures that routers that hear the same transmission
do not forward the same packets. Thus, MORE needs no special scheduler to coordinate routers
and can run directly on top of 802.11.

2Using XOR, linear combinations etc.

2

ExOR

ExOR [2] is an integrated routing and MAC protocol for bulk transfers in multi-hop wireless
networks. ExOR exploits the broadcast nature of radios by making forwarding decisions based
on which nodes receive each transmission. The spatial diversity among receivers provides each
transmission multiple opportunities to make progress in the face of packet losses. As a result
ExOR can use long links with high loss rates, which would be avoided by unicast routing.

ExOR operates on batches of packets. The source node includes a list of candidate forwarders
in each packet, prioritized by closeness to the destination. Receiving nodes buffer successfully
received packets and await the end of the batch. The highest priority forwarder then broadcasts
the packets in its buffer, including its copy of the “batch map” in each packet. The batch map
contains the sender’s best guess of the highest priority node to have received each packet. The
remaining forwarders then transmit in order, sending only packets which were not acknowledged
in the batch maps of higher priority nodes. The forwarders continue to cycle through the priority
list until the destination has enough packets to recover the original data using forward error
correction.

1.2 Task/Problem Formulation

The main goal of this thesis is to implement the MORE and ExOR protocol in OMNeT++ using
the OR framework [4]. In a next step we compare them with OLSR3.

1.3 Motivation

There already are simulator-based implementations of opportunistic routings protocols, in par-
ticular for ONE. [5] Unfortunately ONE employs an idealized and static model of the physical
layer. This makes it unsuitable for meaningful evaluations in wireless networks, where physical
conditions are subject to constant change. [4, p. 1]

OMNeT++ [6] combination with the INETMANET framework (see section 2.2) take into
account the dynamic conditions in wireless networks and are therefore better suited for evaluating
opportunistic routing protocols.

1.4 Contribution

The contributions of this thesis are some extensions to the OR framework [4] (see section 4.1),
and implementations of MORE and ExOR in OMNeT++ 4.1.

1.5 Outline

In chapter 2, we look at projects that are related to or used in this thesis. Chapter 3 delivers more
conceptual details about MORE and ExOR, while chapter 4 expands on the details regarding the
two protocol’s implementation. Chapter 5 is about evaluating MORE’s and ExOR’s performance
and how they compare to OLSR. Finally a conclusion is reached in chapter 6.

3http://tools.ietf.org/html/rfc3626

3

http://tools.ietf.org/html/rfc3626

Chapter 2

Related Work

2.1 OMNet++ Simulator

OMNeT++ is an extensible, modular, component-based C++ simulation library and framework,
primarily for building network simulators. ”Network” is meant in a broader sense that includes
wired and wireless communication networks, on-chip networks, queueing networks, and so on.
Domain-specific functionality such as support for sensor networks, wireless ad-hoc networks,
Internet protocols, performance modeling, photonic networks, etc, is provided by model frame-
works, developed as independent projects. OMNeT++ offers an Eclipse-based IDE, a graphical
runtime environment, and a host of other tools. There are extensions for real-time simulation,
network emulation, alternative programming languages (Java, C#), database integration, Sys-
temC integration, and several other functions. 1

2.2 INETMANET

INETMANET is based on INET Framework2 and continuously being developed. Generally it
provides the same functionality as the INET Framework, but contains additional protocols and
components that are especially useful while modeling wireless communication like propagation
models, link layer and routing protocols and mobility models.3

2.3 Opponet

The Opponet framework offers mechanisms for simulating opportunistic and delay-tolerant net-
works in the OMNeT++ discrete event simulator. The mechanisms allow for simulating open
systems of wireless mobile nodes where mobility or contact traces are used to drive the simula-
tions. This way mobility generation is separated from the core OMNeT++ protocol simulations
which facilitates importing synthetic or real data from external mobility generators, real mobility
tracking data or real contact traces. [7]

1Verbatim from http://omnetpp.org/, 10.08.2011
2http://inet.omnetpp.org/
3INETMANET README on https://github.com/inetmanet/inetmanet/blob/master/README.

INETMANET, 18.01.2012

5

http://omnetpp.org/
http://inet.omnetpp.org/
https://github.com/inetmanet/inetmanet/blob/master/README.INETMANET
https://github.com/inetmanet/inetmanet/blob/master/README.INETMANET

2.4 OR framework

A framework [4], which is based on the Opponet project (see section 2.3), has been developed by
the CDS research group at the University of Bern for simulating opportunistic routing protocols
in OMNeT++. It provides common functionality like ETX computation, neighbour management
etc as well as an abstract protocol base class which allows for easy implementation of further
opportunistic routing protocols.

The class hierarchy is built on the assumption that all opportunistic routing protocols share
functionality and that the way they work can roughly be split up into four steps. In order to
implement a new protocol, one needs to subclass the abstract base class and implement the
four virtual functions, which correspond to the four common steps in opportunistic routing
protocols. [4] Those four steps are:

Forwarder Candidates Selection Build a set of potential forwarders.

Forwarder Selection Determine the forwarder.

Forwarder Role Change Notification Notify other nodes about who will be forwarding the
packet.

Collision Avoidance Make sure that no two nodes transmit at the same time.

See Figure 3.3 and Figure 3.1 for how ExOR and MORE map onto those four steps.

2.5 ETX

The expected transmission count metric (ETX) [8] of a link is calculated using the forward and
reverse delivery ratios (FDR and RDR resp.) of the link. The forward delivery ratio, df , is
the measured probability that a data packet successfully arrives at the recipient. The reverse
delivery ratio, dr, is the probability that the ACK packet is successfully received. These delivery
ratios can be measured by sending ping probes. The expected probability that a transmission
is successfully received and acknowledged is df · dr. A sender will retransmit a packet that is
not successfully acknowledged. Because each attempt to transmit a packet can be considered a
Bernoulli trial, the expected number of transmissions is:

ETX =
1

df · dr

6

Chapter 3

Opportunistic routing protocols

3.1 MORE

3.1.1 Terminology

Native packet Original packet, before encoding
Coded packet Packet created from a random linear combination of native

packets
Code vector of a coded packet Vector containing the coefficients used in the linear combi-

nation
Innovative packet Packet whose code vector is linearly independent from a set

of other code vectors
Closer to destination A node that has a lower ETX to the destination
Upstream Further from the destination than the current node
Downstream Closer to the destination than the current node

Table 3.1: MORE terminology

3.1.2 Node roles

Source

The source creates coded packets from native packets and broadcasts them until it receives an
acknowledgement (ACK) from the destination. It compiles a forwarder list which is attached to
every packet.

Forwarder

Forwarders store innovative packets and forward a packet if the traffic control heuristic (see
subsection 3.1.5) allows them. If a forwarder overhears an ACK, it deletes the current batch and
waits for the next batch.

Destination

The destination also only stores innovative packets. As soon as it has received enough packets for
decoding, it sends an ACK towards the batch source using a traditional, route-based protocol.

