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Abstract

The Internet of Things (IoT) is the vision of a global infrastructure of networked
physical objects. In order to use IoT in a semantics-aware enterprise there are some
challenges: IoT-devices should integrate into enterprises as seamlessly as possible, both
at a modeling level and at a technology level. At the modeling level, enterprise systems
are often customized by non-software experts. In addition, more and more systems are
applying machine-learning technologies. Both human modeling and machine reasoning
need a precise semantic description of the entities they work with and their meaning. At
the technology level, enterprise systems traditionally use a different protocol stack than
IoT-devices. Neither these traditional enterprise protocols nor the IoT-protocols are
semantics-aware. Furthermore, IoT-devices have properties that are typically unknown
to enterprise information systems, such as their limited energy and consequently their
maintenance needs (i.e. swapping batteries). Keeping this total cost of ownership low
is one of the primary goals of IoT-operators.

This thesis contributes to enterprise integration and semantic-aware integration
by developing and evaluating two different approaches: a top-down approach and a
bottom-up approach. The top-down approach scales down the existing OData enter-
prise protocol to very constrained IoT-devices. The bottom-up approach semantically
enriches existing protocols. It consists of a service description language called Linked
USDL for IoT, which allows to semantically describe services from a very high abstrac-
tion level, down to their technical realization. In order to utilize those approaches in
an enterprise, we propose an architecture and abstractions that enable the integration
of BPMN tools, semantic services, and constrained IoT-devices. We also investigated
some reasons for the reluctance of developers to apply semantics, a behavior coined
semaphobia in previous research. We evaluated our approach with an architecture
evaluation method and through several experiments. The experiments were done on an
experimental platform called Mote Runner on the following two hardware platforms:
MEMSIC IRIS and Waspmote Pro.

We propose an application-layer based framework for reducing the energy consump-
tion by putting nodes to sleep (sleepy nodes). Sleepy Nodes were implemented and
evaluated on the Mote Runner platform. We introduce a monitoring framework based
upon high-level information that utilizes sleepy nodes to increase the network lifetime.
As part of the monitoring framework, we present three different scheduling strategies:
A simple first fit, an exhaustive strategy, and a strategy called dynamic partitioning.
Dynamic partitioning is based on the observation that it is possible to combine measure-
ments under certain circumstances. We were able to show that dynamic partitioning
performs significantly better than first fit and only slightly worse than the exhaustive
strategy.
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Part I

Introduction and Related Work

This work is divided into five parts. In this first part we present an introduction into
the problem areas covered in this thesis and related work. In Chapter 1 we motivate
our work, introduce the context of the work and its contributions and briefly embed it
into current research streams. Chapter 2 gives a comprehensive overview of the used
technologies and discusses related work.
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Chapter 1

Introduction

This chapter provides the motivation for this work. It briefly introduces the context and
embeds it into current research streams in the Internet of Things (IoT) and semantic
enterprise integration. As the term ”Internet of Things” is not precisely defined, we
start with a short overview of different viewpoints. Next, we describe the benefits and
challenges of semantics-aware IoT integration into enterprise systems, in a world where
are enterprises move away from traditional, often SOAP-based, architectures towards
REST-based architectures with semantic modeling and reasoning engines. We then
limit the scope and introduce the considered IoT-stack. IoT-devices can either be very
limited or have processing capabilities equal to modern PCs. This thesis considers only
very constrained devices. We used a novel VM-based operating system to conduct
our experiments that we expected to be easily adoptable by enterprise developers as it
supports JAVA and C#. We then summarize our contributions. Finally, we give a brief
overview of the remainder of this work.

1.1 Internet of Things

The ”Internet of Things” (IoT) is the vision of a global infrastructure of networked
physical objects [214]. The main idea of the IoT is the pervasive presence of things in
the world and their incorporation into information systems through technologies such
as sensors, RFID (Radio Frequency IDentification), actuators, and mobiles phones.

The term Internet of Things was coined in 1999 by Kevin Ashton [14], who co-
founded the Auto-ID Center [19] at the Massachusetts Institute of Technology. Many
technologies and ideas from the Auto-ID center, especially those centered on RFID
technology, are now widely used for tracking all kinds of objects [129]. The success of
RFID technology inspired the development of the IoT, which aims for interoperability
on a larger scale. The Internet of Things is anticipated to be a key technology that will
enable various new applications in an industrial context in sectors such as logistics [401,
256], retail [195, 159], home and building automation (smart home) [101], industrial
production (smart factory) [408, 386], automotive [189], electricity generation and
distribution (smart grid) [402, 193], and health care [188, 65], among many others.
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The work presented in this thesis has been conducted as part of several research
projects, mainly the Internet of Things-Architecture (IoT-A) 1 [324] project and the FI-
WARE Private Public Partnership (PPP) 2 [52]. The objective of IoT-A was to create an
architectural reference model and to define an initial set of key building blocks, which
is envisioned as the crucial foundation to grow a future Internet of Things organically
[308].

Despite the work of the IoT-A project and its predecessors, there is still no common
definition of the term ”Internet of Things”. Different authors give different focus to
some aspects of the IoT. Therefore, instead of giving an exact definition, we will follow
Atzori et al. [18] and describe the IoT paradigm as a combination of three main visions:
the ”Things”-oriented vision, the Internet-oriented vision and the semantics-oriented
vision. Figure 1.1 shows the main concepts, technologies and standards classified by
the vision [18] to which they belong to.

Figure 1.1: Converging visions leading to the Internet of Things [18]

The ”Internet-oriented” vision predicts the use of standardized Internet protocols,
instead of custom protocols. The ”things-oriented” vision predicts interoperating
(everyday) objects based on tags, sensor and actor technologies. Finally, the semantic-
oriented vision predicts the use of semantic technology for all kinds of interoperability
and information description and representation. Given the heterogeneity in IoT, not all

1http://www.iot-a.eu
2https://www.fi-ppp.eu
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those visions have to be achieved to the same degree for them to be considered as a
part of the Internet of Things. For example, RFID is often seen as part of the Internet
of Things, even if the Internet-oriented vision and the semantic vision are not always
completely fulfilled.

At this point, we are using all the terms in a rather intuitive way. In Chapter 3
we will formally define these terms, with a focus on services, as part of a service
architecture.

1.2 Motivation and Problem Statement

The convergence of enterprise systems, machine-to-machine communication (M2M),
and the sensing of and acting on physical objects has been recently in the focus of
research and industry. They are anticipated to change the world as part of the so-called
Third Industrial Revolution [320] or Industry 4.0 [344]. Two trends can currently
be observed in enterprise systems. One is that enterprises are moving away from
traditional, often SOAP-based, architectures towards REST-based systems. Besides,
more and more enterprises are basing their enterprise integration tools and libraries on
semantic information. This semantic information allows easier service composition and
orchestration, as well as enhanced M2M communication. Enabling semantics-aware
enterprise integration allows different – even previously unknown – devices to connect
to enterprise systems. Enterprise systems are foreseen to be able to fuse data from
different sources, automatically convert data, and match incoming sensor streams to
physical objects. They are supposed to perform automatic reasoning in order to react
to complex situations through machine-learning algorithms. However, in order to
enable such semantic-enhanced business processes in conjunction with very constrained
Internet-of-Things four challenges arise:

1. The increased need of interaction with the physical world increases the com-
plexity of enterprise IT systems. Therefore, IoT-devices should integrate into
already existing software stacks as seamlessly as possible. The current shift away
from traditional SOA architectures, as represented by BAPI and SOAP, towards
REST-based enterprise architectures requires the use of REST-based protocols
and architectures. The heterogeneity of IoT-devices needs to be abstracted away
from the enterprise systems in order to reduce complexity.

2. Nowadays, enterprise business processes are often designed and modeled by
people who are not software experts. In addition, more and more systems are
applying machine-learning technologies. Both human modeling and machine
reasoning need a precise description of the entities they work with and their
meaning. The availability of a semantics-aware description of IoT services
thus enables the usage of and reasoning on previously unknown devices and
data, which can be integrated into an enterprise system without the need for a
specialized software developer.
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3. Very constrained devices make the use of typical enterprise protocols, such as,
SOAP or BAPI cumbersome and sometimes even infeasible. Those traditional
protocols are not semantics-aware either. Semantic additions to those existing
protocols increases the amount of data to be processed and transmitted even
further; therefore their applicability is limited even more. In order to be able to
interact with a semantic-aware enterprise, the service interface of the IoT-devices
should be based on lightweight protocols that are either semantics-aware by
themselves without drastically increasing the data to be transmitted or can be
described with a semantic service description.

4. The total cost of ownership of the solution should be low. Semantics add addi-
tional complexity to an IT system and IoT-devices come with their own limi-
tations. A semantics-aware solution therefore needs to take the capabilities of
the constrained devices into account. The benefits of using semantics should
be balanced against the additional costs. A typical source of costs in wireless
systems is maintenance and on-site work, and, thus, a decrease of these costs
result in a lower total costs of ownership. Many industrial scenarios in which IoT
devices are used operate in environments in which regular physical access to the
sensor nodes and their batteries is not feasible. Especially, when manual (human)
work is needed to replace the power source and/or network downtime is necessary
for these maintenance tasks. Information available at an application-level, e.g.
in semantic repositories, can be used to implement energy saving measures at
application-layer.

The following sections discuss several aspects of four challenges, along with the
kind of environment we use, in more detail: In Chapter 1.3 we describe the complexity
problem and the anticipated semantic modeling approach. Next, in Chapter 1.4 we
describe the kind of constrained devices used within this thesis. We then continue in
Chapter 1.5 with the opportunities that application-layer energy saving can provide,
reducing the total cost of ownership of an IoT solution.

1.3 Complexity of IoT-solutions and Semantics-aware En-
terprise Integration

The overall complexity in enterprise IT systems is constantly increasing, as is the
heterogeneity in such complex systems. This is not necessarily in the backend alone,
where the trend is moving towards an even tighter standardization of components.
Rather, the heterogeneity challenge that current and future enterprise IT systems have
to face originates in the small mobile or embedded devices with which they have to
interact. The integration of new services into enterprise IT systems nowadays is mainly
done in a service-oriented way. Nonetheless, business systems and IoT devices, which
are actually sensing or acting within the physical processes, use different protocol styles.
Protocols for IoT-devices traditionally are tailored towards properties as small data
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size and low computational complexity, while enterprise protocols typically were not
designed with such constraints in mind. Currently, the integration of these devices
is – from an enterprise point of view – still a cumbersome task that requires a lot of
specialized knowledge, which a business process creator or enterprise developer might
not have.

Semantics-aware services allow easier integration and interoperability on both a
semantic and a modeling level. On the semantic level, the goal of semantic-aware
services is to not only to provide machine-interpretable data, but to provide machine-
understandable data in a service-oriented architecture. Exact interchange of semantically-
enriched services allows the integration of previously unknown devices and services
without human interaction. This allows an SOA-based integration of all kinds of
services into reasoning [145], complex event processing [321] and machine learning
systems [134]. It enables semantic querying [95, 67]. A semantic description of the
technical layer also enables ERP system to access a technical interface on a device that
is solely specified as part of the service description.

On the modeling level, semantic-service descriptions integrate well into recent
modeling approaches. The goal of business IT is to have domain experts specifying the
business process at a very high level, ignoring the technical details at the lower levels.
As these new technologies emerge the competitive pressure for vendors of enterprise
systems increases to deliver solutions that allow easy integration.

In future we foresee the use of Business Process Modeling (BPM) tools to model
business processes that include IoT services. Many enterprises are working on extending
the business process modeling notation (BPMN) [288, 87] to include also modeling
elements for IoT-specific processes [267]. The BPMN standard includes a graphical
and a machine-readable process representation. These process representations describe
the planned process execution flow for the process execution engine of the enterprise
system. To support both the design phase and the execution phase, business modelers
need to know what they are modeling (e.g. what kind of things can be modeled, what
services can be called and what they would get back from the services) [329, 265].
Modern modeling based IoT-integration are covered in detail in the works of Meyer et
al. [265, 267], in Caracacs and Kramp et al. [74, 72, 70, 71] and Sungur et al. [366].

Our work is closely related to the modeling and enterprise integration work of
Meyer et al. [265, 267, 268, 264] and Ruppen et al. [329, 330]. But its use in an
enterprise modeling context is, of course, not limited to BPMN. Any other modeling
language, for example CMMN [247], could be used as well. In the following, we use
the BPMN model of Meyer et al. to illustrate the use of services and a description
model. Their BPMN solution leverages on semantic descriptions.

Typically, the modeling expert is not a programming expert. Therefore, modeling
experts are more interested to know what kinds of operations are available and on
what kinds of entities they can operate, rather than on low-level programming related
details. A solution to this are semantically-enriched service descriptions. An IoT
process modeled in the graphical notation of BPMN is shown in Figure 1.2 [267].

The minimal business process, as modeled in Figure 1.2, consists of two lanes:
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Figure 1.2: Graphical Modeling of a simple Internet of Things process (based on Meyer
et al. [267])

one showing the actual business process and one showing the IoT-related tasks. The
IoT-device shown in the IoT lane is represented as an IoT-sensing task.

The full approach for BPMN-based IoT integration is illustrated in Figure 1.3.
As can be seen precise service definitions are necessary for such a system to work.
Our work contributes to the technical aspects of IoT business process integration by
introducing service descriptions and a semantics-aware underlying platform that can be
used as a basis for a modeling framework. The business process binds to a RESTful
API running on an IoT device. The RESTful API itself exposes a service running on
an IoT device, for example, a temperature service running on a sensor node. The node
itself is either attached to or related to a physical entity. The term physical entity refers
to any physical object that is relevant from a user or application perspective. The service
running on the IoT node and its technical interface are described in a description model
that can be used by the modeler.

Figure 1.3: IoT-service BPMN integration (based on Ruppen et al. [329])
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There are basically two different possibilities that could be used within such a
business process tool-chain: a bottom-up and a top-down approach. Both approaches
are visualized in Figure 1.4. Following a bottom-up approach means describing existing
IoT-services and their technical interfaces by using an external service description
language. This approach is separate from the actual service running on the IoT device
and the protocol stack or services running on the sensor nodes do not need to be changed:
The service description simply describes the offerings of that particular service. In
contrast, a top-down approach would mean to using an existing enterprise service
protocol and running it – maybe in a scaled-down or limited version – on the sensor
node itself. We use the Open Data Protocol (OData) as the already existing enterprise
protocol. In the bottom-up approach, we use a service description language named
Linked USDL for IoT. We will introduce both in detail in the remainder of this thesis.
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Figure 1.4: Bottom up vs. top-down approaches

1.4 Internet of Things Stack

The Internet of Things (IoT) is a broad and diverse field. The hardware alone can range
from small sensing devices to smartphones that have a comparable processing power to
desktop machines. In the following, we will briefly introduce the Internet of Things
hardware and protocol stack we are considering in this thesis. It is important to note
that there is no generic IoT stack. Therefore, whenever we refer to IoT stack or IoT
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protocol stack, we refer to the stack as presented here. In situations where, for example,
only mobile phones or tablets are involved, the traditional Internet stack could be used.
Nonetheless, in our experiments we are targeting low-resource, very constrained devices
running REST-based Internet technologies. All the concepts presented here can be
scaled up and used in less constrained scenarios.

RFC 7228 [54] classifies constrained devices into three disjunctive classes. The
three classes are shown in Table 1.1. We added the common processing capabilities to
the respective classes, though those are not part of the official RFC 7228 classification.

Class Data Size Code Size CPU

0 < 10 KiB < 100 KiB < 15 MHz (often 8 bit)
1 10 KiB 100 KiB 25-30 MHz
2 50 KiB 250 KiB > 30 MHz (sometimes 32-bit)

Table 1.1: Constrained devices classification (based upon RFC7228 [54] with CPU
capabilities added)

Class 0 devices are very restricted. Most sensor nodes are part of this category.
Typically, Class 0 devices have very limited processing power, often less than 15
MHz [233], with 8bit architectures, and non-multithreaded and non-superscalar CPUs.
Integrating such devices into an IP-based system is challenging. Often the help of
network gateways or (transparent) proxies is necessary.

Class 1 devices are still somewhat limited, but they are already capable of running
rather complex protocols. This class of devices can often be easily integrated into an
IP-based network, without the dedicated help of a (transparent) proxy or gateway.

Class 2 devices are capable of nearly everything modern multiple-purpose systems
can do. But they often need to fulfill certain energy constraints. This can be done, for
instance, by using specialized protocols.

We are mainly interested in constrained devices and in the interoperability between
such constrained devices and enterprise systems. While of our experiments used Class 0
devices, we are not limiting ourselves to such devices. Using devices at the lower end of
the classification has the advantage of being able to work with any type of constrained
device later on, as upsizing to a more powerful device is easier than downsizing to an
even more constrained device than the one originally used.

Moore’s Law 3 [276] is also valid in the embedded domain [291, 166]. Nonetheless,
the developments in terms of processing power are at a much lower scale because cost
and energy consumption are the major drivers in many applications, and not necessarily
processing power. Therefore, the classification presented in Table 1.1 will be subject to

3In 1965 Gordon Moore, then with Fairchild Semiconductor, predicted that ”the complexity for
minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over
the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of
increase is a bit more uncertain, although there is no reason to believe it will not remain constant for at
least 10 years.” – it is astonishing that he based his law on only three datapoints [338].
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change in the upcoming years.
This work does rely on the traditional Internet stack, which is often used in current

enterprise applications. Instead, we base our work on a stack on top of 6LoWPAN, UDP
and the recent Constrained Application Layer Protocol (CoAP). The stack is shown in
Figure 1.5. The basic ideas behind these technologies will be introduced in Chapter 2.

TCP 

HTTP 

Application  

IP 

UDP 

CoAP 

Application 

IPv6 over 
LoWPAN 

Internet Stack IoT Stack 

Application  
layer 

Transport layer 

IP layer 

Figure 1.5: Assumed IoT protocol stack

Both protocols, HTTP and CoAP, are designed according to the RESTful paradigm.
RESTful architectures are currently predominant on the Internet. In 2010, there were
already five times more REST-based services available than WS*-based services. Be-
tween 2007 and 2010 alone, a 900% increase of publicly available REST services was
observed, while the number of WS-* based services merely tripled [2]. Furthermore,
also in the enterprise world, more and more systems are being moved to RESTful
designs [279, 208]. For example, RESTful services for cloud applications and mobile
applications are currently mainly written in RESTful way [89, 328], or the initiatives of
SAP and Microsoft to make the RESTful OData protocol suite the RESTful successor
of the WS-* family. Chapter 2.4 will provide a closer look at the details.

The used hardware and software platforms are visualized in Figure 1.6. The software
was based on the Mote Runner IoT environment [182]. Mote Runner is an (prototype)
operating system and integrated development environment published by IBM Research
Zurich. Its development began in 2010. Mote Runner’s main objective is to bring
modern programming concepts to very constrained Internet of Things devices. It has
a custom-written virtual machine and compilers for C# and JAVA. It also features an
extensible and accurate simulation environment. We expect the Mote Runner platform
to be well suited for enterprise application developers, as most of them are familiar with
one of those languages and nearly no specialized knowledge is necessary. We explain
the capabilities of the Mote Runner environment in Chapter 2.2.

The experiments were conducted on either the IRIS platform or the Waspmote Pro
platform. Both platforms are Class 0 devices according to the classification in Table 1.1.
They mainly differ in their capabilities to run in different hardware modes and different
power consumption characteristics. The two platforms are introduced in Chapter 2.1.

We designed and implemented a measurement framework based on Mote Runner.
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This framework enables us to measure power consumption, all kinds of time-based
measurements as well as the memory consumption. Based on this, a comprehensive
view of the system state and its hardware/software profile can be determined. We
describe this measurement framework in Chapter 8.6.

1.5 Application-layer Energy Saving

A typical problem in wireless systems is the reduction of maintenance and on-site
work, and, thus, a decrease in the total costs of ownership. Many industrial scenarios
in which IoT devices are used – like in the supply chain or in automation – often
operate in environments in which regular physical access to the sensor nodes and their
batteries is not feasible. Especially, when manual (human) work is needed to replace
the power source and/or network downtime is necessary for these maintenance tasks.
A lot of research on energy saving has been done on the network, MAC layer and
on the hardware. Semantics-aware enterprises allow utilizing the application layer as
well. In remote monitoring scenarios, a close-to-zero on-site presence for maintenance
and administration is desirable [201, 243, 172]. The problem of such a close to zero-
maintenance has several management and operational aspects attached to it: Remote
management of IoT devices allows configuring and reconfiguring nodes without on-site
interactions. Frameworks such as MARWIS [393] or ADAM [364] allow the remote
management of devices. This includes remote code updates [62, 215]. In the operations
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network lifetime and energy-saving are the main drivers. The longer a node is running,
the less costs-intensive the system typically is. In many industrial scenarios, regular
physical access to the sensor nodes and their batteries is not a feasible option.

In terms of operations, several possible approaches address the IoT lifetime problem:
Most are on the hardware-layer (CPU sleep modes, radio states) and they try to increase
the radio-off time and decrease the CPU power consumption (e.g. frequency scaling or
voltage scaling). Recently, the focus of research has shifted to some extend, towards the
upper layers of a typical IoT-stack. While lower layer support for sleep states performs
quite well, these functionalities are unaware of any timing or operational aspects of
the application layer and therefore cannot leverage on that basis. A semantics-aware
architecture makes this information available. It allows taking more decisions at the
application layer. A concept called sleepy nodes [372, 311, 325, 172] assumes that
many IoT-nodes will be used rather infrequently and, thus, they can sleep for longer
periods of time. Nonetheless, for the user of an IoT system a node should never appear
as unavailable. Despite the energy constraints, the user of an IoT-system should be
served as best as possible taking known system behavior into account, anticipating or
calculating the expected system usage. Even in case where the system did not anticipate
the usage of a node and the node is sleeping, often there is value in information that is
either cached or arriving late.

1.6 Contributions

During the development of the work and projects, forming this thesis, a number of
contributions have been achieved. The main contributions can be summarized as
follows:

1. IoT-Services and Classification We realized that the term ”Internet of Things-
service” or ”IoT-service” is either used in a rather undefined or intuitive way and
that it is only infrequently defined. We worked on a nomenclature of the key
concepts of the Internet of Things domain and their relationships [380, 56, 35,
259], with a focus on service. Therefore, we surveyed [380, 259] the existing
literature and compared existing uses of the term IoT-service. Based on our
work on IoT concepts we introduced – to our knowledge – one of the first
comprehensive definition and classification of IoT-service. Compared to related
definitions, it does not only define service as a technical interface, but as more
comprehensive concept that takes the physical nature of the Internet of Things
into account.