7

It then decodes the batch, processes the native packets and finally deletes all data associated
with the batch.

3.1.3 Network coding

MORE combines packets by creating a per-byte linear combination of the native packets’ payload.
At the source n native packets are combined into a single packet by generating a random

vector c of size n and then computing the following sum for each byte:

vi = c0 · b0i + . . .+ cn · bni

where bki is the i-th byte of the k-th native packet’s payload and vi is the coded packet’s i-th
byte. The destination can recover the original payload if it has received n innovative packets. At
that point the destination has n equations (the code vectors) to solve for n variables (the original
data bytes). So the decoding boils down to solving a system of n linear equations. There are
multiple ways to do this, two of them will be discussed in subsection 4.2.3

Furthermore packets are recombined at each forwarder. Each forwarder has to keep ready a
pre-encoded packet for transmission. If the forwarder has only received one packet so far, the pre-
encoded packet is just that packet. Otherwise the two packets are combined by multiplying both
the newly arrived packet’s code vector and each individual payload byte by the same random
number and adding it to the pre-encoded packet. It is easy to show that the so constructed
packet p still constitutes a linear combination of the native packets:

p′ = c · pnew + ppre

p′ = ca0 · p0 + . . .+ can · pn +m0 · p0 + . . .+mn · pn
p′ = (ca0 +m0)p0 + . . .+ (can +mn)pn

In the above equations, pi are the native packets, a is pnew’s code vector and m is ppre’s code
vector.

3.1.4 Forwarder list

MORE employs the ETX metric as a measure of distance between nodes. The forwarder list
contains all nodes that have a lower ETX to the destination than the source. It is sorted by
ETX to the destination in ascending order and stays the same during the batch’s lifetime.

3.1.5 Traffic control

In order to keep nodes from transmitting all the time and thus occupying the medium, MORE
employs a traffic control heuristic that is based on delivery probabilities.

The heuristic is computed using three formulas. In the following equations, i > j denotes
that node i is closer to the destination than node j, εij denotes the loss probability from node
i to j and zi is the expected number of transmissions that forwarder i must make to route one
packet from the source to the destination. The first formula computes Lj , the number of packets
that node j must forward. It computes for each node i the number of packets j received from i,
taking into account the probability that that particular packet is not heard by any other node
downstream from j.

Lj =
∑
i>j

(zi(1− εij)
∏
k<j

εik)

8

The next equation describes how zj is computed:

zj =
Lj

1−
∏

k<j εjk

The denominator describes the probability that some node downstream from j receives the
packet. In the implementation, the zi values are computed at each node using an incremental
algorithm, which is also described in [3]. Finally, the node computes its tx credit, that is,
the number of transmissions that a node should make for every packet it receives from a node
upstream:

tx crediti =
zi∑

j>i zj(1− εji)

The actual traffic control works as follows: Every node keeps a credit counter variable. If a
forwarder receives an innovative packet from a node upstream, it increases its credit counter
by the corresponding tx credit. If the credit counter is positive, the forwarder transmits
a coded packet and then decrements its credit counter. Otherwise it does not transmit at
all. For a more detailed description refer to [3, p. 26-28].

3.2 ExOR

3.2.1 Terminology

Fragment The set of packets a node forwards, i.e. the set of packets
not yet received by higher priority nodes

Batch map An array indexed by the packet number which contains the
highest priority node’s priority known to have received the
packet designated by the index

Forwarder id A node’s position in the forwarder list (starts at zero)
Node priority A node’s forwarder id + 1 (source is not included in for-

warder list)
Null-Packet A packet only containing a batch map and no payload

Table 3.2: ExOR terminology

3.2.2 Batch map

The batch map plays a central role in ExOR. First of all a node uses it as an acknowledgement
mechanism, that is, to find out, which packets it has yet to forward. This is easily achieved by
picking the packets whose entry in the batch map is smaller than the current node’s priority.

On the other hand the number of packets to forward — the fragment size — is used to
schedule medium access (see subsection 3.2.3).

Example

Figure 3.2 graphically describes a batch map update, highlighting indirect updates due to gos-
siping. The received map shown on the right is received in a packet from forwarder 3, and differs
in 13 locations which are highlighted in shades of gray. For ten of the entries, which are shown in
dark gray, the map is updated to show forwarder 4 as the highest priority forwarder responsible

9

Does not exist in MORE.

Forwarder Candidates Selection

Ping neighbours, compute
delivery probability

Compute ETX to destination
from each neighbour using

delivery probabilities

Add node to forwarder list

Has
lower ETX to
destination

than source?

yes

Does 802.11
MAC allow

transmission?

Add forwarder list
to packet header

noAny
neighbours

left?

yes

Send packet

no

yes

no

Forwarder Selection

Collision Avoidance

Role Change Notification

for each
neighbour

Figure 3.1: How MORE maps onto the framework’s methods.

10

for the packet, even though information came via forwarder 3. For the other three entries, shown
in light gray, the map is updated to list forwarder 3. This gossiping mechanism helps ExOR
recover from batch map losses.

Figure 3.2: Example of a batch map update. Each entry in the batch map represents a packet.
The number is the highest priority forwarder known to have a copy of the packet. In this
example, the received batch map from node 3 contains updates about node 3’s packets and node
4’s packets. The direct updates from three are shown in light gray, the indirect updates from
four are highlighted in dark gray.

3.2.3 Medium access

ExOR nodes schedule their transmissions using an exponential weighted moving average (EWMA)
estimation with a smoothing factor of 0.9. After each received packet, a node updates its data
rate estimation for that particular forwarder. It then uses the estimated data rate and the frag-
ment information included in the packet to estimate the end of the current fragment. If the
current forwarder is the next higher priority node, the node will schedule its transmission just
after the current fragment’s end. Otherwise it will add five packet transmission times for each
higher priority node to the back off time.

11

Does not exist in ExOR.

Forwarder Candidates Selection

Ping neighbours, compute
delivery probability

Compute ETX to destination
from each neighbour using

delivery probabilities

Add node to forwarder list

Contributes more
 than 10% towards

total number of
transmissions?

yes

Is it my turn
and is the

medium free?

Add forwarder list
to packet header

noAny
neighbours

left?

yes

Send packet

no

yes

no

Forwarder Selection

Collision Avoidance

Role Change Notification

for each
neighbour

Run delivery simulation

Figure 3.3: How ExOR maps onto the framework’s methods.

12

Chapter 4

Design and Implementation

4.1 OR Framework

Over the course of this project, several modifications to the current OR framework have been
made. Some of them will be described in the following sub sections.

4.1.1 Neighbor management

Originally the network nodes in the framework were represented by a rather heavy-weight data
structure, which included a lot of internal information that are unnecessary for developing routing
protocols. In the case of MORE and ExOR, a node is represented by an IP address and its
ETX, [8], forward and reverse delivery ratio with respect to current node.