2. Enterprise embedded IoT-services We present conceptual work on the archi-
tectural building blocks and design considerations for an Internet of Things
service integration framework [381, 375, 382, 373, 374]. We present a novel IoT-
enterprise integration framework based on a linked services approach [375, 373]
to enable interoperability between a semantics-aware enterprise and IoT-devices.
Its novelty is the combination of Linked Services and the distribution of services,
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which combined, serve the needs of both enterprises and constrained IoT-devices.
We argue that (distributed) Linked Services are especially well suited for IoT-
applications, given their limited battery power, as well as storage and processing
constraints. Thus, Linked Services do not only enable interoperability, but also
suit the needs of constrained devices.

3. Semantics-awareness and Linked USDL for IoT We introduce an extension to
Linked USDL [76], called Linked USDL for IoT [378, 259, 382, 187], to support
the Internet of Things. We contribute four new vocabularies to Linked USDL
to support Internet of Things applications. Each of these vocabularies targets a
specific aspect of the Internet of Things. The covered aspects are events (usdl4iot-
event), quality of information (usdl4iot-qoi), technical endpoints (usdl4iot-ep),
and the REST paradigm (usdl4iot-rest). Furthermore, we embedded it into
related ontologies. In the context of our semantics-aware architecture Linked
USDL for IoT can be used to establish a bottom-up approach. In order to be
able to evaluate Linked USDL and our architecture, we based our architecture
evaluation on an architectural evaluation method, IoT-stakeholder workshops and
a survey that allowed us to get insight into the current views of the enterprise
and academia on the IoT community with respect to semantics [34, 377, 259].
The architecture evaluation showed that our architecture is capable of supporting
distributed Linked Services. We also observed a trend and some anticipation
towards RESTful designs, as well as an anticipation of an increased use of
and interest in semantics. The field also seems to be more mature nowadays,
moving towards standardized technology. A need for standardization of semantic
vocabularies has been identified as well as a perceived lack of training.

4. OData for very constrained IoT-devices In conjunction with our architecture,
a service description and a technical protocol stack is needed. Interoperability
between enterprise systems and very constrained (e.g. Class 0) IoT devices is usu-
ally accomplished by having gateways that translate between the protocols used
in the IoT domain and the protocols used in the enterprise domain. We investigate
a top-down and a bottom-up approach. As the protocol for the top-down approach
we chose OData [379]. OData is currently being discussed as the solution to
interoperability issues within enterprise systems. According to our knowledge,
we are the first who applied OData to sensor nodes. We showed the feasibility of
this approach for sensor nodes [379] and evaluated the solution on a stack based
on 6LowPAN and CoAP. We compared OData in its two representations JSON
and ATOM with a minimal CoAP-only payload. The difference between this
CoAP baseline and the OData representation can be considered ”the price” to be
paid for a standards-conform semantic interoperability.

5. Sleepy Nodes Implementation and Monitoring Framework Sleepy Nodes
are an application-related research field [372, 311, 325, 172]. Sleepy nodes are
sensor nodes that might be in an energy-saving mode for some time and, thus,
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not available for any communication. We developed a complete prototype system
[372] running on two hardware platforms: MEMSIC Iris and Waspmote Pro.
Compared to energy saving measurements on protocol level or on hardware
level (e.g. frequency or voltage scaling) we leverage on information that can
be stored in semantic repositories based up on application layer knowledge
of the application and the associated things to be monitored. We derived a
hybrid energy model for both platforms. The energy model can be used to
calculate beneficial sleep times. We were able to show the general benefit of
application-layer sleepy nodes. We experimentally evaluated three different
strategies: a first fit, an exhaustive approach and a heuristic named dynamic
partitioning. We demonstrated that within a time-sliced (windowed) environment
this heuristic based upon combinable subsequent measurements further reduces
the energy consumption. It achieved only slightly worse network lifetimes than
the exhaustive approach and generally performs better than first fit.

1.7 Outline

This thesis is divided into five parts. The remainder of this first part, Chapter 2,
introduces the foundations and related work required to understand this thesis and
introduce related work. We first describe the sensor network hardware and software
platform used. Furthermore, we give a brief introduction to 6LoWPAN and the MAC
layer protocol 802.15.4 on top of which the software platform is operating. In addition,
a brief introduction into semantic modeling techniques is presented. We then present
related research approaches, mainly in the areas of semantic modeling area and service
integration.

The second part introduces our conceptual work on Internet of Things service
architectures. Chapter 3 presents the building blocks of an Internet of Things archi-
tecture with a focus on services. We then proceed, in Chapter 4, with describing how
IoT-services can be embedded into an enterprise environment.

The third part of this thesis introduces the service descriptions and protocols we
developed. Chapter 5 presents an extension of the Linked USDL service description
language and further extends it towards supporting the Internet of Things. We use a
custom implementation of CoAP for a reactive VM-based OS, which we present in
Chapter 6. In Chapter 6.3, based on the CoAP implementation, we describe how we
used a downscaled OData implementation for small embedded IoT devices. Finally,
Chapter 7 concludes this part by presenting a lightweight REST-style Sleepy Node
protocol and a window-based integration into enterprise systems.

In the fourth part, which consists of Chapter 8, we present the evaluation results of
the aforementioned contributions. We distinguish between an empirical evaluation and
an experimental evaluation.

Finally, the fifth part concludes the thesis. Chapter 9 first summarizes the thesis and
then gives further research directions that could develop out of this thesis.
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Chapter 2

Foundations and Related Work

This work relates to multiple research and practice areas – ranging from networks and
embedded systems, and enterprise systems and service science, to software engineering.
This chapter introduces the necessary basic concepts and technologies that will assist in
understanding the research presented in this thesis. Some attention is given to semantic
modeling technologies, the embedded software, and the hardware stack. Furthermore,
we give an overview of related work. We discuss previous approaches for describing
services and semantically enrich them. We then continue with discussing enterprise
integration based upon Web Services, REST services, and business process modeling.

2.1 Hardware

In this section, we first give a general overview of WSN/IoT sensor devices, with focus
on the most well-known ones: MicaZ, TelosB, BTNode, and SUN Spot. We then
introduce the hardware used in our experiments – IRIS and Waspmote Pro. IRIS is
comparable to TelosB-class motes. Waspmote is based on a more recent platform and it
features advanced capabilities like a very precise real-time clock (RTC).

2.1.1 Overview

The main components of a typical WSN/IoT sensor/actuator node are illustrated in
Figure 2.1. The power supply unit (PSU) is often a battery, but it can also be the power
grid directly. Battery powered devices can have as less as 2Ah of energy, and up to
85Ah and more [126]. Sometimes, IoT-devices are equipped with solar panels [10] or
further energy harvesting technologies, such as temperature differences [342] or piezo
electronic conversion [137] .

Sensors and actuators are either on-board (often temperature) or can be ”plugged
in” on-demand. Most sensor platforms have GPIO, UART, and/or I2C interfaces to
adopt to the actual needs of a specific application. Random access memory (RAM) is
often a limiting factor. As shown in Table 1.1, in Class 1 and Class 2 IoT devices its
not more than 10 KiB or 50 KiB, down to much less than 10 KiB in Class 0 nodes.
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Figure 2.1: Main components of a typical sensor network platform

(a) MicaZ [262] (b) TelosB [263]
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Figure 2.2: Sensor Nodes
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One can observe two classes of sensor devices: The more ”classical” devices which
have been developed in the late 90s and early 2000s, like the Berkeley family of Nodes
[327]. The most prominent members of this family are WeC [258] (1999), Mica [167]
(2001), Mica2 [100] (2002), MicaZ [260] (2004), Telos / Telos Rev. B [303] (2004).
Mica2 and MicaZ are almost identical, but use different Radio hardware.

Similar platforms as the Berkeley line of nodes have been developed at various
places. For example, BTNode [46, 45, 44] from the Federal Institute of Technology
(ETH) Zurich, ScatterWeb [340, 339, 21] at the Free University of Berlin, IMote [206]
and IMote2 [277] from Intel, and the Zolertia Z1 [407] motes. IMote, an exception at
that time, was based on a Bluetooth communication stack. IMote2 introduced 802.15.4
support in 2008. One of the first platforms with VM-based high-level language support
was the Sun Small Programmable Object Technology, better known as Sun SPOT [361].
The main difference, compared to the state of the art at that time, was the use of the
squawk virtual machine [358, 359]. MicaZ, TelosB, BTNode and SunSPOT are shown
in Figure 2.2. A comparison of their main features is given in table 2.1.

Although MicaZ and Telos were introduced as early as 2004, they are still used in
many research papers even in 2014 (e.g. Basu et al. [31] or Zhu et al. [405]). More
recent platforms are slowly being adopted by the research community. A recent boost
in usage of more advanced hardware has been driven by projects like Arduino. This
is mainly because it provides a modern platform and sensor/actor technology for a
reasonable price.

MicaZ TelosB BTNode Sun SPOT

CPU Atmega128L[16] MSP430[369] Atmega128L ARM920T[15]
Radio CC2420 [371] CC2420 CC1000 [370] CC2420
RAM 4 kb 10 kb 64 kb 512 kb
BUS 8 bit 16 bit 8 bit 32 bit
Clock 8 MHz 4-8 MHz 7.37 MHz 180 MHz
Flash 128 kB 48 kB 128 kB 4096 kB
Weight 16g 15g 30g 34g

Table 2.1: Sensor node comparison

In this work uses two (simulated) hardware platforms: IRIS [261] from MEMSIC
which is comparable to the Berkeley families Mica2 and TelosB, and the state of the art
Waspmote Pro [233] platform.

2.1.2 IRIS

The IRIS platform is the latest generation of Motes from MEMSIC, which also dis-
tributes the MICAz and TelosB nodes. As a typical embedded platform it has only a
very limited processing capabilities (8 bit, 8 MHz, AVR RISC architecture) amount of
memory (8 KByte), but plenty of flash: for program as well as for data. It as a Class 0
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device according to the constrained devices classification [54] (see Chapter 1.1). The
main features of the platform as used in our simulations are shown in Table 2.2. More
fine-grained power specifications, specificaly for IRIS on Mote Runner, can be found in
Caracacs et al. [69].

Figure 2.3: IRIS mote

IRIS

CPU

Type ATmega 1281
Architecture RISC
Instructions set AVR, 135 instruction

Memory

Program flash 128 KByte
Data flash 512 KByte
RAM 8 KByte
Configuration EEPROM 4 KByte

RF Transceiver

Frequency 2405-2480 MHz
Data rate 250 kbps
RF power 3 dBm (typ)
Receive sensitivety -101 dBm (typ)

Power Specifcations

Current draw (CPU) 8 mA CPU, active
8 µA CPU, sleeping

Current draw 16mA listening
17 mA TXing@+3 dBm

Table 2.2: IRIS mote (based on [261] and [17])
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2.1.3 Waspmote Pro

The Waspmote Pro is a commercially available IoT sensor/actor node. Compared to
most previous research (e.g. those based on MicaZ or TELOSB), it did not develop
out of a research prototype. It uses state-of-the-art hardware and sensors, including
advanced energy sleep modes and a precise temperature-compensated crystal clock
with RTC capabilities [234]. It is a typical embedded platform (8 bit, 14 MHz, AVR
RISC architecture). The power consumption is a little bit worse on the Waspmote Pro
compared to the IRIS mote. Nonetheless, it features a hibernate mode where the mote
consumes very little energy, but needs some time to wakeup. In simulation, we assumed
the hibernate mode to use 0.7µA as per Waspmote datasheet [233] and confirmed by
experimental results [360]. A (simulated) hibernate reset to took 8ms. Only, when an
RTC alarm is activated, is the board powered again. Possible sleeping (hibernating)
interval values go from seconds to minutes, hours, and even multiple days [ 235]. The
features of the platform as used in our experiments are outlined in Table 2.3

Waspmote Pro

CPU

Type ATmega 1281
Architecture RISC
Instructions set AVR, 135 instruction

Memory

Program flash Memory 128 KByte
Serial flash up to 2GB
RAM 8 KByte
SD-Card 2 GB
Configuration EEPROM 4 KByte

RF Transceiver

Frequency 2405-2480 MHz
Data rate 250 kbps
RF power 3 dBm (typ)
Receive sensitivety -101 dBm (typ)

Power Specifcations

Current draw 15 mA CPU, active
55 µA sleeping
0.7 µA hibernating

Current draw 12.3mA listening
14 mA TXing@+3 dBm

Table 2.3: Simulated Waspmote (based on datasheets [235, 233, 234])
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2.2 Mote Runner System

In the following we introduce the Mote Runner System. It is a VM-based operating
system for embedded devices that we used for software development and evaluation of
our protocols and algorithms.

2.2.1 Overview

IBM Mote Runner [73] is a run-time platform and development environment for the
Internet of Things. Its operating system is suitable for a variety of CPUs (8,16, or 32
bit). Its minimal requirements are are just 8 KB RAM, 64 KB Flash and an 8 bit CPU;
hence, it is especially suited for IoT applications. It follows a virtualization concept.
Applications (written in C# or Java) are compiled into bytecode and executed by a virtual
machine (VM). Figure 2.5 shows the main components of the Mote Runner. The Mote
Runner system consists of a simulation environment, a stack or run-time environment
that is running on the mote, and a JavaScript gateway called Sonoran to interact
with both. Sonoran1 is an off-mote, JavaScript based programming and management
environment [181]. Furthermore, Mote Runner has a framework for developing web
applications called Comote. It is mentioned only to ensure for completeness.

The actual environment as it is running on the mote is shown in Figure 2.6. All the
applications are written in either C# or Java. Both languages can share libraries written
in either C# or Java. The MRv6 protocol, which is explained in detail in Chapter 2.3.3,
has been written in C# but is used as part of our Java code. The operating system itself
(including the VM) and the hardware abstraction layer (HAL) are written in C.

As mentioned, the Mote Runner system uses Java and C# as high-level programming
languages. This is supposed to decrease the development time of sensor network
applications as developers can work with a familiar programming language. The
reactive nature of the Mote Runner system is supposed to reduce concurrency-related
programming errors. Nonetheless, there are some limitations compared to standard C#
or Java. The main differences are as follows [181]:

• No native float and double data types. Currently only fixed comma operations
are possible

• Only 32-bit integer arithmetic. 64-bit or longer integer arithmetic is not supported

• Multi-dimensional arrays are not supported

• Run-time inspection, including getClass methods or Reflection is not supported

• Standard runtime APIs are not available.

• Enumerations are not supported
1The developers of Mote Runner give the following explanation for their naming scheme [ 181]: The

Mote Runner and several of its components are themed around the Arizona desert. Mote Runner alludes to
roadrunner, which is a bird in the cuckoo family. Saguaro is a large, tree-sized cactus specifies. Sonoran is
the name of a desert south of Mojave and, finally, Comote stems from and is pronounced alike coyote, the
American jackal or the prairie wolf.
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(a) Node (b) Waspmote Pro components (top)

(c) Waspmote Pro components (bottom)

Figure 2.4: Waspmote Pro
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Figure 2.5: Mote Runner system overview (based on IBM [181])

• Templates are not supported

• Inner classes in C# are not supported (but are in Java)

• Multicast Delegates are not supported

• Threads/Multithreading are not supported (reactive programming model)

• Bool and Boolean arrays are not supported

• String type and String array are not supported

• Boxing is not supported

• Integer size is 16bit, not 32bit

The memory model of Mote Runner is similar to that of Java. It uses a Garbage
Collector algorithm that is only executed when the VM is not active. However, as
execution of the the garbage collection algorithm takes some time, it could interfere
with event deadlines.

2.2.2 Toolchain

As the Mote Runner VM is based on an optimized bytecode and not the original, the
system comes with its own tool chain – that supports C# and Java at the same time.
Libraries written in one language can be used in the other language and vice versa. The
toolchain is shown in Figure 2.7 [73]. The parts that have been specifically written
for the Mote Runner system are in gray. The Java and C# compilers are the original
compilers as delivered by Sun and the Mono project.
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C# CLI assembler3 Mote Runner assembler3

MyDelegate d;
d = null;

...
ldnull
stloc.1

...
ldc.null ; normal 16-bit null
r2dd ; delegates are 32-bit
st.d.1

Figure 2. Comparison: Null-ing a delegate.
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Figure 3. Mote Runner tool chain from source code to
executables.

corresponding CLI byte codes in terms of performance on an
embedded system, as we eliminate the indirection introduced
by object encapsulation. Moreover, to our knowledge there
is no other embedded VM with native support for delegates.

5. Tool Chain

A virtual machine, especially one that introduces a new
byte code, cannot stand isolated. We have therefore devel-
oped a complete tool chain that currently supports both Java
and C#. This tool chain allows multi-language development
in the sense that a library written in one of the supported
languages can be used from any other of the supported
languages. For Java and C#, the process is shown in Figure 3,
where tools are represented on the left side and their
resulting file artifacts on the right side — our contributions
are highlighted.

In step 1, the source code is compiled with a standard
compiler for the respective language. For Java this might be
the Sun Java SE compiler, for C# there are the Microsoft
and Mono compilers. Next, in step 2, the resulting byte
code is converted by our own converter into an intermediate
language format, an object-oriented assembler which uses
our own byte code. These assembly files are processed by
our assembler in step 3 to generate compact load files that
can be loaded to and stream-linked on the embedded device
(see Section 6 for more details). When the output is a library
instead of an application, the assembler further generates
so-called exchange files describing the public API of the
generated library. From these exchange files a stub generator
creates in step 4 matching high-level language stub libraries
against which other applications written in these high-level
languages can link.

6. Load Files and Stream Linking

Dynamically loading and linking applications on power
constrained devices is a crucial aspect. Stream linking allows
for linking applications in a single pass and without costly
fix-ups (e.g. writing to flash memory) which consequently
saves computation cycles and valuable battery resources.
Moreover, communication itself, and especially radio com-
munication consumes power in the same order of magnitude
as running computations on the micro-controller [13]. To
meet our low-power design goal, it is crucial to be able
to stream link as well as transmit as little as possible
when loading new applications, particularly if multi-hops
are involved. Hence, we introduce a compact load-file for-
mat which allows applications to be stream linked on the
embedded device. In our system, a load-file is the binary
representation of an assembly (cf. Section 3.)

Load files are transferred to the embedded device using a
protocol which divides the load-file into smaller units that
fill up a transmission unit including the protocol overhead.
On the embedded device, a loader and linker processes the
load-file chunks sequentially, internally buffering in RAM
until enough data has been received to process some logical
structure. The load file is designed so that modifications of
the loaded data structures can take place in RAM before
they are eventually flushed out to persistent storage (flash,
EPPROM). This technique avoids processing stored data a
second time to perform fix-ups and reduces flash strain.

To facilitate loading and linking using a small RAM
buffer, the load file contains transient information which
only serves to help fix up certain values. These transient data
elements are removed during loading and linking and are not
written to persistent storage. Furthermore, to reduce the size
of load files, padding is omitted which can be reconstructed
on the fly by the loader on the embedded device.

All integer values are encoded in big endian byte order;
the loader can adapt the byte order to the specific platform

Figure 2.7: Mote Runner Tool Chain (Caracas et al. [73])

Mote Runner uses a purely reactive programming model [ 73]. No further support
for concurrency (e.g. Threads) is provided. In a reactive programming model the
application registers methods to be executed whenever a corresponding event res, for
example a timer event. From an VM implementation point of view this requires one and
only one virtual machine stack and no synchronization [73]. Only one event handler
is active at any given point in time. This typically results in simple application code.
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Dec 2014 • Mote Runner Beta 17.1.8 Supports WiMOD880 developer kits as
well as LoRaMote devices

Jun 2014 • Mote Runner Beta 16 Supports IMST WiMOD880 developer
kits as well as LoRa Blipper (v2) motes.

Dec 2013 • Mote Runner Beta 14 Improved support for Waspmote Pro
and IRIS.

Oct 2013 • Mote Runner Beta 13 First version for Waspmote Pro.
Shipped with an improved version of
the 6LoWPAN implementation, called
MRv6.

Mar 2013 • Mote Runner Beta 11 This version was the first to ship a
6LoWPAN implementation.

Aug 2012 • Mote Runner Beta 9.0
Apr 2012 • Mote Runner Beta 8.2
Mar 2012 • Mote Runner Beta 8.1
Mar 2012 • Mote Runner Beta 8 This was the first version we worked

with. It did not support 6LoWPAN yet
and was only usable for experiments on
the MAC layer.

Aug 2011 • Meta Runner Beta 5
Jun 2011 • Mote Runner Beta 4
Dec 2010 • Mote Runner Beta 3.0
Jul 2010 • Mote Runner SDK 2

Table 2.4: Mote Runner timeline (based on information from [182])

Nonetheless, handling of events should not require lengthy processing. Such lengthy
processing must be split up into smaller pieces which are driven by, for example, a
priority task list or by some timer event [73].

2.2.3 Version History

The Mote Runner system was still a research prototype when we conducted this research.
Several Mote Runner versions were used while this thesis was written. Mote Runner
contributed to the EU-funded research project IoT-A, which also partly funded this
research. We used publicly available snapshots of Mote Runner, as well as versions that
were initially only made available to project partners. In Table 2.4 we give the version
history of Mote Runner and a brief overview of what has been added.
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2.2.4 Hardware

Mote Runner is a software platform that provides applications a vm-based (byte-code)
abstraction of various underlying hardware platforms. However, not all versions of
Mote Runner support all hardware platforms. Versions beta16 and beta17 do not support
the 2.4GHz based devices.

AVR RAVEN Atmel RZRAVEN is a sensor mode consisting of an AT86RF230 radio
transceiver and an AVR ATmega1284P microcontroller. AVR RAVEN has been
supported since Mote Runner beta4.

AVR RZUSBSTICK AVR RZUSBSTICK is an USB stick based on the USB mi-
crocontroller AT90USB1287 and the AT86RF230 radio transceiver chip. AVR
RZUSBSTICK has been supported since Mote Runner beta4.

WiMOD WiMOD is the name of a series of modules from IMST 2 for the 169 MHz,
433 MHz, 868 MHz and 2.4 GHz frequency bands. WiMOD has been supported
since Mote Runner beta16.

Blipper LoRaMote A long range (LoRA) technology mode from IMST. Blipper Lo-
RAMote is supported since beta16.

SmartMesh IP SmartMesh IP, developed by Linear3, is a sensor network platform
aiming for 6LoWPAN support. SmartMesh IP is supported since beta16.

IRIS The MEMSIC IRIS was one of the first types of devices supported by Mote
Runner. It is one of the platforms that we use in our research. More details
about the IRIS platform can be found in Chapter 2.1.2. IRIS has been (publicly)
supported since Mote Runner beta3.

Waspmote Pro Waspmote Pro is a recent sensor network platform developed by Li-
bellium. It is one of the platforms we are using in our research. More details
about the Waspmote Pro platform can be found in Chapter 2.1.3. Waspmote Pro
has been supported since Mote Runner beta13.1.

2.3 Protocols

The following presents two protocols that we used throughout this thesis. The first
one is 802.15.4, the MAC layer protocol is used by the IRIS and Waspmote radios.
The second one is 6LoWPAN [221]. 6LoWPAN is a networking layer protocol, that
is often used on top of 802.15.4. Both protocols, 802.15.4 as well as 6LoWPAN, are
very sophisticated. They fill several hundred pages of standardization documents. We
give only a brief introduction into the main concepts needed to follow the remainder of

2www.wireless-solutions.de
3www.linear.com/products/smartmesh ip
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this thesis. Furthermore, we expect at least a basic understanding of typical networking
protocol stacks.

2.3.1 802.15.4

802.15.4 is a MAC layer protocol. It controls access to the physical medium. The
physical medium is shared by all nodes that are in the vicinity of each other. The MAC
protocol, therefore, provides a means of determining when it is safe to send and when it
is not. The 802.15.4 MAC layer, which is used throughout this work, provides channel
access management, acknowledgment of frame reception and frame validation.

The 802.15.4 protocol is defined by the 802.15.4-2003 [183] standard. The original
IEEE 802.15.4-2003 was revised in 2006 [184]. We will refer to this amendment as
IEEE 802.15.4-2006. Another amendment was released in 2007 as IEEE 802.15.4a
[185]. IEEE 802.15.4 defines Layer 1 (Physical Layer, PHY) and Layer 2 (Media
Access Control Layer, MAC) of the ISO/OSI reference model. The main properties of
an IEEE 802.15.4 network are:

• Packet size of a maximum of 127 bytes

• Tree, star or mesh topology

• Good energy vs. performance tradeoff

• Up to 65,536 nodes

Frequency (MHz) Channels Data rate (kBit/s)

868 1 20 (PSS: 250)
915 10 (2003), 30 (2006) 40 (PSS: 250)
2400 16 250

Table 2.5: 802.15.4 Frequencies, channels and data rates

The physical layer (PHY), according the original standard, can work in three
different frequency bands – namely 868 MHz, 915 MHz and 2.4 GHz. 802.15.4-2006
introduced a technology called Parallel Spread Spectrum (PSS) that is able to increase
the data rates in the 868 and 915 bands. Table 2.5 shows the possible 802.15.4 (not
802.15.4a) frequencies, channels and data rates. The 2007 standard 802.15.4a supports
frequencies below 1 GHz, between 3 and 5 GHz and between 6 and 10 GHz. The main
differences between 802.15.4 and 802.15.4.a are [192] the introduction of alternative

PHYs – namely the Ultra Wide Band (UWB). Furthermore, another layer called CSS
(Chirp Spread Spectrum) [192] has been introduced, which offers 14 channels in the
2450 MHz band providing data rates of 1MBit/s. Channel sharing is achieved by
applying carrier sense multiple access (CSMA). Acknowledgments are provided for
reliability.
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Figure 2.8: 802.15.4 frame

The packet format of 802.15.4 consists of three parts: a header, a data chunk, and
a footer. The header contains all the necessary control data (for example addresses or
sequence numbers) for transmitting a frame. The layout of an IEEE 802.15.4 frame is
shown in Figure 2.8. It consists of control data, a sequence number, an address, some
extra security headers, the actual data to be transmitted, and a frame check sequence.
The control data specifies how a receiver should interpret the frame and if it is to be
acknowledged or not. The IEEE 802.15.4 MAC layer defines four different frame types:

Data frames: Date frames are used for the transport of actual data. Most protocols
building on the 802.15.4 MAC layer just use data frames. The 6LoWPAN
implementation used in this thesis (MRv6, see Chapter 2.3.3), for example,
packages all its information (including the superframe) into MAC layer data
frames.

Acknowledgment frames: These are used to acknowledge the receipt of a frame.

Command frames: Command frames allow sending low-level commands from one
node to another.

Beacon frames: Beacon frames can be used as coordinators to structure the communi-
cation with nodes.

The sequence number, following the control data, is used to match acknowledgments
to frames. The address section contains the address of the sender of the frame and the
address of the receiver.

2.3.2 6LoWPAN

In the following, a very brief introduction to the core ideas and concepts behind
6LoWPAN is given. The complete specifications of IPv6 and 6LoWPAN consist of
several hundred pages; therefore, for a more thorough introduction, the specifications
[221, 176] or specialized books like the one by Shelby [351] are recommended.

Notably, 6LoWPAN is considered one of the key enablers of the IoT [113], as it
allows direct integration of motes into an IPv6 network [80]. 6LoWPAN is an acronym
for IPv6 over Low-power Wireless Personal Area Network. Nonetheless, some authors
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argue (in particular, Shelby and Bormann [351]) that the term ”personal” is still only
present for historical reasons and they advocate 6LoWPAN as IPv6 over low-power
wireless area networks only.

The main goal of the 6LoWPAN working group was to combine traditional TCP/IP
technology and 802.15.4. The working group had to overcome several technical hurdles
due to the very different nature of TCP/IP on the one hand and 802.15.4 on the other.
A major technical difficulty was the different payload sizes. The maximum payload
size in 802.15.4 is 127 bytes, from which 25 bytes are already being used by the
MAC header. A regular IPv6 would need 40 bytes and the UDP header needs 8
bytes, thus leading to a remaining payload of not more than 54bytes (roughly 43%).
In cases where encryption like AES-CCM-128 is used, the situation is even worse
[143, 337]. AES-CCM-128 needs another 21 bytes, which leads to only 33 bytes (26%)
being left for data [333]. This has been addressed by introducing header compression
schemes [221, 176]. Typically, the IPv6 and UDP headers can be compressed to as
little as 7 bytes; thus, the payload can be increased to up to 95 bytes. The general idea
behind header compression is to remove all information from the header that either is
superfluous or can be determined otherwise. For example, IPv6 contains a header field
called Version, which always has the value 6. This field can be omitted. Some parts of
the address information can be deduced from the MAC header. Meanwhile, for some
configurable settings in the IPv6 protocol standard values are assumed.

Another major issue within the working group was the maximum MTU of 1280
bytes, which IPv6 requires. This lead to the need of fragmentation and defragmentation
algorithms within the 6LoWPAN layer. As fragmentation and defragmentation are
rather complex tasks, and due the lack of reliability and increased energy consumption
[351], the general recommendation is to avoid it whenever possible.

In the beginning, the 6LoWPAN standardization was aimed at the IEEE 802.15.4
standard only and it assumed 802.15.4-specific features such as a beacon-enabled mode
and association mechanisms. More recently, 6LoWPAN standardization work has been
generalized to work with a larger range of link layers and to avoid the assumption of
IEEE 802.15.4-specific features [351].

2.3.3 MRv6

In the following, we present MRv6 as currently implemented in the Mote Runner
system. The information given in this section is a precondition for understanding
the implementation of the sleepy node protocol in Chapter 7.5.1. MRv6 is a specific
6LoWPAN (see Chapter 2.3.2) implementation for the Mote Runner system supporting
UDP over 6LoWPAN and header compression according to RFC4944 and RFC6282.
Its implementation is based on TDMA (Time Division, Multiple Access) medium
access and supports multi-hop network communication. This enables direct IPv6-based
communication between Internet hosts and motes in the wireless network. MRv6 is
implemented in C#, and it is treated like any other Mote Runner package. The code is
freely available and can be modified.
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The specification of 6LoWPAN defines a design space that allows different actual
implementations. In the following, MRv6 is briefly described. For a more detailed
explanation of MRv6 and its specialties please refer to the protocol documentation
[180].

2.3.3.1 Network Management

The default network stack that is shipped with the Mote Runner system is called WLIP
[181]. Any mote first checks the availability of a WLIP gateway within its range. If no
WLIP gateway is found, then the MRv6 library will take ownership of the radio device.
From that point on it will try to join an existing network. In the current implementation,
the edge mote (the root node) is responsible for network management. It manages
the tree, associations between motes, and addressing and routing. Furthermore, it
implements the protocol to communicate with the gateway (tunnel).

2.3.3.2 Communication API

The API provided by the 6LoWPAN implementation abstracts the actual communication
away from the user application. A user application just needs to use a socket like
interface for accessing the network. The code fragment in Listing 2.1 shows the Socket
API for receiving a 6LoWPAN packet.

Listing 2.1: Mote Runner OnPacket socket interface

public class MirrorDemo extends UDPSocket {
internal static uint LOCAL_PORT = 4711;
internal static MirrorDemo socket = new MirrorDemo();

public MirrorDemo() {
this.bind(LOCAL_PORT);

}

public int onPacket(Packet p) {
uint len = packet.payloadLen;
byte[] buf = (byte[]) Util.alloca((byte) len, Util.BYTE_ARRAY

);
Util.copyData(p.payloadBuf, pa.payloadOff, buf, 0, len);
buf[0]=(byte) ’x’;

try {
packet.swap(len);

} catch {
return 0;

}
Util.copyData(buf, 0, p.payloadBuf, p.payloadOff, len);
this.send(packet);
return 0;

}
}
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}

2.3.3.3 Protocol details

As described, MRv6 implements a beaconing-based, multi-hop TDMA protocol. Com-
munication slots between parent and children are globally assigned. The communication
consists of a series of superframes. Figure 2.9 illustrates such a superframe. The com-
munication slots between parent and children are globally assigned by the edge mote.
The maximum number of nodes in the network is predefined but configurable.

…Edge M1 M2

Series of superframes

Beacon Shared Children Gap

superframe

Figure 2.9: MRv6 superframe

At the beginning of each communication period, the parent motes use superframes
to send out beacons that announce the state and schedule for the communication slots
and to synchronize their clocks. Furthermore, each superframe supports a multiple-
purpose shared slot. This slot can be used for association requests or responses and
broadcast messages.

Length of a slot, the time for listen operations and the gaps between slots are
constants and can be configure. The timings for a slot are specified by the (configurable)
constants [180] such as:

• RECV SAFETY MILLIS: Number of milliseconds the radio is switched on
before the slot is scheduled. This number is used to cope with clock-drift in a
standard scenario, without sleeping nodes.

• SLOT RECV MILLIS: Number of milliseconds the radio is switched on in a
slot.

• SLOT GAP MILLIS: Number of milliseconds after the radio is switched on and
before the next slot.

Every mote, that is not the edge mote, is constantly switching between parent and
child mode. Figure 2.10 shows the (simplified) state diagram of the MRv6 protocol.
A mote that is not part of a communication structure constantly scans for beacons
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(CHILD SCAN BEACON) and once received (CHILD RECEIVE BEACON), it at-
tempts to join the network. Whenever a mote joins the network, it attaches to a single
parent. Later on, those motes can have children of their own. If one or more possible
parents are detected, the mote evaluates them to find the closest parent that has free slots,
a sufficient good link quality, and signal strength. If a suitable parent mote has been
identified and multiple beacons from that parent mote have been received, the mote
attempts to join the network. The mote sends an association request (in the shared slot)
(CHILD TRANSMIT ASSOC) and waits for an answer (CHILD RECEIVE ASSOC).
If no answer is received within a specified period the association attempt is repeated.
The same thing happens when a mote is not receiving beacons from its parent for some
intervals. In such a case, it resets its state and starts looking for a new parent again.

After the initial association to a parent, the communication between parent and its
children work as follows: The beacon contains information about whether the parent
wishes to send a packet in the shared or in the respective child slot. If either is the case,
the child switches to STATE CHILD HANDLE SLOT and schedules a radio rx at an
appropriate timestamp that is determined by adding a constant offset (depending on the
slot type) to the last received beacon’s one. If the parent does not wish to send a packet,
then the mote’s final action as a child is to check if there is a packet for its parent. If
yes, then the mote needs to transmit it.

After the child role actions are completed, the mote switches to the parent role.
The parent is initially in the state STATE PARENT SEND BEACON. It transmits its
beacon and then any data that are to be sent through the shared slot. Next, it proceeds
with iterating over all slots of its children. Whenever there is data to be sent through
a slot, it transmits it, otherwise it switches to STATE PARENT HANDLE SLOT and
listens for any data from the respective child. After the last slot, the motes’ participation
in the current superframe is over. It switches to the child role again and waits for the
next beacon.

PARENT 
SCAN

BEACON

PARENT 
SENT

BEACON

PARENT 
HANDLE

SLOT

CHILD
RECEIVE
BEACON

Parent

Child

CHILD
SCAN

BEACON

CHILD
RECEIVE
SHARED

CHILD
HANDLE

SLOT

CHILD
TRANSMIT

ASSOC

CHILD
RECEIVE
ASSOC

Figure 2.10: MRv6 States
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Network manages is done by so-called ”System messages”. The MRv6 protocol
[180] specifies the following system messages:

Ping: A ping is specified as follows [180]: A parent sends ”ping” packets to children
that have been inactive for a configurable amount of time. If the child does not
acknowledge the packet, it is removed from the internal list of children and,
therefore, from future beacon announcements. A disassociation message is sent
to the edge to notify it about the node loss. If the child is still active despite not
having reacted to the ping, it notices its removal when inspecting the next beacon
message, resets its state and reassociates.

Synchronization Messages: Synchronization messages are specified as follows [180]:
The edge mote sends out periodic synchronization messages to all wireless nodes
to synchronize their state with his own.

Information Messages: Information messages are specified as follows [180]: Nodes
periodically send information messages to the edge delivering statistics about
transmission rates, signal strengths, communication reliability and more

Disassociation Notifications: A disassociation notification is sent by a parent mote
that has lost one of its children to the edge.

Communication between motes is done in the designated time slots. A parent that
would like to send a packet to a child has to announce a pending transmit in its beacon.
This will cause the child to switch its radio receiver on in the specified time slot. When
the parent has no pending transmissions it will listen for messages from the child node
instead. Whenever a mote receives a packet from its parent it checks if it is the final
receiver of the packet. If this be the case, the package is forwarded to the receiving
socket, as shown in Listing 2.1. If it is not the final destination of the package, it
forwards the packet as required to one of its children.

Addressing works as follows [180]: The 802.15.4 header consists of the short
addresses of the destination and source motes as allocated by the edge mote, the PAN
ID as configured for the network, an incremental sequence number managed for the
current parent and child communication slot and an 802.15.4 header byte labeling the
packets as data packets expecting acknowledgments.

MRv6 supports only a subset of the 6lowpan specification: Only short or full IPv6
addresses are supported and used in the compressed header. Port compression is not
supported.

2.4 Representational State Transfer

The term Representational State Transfer (REST) is closely connected with Roy Field-
ing, who first described the concept [128] as a generalization of the HTTP object
model. It is an architecture-paradigm for distributed systems closely connected with
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the development of HTTP and the World Wide Web. It abstracts the basic principles
of the web architecture and its components. In practice, the terms REST and RESTful
are used interchangeably, although REST usually refers to the architectural style and
RESTful to a service or architecture that complies with this architectural style. The
term RESTful is an adjective that was introduced later, the dissertation of Fielding does
not use the term.

The following provides a brief introduction to the main concepts of a RESTful
architecture. The characteristics of a RESTful architecture are given below:

1. Stateless
2. Client-server communication
3. Cacheable
4. Layered system
5. Uniform interface

(a) Resources and representations
(b) Operations for manipulation of resources through representations
(c) Self-descriptive messages
(d) Hypermedia as the engine of application state

and, optionally:
6. Code on demand (optional)
Communication in a client-server based REST-system is always stateless. This

means that the client cannot expect any context to be valid. Instead, the client always
has to deliver all the information that a server needs to fulfill the request. This is one of
the properties that make REST interesting for small embedded devices as they are not
required to use their scarce resources for state handling. Stateless communication is
also a main differentiator between the REST-paradigm and enterprise solutions such as
CORBA [357].

The concept of a REST resource is abstract. It is independent of its representation.
A resource can have many representations, for example, in XML and JSON. Resources
and representations are defined as:

A resource is any information that can be named. This includes im-
ages, collections of other resources, or even real objects. A resource is a
conceptual mapping to a set of entities, not the entity that corresponds to
the mapping at any particular point in time. – Fielding [128].

A representation consists of data, metadata describing the data, and, on
occasion, metadata to describe the metadata (usually for verifying message
integrity). Metadata is in the form of name-value pairs, where the name
corresponds to a standard that defines the values structure and semantics.
Response messages may include both representation metadata and resource
metadata: information about the resource that is not specific to the supplied
representation. – Fielding [128]

A resource is commonly uniquely identified by a URL/URI. A typical URI identify-
ing a resource in a 6LoWPAN network might look as follows:
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[ffff:ffff:ffff:fc03:0005]︸ ︷︷ ︸
service

/temperature︸ ︷︷ ︸
resource

The operations, as a part of the uniform interface, are usually implemented using
verbs, or to be more precise, HTTP-like verbs. HTTP 1.1 defines eight verbs. The five
most important ones are:

Operation Meaning

GET Requests the representation of a resource
PUT Creates a new resource or replaces an existing one
POST Transmits data for processing
DELETE Removes a resource
HEAD Is identical to GET, except that the server does not

return a body in the response, but only the meta-
information contained in the HTTP headers. These
should be identical to the information sent in re-
sponse to a GET request

Get, Put, Head and Delete operations are supposed to be idempotent. This means
operations can be repeated with the same data on the same resources and the result
(effect) shall always the same. Making multiple requests has the same effect as making
only a single request.

Finally, the uniform interface does not only consist of resources. It also needs to
follow the hypermedia as the engine of application state (HATEOAS) principle. It
means that the use of hyperlinks should be the only way of navigating an applications
state machine. HATEOS is considered as one of the least understood constraints of the
REST architecture [317].

Code on demand is the only optional feature defined by Fielding [128]. It allows
functionality on the client to be extended by downloading and executing code in the
form of scripts. It needs to be taken into consideration that this feature was defined
when the web was largely static and JavaScript-based applications not common.

2.5 Constrained Application Protocol

The Constrained Application Protocol (CoAP) is a cross-layer protocol defined by the
IETF Constraint RESTful environments (CoRE) working group. It defines a RESTful
protocol specifically tailored towards resource-constrained devices. CoAP is specified
in RFC 7252 [353]. CoAP was mainly developed with UDP-based networks in mind.
Nonetheless, it is possible to use CoAP with other transport layer protocols such as
TCP [53], or even SMS [36]. It has also been demonstrated that CoAP has significantly
lower energy consumption compared to HTTP[93], as well as lower response time and
less protocol overhead than HTTP [94].

36



Even though CoAP makes uses many HTTP-like functionalities, it was not designed
to be a scaled-down implementation of it. Its main advantages are the low processing
complexity and the small communication overhead. It utilizes a non-reliable trans-
port protocol (UDP), which means that it does have to deal with congestion control,
unlike HTTP with TCP. However, CoAP provides lightweight reliable transmission
and de-duplication of messages. It achieves that by making use of a stop-and-wait
retransmission mechanism and by detecting duplicate messages. These messages are
detected based on their unique message id so duplicate ones are discarded. Messages are
also divided in two categories, Confirmable (CON) and Non-Confirmable (NON). CON
messages require an acknowledgment by the recipient whereas NON messages must
not be acknowledged. This provides a more lightweight communication mechanism.
Confirmable messages are resent after a timeout when no acknowledgment message
was received. On CoAP level, there is no way to detect a lost unconfirmable message.
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SequenceDiagram_4_i

ACK [0xbc42]
2.05 Content
(Token 0x11)

"42.42 C"

CON [0xbc42]
GET /sensor/temperature

 (Token 0x11)

Client Server

ACK [0xbc42]
2.05 Content
(Token 0x11)

"42.42 C"

CON [0xbc42]
GET /sensor/temperature

 (Token 0x11)

(a) Confirmable
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SequenceDiagram_6

NON [0x13bc]
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"42.1 C"

NON [0x5c01]
GET /sensor/temperature

 (Token 0x42)

Client Server

NON [0x13bc]
2.05 Content
(Token 0x42)

"42.1 C"

NON [0x5c01]
GET /sensor/temperature

 (Token 0x42)

(b) Non confirmable

Figure 2.11: CoAP basic message exchange

Figure 2.11, depicts the two basic message exchanges between a client and a server.
In Figure 2.11a, a client (on the left-hand side) requests the representation of a resource
/sensor/temperature. It is a confirmable (CON) request. The server responds with an
ACK message and a textual representation of the resource. This is called a piggybacked
response. The ACK message mirrors the message ID (0xbc42) of the original CON
message. A non-confirmable message (short NON) exchange is shown in 2.11b. The
response to the original message is sent back as a NON message as well.

If the request cannot be answered immediately, it is possible to send an ACK
first, with an empty payload, and later on send the response when it is ready. This
is called a separate response. The message exchange is shown in Figure 2.12. The
separate response in that case is sent by the server as a confirmable message and it is
acknowledged by the client.
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SequenceDiagram_5
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Figure 2.12: CoAP message exchange with delayed (separate) response

CoAP also implements mechanisms that allow the clients to consume services in
a more complex way than just exchanging request-response pairs. Two of the most
important mechanisms that we also experimented with are observe and block-wise
transfer extensions.

Resources can be addressed and identified by following the CoAP URI scheme
convention. When a node receives a CoAP message, it extracts its options from the
URI path and acts on the request accordingly. These options provide a means of adding
request-specific information to the CoAP message. The IETF Core Working Group
aimed to minimize CoAP message overhead and fragmentation. The message comprises
of a 4-byte header followed by variable-length token and options sections, while the rest
is occupied by the optional payload. The CoAP message can fill up the UDP datagram
data section, which is roughly 80 bytes in the case of 6LoWPAN.

The format of a CoAP message is shown in Figure 2.13. The mandatory CoAP
header consists of the following components:

Ver: Protocol version. Currently only 0b01 is supported.

T: Message type. This can be either confirmable (0b00), non-confirmable (0b01),
acknowledgment (0b10) or reset (0b11).
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Ver T TKL Code Message ID
}

header

[Tokens]

· · ·
[Options]

· · ·
0xFF

[Payload]

· · ·

Figure 2.13: CoAP message format [353]

Code: The message code specifies the type or result codes of a given message. It is an
8-bit unsigned integer. The 3 MSB define the class and the 5 LSB detail the class.
This leads to a class/detail scheme in the form of ”c.dd” where ”c” is a digit from
0 to 7 for the class and ”dd” are two digits from 00 to 31 for the 5-bit detail. The
class indicates whether the message represents a request (0), a success response
(2), a client error response (4), or a server error response (5). A list of possible
message codes is detailed out in Table 2.6.

Message ID: The message id identifies the message. It is unique per communication
partner, within the message ID lifespan. The message ID is used for managing
acknowledgment and for message deduplication (the process of detecting and
removing duplicates).

Confirmable, non-confirmable and acknowledgment messages have been explained
earlier. A reset message indicates that a message has been received, but cannot be
processed properly. Most often, this is due to some context missing to process it. A
reset message can also be used as a CoAP-level liveliness check (called ”CoAP ping”).
An empty confirmable message will be responded with a reset message. An empty
message is a message that consist only of the 4-byte header. It has a Code of 0.00. It is
neither a request nor a response.