Listing 4.1: How nodes are represented within the framework

1 struct Node {
2 IPAddress address;
3
4 double etx;
5 double fdr;
6 double rdr;
7
8 double tx_credit; // MORE −s p e c i f i c
9

10 [...]
11 };

4.1.2 Network metrics

Both MORE and ExOR heavily rely on the ETX network metric. ExOR uses it to select and
prioritize its forwarder set, which in turn determines how transmissions are scheduled. MORE
uses it to select its forwarder set and to compute its traffic-control heuristic.

It is likely that future opportunistic routing protocols also rely on network metrics like ETX.
Since a framework is supposed to relieve the protocol designer of burdens that are not protocol-
specific, it makes sense to make network metrics a part the framework.

The base class ORBase includes a method double getMetric(Metric metric, IPAddress

ip) which is supposed to be called by the protocols. The first parameter specifies which metric
should be returned — at the moment only ETX is supported. The second parameter specifies the

13

node for which the metric should be returned with respect to the node which invokes the method.
In the future, the framework should support the computation of a full weighted network graph
using shortest-path algorithms and make them available through the method double getMetric

(Metric metric, IPAddress source, IPAddress destination). This would be helpful as
both MORE and ExOR — and probably future protocols — rely on knowing the whole network
graph.

4.1.3 ETX reader

INETMANET offers ways to compute ETX values during the simulation using ping probes.
But sometimes it might be desirable to use static ETX values which stay the same for the
duration of the simulation. For that purpose a helper class was implemented, which reads ETX
values from a CSV file and makes them available through the framework methods discussed in
subsection 4.1.2. Thus it is possible to switch between dynamic and static ETX values just by
changing the simulation configuration, but without changes to the source code.

The CSV file is assumed to have the following format: If there are n nodes in the network,
then the file is supposed to have n lines. Each line (row) contains n comma-separated strings
(columns). The row and column index then corresponds to the source’s and the destination’s
IP’s host number respectively. For example: The ETX of 192.168.0.12 to 192.168.0.23 is in row
12, column 23.

In order to support more than one metric per host-pair, each string can hold multiple space-
separated numbers. The current implementation assumes that each string contains three values
in this order: FDR, RDR, ETX. At the moment the reader only supports flat networks up to
254 hosts.

4.1.4 Problems

Currently the protocols have too little control over the radio/MAC layer. MORE and ExOR
solely rely on broadcast transmissions. But broadcast packets are not re-transmitted in case of a
collision and generally not as reliable as unicast transmissions1. Furthermore the protocols never
learn about a collision and so just have to assume that the transmission was successful. It is also
not possible for a protocol to cancel a scheduled transmission. Some simulation results will be
given in subsection 5.2.2 to illustrate this problem.

4.2 MORE

4.2.1 Basics

The basic architecture is pre-defined by the OR-Framework, which means that there is a class
MORE, which inherits from ORBase and is meant to contain most of the protocol’s logic. Addi-
tionally there are a few helper classes for specialised tasks, in order to keep the main class as
uncluttered as possible.

1IEEE Std 802.11TM-2007, section 9.2.7

14

In the following sections a few key components of the implementation and major design decisions
will be discussed. The MORE implementation mainly includes the following methods:

Listing 4.2: Snippet of MORE.h

1 virtual std::vector<Node> candidateSelection(Node source, Node destination
);

2
3 virtual Node forwarderSelection(std::vector<Node>& candidatesRanked);
4
5 void handleCodedMessage(MorePacket* packet);
6
7 void handleAckMessage(MorePacket* packet);
8
9 void computeNeededTransmissions();

10
11 void computeTxCredit(std::valarray<double>& z, const std::vector<Node>&

nodes, std::vector<Node>::const_iterator it);

We spend the rest of the section with a more detailed discussion of the above methods.

• candidateSelection()
This method retrieves the list of nodes in the network from ORBase and store them together
with their ETX to the batch’s destination.

• candidateRanking()
This method sorts the forwarder list by ETX to the destination in ascending order.

• handleCodedMessage()

Listing 4.3: How coded packets are handled by MORE

1 void MORE::handleCodedMessage(MorePacket* p) {
2 CodedPacket* cp = check_and_cast<CodedPacket*>(p);
3
4 i f ((!cp->inForwarderList(ip_address_) && !(cp->getDst() ==

ip_address_)) || cp->getSrc() == ip_address_) {
5 delete cp;
6 return;
7 }
8
9 i f (packet_buffer_ == 0) {

10 i f (cp->getBatch_id() <= last_batch_id_) {
11 delete cp;
12 return;
13 }
14 packet_buffer_ = new more::PacketBuffer(cp, gf_, ip_address_,

getNeighborEtx(cp->getDst()));
15
16 forwarders_ = cp->getForwarderList();
17 batch_start_ = cp->getTimestamp();
18 last_batch_id_ = cp->getBatch_id();
19
20 i f (!IAmDestination()) {
21 computeNeededTransmissions();
22 }

15

23 scheduleAt(simTime(), batch_timeout_check_);
24 } else i f (cp->getBatch_id() > packet_buffer_->batch_id()) {
25 dropBatch("out of date.");
26
27 packet_buffer_ = new more::PacketBuffer(cp, gf_, ip_address_,

getNeighborEtx(cp->getDst()));
28
29 i f (!IAmDestination()) {
30 computeNeededTransmissions();
31 }
32
33 last_batch_id_ = cp->getBatch_id();
34 batch_start_ = cp->getTimestamp();
35 }
36
37 i f (cp->getForwarderEtx() >= getNeighborEtx(cp->getDst()) && !

IAmDestination()) {
38 credit_counter_ += cp->getForwarderTxCredit();
39 }
40
41 bool was_innovative = packet_buffer_->addOrDiscard(cp);
42
43 i f (packet_buffer_->ready() && IAmDestination()) {
44 AckPacket* ack = new AckPacket("MORE ACK", more::ACK);
45 // . . .
46
47 sendToIp(ack->dup(), packet_buffer_->source(), 30, 0,

IP_PROT_MANET);
48
49 uint8_t* payload = packet_buffer_->decode();
50
51 dropBatch("decoded.");
52
53 delete[] payload;
54 delete packet_buffer_;
55 packet_buffer_ = 0;
56 } else i f (credit_counter_ > 0 && !IAmDestination() &&

was_innovative) {
57 broadcast(packet_buffer_->getPreEncodedPacket(), 30, par("

packetForwardDelay").doubleValue());
58 credit_counter_--;
59 packets_sent_++;
60 }
61 }

First the cases are covered when the node should ignore the packet (line 4–7), that is, when
the receiver is neither in the forwarder list nor the destination, and also if it is the batch’s
source.

Then, if there is no current buffer, but the packet belongs to an outdated batch, the packet
is ignored as well (line 10–12). Otherwise a new buffer is created and computations for the
traffic control heuristic are made (line 14–23).