Tokens can be used by applications to match a response with a request. The token
length can be up to 8 bytes. Every request has a token, generated by the client, which
the server echoes in any resulting response. A token is mainly intended for use as a
client-local identifier in order to differentiate between concurrent requests or to map
observe callbacks to corresponding requests.
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Class Detail Meaning

0 00 Empty Message
01 GET
02 POST
03 PUT
04 DELETE

2 01 Created
02 Deleted
03 Valid
04 Changed
05 Content

3 xx Reserved for further use

4 00 Bad Request
01 Unautorized
02 Bad Option
03 Forbidden
04 Not Found
05 Method Not Allowed
06 Not Acceptable
12 Precondition failed
13 Request Entity Too Large
15 Unsupported Content-Format

5 00 Internal Server Error
01 Not Implemented
02 Bad Gateway
03 Service Unavailable
04 Gateway Timeout
05 Proxying not supported

Table 2.6: CoAP message codes as specified by [353]

Options

In earlier CoAP drafts, options were just a list of pairs (optionNo, value). This has been
changed to a delta encoding scheme that we will briefly discuss. Each option consists
of an unsigned 16-bit option number and a value. The length of a value in bytes is
called option length (OL). The options Op0 to Opn−1 are calculated as follows:

δ(Op0) = Op0

δ(Opi) = Opi −Opi−1 ∀i ≥ 0
(2.1)
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Storing options in a CoAP message is now as follows: Each entry starts with a
4-bit option delta, followed by a 4-bit option length. We call this the option header.
As mentioned, the option number can be an arbitrary unsigned 16-bit integer value.
As δ(Opi) between two options OPi and OPi−1 can be larger than 24 − 1 the special
bitsets 0d13 and 0d14 are reserved. If the 4-bit option delta is specified as 0d13 then
another byte OPE0 is added succeeding the option header. δ(Opi) is then calculated
as 13 +OPE0. In such cases, were δ(Opi) is larger than 13+255 then the 4-bit option
delta is set to 0d14 and two bytes OPE0 and OPE1 are following the 1-byte header.
Now, δ(Opi) is calculated as OPE0 and OPE1 interpreted as one integer in network
byte order - 269. The use of 0d15 in the 1-byte header is prohibited and is considered a
protocol error.

0 1 2 3 4 5 6 7

Option delta δ(Opi) Option length OLi

}
header (1-byte)

[Extended δ(Opi)]
}

0-2 Bytes

[Extended OLi]
}

0-2 Bytes

[Value OVi]
}
≥ 0 Bytes

Figure 2.14: CoAP option format [353]

A list of currently defined options is presented in Table 2.7. The option range
0-255 is defined as being used after IETF review or IESG approval only. For further
specifications the range 256-2047 is reserved, whereas 2048-64999 should only be used
after expert review. The range 65000-65535 is revered for experimental use and should
not be used operationally.

Number Name Number Name

0 Reserved 15 URI-Query
1 If-Match 17 Accept
3 URI-host 20 Location-Query
4 ETAG 35 Proxy URI
5 If-None-Match 39 Proxy Scheme
7 URI-port 60 Size1
8 Location-path 128 Reserved
11 URI-Path 132 Reserved
12 Content-Format 136 Reserved
14 Max-Age 140 Reserved

Table 2.7: Currently defined CoAP options [353]
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Observe Option

In a client-server environment such as CoAP, a client that wants to monitor changes in
the state of a resource has no other option than to poll regularly for its state. This is rather
inefficient and it causes unnecessary load in a constrained environment. Therefore,
CoAP was extended to support the observer design pattern [133]. Observers, being
interested in changes of specific resources, register at providers called subjects [162].
The subject subsequently notifies the observers whenever it changes its state. The
protocol is based on registrations from the client and notifications from the server. A
registration is initiated by the client. It sends a GET message to a resource with a
special ”Observe” option. The server then adds the client to the list of observers. Now,
whenever the state of the observed resource changes, the server sends a notification to
the client.

1 / 1

SequenceDiagram_1

2.05 Content
Token: 0x42
Observe: 102

Payload: 42.0 Cel

2.05 Content
Token: 0x42

Observe: 101
Payload: 42.1 Cel

2.05 Content
Token: 0x42

Observe: 100
Payload: 42.2 Cel

GET
/sesnsor/temperature
Token: 0x42  Observe:

Register

Client Server

2.05 Content
Token: 0x42
Observe: 102

Payload: 42.0 Cel

2.05 Content
Token: 0x42

Observe: 101
Payload: 42.1 Cel

2.05 Content
Token: 0x42

Observe: 100
Payload: 42.2 Cel

GET
/sesnsor/temperature
Token: 0x42  Observe:

Register

Figure 2.15: CoAP: Observe Option

The message flow of an observe in CoAP is shown in Figure 2.15. The client issues
a request to observe the resource /sensor/temperature. The token is set to 0x42. The
observe option is set to 0, which means register. The server now adds this particular
client to the list of observers and sends notifications whenever the resource changes its
state. The server always duplicates the token from the original requests. The observe
option, when sent from the server, is a number in ascending order. A client can use
this number to identify and distinguish one observation from the other. A client can
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No. Name Format Length Default
6 Observe uint 0-3 Byte none

Table 2.8: Observe option format [162]

deregister by issuing a new GET request with the same token as the token of the
observation and an option value of 1. It can also reject a notification. Furthermore, if
the transmission of a notification times out regularly, the client is also removed from
the list of observers. The option itself is shown in Figure 2.8. The notifications can
be confirmable or non-confirmable. The decision if a confirmable or non-confirmable
message is sent is up to the server.

Block Option

The CoAP block extension [352] is used for fragmentation and defragmentation of large
data blocks at application layer. As CoAP is based on datagram transports (e.g. UDP)
the size of resource representation is limited by the maximum size of a UDP packet.
Even if the maximum size is not used, small amounts of data cannot be transferred
without creating IP fragmentation or adaptation layer fragmentation. Fragmentation at
the adaptation layer or IP layer burdens the lower layers with conversation state that is,
according to the CoRE working group, better managed in the application layer [352].
The CoAP block-wise transfer extension now enables an application-layer blockwise
transfer of resource representations with minimal overhead and minimal communication
state handling. The design goals of the CoAP block extensions are [352]:

1. Transfers larger than what can be accommodated in constrained- network link-
layer packets can be performed in smaller blocks.

2. No hard-to-manage conversation state is created at the adaptation layer or IP
layer for fragmentation.

3. The transfer of each block is acknowledged, enabling individual retransmission
if required.

4. Both sides have a say in the block size that actually will be used.

5. The resulting exchanges are easy to understand using packet analyzer tools and,
thus, quite accessible to debugging.

6. If needed, the Block options can also be used (without changes) to provide
random access to power-of-two sized blocks within a resource representation.

The CoAP block option specifies two different block options, depending on whether
it is used as part of the request (block1) or response (block2). The two options are shown

43



No. Name Format Length Default
23 Block2 uint 0-3 Byte none
27 Block1 uint 0-3 Byte none

Table 2.9: Block option format [352]
0 1 2 3 4 5 6 7

Num M SZX

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Num M SZX

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Num M SZX

Figure 2.16: CoAP block option format [352]

in Table 2.9. Here, block1 is used by the client to request a resource representation in
block-wise fashion; block2 is used to send data back as blocks.

The content (option value) of the two different option values is shown in Figure
2.16. A block option consists of three pieces of information [352]:

1. The block size (SZX). The block size is represented as three-bit uint. The block
size in bytes is four plus the size of a block to the power of two. The block size
in bytes is thus calculated as Size In Bytes = 24+szx. Therefore, possible block
sizes are therefore 16,32,64...1024.

2. An indicator if more blocks are following (M). If the more flag if unset, the
payload in this message is the last. No further blocks can be requested.

3. The relative number of the block (NUM) within a sequence of blocks with the
given size. It specifies the block number being requested (block1) or provided
(block). The first block is number 0.

The basic interaction paradigms are shown in Figure 2.17a and Figure 2.17b. The
first case is called early negation. The second case is called late negotiation. In early
negotiation, the client already knows or anticipates the need for a blockwise transfer. It
sends a block size proposal (block 1). The server agrees with this block size and, from
now on, all return messages carry 64 bytes of payload. The last return message may
carry between 1 byte and 64 bytes.

In case of late negotiation the client does not anticipate any block-wise transfer
and, therefore, does not send a blockwise request to the server. The server, however,
requests a blockwise transfer and sends a proposal of a blocksize of 128 bytes. But the
client cannot handle such big blocks and requests a blocksize of 64 bytes instead.
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SequenceDiagram_3

ACK [MID=45], 2.05 Content, 2:5/0/64

CON [MID=45], GET, /description, 2:5/0/64
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CON [MID=44], GET, /description, 2:4/0/64

ACK [MID=43], 2.05 Content, 2:1/1/64

CON [MID=43], GET, /description, 2:1/0/64

ACK [MID=42], 2.05 Content, 2:0/1/64

CON [MID=42], GET, /description, 2:0/0/64

Client Server

ACK [MID=45], 2.05 Content, 2:5/0/64

CON [MID=45], GET, /description, 2:5/0/64

ACK [MID=44], 2.05 Content, 2:4/1/64

CON [MID=44], GET, /description, 2:4/0/64

ACK [MID=43], 2.05 Content, 2:1/1/64

CON [MID=43], GET, /description, 2:1/0/64

ACK [MID=42], 2.05 Content, 2:0/1/64

CON [MID=42], GET, /description, 2:0/0/64

(a) Early message negotiation
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SequenceDiagram_4

ACK [MID=46], 2.05 Content, 2:5/0/64

CON [MID=46], GET, /description, 2:5/0/64

ACK [MID=45], 2.05 Content, 2:4/1/64
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Client Server
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CON [MID=45], GET, /description, 2:4/0/64

ACK [MID=44], 2.05 Content, 2:3/1/64

CON [MID=44], GET, /description, 2:3/0/64

ACK [MID=43], 2.05 Content, 2:2/1/64

CON [MID=43], GET, /description, 2:2/0/64

ACK [MID=42], 2.05 Content, 2:0/1/128

CON [MID=42], GET, /description

(b) Late message negotiation

Figure 2.17: CoAP basic message exchange

2.6 OData

In the following, we will briefly present the Open Data Protocol (OData) [274] protocol.
OData is a recent data access protocol based on widely-used technologies (HTTP,
AtomPub and JSON). OData, compared to the formerly predominant SOAP services,
follows a REST-based approach, aims for semantic interoperability, and follows a more
lightweight approach than traditional XML-based web services.

2.6.1 Overview

OData is a pure data access protocol on top of already existing application-layer
protocols. It is based on widely-used technologies – namely HTTP, AtomPub and
JSON. OData consists of the following four main parts:

• OData Protocol: OData specifies a protocol defining how clients can query and
manipulate data sources. It supports CRUD operations and different serialization
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formats, such as Atom Syndication Format and JSON. OData defines a query
language as an extension of the URI. This query language provides a set of query
options that allows clients to specify the data in which they are interested.

• OData data model: The structure of the data is defined by an abstract data
model called Entity Data Model (EDM). It can be seen as a realization of the
well-known entity relationship model, where data is modeled as entities and
associations among those entities. An OData service provides a Service Metadata
Document that defines the EDM-based model of the service in the XML-based
Conceptual Schema Definition Language (CSDL).

• OData service: An OData service exposes a callable endpoint that allows ac-
cessing data or calling functions. It implements the OData protocol and uses the
OData data model.

• OData client: An OData client accesses an OData service through the OData
protocol and the known OData data model.

Chapter 2.6.3 will first describe the main concepts of OData services, as well as
their relationships with resources and the OData data model. Thereafter, we will discuss
possible data representations (Chapter 2.6.4).

2.6.2 Version History

OData is a relatively young development. The development started in 2007. A first
OData version was released to the public in 2010. OData has been constantly and
significantly enhanced since. The first release of OData was followed by OData version
2.0 [269] in 2011. The first version that gained widespread popularity was OData
version 3.0 [274], which was released in 2012. OData subsequently was standardized
by OASIS with the latest release – OData version 4.0 [287]– in 2014. OASIS submitted
OData to ISO in order to establish an international standard. OData version 3.0 was the
first that introduced comprehensive modeling capabilities that were further extended in
OData version 4.0. More information on the differences between OData version 3 and
OData version 2, respectively between OData version 4.0 and OData version 3.0, can be
found in the official OData specifications [269, 274, 287] and technical documentation
[368].

2.6.3 Services, Resources and Data Model

OData uses URIs to reference resources and to specify queries. An URI as used in
OData can consist of three different parts: A service root URI, the resource path and
a query. The service root URI identifies the root of an OData service. The resource
path identifies the resource the service consumer wants to interact with (for example
a specific temperature sensor, or some actor). Such a resource commonly addresses
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Op Description Op Description

Eq Equal Not Logical Negation
Ne Not equal Add Arithmetic Addition
Gt Greater than Sub Arithmetic Subtraction
Ge Greater than or equal Mul Arithmetic Multiplication
And Logical and Div Arithmetic Division
Or Logical or Mod Arithmetic Modulo

Table 2.10: OData operators (excerpt)

a collection of entities (e.g. several sensors), or a single entity (e.g. one specific
temperature sensor).

A typical OData URI looks as follows:

http://services.sap.com/service.svc︸ ︷︷ ︸
service root URI

/sensor/temp︸ ︷︷ ︸
resource path

? $filter=temperature gt 20︸ ︷︷ ︸
query

The query can consist of one or more pre-defined options (called system query
options), user-defined custom query options, or service operation parameters. Service
operations are functions exposed by an OData service in a RESTful style. These
operations might require zero or more parameters, which are passed as part of the query
string. This work will mainly concentrate on the built-in system query options. We
briefly introduce the most important system query options:

• orderby allows clients to request resources in a particular order. This is compara-
ble to a SQL orderby clause.

• top allows to retrieve only the first n-results of a result set.

• expand allows clients to request related resources when a resource that satisfies a
particular request is retrieved.

• select (projection) is used to select certain properties only.

• filter identifies a subset of the entries from the collection of entries identified
by the resource path. The subset is determined by filtering out the Entries that
satisfy the expression specified by the filter query option. Some of the operators
are listed in Table 2.10 and Table 2.11. For a complete list please refer to [274].

• format is used to identify the data format requested by the client.

Discovering the capabilities of an OData service is possible through the service
document and the $metadata information. The service document allows to discover
the locations of the available collections of resources. It is returned when doing a get
request on the service URI. This is a must-have feature according to the OData protocol
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Function Description

bool startswith(string p0, string p1) Checks if string p0, starts with
the string p1

int length(string p0) Length of string
string trim(string p0) Removes whitespaces at begin-

ning and end
string toupper(string p0) Transforms to upper case
string tolower(string p0) Transforms to lower case
double round(double p0) Arithmetic rounding
double floor(double p0) next lowest integer value by

rounding down

Table 2.11: OData functions (excerpt)

specification. In addition, every service should present information about the structure
and organization of all the resources. This is done by appending a $metadata path
segment to the path. The result is in Common Schema Definition Language (CSDL)
[271] format.

2.6.4 Data Representation

The OData protocol was not designed to work with constrained devices. It was originally
intended to work with more heavy-weight clients, like in communicating enterprise sys-
tems or communication between an enterprise system and a mobile phone. The OData
standard defines two ways for data representation (sometimes called serialization), of
which one is rather heavyweight: ATOM/AtomPub [282] and JSON [98]. The two
formats are used to represent the result of a service call. They are also used to model
the service itself using the common schema definition language as described earlier.

ATOM is an XML based format that defines XML elements and their meaning. It is
defined in RFC 4287 [282] and its roots are in the structured description of entry based
data feeds. Each feed can contain an arbitrary number of entries. Each entry holds
some content. AtomPub (Atom Publishing Protocol) defines the notion of a service.
A service consists of one or more collections. AtomPub also defines a set of RESTful
interactions for accessing a service.

The relation between ATOM/AtomPub and EDM is shown in Figure 2.18. Each
AtomPub service corresponds to an entity container in EDM. Collections and their
feeds can be directly mapped onto entity sets. An Atom entry corresponds directly to
an EDM entity. In the following we will refer to ATOM/ATOMPub simply as ATOM,
as it always goes together.

JSON is a standard format originally designed for the serialization of JavaScript
objects. It defines a text format for serializing (structured) data. All data is serialized
as an unordered collection of name/value pairs. JSON, other than JSON-LD, does not
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Figure 2.18: OData: Relationship between ATOM and the entity data model [82]

define any further semantics. OData extends the JSON format by defining conventions
for the name-value pairs that annotate a JSON object, property, or array. For this
purpose, OData defines a set of a set of canonical annotations for control information,
such as IDs, types, and links, and custom annotations that may be used to add domain-
specific information.

The OData protocol, its two representations, and the CDSL/EDM come with their
own comprehensive specifications that go beyond what can be described here. More
detailed information can be found in the OData specifications. OData v3 consists of
seven standardization documents, each of hundreds of pages. Most important are the
OData Version 3.0 Core Protocol [274], OData Version 3.0 Common Schema Definition
Language (CSDL) [271], the Url Conventions [273] and the two data representation:
Atom Format [270] and JSON Verbose Format [272].

2.7 Modelling of Vocabularies and Ontologies

This section will give a brief overview on how to model Linked Services with Semantic
Web technologies to an extent that makes this work self-contained and comprehensible
without deep prior understanding of semantic web technologies like RDF, OWL or
SPARQL. An introduction to these technologies is provided by Segaran et al. [343],
Allemang and Hendler [11] or Hitzler et al. [168]. The W3C standards4 are also a good
source of information.

2.7.1 Resource Description Framework

The Resource Description Framework (RDF) is a set of W3C specifications used for
the conceptual description or modeling of information of any kind with the aim of
data interchange. The main idea behind RDF is to express statements about resources.
These statements are expressed as (subject, predicate, object) triples and constitute a

4http://www.w3c.org/RDF
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directed graph. It is important to distinguish between RDF and its schema language
RDF(s). RDF itself has only a very limited vocabulary 5. RDF(s) is used to model RDF
vocabularies, describing the elements of a domain. The relationship between RDF and
RDF(s) is the same as between XML and XML-Schema. In the following tables, the
origin of a concept is determined by its prefix, which is either rdf: or rdfs:. The main
concepts of RDF/RDFS are described in Table 2.12.

Concept Identifier Description

Resource rdfs:Resource All things described by RDF are called resources, and are in-
stances of the class rdfs:Resource. This is the class of everything.
All other classes are subclasses of this class. rdfs:Resource is an
instance of rdfs:Class.

Class rdfs:Class This is the class of resources that are RDF classes. rdfs:Class is
an instance of rdfs:Class.

Literal rdfs:Literal The class rdfs:Literal is the class of literal values such as strings
and integers. Property values such as textual strings are examples
of RDF literals. Literals may be plain or typed. A typed literal
is an instance of a datatype class. This specification does not
define the class of plain literals. rdfs:Literal is an instance of
rdfs:Class. rdfs:Literal is a subclass of rdfs:Resource.

Datatype rdfs:Datatype rdfs:Datatype is the class of datatypes. rdfs:Datatype is both
an instance of and a subclass of rdfs:Class. Each instance of
rdfs:Datatype is a subclass of rdfs:Literal.

Property rdf:Property rdf:Property is the class of RDF properties. rdf:Property is an
instance of rdfs:Class.

Table 2.12: Main concepts of RDF/RDFS (Source: Brickley et al. [61])

The property concept of RDF is describing a relationship between two resources
(subject and object resource). Properties can be further defined, for example, they can
have a destination (range) and a source (domain). The main means of extending and
further defining a RDFS:property is described in Table 2.13.

Concept Identifier Description

Range rdfs:range dfs:range is an instance of rdf:Property that is used
to state that the values of a property are instances of
one or more classes.

Domain rdfs:domain rdfs:domain is an instance of rdf:Property that is
used to state that any resource that has a given prop-
erty is an instance of one or more classes.

5also often called ontology. The terms ontology and vocabulary are often used interchangeable in
RDF-related literature.
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Type rdf:type rdf:type is an instance of rdf:Property that is used to
state that a resource is an instance of a class.

Sub class rdfs:subClassOf The property rdfs:subClassOf is an instance of
rdf:Property that is used to state that all the instances
of one class are instances of another

Sub property rdfs:subPropertyOf The property rdfs:subPropertyOf is an instance of
rdf:Property that is used to state that all resources
related by one property are also related by another.

Label rdfs:label rdfs:label is an instance of rdf:Property that may
be used to provide a human-readable version of a
resource’s name.

Comment rdfs:Comment rdfs:comment is an instance of rdf:Property that may
be used to provide a human-readable description of
a resource.

Table 2.13: Concepts further defining properties. (Source: Brickley et al. [61])

RDF predefines some properties, as shown in Table 2.14. Each property is applicable
to a given domain (subject) and a range (object).

Name Description Domain Range

rdf:type The subject is an instance of a class rdfs:Resource rdfs:Class
rdfs:subClassOf The subject is a subclass of a class. rdfs:Class rdfs:Class
rdfs:subPropertyOf The subject is a subproperty of a property. rdf:Property rdf:Property
rdfs:domain A domain of the subject property. rdf:Property rdfs:Class
rdfs:range A range of the subject property. rdf:Property rdfs:Class
rdfs:label A human-readable name for the subject. rdfs:Resource rdfs:Literal
rdfs:comment A description of the subject resource. rdfs:Resource rdfs:Literal
rdfs:seeAlso Further information about the subject re-

source.
rdfs:Resource rdfs:Resource

rdfs:isDefinedBy The definition of the subject resource. rdfs:Resource rdfs:Resource
rdf:value Idiomatic property used for structured values rdfs:Resource rdfs:Resource
rdf:subject The subject of the subject RDF statement. rdf:Statement rdfs:Resource
rdf:predicate The predicate of the subject RDF statement. rdf:Statement rdfs:Resource
rdf:object The object of the subject RDF statement. rdf:Statement rdfs:Resource

Table 2.14: RDF properties (Source: Brickley et al. [61], Section 6.2 – shortend
excerpt)

2.7.2 Turtle Notation

The Terse RDF Triple Language (short: Turtle) is a format developed by Dave Beckett
and Tim Bernes-Lee [38] to express data in RDF. It is one of the many possible concrete
syntaxes for RDF. Others include RDF/XML [37], JSON [102], and Notation 3 (N3)
[43]. Turtle is a compatible subset of N3 and currently the most used notation language,
recognized for its compactness and human readability. We will shortly introduce the
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main concepts of Turtle by example. For a more thorough introduction to Turtle, please
refer to Hitzler et al. [168] or the Turtle specification [38].

The following fragment shows the description of a class service. It has a label and
is a subclass of some other class (gr:ProductOrService).

Listing 2.2: Modelling of classes with RDF

example:Service a rdfs:Class;
rdfs:label "Service"@en ;
rdfs:subClassOf gr:ProductOrService .

Properties are defined in the same manner: We introduce a property examples:includes
which is a rdf:Propoerty. As mentioned before properties can be hierarchical as well.
Example:includes is a subproperty of gr:includes, and it has a domain and a range. So,
the includes property can be applied to any example:ServiceOffering and connect it
to a example:Service. In other words, every example:ServiceOffering can include an
example:Service.

Listing 2.3: Modelling of properties with RDF

example:includes a rdf:Property;
rdfs:label "includes"@en ;
rdfs:subPropertyOf gr:includes;
rdfs:domain example:ServiceOffering;
rdfs:range example:Service .

Concrete instances can be created with the same syntax. The following code
fragment models a service MyService, a service offering MyServiceOffering and lets
MyServiceOffering include MyService.

Listing 2.4: Concrete instance of a class modeled with RDF

:MyService a example:Service;
rdfs:label "MyService is a concrete instance of a class"@en .

:MyServiceOffering a example:ServiceOffering;
example:includes :MyService .

Within this thesis, we use Turtle notation for writing RDF.

2.7.3 Web Ontology Language

OWL, the Web Ontology Language, is a knowledge representation language for mod-
eling ontologies and knowledge bases. Like RDF, its main concern is to define the
terminology for a given domain. Currently, two versions are available. Work on the
first OWL specification [257] started in 2002 and it was first published in 2004. The
later OWL 2 specification [392] was published as a W3C recommendation in late 2009.
OWL is based on description logic [20], which is a decidable subset of first-order
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predicate logic. The OWL standard defines three different flavors or variants of OWL
with increasing expressivity: OWL Lite, OWL DL and OWL full, with OWL Lite ⊂
OWL DL ⊂ OWL full ⊂ First Order Logic.

OWL Lite is decidable and has complexity of ExpTime: The class of decision
problems solvable by a deterministic turing machine in O(2p(n)) time. OWL DL is also
decidable and has a complexity of NExpTime. NExpTime are decision problems that
can be solved by a non-deterministic Turing machine using O(2p(n)) time. OWL Full
includes all features of RDFS. It is undecidable.

Instances

Instances, often called individuals, are modeling elements in OWL. They can be
seen as objects or instances of classes. They often represent real-world objects. An
instance/individual can be part of a class (Chapter 2.7.3). The class membership of
an OWL individual can either be direct (implicitly) defined or deduced through its
properties (Chapter 2.7.4). In OWL, there are no unique identifiers for instances. Two
different identifiers can refer to the same objects.

Classes

A class is a set of instances. It is used to express that members of a class share certain
properties. Every instance is a member of owl:Thing. It is the most general class
possible. The empty class, which does not contain any instances, is called owl:Nothing.

Concept Identifier Description

Intersection owl:intersectionOf intersection of two classes
Union owl:unionOf constructs the union of two given classes
Complement owl:complementOf complement of two classes
Enumerated class owl:oneOf one of the listed classes

Table 2.15: OWL class constructors. Source: [257]

Classes can also be constructed through class constructors. Some class constructors
are listed in the Table 2.15. The union constructor, for example, takes two classes A
and B, and constructs the class consisting of all instances of class A and all instances of
class B. The following code fragment shows the use of a union. The meaning of the
code fragment is explained in Chapter 5. Important at this point is the domain of the
property hasInteractionPoint. It is defined as an owl:Class, and more specifically, as
the union of services (usdl:Service) and service models (usdl:ServiceModel):

Listing 2.5: OWL class example

usdl:hasInteractionPoint a rdf:Property;
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rdfs:domain [a owl:Class; owl:unionOf (usdl:Service usdl:
ServiceModel)];

rdfs:range usdl:InteractionPoint .

2.7.4 Properties

Properties are used to express relationships between two objects (instances, classes,
or datatypes). Properties, similar to classes, can be hierarchical. In OWL only binary
relationships are possible, between a domain and a range, similar to the concept in RDF.
OWL distinguishes two types of properties: (i) Datatype properties and (ii) Object
properties. A datatype property relates instances to RDF literals or datatypes. OWL
uses the owl:DatatypeProperty type for modeling this relationship. Object properties,
formulated using owl:ObjectProperty, relate two instances of two classes.

Concept Identifier

Min. cardinality owl:minQualifiedCardinality
Max. cardinality owl:maxQualifiedCardinality
Local reflexitivity owl:hasSelf
Key owl:hasKey
Symmetric owl:SymetricProperty
Asymmetric owl:AsymmetricProperty
Reflexive owl:ReflexiveProperty
Irreflexive owl:IrreflexiveProperty
Transitivity owl:TransitiveProperty
Source: [257]

2.7.5 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a query language for RDF.
It is able to retrieve and manipulate data stored in RDF format, for example, in a triple
store. Since RDF can be interpreted as directed graphs, SPARQL works with graph
patterns. The results of SPARQL queries can be either results sets or RDF graphs.
SPARQL can be seen as the SQL for the semantic web.

2.8 Data Reduction

In our experiments, we included a compressed version of both XML and JSON. Previous
research at the CDS working group [110] and similar research, e.g. by Marcelloni
et al. [246] and Sadler[331], has shown that standard compression algorithms have a
quite decent compression performance, also compared to specialized algorithms. In
the following, we briefly summarize these results and then compare to the possible
alternatives.
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Figure 2: Average time for compressing CTI-Mesh and Tarwis-
Measurements with the different algorithms on a MAC OS X platform.

network parts. The different LZW variants (lzss, lzw12, lzw15v and mlzo)
target roughly similar values between 82% and 88% for WMN and 49%
and 60% for WSN data. As expected, the huffman implementations and
the simple arithmetic coding yield almost the same results, around 54%
compression ratio regardless of the type of input data. The only surprising
result is the bad performance of SLZW, especially in regard to the sensor
network data set. Although it has been specifically designed for WSNs, the
algorithm provides with 35% the poorest compression ratio in this evalu-
ation. This may partially be accounted to a lack of a fixed-size format of
logfile entries due to dynamically-sized neighborhood lists, which prohibits
the exploitation of input transformation, and thus the advantage of using a
small cache.

3.3.2 Execution time

Another important metric to evaluate a compression algorithm is its ex-
ecution time. Naturally, the more time is spent for computation, the more
energy will be consumed by the processor. Furthermore, in case compres-
sion is applied in the domain of sensor networks or generally on embedded
devices, operating systems may not support concurrent operations. Thus,
a long-running execution of a compression algorithm will block the proces-
sor for a significant amount of time, in which, e.g., reactivity to important
operational events is not given, the node is not responsive, and in the worst

Figure 2.19: Execution timer per input MB for different algorithms [110]
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Figure 1: Average compression ratio of the different algorithms obtained
for CTI-Mesh and Tarwis-Measurements.

network with no constraints on resource usage, the following results reflect
solely characteristics of the compression step.
Due to need for a tool for memory estimations, the experiments have been
executed on a 2.4 GHz Intel x86 machine running MAC OS X. Except for
the execution time, results will not differ when profiling is run on wireless
mesh or sensor nodes. The execution time measurements provided below
will nevertheless offer a clear intuition towards the performance on respec-
tive hardware, yet have to be repeated for a dedicated system on demand.

3.3.1 Compression ratio

The first and foremost parameter that seeks attention is the compression
ratio a certain algorithm can provide. The compression ratio is calculated
as follows:

compression ratio = 100−(compressed size∗100)/uncompressed size

Due to the presence of redundancy in all data traces, the compression
ratio is in general higher than 50%, see Figure 1. The best compression
ratio with an average of 92% for the wireless mesh data and 67% for the
sensor network traces can be granted by the order-n arithmetic coding.
For the former set, the algorithm clearly benefits from the great coding
possibilities since the WMN traces feature many IP addresses with similar

Figure 2.20: Compression ratio [110]

A comparison of different compression schemes was conducted by Dolfus and
Braun at the CDS group. The comparison included two Huffman coding schemes: static
[175] (huff) and adaptive [207] (ahuff) huffman coding. Four versions of arithmetic
coding [398]: simple arithmetic coding (arith-0), arithmetic coding order 1 (arith-1),
order 1 arithmetic coding (arith-1e) considering escape characters as well, Order n
arithmetic coding (arith-n). Five versions of dictionary / LZ(W) based compressions
schemes [278]: LZW with 12-bit symbols, LZW with variable-sized symbols up to
15-bit, S-LZW [331], LZ77 and MLZO [27].

The average execution time is shown in Figure 2.19. The compression time of
the arithmetic coding was significantly higher than the times of all the others. The
dictionary based algorithms, and standard huffman coding had the least compression
times. The compression ratios are shown in Figure 2.19.

Similar research has been done by Sadler et al. [331]. They describe the aforemen-
tioned embedded version of LZW called S-LZW, which is similar to a standard LZW
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Figure 3 displays the text segment occupation in bytes (B) by the various
implementations. All algorithms have been compiled with the same com-
piler settings. Since most implementations have not been optimized for
size and much memory is occupied by extensive I/O functionality in their
original implementation, all sources files for such file handling have been
removed for a better comparison. ROM utilization ranges between roughly
from 2.5kB to 5kB for the algorithms with the smallest memory footprint
(lzw variants, huffman and arithmetic coding order 1) up to 15kB for SLZW
as supplied by the authors. The latter is once again surprisingly high, as
especially the authors of a sensor network algorithm should be aware that
this will block almost one third of a typical sensor nodes storage capacity
(48kB for the Tmote sky). However, all evaluated algorithms would fit in the
text segment of a typically dimensioned wireless mesh or sensor node.

The results presented in Figure 4 have been acquired using the Valgrind
framework for program profiling [21]. Here, the peak RAM usage in bytes
is displayed on a logarithmic scale. All implementations use approximately
the same amount of stack memory, consuming around 500 bytes. Heap
allocation however differs tremendously, with the top user being MLZO
occupying 3MB. This is absolutely not suitable for embedded hardware,
where available RAM is dimensioned between 5 and 10kB. Also, higher
order arithmetic coding or lzw15v are not portable as they are onto wire-
less nodes unless memory optimizations will be undertaken beforehand.
Good candidates, however, are the SLZW and adaptive huffman coding,
as well as the simple lzw12 and lzss algorithms.

Figure 2.21: Memory consumption of different compression algorithms [110]
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Figure 2. Brief comparison of the compression algorithms pro-
filed in [5] and S-LZW (our algorithm). Left: The compiler
default memory requirement of the algorithm’s core table. The
line represents the amount of RAM on our MSP430 microcon-
troller. Right: The average number of instructions (given by the
SimIt StrongArm simulator [27]) required to compress 528B of
data from the four benchmarks we profile in this paper.

ties energy directly to specific radios from different points
across the sensor design space; this allows us to make con-
crete energy tradeoffs for a range of current and future sensor
nodes.

Additionally, the striking differences between their target
platform (233 MHz StrongArm with 32 MB RAM, a 16 kB
cache, and an external file system) and ours (4 MHz fixed-
point microcontroller with 10 kB RAM and 48 kB ROM)
require us to take a different approach to compression in
general. Our work studies data streams generated by actual
sensor deployments that we break up into independent 528B
blocks to ease transmission requirements, while their work
focuses on more generic data streams from text files or the
web which they compress in 1 MB blocks.

Figure 2 shows the instruction counts and the default core
memory usage of the algorithms evaluated in [5] versus our
LZW implementation for sensor nodes, S-LZW. None of the
algorithms they evaluated are directly transferable to oursen-
sor node becausethey were not designed for sensor nodes.
Four of the five algorithms have memory and/or processing
requirements that far exceed what our microcontroller can
provide. The exception is LZO, which they show consumes
the least of amount of energy to compress and send 1 MB of
data of all the algorithms they evaluated. The developers of
LZO implemented a version specifically for embedded sys-
tems such as ours called miniLZO. We will briefly evaluate
miniLZO in Section 4.4 and show that for sensor nodes, our
algorithm has a superior energy profile.

3 Methodology
This section describes the datasets we use for our tests,

the hardware on which the tests are performed, and the way
in which we evaluate energy consumption.

3.1 Datasets
To examine how compression algorithms perform in a

real-world deployment, we test them against datasets from
the SensorScope (SS) [30], Great Duck Island (GDI) [33],
and ZebraNet (ZNet) [42] deployments, plus a popular
benchmark, the geophysical dataset from the Calgary Corpus
(Calgeo) [6]. These datasets represent a large portion of the
sensor network design space: indoor, stationary networks;
outdoor, stationary networks; and outdoor, mobile networks

Comp.
Ratio

Comp.
Dataset

(first
Ratio Compressibility

528B)
(all)

SensorScope [30] 3.69 4.58 High
Great Duck
Island [33]

1.59 1.94 Medium

ZebraNet [42] 1.38 1.96 Medium-Low
Calgary Corpus
Geo [6]

1.11 1.49 Low

Table 1. Compression profile for experimental datasets based
on gzip.

respectively. Calgeo, which is comprised of seismic data, is
a commonly-used compression benchmark. We use the data
from the beginning of the real-world datasets; for example,
when we use 2 Flash pages (528 bytes) of data, that is the
first 528 bytes in the set. For Calgeo, the first 200 bytes have
a different profile from the rest of the dataset so we remove
those and use the next 528 bytes. We have also experimented
with data from elsewhere in the datasets and found that it did
not qualitatively change our conclusions.

These three real-world networks are Delay Tolerant Net-
works [13], which we define to be networks that may inten-
tionally buffer data before transmitting it. In practice, buffer-
ing may be done out of necessity, as in networks with long or
frequent disconnections, or as part of an energy conservation
mechanism, such as the work described in this paper. We es-
timate that it would have taken these networks between one
and four hours to collect 528B.

The ZNet dataset contains a combination of GPS data
and debugging data, which consists of mostly voltage data
and information on the performance of the network. The
GPS data has already been pre-compressed once with an
application specific algorithm based on offsets of past po-
sitions. As a result, the data actually fed into the compressor
is more variant over short time intervals than that of the other
datasets.

To give a snapshot of the variability in each dataset, we
compress them with the popular LZ77-based compression
algorithm gzip on our PC, and the results are displayed in
Table 1. These numbers provide initial insight into how well
our compression algorithms will perform on these datasets.

Our datasets exhibit temporal locality, but they do not
display the spatial correlation that other researchers in the
sensor network community are currently exploring; the data
from each node is important so we focus on lossless com-
pression in this work.

3.2 Experimental Platform
Although the actual sensor hardware used in the actual

deployments varies, we run all of our experiments on a TI
MSP430x1611 microcontroller (10 kB RAM, 48 kB on-chip
flash memory) running at 4 MHz, to allow for a fair compar-
ison [35]. It consumes just 5.2 mW, and is used in both the
Tmote Sky [21] and ZebraNet [42] sensor nodes. This mi-
crocontroller consumes about one-third as much energy per
cycle as the 8-bit Atmel ATmega128L microcontroller [3] at
the same frequency and voltage, and it has 2.5 times more
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Figure 3. Flow chart of LZW compression.

Input Stream:  AAAABAAABCC

Encoded String Output Stream New Dictionary Entry 

A 65 256 - AA 

   AA 65 256 257 - AAA 

        A 65 256 65 258 - AB 

           B 65 256 65 66 259 - BA 

              AAA 65 256 65 66 257 260 - AAAB 

                      B 65 256 65 66 257 66 261 - BC 

                         C 65 256 65 66 257 66 67 262 - CC 

                            C 65 256 65 66 257 66 67 67 

Figure 4. Example of LZW compression.

ments assume perfect transmissions. We explore imperfect
transmissions in Section 6.1.

To adapt the algorithm to sensor nodes, the dictionary can
be stored as a hash table with the base entries being the initial
dictionary. Strings can then be represented as branches from
that table so they are easy to locate. Further, we can make the
memory requirement manageable by keeping the dictionary
small. An implementation with a 512 entry dictionary re-
quires 2618 bytes (plus four bytes for each additional entry)
of RAM and 1262 bytes of ROM. This means that the algo-
rithm requires at least a quarter of the RAM available on this
chip; however, this is still feasible for current systems and
over time the amount of RAM available is likely to steadily
increase.

4.2 LZW for Sensor Nodes (S-LZW)
To adapt LZW to a sensor node, we must balance three

major inter-related points: the dictionary size, the size of the
data to be compressed, and the protocol to follow when the
dictionary fills. First, our memory constraints require that we
keep our dictionary size as small as possible. Additionally, as
mentioned, we want to compress and decompress relatively
small, independent blocks of data.

Both of these issues factor into our third decision regard-
ing what to do when the dictionary fills. The two options are
to freeze the dictionary and use it as-is to compress the re-
mainder of the data in the block, or to reset it and start from
scratch. Sensor data is changing over time so after the dic-
tionary is full, the entries in the dictionary may not be a good
representation of the data being compressed at the end of the
block. However, that is typically not a problem if the data
block is small since the dictionary will not fill until the block
has almost been completely compressed.

SENSOR DATA – N BYTES GENERATED OVER TIME

…528 B Block 
(2 Flash Pages)

COMPRESSION 
ALGORITHM

COMPRESSION 
ALGORITHM

COMPRESSION 
ALGORITHM

Compressed
Data

Compressed
Data

Compressed
Data

Independent groups of 10 or fewer dependent packets

… … …

…
…
…

528 B Block 
(2 Flash Pages)

528 B Block 
(2 Flash Pages)

Figure 5. Data is separated into individual blocks before being
compressed and divided into packets. Each packet in a shaded
block cannot be decompressed without the packets that proceed
it, but packets in different shaded blocks are independent of one
another.
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Figure 6. Average compression ratios and execution times for
our four datasets using LZW to compress a given number of
Flash pages of data.

We first determine the appropriate dictionary size for a
sensor node and the amount of data to collect before com-
pressing it. While we determine these values, we will freeze
the dictionary once it fills.
Dictionary Size: Our experiments focus on dictionaries of
512, 768, 1024, and for comparison, an unlimited number of
entries. Strings are encoded in 9 bits while the dictionary has
less than 512 entries, 10 bits while it has less than 1024 en-
tries, etc. Figure 6 shows how the average compression ratio
and execution time of our algorithm changes with dictionary
size when compressing data in blocks of 1, 2, 4, and 10 Flash
pages. With small data blocks, there is almost no difference
between the dictionary sizes.

With large amounts of data, however, the compression
ratio increases with dictionary size. For example, in com-
pressing 4 pages of ZNet data, there is over 12% penalty for
using a 512 entry dictionary instead of a 1024 entry dictio-

Figure 2.22: Compression ratio of S-LZW compared to standard algorithms and its
average compression ratio and time based on example data [331]

implementation, but more optimized towards very constrained platforms. The hardware
platform considered by them is similar to ours. They have slightly more RAM (10kb
vs 8kb) available, but way less ROM. They have a total flash space of 48kb. The IRIS
mote is equipped with 128kb of program flash and an additional 512KB of serial flash.
Furthermore, the used TI MSP430x1611 is less advanced than the ATMEL chipset and
runs at only 4MHz. They also showed that more sophisticated algorithms cannot run
on such really constrained devices (Figure 2.22) for memory reasons.

Many alternatives to standard compression formats have been proposed and are
discussed in literature. The specialized compression schemes try to leverage on specific
known properties of the compressed data or format. For XML, several approaches exist.
As XML itself has been designed as a human-readable text-based format one of the
most obvious measure to decrease the size of XML-encoded data was to move to a
binary format. In 2014, the W3C started the XML Binary characterization working
group [92] to research the requirements to an future binary XML format. The successor
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of the W3C XML Binary Characterization was the Efficient XML Interchange Working
group. It started in late 2005 and released the first draft of the efficient XML interchange
(EXI) format two years later in December 2007 [191]. Sakr [332] gives an overview of
existing XML compression techniques.

For RDF, similar techniques as for XML can be applied. Fernandez et al. [124]
present a binary RDF representation based on a header, a dictionary and the actual
triples. The header describes the RDF dataset. The dictionary provides a catalog of the
RDF terms (URIs, blank nodes, literals), while based on this dictionary the RDF triples
are stored.

The results of Dolfus and Braun and the fact that more sophisticated algorithms
will not run on the mote encouraged us to also use standard compression schemes for
compressing the service descriptions and the data representation of the service call
results. We opted for a general-purpose algorithm, as it is easy to implement with a
small memory and computing footprint. Furthermore, such algorithms are suitable
for both JSON and ATOM. So we didn’t have to support two compression formats.
In addition, the feasibility of EXI for such small platforms as our experimentation
platform remains unclear. Reported memory consumptions for an embedded EXI
implementation [78] are higher than for LZW-based formats. To our knowledge, only
one implementation on an 8kb mote exists. Caputo et al. [68] describe such a platform
for Contiki and 8kb platforms, nonetheless without the support of EXI schema encoding
or any decoding. Furthermore, they give only one data point, no information on further
compression restrictions nor about the energy or memory consumption.

Compared to Marcelloni [246] and Sadler [331] an optimized implementation was
not in the focus of our research. We used a standard implementation that uses flash
memory for paging circumventing the problem of limited RAM, and hashing for faster
memory access. In cases where nothing, for example in a service description, or only
parts of the compressed data changes the compressed file can be precomputed before
uploading to the mote as the dictionary (LZW) can be precomputed and stored on the
mote. The mote itself then just needs to resume compression starting from the point
where it injects data, saving some running time and thus energy.

2.9 Sleepy Nodes

Sleepy Nodes are currently discussed in the CoRE community on an application-level
as in Rahman et al. [311, 312, 313]. In [311], a sleepy node infrastructure based on
a resource directory (RFC 6990) [350] is discussed. The focus is on how the sleep
state can be tracked centrally. The nodes themselves announce their sleep state to the
resource directory. The way in which these nodes determine when and how to enter
the sleep state remains open. In contrast, our work does not prescribe any resource
directory, but introduces an application-layer protocol for setting nodes to sleep. We
then present and analyze the usage of a system utilizing such sleepy nodes. The
techniques outlined in [311] can be easily integrated in our system, although we aim to
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use semantic technologies to describe the sensor network, as well as its services and
resources.

Allocating tasks to computing nodes is a lively research field. The main stream
is centralized approaches versus self-organizing. Kuorilehto et al.[220] provide a
comprehensive overview of both. The windowing algorithm that we use later on to
evaluate the sleepy nodes implementation is part of the centralized family.

Another research stream focuses on minimizing energy consumption while main-
taining partial [112] or full coverage [164, 383] of a specific area, often with a given
degree of redundancy. These approaches differ from ours as we are not just monitoring
an area. Moreover, they raise an alarm when specific conditions are met but run a
business logic that is often only interested in the state of a given monitored entity at
a given point in time. Similar ideas as in our approach have been implemented in the
dynamic sleep scheduling protocol (DSSP) [66]. DSSP focuses on dense networks and
maintaining coverage. In our approach, we assume that more information about up-
coming events is available as part of a centralized business logic or enterprise resource
planning (ERP) system and, therefore, that it outweighs the benefits of a non-centralized
approach.