If there is a current buffer, but its batch id is lower than the packet’s, the current buffer is

16

dropped and a new buffer is created.

In line 37–38 the node’s credit counter is updated depending on whether the packet
was sent by a node from up- or downstream. It follows the packet’s inspection by the
packet buffer in line 41, which will yield whether the packet is innovative or not.

Afterwards, if the packet buffer is ready for decoding and if the current node is also the
destination, it sends the ACK towards the batch’s destination, decodes and subsequently
discards the batch (line 43–55). Otherwise, given that its credit counter is positive, it
is not the destination and that the received packet was innovative, the node transmits a
packet (line 56–59).

• handleAckMessage()
This method handles received ACKs. When a node receives an ACK which belongs to an
outdated batch, it will simply ignore it. If the ACK belongs to a currently active batch,
the node will discard the current buffer. Finally if the ACK belongs to a batch of which
the current node is the source, the node records its throughput and the round-trip time
before stopping the simulation.

• computeNeededTransmissions() & computeTxCredit()
In those two methods MORE’s traffic control heuristic is computed. The detailed formulas
and algorithms are specified in [3, p. 26–29]. Although we implemented the algorithms
as specified, they did not perform very well. For instance, the algorithm computes that
the source would have to do less than one transmission in order to get a packet to the
destination. As a consequence, the computed tx credit values are wrong as well and
therefore the traffic control is ineffective.

4.2.2 Network coding

Just as in [3], network coding related calculations are done over the Galois field GF (28)2. Its
arithmetic operations can be implemented in a computationally efficient fashion and its elements
can be expressed in one byte.

The class Gf256 offers methods for performing arithmetic operations in GF (28). In GF (28)
subtraction and addition are both equivalent to the XOR operation, which is part of virtually
every CPU instruction set. Multiplication is more complex and there are multiple ways to
implement it. Here are the two most efficient:

1. Create two look-up tables {exp(a) : a ∈ GF (28)} and {log(a) : a ∈ GF (28)}. Because of
log(a · b) = log(a) + log(b), multiplication can be reduced to a · b = exp(log(a) + log(b)).
The look-up tables require 2 · 256 = 512 bytes of memory.

2. Create a look-up table {a · b : (a, b) ∈ GF (28)×GF (28)} and design a hash function which
maps every pair of elements in GF (28) to the corresponding result. This look-up table
requires 256 · 256 = 65536 bytes.

Currently method 1 is implemented because it is a good compromise between memory usage and
computational complexity.3

2A Galois field (GF) with an order of 28. It contains the elements 0 . . . 255.
3There are algorithms which compute every result on the fly, but since they would be run (possibly tens of)

thousands of times, while just producing 255 different values, it would not be economical to use them.

17

4.2.3 Packet buffer

Packet management is a more delicate matter for MORE than for other protocols. In most cases
it would be enough to have a queue, which accepts newly received packets and returns packets
which are due for transmission. A simple queue would not add much clutter to a class.

But MORE requires various calculations to be done on a packet’s header and payload, such as
check for innovation, decoding and keeping a pre-encoded packet ready. Having the correspond-
ing code in the main class would significantly decrease its readability while offering no visible
advantage.

The class PacketBuffer has the following responsibilities:

1. Inspect incoming packets and check whether they are innovative. See Listing 4.4.

2. Store innovative packets. See Listing 4.4.

3. Maintain a pre-encoded packet which is ready for transmission and includes the latest
information, i.e. all packets received until then. See Listing 4.6.

4. Decode a batch of packets when there are enough innovative packets. See Listing 4.5.

It follows a more detailed description of important methods in PacketBuffer.

• addOrDiscard()

Listing 4.4: Decide whether to store or discard a packet

1 bool PacketBuffer::addOrDiscard(CodedPacket* packet) {
2 i f (ready() && !isForUs()) {
3 clear();
4 cvm_.zero();
5 code_vectors_.zero();
6 payloads_ = new uint8_t*[batch_size_];
7 std::fill_n(payloads_, batch_size_, static cast <uint8_t*>(0));
8 }
9

10 i f (isInnovative(packet)) {
11 code_vectors_.setCol(buffer_.size(), packet->getCodeVector(),
12 batch_size_);
13 payloads_[buffer_.size()] = packet->getPayload();
14 buffer_.push_back(packet);
15
16 i f (!isForUs()) {
17 addToPreEncodedPacket(packet);
18 }
19
20 std::time(&last_activity_);
21 return true;
22 } else {
23 delete packet;
24 return false;
25 }
26 }

18

The method starts with resetting the buffer if it is full and if the current node is not the
destination (lines 2–7). This is necessary because otherwise the forwarders might stop
transmitting4 prematurely, that is, before the destination has received enough innovative
packets.

Then if the packet is innovative, it is saved in the buffer and important data is copied from
its header (line 10–14). If the node is a forwarder, then the packet is combined with the
already pre-encoded packet (line 16–18). Otherwise the packet is discarded in line 23.

• decode()

Listing 4.5: Decode payload

1 uint8_t* PacketBuffer::decode() {
2 assert(buffer_.size() == batch_size_);
3
4 Matrix A(batch_size_, gf_);
5 A.transpose(code_vectors_);
6
7 uint8_t* x = new uint8_t[batch_size_ * payload_size_];
8 std::fill_n(x, batch_size_ * payload_size_, 0);
9 #ifdef INVERT_MATRIX

10 A.invert();
11 A.mappedProduct(payloads_, batch_size_, payload_size_, x);
12 #else
13 Vector y(batch_size_, gf_);
14 uint8_t x_i = 0;
15 Matrix L(batch_size_, gf_);
16 Matrix U(batch_size_, gf_);
17
18 A.LUDecomposition(L, U);
19
20 for (int l = 0; l < payload_size_; l++) {
21 for (int i = 0; i < batch_size_; i++) {
22 y(i) = payloads_[i][l];
23
24 for (int j = 0; j < i; j++) {
25 y(i) = gf_.sub(y(i), gf_.mul(L(i, j), y(j)));
26 }
27
28 y(i) = gf_.mul(y(i), gf_.inv(L(i, i)));
29 }
30
31 for (int i = batch_size_ - 1; i >= 0; i--) {
32 x_i = y(i);
33
34 for (int j = i + 1; j < batch_size_; j++) {
35 uint8_t x_j = x[j * payload_size_ + l];
36 x_i = gf_.sub(x_i, gf_.mul(U(i, j), x_j));
37 }

4Remember that forwarders only transmit after they have received an innovative packet. Let batch size be n.
Every packet’s code vector is actually a basis vector. If the buffer contains n packets, their code vectors are by
definition independent. n independent code vectors form a basis for the vector space GF (28)n. It follows that
every other code vector lies in the span of said basis, making it linearly dependent and the associated packet
non-innovative.