2.10 Services

Service-oriented systems are the glue that keeps nowadays enterprise systems and the
Internet running. We will have a closer look into services in general and services in the
Internet of Things in particular in Chapter 3 and Chapter 4. When talking about the
”Enterprise”-world and the ”Internet”-world, interestingly, both worlds are getting closer
and closer. In practice, three major classes of services can be distinguished: legacy
enterprise services, SOAP-based services and RESTful services. Traditionally, the
enterprise domain had its own service architectures based on technologies such as BAPI
and CORBA. They are still in use today, but are considered a legacy. Later on, XML-
based web service descriptions and protocols became predominant in the enterprise
sector. Meanwhile, on the Internet, the REST paradigm is becoming increasingly
popular. More recently, there seems to be a convergence towards REST services even in
the enterprise. REST services started to supersede SOAP-based services and traditional
BAPI/CORBA installations. A comparison between SOAP-services and RESTful-
services has been performed by Pautasso et al. [295]. In the following, we will briefly
discuss the service categories.

2.10.1 Legacy Enterprise Services

With the widespread adoption of enterprise IT-systems, especially with the advent
of Enterprise Resource Planning (ERP) systems, the integration and interoperability
between systems became one of the major issues for enterprise IT vendors. A separation
of concerns by using something like services was considered early on as one of the
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most promising ways of enabling interoperability, even when it might not have been
called services at the time. The term ”service-oriented architecture” first came up
in 1996, but the concept itself is much older. It can be traced back to the early
ideas of structural programming and separation of concerns [294, 293]. Preceding
service-oriented architecture was Enterprise Application Integration (EAI). EAI and
service-oriented architectures share the same goals, but EAI did not lay stress on the
term ”service”; it was more focused on brokers and an enterprise bus that connected
different systems with adapters. Service-oriented architecture tried to eliminate the
need for those adapters with the goal of standardizing the data exchange and message
interfaces between different systems, without the need of specialized adapters.

SAP ERP systems introduced the concept of BAPI (Business Application Program-
ming Interface) [336] in the mid-1990s. They were defined to represent the boundaries
of (business-related) components. Nowadays, they would be called a service, instead
of a programming interface. BAPIs are used to decouple components and define a
common way to access them at an application level. They do not specify the means
of transportation for the message themselves. The message transport was delegated
to other protocols, commonly RFC (SAP Remote Function Call) or later via CORBA.
RFC is a SAP-proprietary protocol for communication between distributed systems that
was originally based on Common Programming Interface for Communications (CPI-C).
RFC was later on extended to work also with, for example, TCP/IP.

With the rise of SOAP services all the enterprise vendors incorporated web service
interfaces. In more recent times, the industry is moving towards REST-based services.

2.10.2 SOAP-based Services

SOAP, originally named Simple Object Access Protocol is an application layer protocol.
It does not specify the transport of data. Most often it is used on top of HTTP and
HTTP(s). The purpose of SOAP is to exchange data between a service consumer and
a service provider over networks. SOAP specifies the encapsulation and encoding of
XML data, and it is defining the rules for transmitting and receiving that data.

In the following, we will briefly present the structure and content of a SOAP
message. It needs to be in XML. It needs to contain a SOAP-envelope and a SOAP-
body. It can have a SOAP-header and a SOAP-Attachment as well. The general
structure of a SOAP message is visualized in Figure 2.23.

A SOAP-envelope identifies the message as a SOAP message and describes its basic
properties – for example the SOAP version. The SOAP headers contain information
that is independent from the transported data or that is application-specific. A typical
example of SOAP header information is a unique message ID. Every SOAP-message
needs to have one SOAP-body. The body represents the actual information to be
transmitted. In case of a remote function call, this could be, for example, the method
name and its parameters. Finally, a SOAP-attachment can be added to a SOAP message.
There are no restrictions on the content or representation of the SOAP attachment.
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Figure 2.23: SOAP message

The SOAP specification [147] is rather large. An overview is given, for example,
by Mitra et al. [275] or Weerawarana et al. [396].

2.10.3 REST WEB APIs

REST-based services and RESTful services are dominating the Internet nowadays.
According to the ProgrammableWeb index [307] four times more publicly available
APIs are using REST than SOAP. The degree of RESTfulness varies though. For
example, quite some services ignore the hypermedia aspect of the RESTful paradigm.
This caused a controversy in the community, leading to proposals such as introducing a
maturity model for RESTful APIs; or of calling those services that do not 100% comply
with the RESTful-paradigm as just Web APIs or REST-like APIs. The maturity model
of Leonard Richardson [318] consists of four maturity levels:

0. • Uses XML-based RPC or even SOAP
• HTTP, often only one verb
• Uses only one address to access the service

1. • Uses different URIs
• Uses different Resources
• HTTP, often only one verb

2. • Uses verbs according to their HTTP meaning
• Uses HTTP result codes
• Uses different Resources
• Uses different URIs

3. • Uses HATEOS for navigation
• Uses verbs according to their HTTP meaning
• Uses HTTP result codes
• Uses different Resources
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• Uses different URIs
Strictly speaking, the term RESTful can only be applied to Level 3. Many existing

Web APIs that call themselves RESTful are on Level 2 or Level 3, or somewhere
in-between. Level 0 and Level 1 were mainly important in the beginning of REST era
where many RESTful APIs were just RPC using (one) HTTP verb.

2.11 Service Descriptions

In the following, we will discuss related approaches for semantically describing and
annotating services. As Chapter 3 will discuss in more detail, ”service” is a heavily
overloaded term. For the following discussion it is important to know that our definition
of service is more throughout and does not only include what we call the technical
interface. A service is not only what is (technically) accessed and how, but also who
interacts with whom from a business point of view, what Quality of Service attributes
are attached to it, and so on. Most of the approaches discussed here are only concerned
with the technical aspect of accessing a service and describing its inputs and outputs;
they are less concerned with the underlying high-level concepts.

2.11.1 Semantic Annotations for WSDL and XML Schema

The Semantic Annotations for WSDL and XML Schema (SAWSDL) [212] are a W3C
recommendation [120] for semantical annotation of XML-schemas in general and
WSDL 2.0 in particular. WSDL describes a Web service on a purely syntactic level:
WSDL species the messages format and what operations can be performed. It does not
specify any meanings of the messages or what the operations mean.

SAWSDL introduces several attributes and seeks to extend WSDL. Those exten-
sions are used to annotate interfaces, operations, and parameters. SAWSDL is very
generic in its use. It defines three attributes: modelReference, liftingSchemaMapping,
and loweringSchemaMapping [212]. They can be seen as reference annotations and
transformation annotations [391].

The modelReference attribute may, by specification, be used with every element in
WSDL. Nonetheless, it specifies only its use as the semantic annotation of interfaces
(wsdl:interface), operations (wsdl:operations), and faults (wsdl:fault). As well as of the
more general elements: xs:element, xs:complexType, xs:simpleType and xs:attribute.

The modelReference references the semantic concept behind those elements. It
has the very generic purpose of referring from a WSDL element to a semantic concept.
SAWDSL does not use or recommend any ontology of its own. While the modelRef-
erence identifies the concept to which the XML data can be lifted, the liftingSchema
defines how the lifting can be done. The loweringSchema, on the contrary, can be used
to lower the data again from an ontological level to its XML representation.

SAWSDL is one of the early works in semantic modeling of services and it has
influenced all future approaches. Compared to Linked USDL, it does not describe

61



services in particular, but mainly technical interfaces in terms of ”how to access the
service”. It does not provide a basic vocabulary for services and it is solely based upon
WSDL. SAWSDL follows a conservative approach: It is not the service describing the
technical interface, but the technical interface describing the service. The modelRefer-
ence attribute was probably the most influential. It has been reused several times – for
example, for iService [298], a linked services publishing platform. It definitely influ-
enced Linked USDL with the idea of referencing from one element to the other. OWL-S
[249], a more advanced approach that we will discuss in Chapter 2.11.2, supports a
modelReference based grounding [252]. ModelReference strongly influenced OWL-S
and all its grounding schemes, which in the end, are not more than specializations of
the modelReference concept. ReLL [9] knows a reference tag and SA-REST [355, 229]
is largely based on the SAWDSL idea.

2.11.2 OWL-S

Web Ontology Language for Web Services (OWL-S) is an OWL based ontology for
describing web-services. OWL-S can be divided into three main parts: a service profile,
a service model and a service grounding. We will briefly discuss these three parts.

Service Profile: The service profile is mainly used to allow service advertising and
discovery. The service profile contains a human-readable description of the
service. Furthermore, it can specify functional aspects of a service as input/out-
put/precondition/effect (IOPE) specification.

Service Model: The service model describes a service as a process model. It de-
scribes a service operation in terms of what a service consumer can do and when.
Furthermore, it can describe the composition of one or more services.

Service Grounding: The service grounding describes the necessary means to call a
service – for example, regarding the message format and its protocols. The focus
on the service grounding is on describing WSDL services.

OWL-S is comparable in terms of its goals with Linked USDL. Nonetheless, it
lacks the business part of Linked USDL and also has not the focus of linking ontologies
and lightweight REST-based services as we will use throughout this work. Rather, it is
concerned with heavyweight XML/WSDL-based services.

2.11.3 Web Service Modeling Ontology

The Web Service Modeling Ontology (WSMO) is a framework for the semantical
description of web services. It is based upon the Web Service Modeling Framework.
WSMO, as a framework, consists of the following four elements [111]: ontologies that
define the formal domain knowledge; Web Service descriptions that define the objectives
of the service consumer; goals that define the objective of the service consumer; and
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mediators that enable the interoperability and handling of heterogeneity between data
structures and processes.

2.11.4 Web Application Description Language and the Semantic Bridge
for Web Services

The the Web Application Description Language [154], commonly known as WADL,
was developed by Sun Microsystems as a RESTful counterpart of the SOAP-based
WSDL. The goal of WADL is to technically describe a ReST-service in the same way
as WSDL describes a web service. WADL models the resources provided by a service
and the relations between them. In WADL each resource is described as a request
based on an HTTP method, its required inputs and the provided responses. WADL
only specifies the technical interface and the data encoding, not its meaning. It was
not designed for semantic interoperability, and it does not provide placeholders for
semantic references of the operations, parameters, and results. The Semantic Bridge
for Web Services (SBWS) [32] tries to fill this gap and allows adding semantics to the
input and output of a REST method similarly to SAWDSL with modelReference-like
properties. It wraps service operations described by a WADL document to create a
SPARQL endpoint describing those services.

WADL differs from our approach first because it is not a semantic approach. It
mereley describes a technical interface. Furthermore, it is bound to HTTP while we are
aiming at any RESTful technology, including the Constrained Application Protocol as
introduced in detail in Chapter 6. WADL is typically perceived as rather complex and it
has not gained widespread use.

2.11.5 Semantic Annotations for REST

Semantic Annotations for REST (SA-REST) [355, 229] is based on SAWDSL. Nonethe-
less, its approach in the use of annotations is different. Most of the semantic annotations
are used to annotate an already existing technical description of a service, for example
WSDL and – on-top of that – to add semantic information. SA-REST annotations are
added to the services described in (human-readable) HTML pages. SA-REST uses
RDFa [3] to make this information machine-readable.

2.11.6 HTML for RESTful Services

HTML for RESTful Services (hRESTS) [211] follows a similar approach as SA-REST.
Instead of using RDFa, however, it uses microformats [49]. The purpose of the hRESTS
is to provide a machine-readable representation of common web services and API
descriptions embedded into human-readable HTML. Microformats, in general, take
advantage of existing (X)HTML facilities (e.g. the class and rel properties) to annotate
the interesting parts of a human-readable API description. hRESTS defines seven
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classes which can be used to annotate a web page. Namely: service, operation, address,
method, input, output and label.

2.11.7 MicroWSMO

MicroWSMO [210, 209, 130] is a SAWDSL-like extension used to semantically an-
notate RESTful services based upon hRESTS. MicroWSMO supports model (same
as modelReference), lowering and lifting. Those can be attached to any hRESTSs
service property to specify the mapping between semantic data and its technological
realization.

2.11.8 Resource Linking Language

Resource Linking Language (RELL) [7, 9] introduces a metamodel for REST services
and a service description based on a meta model. The meta model formally defines
a service as a set of resources. Every resource is associated with different properties,
such as a unique identifier, a name and a URI pattern. ReLL descriptions are XML
documents created according to the ReLL schema. ReLL is not specifically designed for
the Internet of Things, however; it is more focused on XML and the use of XML-related
technologies, such as XPATH and XSLT. Based on these technologies the authors
presented a crawler [8] that can access the resources described in ReLL and transform
them into RDF.

ReLL shares some similarities with Linked USDL and Linked USDL for IoT,
mainly its lightweight design principles and our endpoint descriptions, as will be shown
in Chapter 5, in the sense that we also build upon URI patterns.

2.11.9 RESTdesc

A recent approach to semantically describe RESTful service is RESTdesc [389, 388]. It
is an RDF based notation of a service, written in N3. Thus, it is similar to Linked USDL
and OWL-S. RESTdesc, other than Linked USDL, is closer to the actual RESTful
interface. It was designed to perform reasoning on the interface. It models technical
service interfaces not in terms of resources and operations, but as functional descriptions.
The functionality is expressed as preconditions that when fulfilled will yield some
postconditions. A RESTdesc service consumer can define a certain goal and RESTdesc
in combination with a reasoner can deduce the series of REST operations that will result
in the specified goal. RESTdesc has been applied in the Internet of Things domain
[217].

2.11.10 Semantic RESTful Data Services

Semantic RESTful Data Services (SEREDASj), introduced by Lanthaler and Gtel
[227, 225, 224], is a service description language for describing the syntactical and
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semantical aspects of RESTful services. SEREDASj was specifically designed with
JSON as data representation. A SEREDASj service description consists of two sections:
a metadata section and an element section. The metadata section describes prefixes and
relationships between resources. The element section describes the structure of the data
representation. Both sections can contain references to other ontologies to semantically
describe the elements.

2.12 Integration: Internet of Things and Web of Things

In the following we will discuss three different streams of integration of IoT or WSN ser-
vices into enterprise systems or into the web at general. The first stream is XML/SOAP-
based integration techniques. The second one, which we will summarize as Web of
Things Integration, contains RESTful approaches. At a higher abstraction level we will
also briefly discuss integration based upon business process modeling.

2.12.1 Web-Service based Enterprise Integration of WSNs

An approach that shares similar goals as our research has been performed by Glombitza
et al. [140, 139]. This was based on the observation that most enterprise IT systems
at that time used SOAP-based webservices as the main means to implement service-
oriented architectures. To allow a seamless integration of sensor networks into the
Enterprise world, Glombitza et al. investigated how webservices can be made available
on single sensor nodes. However, the solutions that have already were available
could not be directly downscaled to wireless sensor nodes due to resource constraints.
This problem was solved by suggesting a novel transport protocol [141] as well as
a new SOAP-transport-binding [140]. To support seamless integration and to enable
communication between systems that do not both are able to communicate via this
specialized protocol and binding an automatic webservice binding conversion [139]
has been developed. Glombitza et al. also did some work business process integration,
which we will discuss in Chapter 2.12.3

A second approach was put forward by Spiess et al. [363]. They suggested an
architecture for integration Internet of Things devices into enterprise systems. Similarly
to Glombitza et al. they suggest to use SOAP and, furthermore, the full stack of WS-*
protocols. The focus of their work was more on device and service management as a
whole and not that much on the actual integration of the devices. They assume that
IoT-devices are either capable of running a SOAP protocol or not. In the latter case, they
suggest the use of a middleware that translates SOAP messages to whatever protocol
the device supports and vice versa.

We share the goals of Glombitza and Spiess. We can leverage on their ideas, but
we are taking a different approach to achieve the integration. We see and foresee a
trend towards RESTful systems, also in the enterprise world. The current generation,
and even more the next generation, of business modeling tools and enterprise tools
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in general will support RESTful systems. This new trend is best illustrated with the
standardization efforts of the RESTful OData protocol that is being driven by all the
main enterprise vendors.

A second main differentiator is that the web-service based approaches did not had
semantic descriptionability in the focus of their work. Both are based on traditional
WSDL-based webservices. Both works could, of course, be appended by using one of
the WSDL/XML based techniques discussed in Chapter 2.11.

2.12.2 Web of Things Integration

Similar to the Web-Service based approaches discussed in Chapter 2.12.1 there has
been work done on (enterprise) integration based on RESTful architectures. Commonly,
those are referred to as the Web of Things [150], because the main goal of this stream of
research was to make things accessible through the web. The web of things is advocated
as a refinement of the Internet of Things by integrating smart things not only into the
Internet (the network), but into the Web (the application layer) [150, 151, 153, 148].
The Web of Things advocates the use of RESTful web services. Regardless of the kind
of device, to be a member of the Web of Things it has to offer its API over a RESTful
web service. Therefore, the web of things can be defined as [330]:

The WoT enhances physical objects with a virtual counterpart representing
the latter in the virtual world. In contrast with the IoT, the WoT mandates
the strict application of RESTful principles to its APIs.
– Ruppen, 2015 [330]

From a technical point of view we are considering constrained devices way more
than the WoT movement does. The latter is largely concerned with being able to use the
full ”web-stack”. We share with them the vision of REST-based access to IoT devices.

2.12.3 Process-based Integration

Integration into workflow and business process management is important when talking
about enterprise integration from a business point of view. Graphical modeling tools
such as BPEL [285] and BPMN [397] allow business specialists, who are not reassur-
ingly software developers, to create workflows that can run to fulfill a business goal.
Our work is focused on the service aspects of enterprise integration and leveraging on
semantically enriched services. It has to be integrated with a business process approach
as presented by Meyer et al. [264]. The IoT-BPMN integration presented by Meyer
et al. was developed in the same research project as the work presented here and they
can complement each other. We will first discuss the approach of Meyer et al. and also
discuss related work from Glombitza et al. [138] based upon web-services, as well
as Caracas et al. [71]. The three works all try to solve the same problem, but with
very different means. Meyer et al. introduce IoT modeling concepts and base their
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integration upon service descriptions, Glombitza et al. use the traditional WS-* stack
and Caracas et al. do not alter the BPMN model at all, but generate code for smart
devices out of it.

source hosted on an IoT device that performs the actual deployment responsibility 

and according to Fig. 1 has the relation „is exposed“ to the process task.  

As summarized by Fig. 2, two out of four main components of the IoT Domain 

Model fall in the perspective of business process resources: the IoT device and the 

native service. For both components description parameters can be specified applying 

the description of model of [5], which is relevant for the process resolution and execu-

tion. The BPMN 2.0 notation basically supports two ways to represent resources in 

the process model: one, on activity-level and one, on cross-activity-level. In the fol-

lowing we will apply both of these options to the IoT domain model. 

 

Fig. 2. Classification of IoT components in business process view 

4 IoT Devices and Natives Services as Process Resources in 

BPMN 

In this section, we propose a specification of the IoT device and its native software 

components as an extension to the BPMN 2.0 notation. When integrating the identi-

fied business process resources of the last section to BPMN, we face two main chal-

lenges. First, an IoT device and its native service are usually not considered and there-

fore they are not mentioned in the specification. The reason for this is that one central 

ERP system is often assumed to automate all enterprise business processes without 

including millions of distributed and connected devices, all coming with the capabil-

ity to directly overtake execution responsibility. Second, we have to deal with two 

types of process resources on different levels at the same time, the IoT device and its 

hosted native services being exposed by an IoT service. Usually the BPMN 2.0 stand-

ard considers different roles of resources, but not two completely different types on 

(a) BPMN Process-flow and IoT services [267]

provide information to the IoT services and on the other hand they may obtain infor-

mation from the IoT services that allows for performing certain physical actions. Be-

tween an IoT device and the digital representation of a physical entity the artificial 

relationship “attached to” is created, so that the physical entity becomes part of the 

digital world through using an IoT device. Properties of the entity can in consequence 

be measured or changed by the IoT device.  

Continuing to integrate the view of the information model of [13] with respect to 

the defined specification models, there is the possibility to assign each major compo-

nent to a knowledge base that defines describing information in a structured form, and 

expresses their logical relations to one another. Ontologies are usually applied to de-

scribe an existing knowledge base. As part of the process model, however, it is suita-

ble to use the same ontologies to formulate requirements for individual elements of 

the process model as they are used for the process resolution phase- the actual alloca-

tion of process elements. For instance, for this replaceable description model the 

OWL definitions of [5] or the USDL definition of [15] might be applied. 

 

Fig. 1. Business process relevant IoT domain components (own presentation based on [13] and 

[5]) 

3.2 Resource Perspective 

This section includes mapping the identified, modeling relevant IoT components of 

the last section to the typical available components that are provided by business pro-

cess modeling notations. Here we focus on the identification of the components as 

process resources. For this general part we don’t focus explicitly on the BPMN 2.0 

notation, even though some components are not available in other modeling notations. 

(b) Description based integration into BPMN processes [267]

Figure 2.24: Description-based integration of IoT-devices into Business Process Model-
ing [267]

Meyer et al. [266, 267] take a service description oriented view on BPMN integra-
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tion. As shown in Figure 2.24, they identified services as one of the main components
that can be used as process resources and, thus, modeled by the business specialist.
They propose, to make BPMN IoT-aware to not only use the facilities already included
in BPMN, but a specification of the IoT device and its native software components as
an extension to the BPMN 2.0 notation [267].

Glombitza et al. developed, a workflow management system [138, 142] based on
their work on web services. The system allows transparent execution, monitoring and
optimization of business processes. It aims for being used directly by the business expert.
In [138], they propose a language called Graphical Workflow Execution Language for
Sensor Networks (GWELS). Its objective is the creation of a link between the world
of WSNs and enterprise IT systems. GWELS issues a series of service calls, based
upon a workflow graph. Furthermore, they introduced a state-machine approach and
domain-specific language for model driven development [142]. The goal of the state
machine approach was, similar to the GWELS approach, to model application logic
graphically.

A different approach has been suggested by Caracacs et al. [71]. They argue that
neither the syntax nor the semantics of BPMN needs to be changed. WSN interactions
are modeled solely using BPMN events and BPMN sequence flows. They use BPMN
sub-tasks that can map to an API call on the target device – for instance, the wireless
sensor node. Instead of calling services that already run on the sensor device they then
compile out of the model the necessary code for the sensor node and upload a new
assembly.

2.13 Summary

In this chapter we briefly introduced the main technologies and concepts used in this
work. We are using two hardware platforms (IRIS and Waspmote Pro, see Chapter
2.1), both based on a 2.4 GHz radio using the IEEE 802.15.4 MAC layer protocol. We
will later on leverage on two differences between Waspmote Pro and IRIS: Waspmote
Pro is the more advanced platform. It features a more precise real-time clock and an
additional very-low energy sleep mode. Our software stack mainly consists of the Mote
Runner environment, as introduced in Chapter 2.2. Mote Runner is a virtual machine
based software platform for running IoT applications. It is purely reactive and thus
not have any concurrency mechanisms (e.g. threads). We also introduce the essential
parts of MRv6 (Chapter 2.3.3) – Mote Runners implementation of 6LoWPAN (Chapter
2.3.2).

On the architectural side a basic understanding of RESTful architectures is necessary
(see Chapter 2.4). We introduced RDF and OWL as modeling languages. Furthermore,
we introduced related work in the area of semantic services and enterprise integration.
We showed how a service description language integrates into process models. We
mainly refer to the work of Meyer et al. [267], which was designed with semantic
service description based enterprise integration in mind.
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Part II

Service Architecture for
Embedding IoT-services into

Enterprise Environments

In the second part of this work we present conceptual and architectural work on
semantics-aware enterprise IoT-integration. In Chapter 3 we discuss the concept of an
IoT-service. We present a literature survey on previous definitions and the use of the
term service in the IoT in general. We contribute our own definition and classification
of IoT service. Chapter 4 discusses the special needs of enterprises with regard to
IoT-services. We present a novel architecture based on distributed Linked Services. We
will argue that distributed Linked Services integrates well into both enterprises and
IoT-systems. Furthermore, we will present a concept for easing modeling of business
processes in a semantics-aware enterprise.
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Chapter 3

Services and the Internet of Things

In enterprises, the terms ”service” and ”service-oriented architecture” are key concepts
[380, 56, 35, 259]. In this chapter, we argue, based on a literature survey [381, 259], that
no common definition of IoT service exists. We contribute to an overall understanding
of the IoT-domain by deriving a definition and classification of IoT-services. We embed
services in a comprehensive IoT domain model — the IoT-A model — and describe its
relationship to other modeling elements of this domain model. Our understanding of
the term ”service” and the differences with other concepts, like a technical interface,
will be used in all subsequent chapters.

3.1 Introduction

As part of our work on actuator and sensor integration into enterprise IT systems, we
identified services as one of the main building blocks of the future Internet. Surpris-
ingly, there is still no common nomenclature and the term ”IoT-Service” has different
meanings in different works [381]. As most enterprise software solutions nowadays
are written following a service-oriented approach a convergence of the Internet of
Services (IoS) and the enterprise IT world is anticipated for describing and provisioning
IoT-services. Therefore, it is a necessity to have a good understanding of what an
IoT-Service is, what its relationships to existing concepts are and how these concepts
can be brought into the IoT world.

This chapter will first describe services in general and as a main building block of
the Internet of Things. Furthermore, we will survey existing definitions of services in
an IoT-context and later present our own coherent classification [380, 259]. In addition,
we will show how this abstraction can help a business domain expert in working with
IoT-services.
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3.2 Services

Services are a suitable abstraction for building complex software systems. They are
the fundament of most of today’s enterprise systems [399]. In the same way that they
play a crucial role in nowadays IT-systems, it is suggested that they will also play a
crucial role in the Internet-of-Things [152]. Services are a central part of many domain
and reference models, including the IoT-A architecture. Furthermore, currently a lot of
research is being carried out in the areas of IoT and services [18].

Nonetheless, ”service” is a somewhat overloaded term that can have many meanings.
For example, one wide-spread use of the term service is to use it as a synonym for what
we call a technical interface that is software functionality provided by a defined service
interface (e.g. Web-Services). Barros and Oberle [29] define a service as:

a commercial transaction where one party grants temporary access to the
resources of another party (...)
— Barros and Oberle, 2012 [29]

In service science and in Internet of Services (IoS) research there were and are
many efforts to establish a single definition of the term ”service”. A comprehensive
discussion of several ways to define service is given by Ferrario [125]. However, no
definition has been accepted by the wider community yet [190, 29, 125].

3.3 Survey on the term ”Service” in IoT

To get a clearer picture of what is currently considered an IoT-Service, we surveyed
several publicly funded projects (e.g. SIRENA [51], SOCRADES [152], SENSEI [173],
RUNES [97], and OASiS [284]) and did a comprehensive search through the ACM and
IEEE literature databases for service concepts in the realm of the Internet of Things,
Web of Things (WoT), cyber-physical systems (CPS), and related terms.

Only publicly available material was used. For example, no internal reports were
taken into consideration. The search returned more than 620 documents that had a high
probability of being of interest. These documents were automatically downloaded, a
full-text layer added if needed (tessaract and hocr2pdf), analyzed with a full-text search
engine (pdfgrep) and ranked according to their likelihood of discussing services and
service-oriented concepts using a weighted mean algorithm based on selected keywords.
The process is depicted in Figure 3.1. Out of all papers taken into consideration most
papers were in the realm of the Internet of Things (≈52%), followed by Cyber-Physical
Systems (≈40%).

A vast majority of the selected papers used or mentioned service-oriented principles
(>90%). This is not a surprise since we were searching for service-related papers.
What is surprising, however, is that only very few papers and projects dealing with
IoT-services defined precisely what they consider an IoT-service (<10%), how it differs
from traditional services, and how to combine IoT and non-IoT services. This is
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Figure 3.1: Survey: Process

even more astonishing since there are many IoT-middleware and IoT service oriented
frameworks that claim to bridge the gap between the Enterprise SOA world and the
physical world. Mainly papers from the realm of IoT dealt with SOA or services.
This can be explained by a slight bias towards the term ”Internet of Things”, as its
mainly used by European projects. Furthermore, CPS is typically more directed towards
real-time systems [230] than IoT is; therefore CPS is less often used in a service context.
Most papers (≈ 80%) had only an implicit definition of IoT-service, or gave just a
general definition of service.

In the following, we will focus on summarizing the key findings with regard to
services. In a technical sense, there are differences between traditional services and IoT-
services, like special QoS-parameters and the fact that the devices running these services
are often resource-constrained with respect to computing, storage, communication, and
energy capabilities. Many works focus on dealing with the special characteristics of
such systems. Furthermore, IoT services might only occasionally be connected to a
network [156, 194]. The findings generally are inline with a comprehensive survey on
the IoT in general, carried out by Atzori et al. [18]. Atzori et al. also noticed a tendency
towards service-orientation. Nonetheless, IoT services are not explicitly covered by
them.

From all the mentions of the term service, only a few definitions go beyond a
technical interface. In the end, we were only able to identify three specific definitions
that particularly concern what we will later call an IoT-service: the terms ”real-world
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SOA” used by Karnouskos et al. [194], ”real-world service” by De et al. [104], and the
term ”web presence” by Debaty et al. [106]. In the following, we briefly summarize
those definitions:

Karnouskos et al. [194] define the term ”Real-world SOA” as:

Real-world SOA, is a SOA where each device offers its functionality in a
service-oriented way; is able to discover other devices and their hosted ser-
vices dynamically at runtime; can invoke actions of the discovered services
dynamically; and is able to publish and subscribe to typed, asynchronous
events
— Karnouskos et al. [194]

However, a specific discussion of what constitutes a real world (or IoT) service is
missing though.

The similar term ”real-world service” is used by De et al. [104]

The Internet of Things envisions a multitude of heterogeneous objects and
interactions with the physical environment. The functionalities provided
by these objects can be termed as ”real-world services” as they provide a
near real-time state of the physical world.
— De et. al. [104]

Nonetheless, the term ”real-world service” is ambiguous as it is also used for
explicitly non-IT services provided in the real world (e.g. the transportation of goods)
[5]. This is why we use the term ”IoT-service”, which has no predefined meaning in
other domains.

A similar definition is given by Debaty et. al. [106]:

To computer applications, the incarnation of a Web presence is a set of
Web services to learn and interact with the physical entity. where a web
presence is the virtual representation of a physical entity as an integrant
part of the Web.
— Debaty et al. [106]

These are not the only definitions available. For example, some research projects
(e.g. [316, 173]) differentiate between sensing and actuation services. Nonetheless,
the definitions of these two kinds of services, which are essential for the Internet of
Things, are only implicitly given. For example, when the term IoT-service is used for
describing interfaces to devices that perform the actual sensing or actuation task.

3.4 Services and the Internet of Things-Architecture

This section shows how we integrated services in the Internet of Things-Architecture.
We continue using an intuitive definition of the term ”service”. In Chapter 3.5, we will
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introduce our definition and a classification of service. We now introduce the Internet-
of-Things Architecture (IoT-A), with a strong focus on how we utilized services in this
architecture. The IoT-A project started with the perception that even after many years
of heavy discussion in the community, there was still no clear and common definition
of many concepts. The range of the IoT domain and IoT solutions is already large. The
objective of the project was not to develop or consider a ”one-size-fits-all” protocol or
architecture, nor to define interoperability layers between all sorts of devices. The main
driver of the project was the observation that there was a need for a common ground
at more abstract levels. The results of the IoT-A project are based on a cooperation of
more than 20 organizations from industry and academia that have been working for a
period of more than three years. The overall results of the project can be found in Bassi
et al. [34]. In this chapter, we only describe the service-related part that we contributed
and how we integrated it into the IoT-A architecture.
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The instance diagrams such as Figure 5 are concrete instantiations of the IoT 
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Figure 3.2: Relationship between a user and a physical entity [33]

As a part of the Internet of Things-Architecture project, six core concepts of the
Internet of Things have been identified [160], namely: user, physical entity, virtual
entity, augmented entity, device, resource, and service. The main driver behind any
IoT-system is the user who has the requirement to interact with a so-called real-world
object. The term user is used in a generic way and does not need to be human. Any
technical device or technical process can be the user of a system. The real-world
objects can be passively monitored, or actively manipulated by the user. A physical
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entity (sometimes just called Entity or Thing) is a real-world object in which a user is
interested.

The term ”physical entity” was mainly used to avoid misunderstandings between
a real-world entity and entities that might exist otherwise, for example, as part of an
information system. Other works sometimes use the terms real-world object [103, 323],
or Entity of Interest [394, 155]. The relationship between a user and a physical entity is
shown in Figure 3.2.

The next concept is that of a Virtual Entity: The idea of a virtual entity is closely
related to the concept of a virtual counterpart, as introduced by Römer et al [323]. A
virtual entity is the digital counterpart of the physical entity that exists in an information
processing system. The third *-entity concept is that of an augmented entity. An
augmented entity is the composition of a Physical Entity with its associated Virtual
Entity. The relationship between the three entity types is shown in the middle of Figure
3.2.

Figure 3.3 shows the complete domain model as developed in the IoT-A project.
We will now describe how services interact with devices. Devices are computing units
(any hardware that is able to do ”something”). In the domain model [33], the device is
the superclass for the more specific components. Devices can be physically attached to
Physical Entities, like an RFID-tag. They can also be somewhere in the surroundings
of a physical entity — for example, a temperature sensor in a container. The three
most common device-types are tags, sensors, and actors. Tags identify physical entities.
They can be read by sensors. Sensors monitor physical entities, whereas actors can act
on physical entities.

Resources are defined as software components that implement functionalities [34].
Resources can be hosted on a device or any other place in the network or in the cloud.
A cloud resource, for example, could derive higher level information by analyzing data
provided by other resources hosted on sensor devices. We will use the term ”resources”
for means to get information about the environment. Resources provide the technical
links to physical entities. They could be more than just ”dumb” sensors. For example,
the temperature of a room (the physical entity we are interested in), could be observed
by one ore more mobile phones of people who are actually in the room. In this case,
the resources are the mobile phones. The resources then access temperature sensors on
the phone. The sensors are the devices.

While resources provide functionality they do not offer any means of accessing
these functionalities. A service exposes the functionality of a resource via an interface
that can be invoked by the user. The service has internal knowledge on how to access the
functionality provided by a resource. The definition of a service is technical in nature
at this point. In Chapter 3.5, we will generalize this to form a more comprehensive
definition of an IoT-service. The IoT-A is very generic in nature. It offers many
design choices to a system designer. For example, it does not specify how services are
described, how the interface of the service can be derived, or what kind of physical
entity it interacts with. However, it suggests the use of semantic services.
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Figure 3.3: IoT-A domain model (complete view) [33]
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3.5 Definition and Classification of IoT-Services

As discussed in Chapter 3.3, most people use the term IoT-service for accessing the
functionality (for example: sensing) of a device (a sensor) or resource via low level
services. It is rarely used as a high level concept and, if so, the relationship to general
purpose services, as known from Enterprise IT or the Internet of Services, is not entirely
clear. As explained in Chapter 3.4, we take a perspective based on the physical entity
and resources.

As ”service” is an ambiguous term, we give a definition that is not too limiting
(for example, by defining a service as a software component only), but that is still
restrictive enough so that IoT-services can stand as a field of their own. We used the
term transaction as introduced in the work of Barros and Oberle [29], but do not limit
ourselves to commercial transactions.

An IoT-Service is a transaction between two parties, the service
provider and the service consumer. It causes a prescribed function
enabling the interaction with the physical world by measuring the state
of entities or by initiating actions which will cause a change to the
entities.

In the following, we propose a simple but comprehensive classification of services
along two dimensions:

1. Relationship with the entity

2. Service life-cycle

We define IoT services as services enabling interactions with the real world, and
thus as the superset of the more specifically defined services outlined in Table 3.1.
Integrated services are conceptually used to form a bridge between IoT-specific services
and external services/non IoT specific services.

When we classify along the relationship with the physical entity (see Table 3.1),
one of the key concepts we explicitly introduce are the Entity service and integrated
services as higher level of abstraction that utilize simple resource/device and other
(IoT-external) services as primitives, thereby hiding the complexity of dealing with
them from modeling experts, developers and users. This is the most natural way to look
at an IoT-thing entity, because it is more intuitive for domain experts as they do not
need to work with some low-level sensor service interface. This has to be abstracted
for being usable, for example, in enterprise environments. Additionally, this, of course,
also reduces the complexity for development in general and allows the integration into
service-oriented environments.
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Table 3.1: Classification based on relationship with the Entity

Low-level service The low-level services make the capabilities of the devices
or the resources accessible to entity services or integrated
services

Resource service Resource services provide the observations the resource is
capable to make or provide the actions a resource is capable
to execute.

”Entity”-Service Entity services are the heart of IoT systems. These are the
services provided by the entities and they are often, but not
necessarily, compositions of low-level services.

Integrated service Integrated services work with entities. They usually are based
on entity services and compose them with non-IoT services.

IoT-Service An IoT-service is a transaction between two parties, the service
provider and the service consumer. It causes a prescribed
function enabling the interaction with the physical world by
measuring the state of entities or by initiating actions which
will cause a change to the entities.

Table 3.2: Classification based on the service life-cycle

Deployable A service that is not yet in the field, but that is generally
deployable. The according service description exists in a
service repository, but an appropriate runtime environment is
not yet assigned. Thus a service locator is not available in the
service registry.

Deployed A deployed service is already in the field, but not yet ready for
use. Further steps are necessary to make it operational. These
further steps could be technical or economic (like paying for
the service)

Operational An operational service is already deployed and ready to use.
The service is associated with an entity and the association is
known to a resolution infrastructure.
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Another important classification of services is according to the service lifecycle.
Apart from the different Quality of Information (QoI) and Quality of Service (QoS)
constraints of IoT-services, the other very special thing is that they are bound to and
run on a large variety of devices, and they have to be aware of physical entities. This
complicates the service management compared to traditional service management
frameworks. In an Enterprise context, it is therefore a necessity to have a closer look
at the different states in the service lifecycle: This is a necessary precondition for
the service management, as well as for enterprise service orchestration and service
choreography engines as discussed by Haller et al. [157] and Sperner et al. [362].
An IoT-service is usually bound to a physical entity and working together with a
service environment or within a general service ecosystem. In general, we distinguish
between three different states: deployable, deployed and operational. We call a service
deployable, if it is generally ready to be deployed in the field. Commonly, this means
that the service is either not yet on its destination or not yet part of an appropriate
service runtime environment as part of the service ecosystem. Once the service is in the
field (i.e. at its target destination), we call it deployed. A deployed service is not yet
working and serving requests. Further steps might be necessary. These steps can be
either technical or economic. This could mean that first batteries need to be charged to
become operational or that it is waiting for someone to pay for its services. Finally, we
call a service operational if it can serve requests. The service is typically associated to
a physical entity and is known to a service ecosystem, that means it can be found in a
service repository and resolved to a technical endpoint.

3.6 Conclusions

The term ”IoT-service” is used inconsistently in literature. Most projects use the term
intuitively. While it might sound obvious that there are specific differences between
services in a classic sense and services that allow interaction with the physical world,
a conceptual frame defining them is necessary. First, in Chapter 3.2, we argued that
a comprehensive definition of the term ”service” in the Internet of Things is needed.
In Chapter 3.3 we performed a literature survey and concluded that many works are
based on a rather implicit definition of service and that no generally accepted definition
exists. In Chapter 3.4 we then showed how services interact within an IoT framework.
We introduced a conceptual view on IoT-services, which allows easy integration of
IoT entities into the service-oriented world. Based on existing definitions, in Chapter
3.5, we suggest a definition based on the term ”transaction” that is consistent with
definitions found in service science. The classification and the surrounding concepts
are centered on the entity and not that much on the technical representations or means
of realization through low-level services. We explained the entity-concept and mapped
our service-definitions to it. In the next chapter, we will discuss how those entities and
services can be integrated into enterprise IT systems.
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Chapter 4

Enterprise-embedded IoT-Services

This chapter discusses the special needs of enterprises with regard to IoT-services.
We present the opportunities for an enterprise that lie in the general use of semantics
and service descriptions for interoperability [381, 375, 382, 373, 374]. We contribute
abstractions — such as — the semantical physical business entity [382] to enable busi-
ness modeling using semantic concepts. Furthermore, we present a novel architecture
based on linked service descriptions to enable interoperability with IoT-devices. Its
novelty is the combination of Linked Services and the distribution of services, which
combined, serve the needs of both enterprises and constrained IoT-devices. We argue
that (distributed) Linked Services are especially well suited for IoT-applications, given
their limited battery power, as well as storage and processing constraints. Thus, Linked
Services do not only enable interoperability, but also suit the needs of constrained
devices.

4.1 Introduction

One of the main challenges of future enterprise IT systems is using data collected
from the real world in real time, contextualizing it, and providing the user of these
systems with the best possible up-to-date information on which to base business deci-
sions. The vision of context-aware and real-world aware enterprise IT systems is often
associated with the term ”Sensing Enterprise” [335, 57, 319]. A recent approach to
describe services in a service-oriented environment are semantically enriched service
descriptions, based on semantic web technologies. This chapter presents our vision of
the sensing enterprise based on these semantically-enriched services. We use them to
access sensor devices, which are able to describe themselves, thus enabling a sensing
enterprise that seamlessly integrates into today’s enterprise world. Furthermore, we will
discuss an integration platform as an architectural proposal that can be used to connect
ERP systems to the physical world.

Semantics and even ontologies do already exist in nowadays enterprise IT systems.
Nonetheless, they are often hidden and not explicitly stated as such — at least compared
to what is seen in the semantic web movement. To enable interoperability between
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different components of an enterprise system, often a common vocabulary is used. The
specific modules are then based on such common datatypes. For instance, SAP ERP
systems use a Global Data Type (GDT) [334] directory that represents business related
content SAP wide. All elements of service-oriented services provided by SAP systems
are described (typed) by GDTs. A GDT is more than just an integer or a float. It might
be something rather generic like an invoice or something very domain-specific like
AirCargoSecurityStatusCode. This implicit knowledge provided by the GDT directory
currently specifies more than 5100 different data types and it is documented on more
than 16.000 pages. This shows the potential of semantics in enterprises that could be
leveraged if it were made more explicitly available.

4.2 Key Drivers

We see four key drivers in the sensing enterprise context. The four key drivers are:

Interoperability: In the past (and even nowadays, but at a lower level) ERP vendors
used to base their system on proprietary protocols. Interoperability, as a result,
meant implementing custom connectors to these services. The connectors had
to ensure interoperability on a technical level and also map business concepts.
To some degree, this was caused by historical and technical reasons, and the
lack of agreed-on standards. Nowadays, in the days of coopetition [58, 41]
interoperability has become more important. Thinking further into the future,
especially in the sensing enterprise, where we might deal with all kinds of
smart items from several vendors, which have to integrate into various backend
systems, flexible and smart interoperability is a must. Furthermore, even when
we talk about enterprise interoperability today, there is specific knowledge of
the used protocol and the data required. Future enterprise systems need to target
interoperability at a semantic level as well.

Standardized Technologies for Direct Access of IoT-enabled Entities: This key dri-
ver is closely connected with the general problem of achieving interoperability.
Enterprise systems move away from their proprietary protocols towards stan-
dardized technologies, like TCP/IP, HTTP or OData. Previously, IoT-integration
platforms typically were middleware solutions, where the enterprise system only
communicated via an interface with the middleware but not directly with the IoT
devices. We anticipate a shift towards the use of standardized (Internet-) tech-
nologies that allow communication between enterprise systems and IoT-devices
directly, or over transparent proxies.

Enablement of Sense-making: Future enterprise backend systems will have to do
reasoning on data from various sources. The description of these services should
allow semantic annotations that can be understood and processed by enterprise
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IT systems. As we will describe later, we are following a pragmatic approach
here, without the need of being fully reasonable in a theoretical sense.

Enablement of Real-time Business Decision Support: In many industries, the back-
end systems are still disconnected from what is actually happening. Often, the
information is gathered a-posteriori and deviations from the planned state are
detected late. Integrating real-time decision support into these systems will en-
able a business to run more efficiently, react in a timely manner to the changes in
the business process, and allow proper exception handling. While this is closely
related to sense-making, real-time business decision support does not only rely
on sense-making. Traditional rule based complex event processing systems are
already in use today.

Two emerging technologies could soon enable the sensing enterprise to become a
reality:

Real time Big Data Analytics: A typical enterprise generates large and diverse data
sets from its distributed business locations. Besides OLAP data, the enterprise
might also record data produced by social networks, surveillance devices, or
third party systems owned by business partners. These massive amounts of
detailed data can be combined and analyzed by predictive analytics, data mining,
or statistics. Doing this in real-time — for example, by using in-memory data
processing [118, 119] – creates a business advantage for the company by giving
insight into the real-world dynamics of their business.

Sensor Networks and Near Field Communication: Sensor networks are starting to
complement the already existing RFID (Auto ID) technologies that are already
available on the market.

4.3 Semantic Service Descriptions

A service description is used to describe the characteristics of a service. This may
include non-functional properties as well as a technical interface. It is important to
distinguish between the deployed service itself (in a technical sense) and its description.
The description, for example, does not need to be hosted on the same device as the
service. A service description can exist without a deployed service. This is a necessary
precondition for supporting reconfigurability and reprogrammability.