19

38
39 uint8_t inv = gf_.inv(U(i,i));
40 x_i = gf_.mul(x_i, inv);
41 x[i * payload_size_ + l] = x_i;
42 }
43 y.zero();
44 x_i = 0;
45 }
46 #endif
47 return x;
48 }

This is where the original payload is retrieved from the coded packets. As mentioned before,
the code vectors form the coefficient matrix (denoted A in the listing) of a system of linear
equations. So the system to solve is Ax = b, where x is the original payload and b is the
coded payload. In the above method, two ways of solving this system are implemented.

The first way (lines 11 and 12) consists of inverting the matrix and then retrieving the
original payload by repeatedly computing A−1b with an appropriate5 b.

The second way (line 14–49) uses LU-Decomposition6, which decomposes A into the lower-
triangular matrix L and the upper-triangular matrix U with A = LU . Solving the system
Ax = b can now be reduced to first solving Ly = b for y and then Ux = y for x. Since
L and U are both triangular, this can be quickly done by using forward (line 23–31) and
backward substitution (line 33–45) respectively. Similar to the first method, those two
substitution steps need to be performed for all appropriate b, as explained in footnote 5.

• addToPreEncodedPacket()

Listing 4.6: Add newly received packet to pre-encoded packet

1 void PacketBuffer::addToPreEncodedPacket(CodedPacket* new_packet) {
2 i f (pre_encoded_ == 0) {
3 pre_encoded_ = new_packet->dup();
4 } else {
5 Vector new_packet_code_vector(batch_size_, gf_);
6 new_packet_code_vector.copy(new_packet->getCodeVector(),

batch_size_);
7
8 uint8_t random = more::randomInt();
9 Vector new_code_vector(batch_size_, gf_);

10 new_code_vector.copy(pre_encoded_->getCodeVector(),
batch_size_);

11
12 new_packet_code_vector.mul(random);
13 new_code_vector.add(new_packet_code_vector);
14
15 uint8_t* new_packet_payload = new_packet->getPayload();
16 uint8_t* payload = pre_encoded_->getPayload();
17 uint8_t* new_payload = new uint8_t[payload_size_];
18
19 for (uint i = 0; i < payload_size_; i++) {

5The product A−1b has to be computed as many times as there are bytes in the payload. For iteration i, b is
equal to (b1i , . . . , b

n
i), where bki is the i-th byte of the packet associated with the vector in A’s k-th row.

6http://mathworld.wolfram.com/LUDecomposition.html

20

20 new_payload[i] = gf_.add(payload[i], gf_.mul(random,
new_packet_payload[i]));

21 }
22
23 delete pre_encoded_;
24 pre_encoded_ = 0;
25
26 pre_encoded_ = new CodedPacket("CodedPacket (PB)", more::CODED

);
27 // . . .
28 // s e t v a r i a b l e s
29 }
30 }

If there is no pre-encoded packet, a duplicate of the newly received packet is used (line
2–3). Then the new code vector vnew is computed in line 8–13. Let r ∈ GF (28) be the
random number, p the pre-encoded packet’s code vector and q the newly received packet’s
code vectors. Then vnew = r · q + p.

In line 15–21, the newly received packet’s payload is added to the pre-encoded packet’s
payload, just as with the code vectors. So for each payload byte the following sum is
calculated: bi = r · ui + vi, where bi, ui, vi are the new payload’s, the newly received
packet’s and the pre-encoded packet’s payload’s i-th byte respectively.

Finally the old pre-encoded packet is deleted and the new pre-encoded packet is created.

4.2.4 Batch transmission

Before the source can start to transmit a batch of size n, it has to create coded packets from the
native packets. This is done by generating a random vector c for each coded packet and then
compute vi = c0 · b0i + . . .+ cn · bni where bki is the i-th byte of the k-th native packet’s payload
and vi is the coded packet’s i-th byte.

Since this kind of computation only happens at the source, we decided to implement it in a
separate class and not in PacketBuffer.

4.2.5 Matrix and Vector

At first we used simple uint8_t7 arrays for vectors and two-dimensional arrays for matrices.
But this approach produced code that was hard to read. Because no matrix and vector classes
operating over GF (28) were available, we chose to implement them on our own.

Those two classes provide abstractions of vectors and matrices over GF (28). Implemented
functionality includes Gaussian elimination, LU decomposition, matrix inversion, forward and
backward substitution, check for linear independence, matrix product, dot product, scalar mul-
tiplication, vector addition and various row/column swapping/copying methods.

4.3 ExOR

4.3.1 Basics

As with MORE, there is a class ExOR which inherits from ORBase and holds most of the
protocol’s logic. But apart from PacketBuffer ExOR does not require any helper classes —

7a typedef for unsigned char

21

mostly because it does not any employ network coding techniques.
In the following sections a few key components of the implementation and major design

decisions will be discussed. The ExOR implementation mainly includes the following methods:

Listing 4.7: Snippet of ExOR.h

1 double estimateDataRate(Node forwarder);
2
3 simtime_t estimateWhenToForward(int forwarderNum, double numPacketsLeft);
4
5 void handleExORPacket(ExORPacket* packet);
6
7 void cullForwarderSet(std::vector<Node>& forwarders);
8
9 virtual std::vector<Node> candidateSelection(Node source,

10 Node destination);
11
12 virtual std::vector<Node> candidateRanking(std::vector<Node>&

candidateVector);

It follows a discussion of ExOR’s most important methods.

• candidateSelection()
This method gets all nodes in the network from ORBase’s neighbor management and stores
them in a list along with their ETX to the current destination.

• candidateRanking()
This methods sorts the list compiled by candidateSelection() by ETX to the des-
tination in descending order. The sorted list is the forwarder list that will be included in
every packet of this batch.

• Fragment forwarding

Listing 4.8: Forwarding fragment

1 i f (currentBatch_->getCurrentFragmentSize() - 1 > currentBatch_->
getLastReceivedFragNum()) {

2 scheduleAt(simTime() + 5 * currentBatch->ONE_PKT_TIME,
forward_fragment_);

3 return;
4 }
5
6 i f (!currentBatch_->isForUs() && currentBatch_->getFragmentSize() > 0

) {
7 for (int i = 0; i < currentBatch_->getFragmentSize(); i++) {
8 ExORPacket* p = currentBatch_->getNextInQueue();
9 broadcast(p, 30, 0);

10 }
11 } else {
12 ExORPacket* ack = currentBatch_->getNullPacket();
13 ExORPacket* dup = 0;
14
15 for (int i = 0; i < 10; i++) {
16 dup = ack->dup();
17 dup->setFragmentNum(i);
18 broadcast(dup, 30, 0);

22

19 }
20 delete ack;
21 }
22
23 i f (currentBatch_->forwardedEnough()) {
24 recordScalar("buffer_size", currentBatch_->getBufferSize());
25 batchBuffer.erase(currentBatch_->getBatchId());
26 delete currentBatch_;
27 currentBatch_ = 0;
28 cancelEvent(forward_fragment_);
29 }

This piece of code handles the forwarding of a fragment. It starts with postponing the
forwarding if another node’s fragment is still in progress (lines 1–4). This behaviour is
not mentioned in [2] but seemed necessary as nodes would frequently interrupt each other
during a fragment’s transmission.

It then goes on to the actual forwarding: The if clause in line 6 is only true if the current
node is a forwarder or the source and if there are packets to forward. In that case the
node will broadcast the fragment (lines 7–10). Otherwise it will broadcast a fragment of
10 Null-Packets to relay its possibly more up-to-date batch map to the surrounding nodes
(lines 12–20).

Finally, from line 23 to 28, the node deletes the current batch if more than 90% of the
batch’s packet were received by higher priority nodes.

• handleExORPacket()

Listing 4.9: How received packets are handled by ExOR

1 void ExOR::handleExORPacket(ExORPacket* packet) {
2 i f (!packet->isInForwarderList(ip_address_)) {
3 i f (packet->getSource() == localNode.address &&
4 batchWasCompleted(packet)) {
5 delete packet;
6 endSimulation();
7 }
8 delete packet;
9 return;

10 }
11
12 i f (lastBatchId_ >= packet->getBatchId() && currentBatch_ == 0)

{
13 delete packet;
14 return;
15 }
16
17 i f (batchBuffer.count(packet->getBatchId()) == 0 && packet->

getBatchId() > lastBatchId_ && !packet->isNull()) {
18 currentBatch_ = new exor::PacketBuffer(packet, localNode);
19 batchBuffer[packet->getBatchId()] = currentBatch;
20 lastBatchId_ = packet->getBatchId();
21 } else {
22 int fragNum = packet->getFragmentNum();
23 int fragSize = packet->getFragmentSize();

23

24 int forwarderNum = packet->getForwarderNum();
25 Node forwarder = packet->getForwarder();
26
27 i f (packet->isNull() || currentBatch_->hasPacket(packet)) {
28 currentBatch_->updateBatchMap(packet);
29 delete packet;
30 } else {
31 currentBatch_->add(packet);
32 }
33
34 estimateDataRate(forwarder, fragSize, fragNum);
35 simtime_t forwardTime = estimateWhenToForward(forwarderNum,

fragSize, fragNum);
36
37 cancelEvent(forward_fragment_);
38 scheduleAt(forwardTime, forward_fragment_);
39 }
40 }

Packet handling starts with checking whether the current node is in the forwarder list (line
1). If it is not, then it will check whether it is the packet’s source8 and whether the packet’s
batch map indicates that the batch was successfully received by the destination (line 3 and
4). In that case the node will end the simulation. Otherwise it will just return from the
method.

If the current node is in the forwarder list, it will first check whether the packet belongs to
an outdated batch. In that case the method exits (line 12–15).

If the node does not yet have a buffer for this batch, the batch is not outdated and the
packet is not a Null-Packet, then the node creates a new packet buffer for the packet’s
batch (lines 17–21). Line 27 to 29: If the packet has already been received or if it is just a
Null-Packet, then just its batch map will be looked at and the packet discarded. Otherwise
the packet will be stored in the buffer in line 31.

After taking care of the packet, the node will use the information in the packet header to
estimate the current forwarder’s data rate and then schedule its next transmission (lines
34–38).

• estimateDataRate()

Listing 4.10: Estimate data rate

1 double ExOR::estimateDataRate(Node forwarder, int fragmentSize, int
fragmentNum) {

2 i f (currentForwarder != forwarder) {
3 currentForwarder = forwarder;
4 currentRate = -1.0;
5 return -1.0; // not ready to g i ve es t imat ion
6 }
7
8 i f ((simTime() - currentBatch->getLastReception()) < 0.000001) {
9 return currentRate;

10 }

8The source is not included in the forwarder list and the source of a batch packet stays the same throughout
a batch’s lifetime. Only the forwarder number in the header changes.

24

11
12 double rate = 1 / (simTime() - currentBatch->getLastReception());
13
14 i f (currentRate > 0) {
15 currentRate = ALPHA * rate + (1 - ALPHA) * currentRate;
16 } else {
17 currentRate = rate; // f i r s t ra te es t imat ion
18 }
19
20 return currentRate;
21 }

If this is the first packet in a fragment, there can be no estimation of a forwarder’s data
rate. Therefore the method exits and sets the current rate to -1.0 (lines 2–5).

It is also not possible to give a new estimation if the interval between packet reception is
below a certain threshold. In that case the current rate stays untouched (lines 8–10).

In line 12 the data rate between the current and the last reception is computed. If the
current rate is larger than zero, that is, if the last reception was not the first reception, then
the EWMA9 formula is used to estimate the current rate. Otherwise the rate computed in
line 12 is taken as the current rate.

• estimateWhenToForward()

Listing 4.11: Estimate when to forward fragment

1 simtime_t ExOR::estimateWhenToForward(int forwarderNum, double
numPacketsLeft) {

2 double backoffTime = 0;
3 double DEFAULT_BACKOFF_TIME = 5.0 * currentBatch_->ONE_PKT_TIME;
4
5 i f (currentRate_ < RATE_TH) {
6 backoffTime += DEFAULT_BACKOFF_TIME;
7 } else {
8 backoffTime += numPacketsLeft / currentRate_;
9 }

10
11 i f (forwarderNum - 2 != currentBatch_->getLocalPriority()) {
12 int numHigherPriorityNodes = currentBatch_->getNumForwarders()

- currentBatch_->getLocalPriority() - 1;
13
14 backoffTime += DEFAULT_BACKOFF_TIME * numHigherPriorityNodes;
15 }
16 return simTime() + backoffTime;
17 }

First the method adds a delay for the current forwarder. If the current rate is invalid, the
default back off time is used. Otherwise the fragment information from the packet’s header
and the current rate are used to estimate the amount of time it takes the current forwarder
to finish its fragment (lines 5–9).

Then if the current forwarder is not the next higher priority node in the forwarder list, the
node adds the default back off time for each higher priority node (lines 11–15).

9Exponential weighted moving average

25

Finally it returns the simulation time when the node should start transmitting its fragment.

Although only one node is supposed to transmit at any time, the rather low default back
off time of five packet transmission times often leads to simultaneous transmissions and
nodes being interrupted in the middle of their fragment.

• cullForwarderSet()
Having too many forwarders degrades overall throughput because a lot of nodes just trans-
mit Null-packets without actually contributing to the forwarding process. To counter this
the authors of ExOR say in [2, p. 22] that “the source runs a rough simulation of delivery
using a complete prioritized forwarder set and selects the nodes which transmit at least
10% of the total transmissions in a batch”.

For lack of a more detailed description, we implemented the simulation as follows. Assuming
a batch size of n, the source starts by broadcasting n packets. Exploiting a node’s knowledge
about the delivery probability pi to its one-hop neighbours, the number of packets received
by each of its one hop neighbors is pi ·n. Then the next node in the forwarder list broadcasts
as many packets n′ as it has received during the last reception. The number of packets this
node’s neighbours receive is pi · n′. Then follows the next node in the forwarder list and
so on. The simulation ends after 10 iterations over the forwarder list or if the destination
received all the packets. In the end the total number of transmissions is computed and nodes
that contributed less than 10% towards the total number of transmissions are removed from
the forwarder set.

The removal of some of the forwarders using the above simulation resulted in a higher batch
transmission delay than if the forwarder set was left untouched. This suggests that nodes
vital for the forwarding were removed and that the above modelling should be improved.

But modelling, for instance, exactly which packet of a batch is lost during a transmission
would add a lot of complexity which, depending on the deployment scenario, might require
too much computing power considering its benefits.

4.3.2 PacketBuffer

The class PacketBuffer has the following responsibilities:

1. Inspect incoming packets and check whether they have already been received. Since packets
are stored in a hash table with the packet number as the key, this task is trivial.

2. Store packets. As mentioned in the previous point, packets are stored in a hash table,
making storage trivial as well.

3. Update the batch map and keep track of what packets have to be forwarded.

Listing 4.12: Update batch map and compute fragment size

1 void PacketBuffer::updateBatchMap(ExORPacket* pkt) {
2 std::valarray<int> batchMap = pkt->getBatchMap();
3
4 transmissionQueue_ = std::queue<ExORPacket*>();
5 numReceivedByHigherPriorityNode_ = 0;
6
7 for (unsigned int i = 0; i < batchSize_; i++) {
8 i f (batchMap[i] > batchMap_[i]) {
9 batchMap_[i] = batchMap[i];

26

10 }
11
12 i f (hasPacket(i) && needTransmit(i) && !isForUs()) {
13 scheduleForTransmission(i);
14 } else i f (hasBeenReceivedByHigherPriorityNode(i)) {
15 numReceivedByHigherPriorityNode_++;
16 }
17 }
18
19 fragmentSize_ = transmissionQueue_.size();
20 }

This method updates the local batch map by comparing it to the one included in the
received packet. If the forwarder id in the received batch map is higher, it is copied to
the local batch map (line 8–10). That way the node only forwards packets that were not
received by higher priority nodes. In line 12 to 14 a packet is scheduled for forwarding if
the node actually has it, if it has not been received by a higher priority node and if the
local node is not the batch’s destination.

Because the node needs to know the percentage of packets that have already received by
higher priority nodes, those packets are counted in line 14 to 16. Since the fragment size is
equal to the number of packets that were not received by a higher priority node and thus
due for transmission, the fragment size is equal to the length of the transmission queue.

4. To provide main class with means to access packets which need to be forwarded when-
ever it is the node’s turn to transmit. The main class can access packets due for trans-
mission using the ExORPacket* getNextInQueue() method, and the fragment size with
int getFragmentSize().

27

Chapter 5

Simulation and Evaluation

5.1 Simulation Setup

All protocols were evaluated on the same static topology that was used in [3], see Figure 5.1
below. The network consists of 12 fixed nodes. Simulations were run for batch sizes 16 and 32,
as well as for packet sizes of 128, 256, 512, 1024, 2048, 4096 and 8192 bytes. For each combination
of those two parameters 20 runs were evaluated. Node 11 acted as the source and node 5 was
the destination for all transmissions.

Size 120x80m (5m per grid square)
Radio range ∼ 25m
Propagation model Path-loss reception
Path-loss alpha 4.5
Number of nodes 12
Bit-rate 11 Mbps
Radio sensitivity -90dBm
Transmission power 59mW

Table 5.1: Simulation parameters

5.2 Metric & Results

5.2.1 Metrics

The following metrics are used to compare the different routing protocols.

• Transmission delay was measured at the destination as follows:

transmission delay = arrival time of last packet− arrival time of first packet [seconds]

• Round-trip delay was measured at the source as follows:

round-trip delay = ACK arrival time− batch start time [seconds]

• Throughput was measured at the source as follows:

throughput =
batch size

ACK arrival time− batch start time
[packets/sec]

29

Figure 5.1: Simulation network topology: the blue circles mark the transmission ranges.

5.2.2 Results

The number beside a boxplot indicates how many samples it is based on and will be referred to
as “sample size”. Figure 5.2 and Figure 5.3 show that OLSR is outperformed by ExOR, but
not by MORE. There are probably three reasons why MORE performs so poorly.

First, there is the problem of a crowded medium. This is in part caused by the faulty (see
4.2.1) traffic control heuristic, which has to be circumvented by setting the credit counter to
almost the same value as the batch size in order to get the whole batch through to the destination.
With that adjustment, every node that receives an innovative packet now also forwards a packet.
Together with OLSR keeping its routing tables up-to-date as well, this results in a very congested
medium with a lot of collisions.

This leads straight on to the second reason, which is the lack of control over the radio/MAC
layer. In its current form routing protocols in the OR framework are not aware of collisions. This
is particularly important for opportunistic routing protocols since all packets are broadcasted and
broadcast transmissions are not retransmitted by the MAC layer.1 In a crowded medium with
lots of packets lost due to collisions this might seriously impair a batch’s progress towards the
destination. See Figure 5.8 and Figure 5.9 for more details on collisions during the simulation.
Those two figures show that for both MORE and ExOR a lot of collisions happen across all
nodes, in particular for those nodes located at the center of the topology.

The third reason has to do with how MORE’s forwarders work. When a forwarder receives

1IEEE Std 802.11TM-2007, section 9.2.7

30

an innovative packet and its credit counter is positive, then it will immediately transmit a
pre-encoded packet. Unfortunately nodes with the same distance to the sender receive the packet
almost at the same time and therefore will try to forward it at almost the same time, which leads
to collisions. In order to avoid synchronisation among forwarders, forwarding a packet is delayed
by a random amount of time. This helps to reduce collisions, but on the other hand also increases
the transmission delay.

ExOR’s performance gain on OLSR might be because its ability to exploit multiple forwarders,
the ACK redundancy introduced by the batch map and because it does not need per-packet
acknowledgements.

The ranking changes quite a bit in Figure 5.4 and Figure 5.5. OLSR performs best, followed
by MORE and then ExOR. ExOR’s rather erratic performance is easily explained: It is only
meant to deliver 90% of packets in a batch [2, p. 29], so our metric is not really applicable. ExOR
relies on the source receiving a batch map which indicates that the destination has received all
packets. The problem is that a forwarder discards a batch and ignores subsequently received
packets of that batch, when more than 90% of packets have been received by a higher priority
node. Since this will happen earlier in a batch’s lifetime, the closer we get to the batch’s source,
it is very likely that in a large enough network a lot of forwarders between the source and the
destination already discarded the batch when the destination finally received all the packets and
announces this by transmitting a batch of Null-Packets. Thus this information never reaches the
source. Judging by ExOR’s sample sizes in Figure 5.4 and Figure 5.5, the evaluation network
qualifies as “large enough”. It is not clear where ExOR’s large variance for smaller packet sizes
comes from.

Compared to ExOR, MORE’s way of handling ACKs seems to be more efficient. The round-
trip time is only slightly higher than the transmission delay, there is only a minor increase in
variance and the overall shape of the curve is preserved. It has to be considered that contrary
to the specification in [3], forwarders cannot “overhear” an ACK and then discard their batch2.
Consequently there is more traffic while the ACK is on its way, which is likely to have some
negative effect on the ACK’s travel time.

There are no surprises in Figure 5.6 and Figure 5.7 because of the way the throughput is
computed, which is batch size (constant) divided by the round-trip delay, which was discussed
in the last section.

In general, batch size does not seem to have any significant effect on performance when the
protocols are evaluated in a simulation environment.

2This is due to the commonly used OMNeT++ node architecture. Protocols are placed above the IP layer,
which only forwards unicast packets to upper layers if they are meant for that node. Since the ACK is addressed
to the batch’s source, forwarders never learn about it.

31

Figure 5.2: Plot comparing transmission delays of MORE, ExOR and OLSR for batch size 16

32

Figure 5.3: Plot comparing transmission delays of MORE, ExOR and OLSR for batch size 32

33

Figure 5.4: Plot comparing round-trip delays of MORE, ExOR and OLSR for batch size 16

34

Figure 5.5: Plot comparing round-trip delays of MORE, ExOR and OLSR for batch size 32

35

Figure 5.6: Throughput measurements for MORE, ExOR and OLSR for batch size 16

36

Figure 5.7: Throughput measurements for MORE, ExOR and OLSR for batch size 32

37

Figure 5.8: Number of collisions per node over 558 runs for MORE

38

Figure 5.9: Number of collisions per node over 558 runs for ExOR

39

Chapter 6

Conclusion

6.1 Summary & Conclusion

In this thesis we implemented two opportunistic routing protocols MORE and ExOR in OM-
NeT++, evaluated their performance and compared them to OLSR. Unfortunately our results
are not as promising as those in [2] and [3], where significant throughput gains were achieved
over traditional routing protocols.

There might be multiple reasons for this outcome. First of all, the descriptions in [2] and [3]
do not include all details of their implementations. Although for MORE there is even pseudo-
code for two algorithms, there are quite important things left unexplained, such as the “rough
simulation” for reducing the forwarder set in ExOR (see 4.3.1). For MORE, some things are
unclear, such as what a forwarder should do when its buffer is full or exactly which tx credit
should be added to a node’s credit counter upon receiving a packet. Furthermore, in the
case of MORE’s traffic control heuristic, the provided algorithm did not work as intended.

The second reason has to do with software architecture. For the usual implementation of
OMNeT++ nodes, the routing protocols sit above the IP layer, not above the MAC layer, as
in [3]. In MORE this keeps forwarders from overhearing ACKs, which would cause them to
discard the current batch and thus decrease the medium’s load. Furthermore, in our simulation
environment, the protocols cannot react to collisions or find out if the medium is free, an ability
which is mentioned in both [2] and [3].

Finally, we have to consider the fact that simulation-based evaluations do not necessarily
align with real-world evaluations. After all, a simulation is always based on a model of reality
and thus only an approximation. For example, in discrete event simulators, such as OMNeT++,
spatial reuse is not possible because events can only happen one after another, not in parallel.
Another problem is a simulation’s sensitivity to even minor changes to its parameters (i.e. the
start and end point or the range of a random delay), which can make all the difference between
a failed and a successful run.

6.2 Future work

The more nodes try to access the medium, the more likely collisions happen. Figure 5.8 and
Figure 5.9 clearly show that collisions occur very frequently during the simulation. An obvious
way to tackle this issue would be to reduce number of nodes involved in forwarding packets, a
claim that is supported by [2, p. 21–23]’s findings. Therefore future work should investigate
methods to reduce the forwarder set in an attempt to reduce collisions. Future work should also
investigate a cross-layer approach, which enables communication between the routing and the
MAC layer. This would allow the routing protocol to learn about collisions and react accordingly.

41

Bibliography

[1] A. Tanenbaum and D. Wetherall, Computer Networks, 5th ed. Prentice Hall, 2011.

[2] S. Biswas, “ExOR: Opportunistic routing in multi-hop wireless networks.” in Proceedings
of ACM SIGCOMM, 2005. [Online]. Available: http://pdos.csail.mit.edu/papers/roofnet:
biswas-ms/roofnet biswas-ms.pdf

[3] S. Chachulski, “Trading structure for randomness in wireless opportunistic routing,”
Master’s thesis, Massachusetts Institute of Technology, 2005. [Online]. Available:
people.csail.mit.edu/szym/sm.pdf

[4] T. B. Zhongliang Zhao, “OMNeT++ based opportunistic routing protocols simulation: A
framework,” in 10th Scandinavian Workshop on Wireless Ad-hoc Networks (ADHOC ’11),
2011.

[5] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE simulator for DTN protocol evaluation,”
in SIMUTools ’09: Proceedings of the 2nd International Conference on Simulation Tools and
Techniques, 2009.

[6] A. Varga, “The ONMeT++ discrete event simulation system.” in Proceeding of European
Simulation Multiconference, 2001.

[7] O. Helgason and K. Jonsson, “Opportunistic networking in OMNeT++,” in SIMUTools ’08:
Proceedings of the 1st International Conference on Simulation Tools and Techniques, 2008.

[8] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput path metric
for multi-hop wireless routing,” in Proceedings of the 9th annual international conference on
Mobile computing and networking, ser. MobiCom ’03. New York, NY, USA: ACM, 2003,
pp. 134–146. [Online]. Available: http://doi.acm.org/10.1145/938985.939000

43

http://pdos.csail.mit.edu/papers/roofnet:biswas-ms/roofnet_biswas-ms.pdf
http://pdos.csail.mit.edu/papers/roofnet:biswas-ms/roofnet_biswas-ms.pdf
people.csail.mit.edu/szym/sm.pdf
http://doi.acm.org/10.1145/938985.939000

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Mobile Ad Hoc Networks
	MANET routing protocols
	Opportunistic routing

	Task/Problem Formulation
	Motivation
	Contribution
	Outline

	Related Work
	OMNet++ Simulator
	INETMANET
	Opponet
	OR framework
	ETX

	Opportunistic routing protocols
	MORE
	Terminology
	Node roles
	Network coding
	Forwarder list
	Traffic control

	ExOR
	Terminology
	Batch map
	Medium access

	Design and Implementation
	OR Framework
	Neighbor management
	Network metrics
	ETX reader
	Problems

	MORE
	Basics
	Network coding
	Packet buffer
	Batch transmission
	Matrix and Vector

	ExOR
	Basics
	PacketBuffer

	Simulation and Evaluation
	Simulation Setup
	Metric & Results
	Metrics
	Results

	Conclusion
	Summary & Conclusion
	Future work

	Bibliography