We define a service description as follows:

A service description is a description of all essential properties of
a given service, as well as the means to access it. A service description
is independent of an actual implemented callable service.
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As emphasized earlier, it is important to distinguish between service descriptions
and the actual implemented (callable) service on a device. The technical interface to this
callable service is called endpoint. Please be aware that the term endpoint might have
different meanings in specific actual protocols specifications or technologies. Unless
stated otherwise, we will always refer to the generic concept of an implemented callable
technical interface. The process of linking a service description to an endpoint is called
binding, while finding services for specific items of interest is called discovery. The
means of access a service is called resolution and delivers an endpoint description.

4.4 Linked Services

Our architecture was designed with the use of Linked Services [297, 299] in mind. As
we will describe we extend the definition of linking to also include a distribution aspect
and relax the constraints on technology. Furthermore, we assume a pragmatic view on
the usage of semantics. In a nutshell, the idea behind Linked Services is to base service
descriptions on standard technologies known from the semantic web whereby their
inputs and outputs, their functionality, and their non-functional properties are described
in terms of (reused) light weight RDFS vocabularies and exposed following Linked
Data principles [297]. The linked data principle was outlined by Berners-Lee [42]. He
suggested the following four simple rules for publishing data on the web, thus creating
a single data space – the web of data:

1. Use URIs as names for things

2. Use HTTP so that people can look up those names

3. When someone looks up a URI, provide useful information, using the standards

4. Include links to other URIs, so that they can discover more things

The linking aspect, here, essentially means linking vocabularies through reusing
lightweight RDFS vocabularies. In our work we extend the term to also include the
possibility of linking parts of one service together, thus distribute parts of the service
description, through means of standard technology. Furthermore, we also relax the
constraint of semantic web technology to not only include the traditional standards
(RDF, SPARQL) but any semantic technologies like, for example, OData. Additionally,
we also have a pragmatic view on semantics in general and differentiate between
enterprise use of semantics and the more ambitious web of data.

Compared to the very ambitious idea of the web of data [50] our vision is way more
focused on the interoperability between enterprise systems, and between enterprise
systems and IoT devices. We currently see reasoning as applicable on a domain level
only. In contrast to many ongoing research on the semantic web, we do not want to
model or understand the whole world. Our mid-term goal is semantic interoperability
in very specific domains (e.g. in retail). For this, we foresee the use of light-weight

84



ontologies. We would even allow manual steps, like hard-coded rules by domain experts,
in the processing of these services. Research on interoperability has shown the need for
semantic interoperability, this is sometimes complemented by the need for pragmatic
interoperability [301]. Our approach does not solve all the problems that can arise
from wrong assumptions on either the semantic or the pragmatic level, but the use of
semantic technologies and the restriction on a domain-level should reduce the risk of
making wrong assumptions on both sides of the communication channel.

Therefore, we have a more pragmatic view on the web-of-things and its technologies.
For example, in Chapter 6 we will use the Constrained Application Protocol (CoAP)
instead of HTTP. Any REST-based protocol is suitable for the implementation of Linked
Services. Furthermore, as emphasized already, we are not aiming for understanding or
describing the ”whole world”. Our aim is simply to leverage on semantic technologies
to the extent needed to achieve our goals.

4.5 Semantic Physical Business Entities

We now introduce the concept of Semantic Physical Business Entities, which in con-
junction with ontologies can be used to make this implicit knowledge explicit and
directly accessible. First, we define the term Physical Business Entity (PBE) that makes
the difference to a semantic physical business entity explicit:

A Physical Business Entity is a conceptual representation of a real-world
entity processed by one or more enterprise IT systems.

At this point we limited ourselves to physical entities in the real-world. Nonetheless,
our approach can be generalized to other types of entities, which can be observed by all
kinds of sensors. This includes even high-level concepts such as social networks.

In the literature there is no common agreement on the definition of the terms
business object and business entity. Some authors use them interchangeably; others
define business objects as entities with logic. As we want to emphasize the relationship
with the entity concept as found in the IoT, we choose the term semantic physical
business entity, which we define as follows:

A Semantic Physical Business Entity is a conceptual representation of a
real-world object processed by one or more enterprise IT systems. Information
about it is discoverable. It is described through well-defined vocabularies that
make internal and external relationships explicit.
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Figure 4.1: Knowledge repositories and distribution

The decoupling between the PBEs and the devices observing it is important: An
enterprise IT system’s user is usually not interested in the value of sensor no. 0815
or sensor no. 4711, but in the temperature of some given good or class of goods,
which could be monitored by several sensors. This abstraction, moving away from
the pure technical view concentrating on sensing devices, towards the ”things” they
monitor is one of the main ideas in the IoT community. The SPBE is just a concept. It
manifests itself through the use and combination of several semantic repositories. The
decoupling and the dependencies between semantic repositories that form the concept
of an SPBE are shown in more detail in Figure 4.1. The link from SPBEs to an entity
in the physical world is through an entity repository and self-descriptive IoT-nodes.
Both, the entity description and the service descriptions of the IoT-nodes are stored in
semantic repositories. An entity is further described in general and domain-specific
knowledge repositories. The services running on an IoT-device are also further refined
in domain-specific ontologies. Further services, that are used to build an integrated
service are also stored in the service repositories. In Chapter 4.6 we show how our
platform supports this abstraction.

4.6 Enterprise Integration

In our opinion the most important benefits of using service descriptions are seen at the
level of the enterprise IT integration. This section presents a high-level architectural
overview on how linkable service descriptions and enterprise IT systems can be com-
bined using the service-oriented paradigm. We first present requirements derived from
a supply-chain and retail use case and then an integration scenario.
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4.6.1 Requirements

In the following, we briefly present what we consider the most important requirements
for enterprise integration, namely the modeling of service characteristics, linking
services, use of standardized technology, service discovery, constrained resources and
reconfigurability and reprogrammability.

4.6.1.1 Modeling of Service Characteristics

To integrate a service into an enterprise system it is necessary to have a service endpoint
and at least a technical description on how to invoke it. In addition, it is desired to
have also non-functional aspects described. The execution engine can take these into
consideration in the binding and execution phase of a business process.

4.6.1.2 Linked Services

The architecture should be able to use linked services as introduced in Chapter 4.4. It
should be able to follow links and download service descriptions.

4.6.1.3 Standardized (Internet) Technology

The architecture should leverage on standardized Internet technologies instead of
producing home-grown protocols. Nonetheless, the support of existing proprietary
protocols should be possible, if needed.

4.6.1.4 Service Discovery

In a traditional service-oriented environment a service registry or repository is sufficient
for discovering services within an enterprise. For those sensor networks that are more
or less static in nature, where most of the business logic is performed in the enterprise
backend system, or if only limited business logic is executed on the nodes, a repository
approach is sufficient as well. Nonetheless, in ad-hoc or self-organizing scenarios,
where a lot of business logic is executed on the nodes and a backend system might not
even exist, self-description of services is essential [395]. Especially, in a non-static
transportation setting there is often the problem that one or more sensor nodes join
a different enterprise context, depending on their location. In such transportation
scenarios, for example, a sensor network would monitor the goods along the complete
supply chain. In case of food it could monitor humidity and temperature. A recent
research project in this context is Intelligent Container [136]. In such a setup, it is
possible to run small business processes on the sensor nodes, for example, calculating
the final price the customer has to pay based on SLA and pricing models stored on the
sensor nodes.

87



4.6.1.5 Constrained Resources

It is essential for the wide adoption of sensing technology in the enterprise IT that
related technologies come at a low cost. Therefore, we are dealing with devices that
are constrained in terms of memory, computation and communication. In an industrial
setting the use of constrained devices is desired and often enforced to reduce the total
cost.

4.6.1.6 Reconfigurability and Reprogrammability

As more sensors are deployed by enterprises, the evolution [306], shared use and reuse
of already deployed sensor networks will play a crucial role. In a typical enterprise
IT system a sensor network is used for one or multiple tasks for some time. Changing
requirements and cost pressure lead to the need of constant reconfiguration and shared
use of resources. Applications that time share a sensor network, might need to reflash a
node to perform its task, as sensor nets are usually memory constrained. Therefore, it is
essential that the devices can easily be reconfigured and reprogrammed.

4.6.2 Application Scenario
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Figure 4.2: Typical sensor network integration scenario in an enterprise environment

In the following we will present a motivating application scenario for the use
of Linked Services. Figure 4.2 shows a possible partitioning of a service deployed
on the sensor nodes with different references (linking) to other sources, where more
information about this particular service can be retrieved. The composed service that
forms a sensor network service has its accessible service endpoint on an enterprise
middleware system. It refers to the sensing services on the individual sensor nodes.
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The sensor service descriptions on the individual nodes describe their technical
service endpoint, which is on the same IoT (sensor) device in this scenario. Nonetheless,
this is completely flexible. The service description there, for example, may link to some
service endpoint on the gateway and to a service description on the gateway.

Furthermore, the sensor nodes’ service descriptions link to further information on an
enterprise system (e.g. SLAs) and even to detailed comprehensive sensor specifications
at some repository of the sensor vendor.

The entire architecture follows service-oriented principles. The sensor network
services up to the middleware follow a classic repository-based approach. The sensor
network beyond the gateway also follows service-oriented principles. Service descrip-
tions and service endpoints allow, for example, the usage of individual sensor nodes and
compositions thereof just like any other web service from the perspective of a business
process execution engine.
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Figure 4.3: Sensor network migration in an enterprise context

Figure 4.3, shows another scenario. The ERP processes queries and accesses the
sensor nodes directly. There is no explicit, non-transparent, gateway. This scenario
is common in a sensor network migration context. In the transportation of goods, for
example, we might have a sensor network monitoring one or more shipping containers.
These containers move along different stations in the supply chain; therefore sensor
networks need to be integrated into several enterprise backend systems. These backend
systems get direct access to the sensor network and integrate them into their own
network. In addition, the description might refer to the original vendors backend
system for additional information. For example, the service level agreements could
be stored there and accessed for billing. Nonetheless, the sensor network needs to
remain accessible even when this additional information is not available. In the next
section, we will generalize the concepts we used intuitively in the application scenario.
What we called middleware in this section will be refined and introduced as integration
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platform. The integration platform is typically transparent, but could also be used to
host composed services.

4.7 Enterprise Integration Platform Architecture

In the following we present an architectural proposal based on the principles and
ideas discussed in Chapter 3 and Chapter 4. We provide an overview of how those
concepts can be used to enable the sensing enterprise. We present the architecture of a
Linked Services enterprise platform and describe how we apply light-weight service
descriptions to smart items and sensor networks. We are not going into too many details
on how Linked Service integration is carried out in regular enterprise networks and
service marketplaces, but present our extension to the concept. More information on
Linked Service integration is given by Cardoso et al. [75, 77] and Razo-Zapata et al.
[315].
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Figure 4.4: Architectural block diagram of the Linked Service enterprise platform.

Our platform, as shown in Fig. 4.4, enables an enterprise IT system to access
and evaluate Linked Services. We distinguish between two main building blocks: the
enterprise layer and the integration platform. The integration platform (IP) consists of
the service handling layer and the physical resource adapters (PR-adapters).
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The enterprise layer can access both the integration platform and the smart items
via the service-oriented paradigm. As we consider IoT devices to be first-class entities
in our service-oriented architecture, they are able to describe themselves through Linked
Services descriptions. The actual services are accessed via the service management unit.
Interoperability is achieved via a standardization of the interface to the management
unit and of the service description language.

The ERP accesses the services provided by the IoT devices in the registry. As
the service description is standardized it can evaluate its contents using the service
evaluation component. The business information encoded in the service description is
domain-specific and it triggers further actions in the business processes running within
the ERP. The actual means of access is described in the service endpoint description.
In our system the endpoints are described in Linked USDL for IoT (see Chapter 5).
Nonetheless, the architecture is not bound to Linked USDL. Any other solution can be
used as well. Depending on the protocol used and the capabilities of the ERP system
either a direct access is possible, the service-oriented integration platform could serve
as a protocol gateway, or the integration platform itself could be the service endpoint
[381].

The communication between the enterprise backend system and the integration
platform is commonly carried out via a gateway component (e.g. SAP Netweaver
Gateway) that separates the ERP and auxiliary services. As the integration platform
is just a service for the ERP system, communication takes place through a standard
interface known to the enterprise SOA environment. Nowadays, ERP systems still
use a lot of heavy-weight proprietary protocols, e.g. BAPI or SAP RFC, whereas the
communication with the SOA platform can be done via a standardized protocol. The
industry is currently moving towards the Open Data Protocol (OData) as specified by
the OData consortium [274]. At an application layer, CoAP and HTTP seem to be
good candidates in addition to Linked Services. This allows different ERP vendors
to implement their own integration platform without losing interoperability. These
self-description capabilities allow the smart items to join an ERP backend system in
order to integrate into the system automatically based on the semantic information
found in the service description, trigger backend actions and access the services on the
smart item.

The Integration Platform takes care of the actual handling of services on smart
devices. It is exposed to the enterprise layer through a service-oriented compatible inter-
face. Thus, it gets integrated into an enterprise’ service-oriented environment. Within
the Integration Platform there are several agents which we will describe briefly: The
discovery agent (DA) interacts with the physical resource adapter (PRA) and discovers
new services available on new smart items. Communication with and monitoring of
smart items is typically done via the physical resource adapter. New service descriptions
are first completed by the semantic resolution agent and (in case of compression) un-
compressed by the service description compression unit. The service description agent
is then responsible for adding the service to the ERPs service registry and repository,
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thus making it available to the enterprise. Communication between the ERP and the
services on the mote either can be directly, for example for HTTP or CoAP-based
services in an IPv6 network, or with the help of a service access gateway agent that
serves as gateway.

The deployment view of our envisioned semantic enterprise integration platform is
shown in Figure 4.5 Several integration platforms called integration platform instances
(IPI) can be used to talk to one or more wireless sensor networks. Specialized physical
resource adapters, for example for the Mote Runner system, are responsible for the
communication between the sensor networks and a specific instance of the integration
platform. The communication between the ERP and the individual device can be either
direct (transparent) or indirect. In an indirect scenario a service endpoint can be placed
on the IPI via the specialized resource adapters. The only requirement we have towards
the motes is that the IPI is notified when motes join or leave the WSN. Optionally, the
motes can have a service description stored on them. This is necessary when third-party
smart objects join the domain of an enterprise. Information from the motes is then used
in the information and reasoning parts of the enterprise system, supported by ontologies
and domain knowledge.
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Figure 4.5: Deployment view

The actual IPIs are deployed to different (geographical or logical) zones and control
one ore more motes. They are responsible for reading data from them or setting their
state in case of an actuator.

Considering interoperability as it is currently done, one observes that almost always
a device-centric approach is used: Specific modules within the enterprise system
interact with the sensing devices through proprietary protocols. Recently, the situation
has changed towards the more widespread use IP-based protocols and standardized
application level protocols.

We suggest moving away from the device-centric approach by leveraging on the
SPBE conceptual framework as introduced in Chapter 4.5. The integration platform
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Figure 4.6: SPBE in an enterprise modeling framework

needs support from the business layer/enterprise layer. Modeling tools allow to model
IoT-services on semantic repositories as shown in Figure 4.6. A semantic enterprise
modeling framework can be divided into three layers: a semantic layer, an integration
layer and a business layer. The integration layer in Figure 4.6 refers to semantic
integration. The integration platform is only a part of it. As the image shows, the IPI
can be used to realize an SPBE integration layer. The components of the integration
platform are abstracted as command&control (c&c) unit. All information that the
business expert needs to model an IoT system is stored in semantic repositories. The
business expert uses a modeling tool that can access all the relevant information stored
in semantic repositories. The semantic repositories can be further divided into domain-
specific knowledge, semantic representations of physical entities and services related
to those entities. A transition from legacy systems to such a framework is possible:
Business objects are already stored in all kinds of data stores. The introduction of
identifiers addressing these semantic repositories is necessary. Existing data can be
made available through service interfaces using semantic descriptions. This would
not introduce any changes to existing code. Access to all sorts of semantic entities is
accomplished through semantically described services as introduced in this work.

The business expert can formulate different rules that are expressed using SPBEs. In
our vision, the running business model is then to be executed by a (future) semantically-
enriched business process execution engine. We call this execution engine SPBEQL
engine. It can either access IoT-devices directly or it can create combined higher level
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(integrated) services that run on the IPI. Those newly created services are added to the
semantic repositories and can be reused by business experts.

4.8 Conclusions

Semantics are omnipresent in nowadays enterprises. In future, leveraging on all this
semantic information will be crucial for enterprises. We identified the key drivers that
will drive enterprises in the coming years. Namely: interoperability, use of standardized
technologies, enablement of sense-making and realtime business decision support.
All those drivers, especially interoperability, sense making and real-time business
support would benefit from semantic service descriptions and Linked Services. We
suggested an architecture that allows to integrate all kind of IoT-devices, based upon
service descriptions. We argue that a semantically- enriched platform and semantically-
enriched Linked Services allow moving away from a device-centric view, to an entity or
business centric view. This not only eases the integration process and enables semantic
interoperability, it also allows easier modeling. To provide further support to a business
modeler, or business domain specialist, we suggest an abstraction named semantic
physical business entity that can be used in enterprise architectures and especially in
modeling environments. It would enable the business modeler to navigate from entities
to services easily. Semantic physical business entities can be used as part modeling
BPMN modeling frameworks, for example, the approach of Meyer et al. [267, 265]
that has been introduced in Chapter 1. Furthermore, a non-disruptive migration path is
critical, because one of the main challenges of innovation for an enterprise software
vendor with a huge user base is to cope with the myriad of already existing code.
Vendors prefer innovation that has a clear integration path into already existing systems,
even for more disruptive technologies. Since most enterprise systems already use
service repositories as an integrated part of their SOA environment, the integration of
semantic service descriptions would not change the paradigm of how software is written
today. Semantic services thus could be added to enterprise software in an incremental
manner without the need of disruptive changes. As explained in Chapter 4.1 there is
already a lot of semantics in enterprise systems. The GDT in SAP systems can be seen
as a kind of ontology. What is needed is to make the implicitly encoded knowledge
more explicit. This would not introduce significant changes to nowadays systems.
Systems utilizing the business information and reasoning layer could provide additional
higher level services based on SLAs, reasoning (e.g. ontology based virtual sensors) or
the connection of entities and (virtual) sensor data. This will allow new applications at
an enterprise level by leveraging on the semantic repositories filled by the integration
platform.
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Part III

Implementation, Service
Descriptions and Protocols

In the third part of this work we discuss two service descriptions: Linked USDL for
IoT and the Open Data Protocol (OData). In Chapter 5 we discuss Linked USDL for
IoT. We contribute four new vocabularies to Linked USDL. Each of these vocabularies
targets a specific aspect of the Internet of Things. The covered aspects are events, quality
of information, technical endpoints and the REST paradigm. Chapter 6 describes our
CoAP and OData implementation. We also discuss IoT-related modeling options
for OData and compare OData to traditional semantic web technologies, including
strategies to merge the two worlds.

Furthermore, in Chapter 7, we discuss our Sleepy Nodes protocol and its imple-
mentation. We present a scheduling framework to be used within IoT-systems and three
different scheduling strategies: A simple first fit, an exhaustive strategy and a strategy
based on the observation that it is possible to combine measurements under certain
circumstances.
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Chapter 5

Linked USDL for IoT

This chapter presents an IoT-extension [378, 259, 382, 187] for the Linked USDL [76]
service description language. We contribute four new vocabularies to Linked USDL to

support Internet of Things applications. Each of these vocabularies targets a specific
aspect of the Internet of Things. The covered aspects are events, quality of information,
technical endpoints and the REST paradigm. We introduce each of these vocabularies
in detail. We call the set of vocabularies, in combination with the Linked USDL core ,
as Linked USDL for IoT1. In the context of a semantics-aware enterprise architecture,
as described in Chapter 4, Linked USDL for IoT is the service description that is stored
on the mote and can be stored in one or more service description repositories. Linked
USDL for IoT does not prescribe any technical protocol. It is a bottom-up approach
with respect to enterprise IoT integration.

5.1 Introduction

Linked USDL for IoT, similar to Linked USDL [76], follows the Linked Services
philosophy [297]. We already elaborated shortly the basic ideas of Linked Services
in Chapter 4.4. In simple terms, Linked Services are based on two main principles:
publishing (semantically-enhanced) service annotations and creating services that follow
Linked Data principles. Linked Data means essentially four things (based on Berners-
Lee [50, 42]):

1. Use URIs as names for things [50]
2. Use HTTP so that people can look up those names [50]
3. When someone retrieves information by accessing an URI useful2 information

based on standards should be returned.
4. Include links to other URIs, so that they can discover more things3 [50]

1available online: http://www.iot4bpm.de/usdl4iot.ttl
2Berners-Lee does not specify what ”useful” means. This has to be seen in the context of the application.

The original formulation, which has been generalized here is: When someone looks up a URI, provide
useful information, using the standards (RDF, SPARQL) [50] [SIC]

3Things, in this context, means any information related to the original URI. It does not necessarily
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We relax the original principles, without altering their meaning. We do not limit
ourselves to (semantic) web standards. For example, instead of HTTP, any RESTful
protocol could be used to look up URIs.

Following the Linked Services idea (see also Chapter 4.4) of publishing (semantically-
enhanced) service annotations, the service descriptions should describe their semantic
and/or technical inputs and outputs, as well as their non-functional properties in terms
of (reused or reusable) light-weight vocabularies. In the Internet of Things, as shown
in the motivating example in Chapter 4.6.2, the possibility of linking to other URIs is
also particularly useful for partitioning service descriptions in a way that less space
is consumed on the device, if needed. Only the parts of a service description that are
really needed are transmitted.
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Figure 5.1: Linked USDL for IoT (building blocks)

Linked USDL for IoT, short LUSDL4IoT, is an implementation of the Linked
Service idea consisting of the following building blocks (see also Figure 5.1):

Linked USDL Core The Linked USDL core is the base of all semantic modeling in
Linked USDL for IoT. It covers the high-level concepts that are central to a ser-
vice, such as basic service descriptions, service offerings descriptions, business
entities involvement, and service delivery communication by defining communi-
cation channels and interaction points.

usdl4iot-event The event vocabulary can be used to model a publish-subscriber inter-
face.

usdl4iot-qoi The qoi vocabulary is used to model Quality of Information (QoI) aspects.

mean Things as in Internet of Things.
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usdl4iot-ep The ep (endpoint) vocabulary is used to describe the endpoint of a service.

usdl4iot-rest This vocabulary is used to describe the properties of an endpoint using
the RESTful paradigm.

In the following we briefly discuss the application fields each of these vocabularies
are used for and also introduce briefly further Linked USDL extensions that could be
used in conjunction with Linked USDL for IoT.

Traditionally, web service communication follows a request-response communica-
tion scheme. This is sufficient for some applications, but many IoT applications need
communication patterns that are more sophisticated. In this work we support three
types of communication patterns:

Request/Response (R/S) The service consumer issues a request, which the service
providers answers either synchronously or asynchronously.

Publish/Subscribe (P/S) The publish/subscribe pattern allows a consumer to subscribe
to particular events. As soon as this specific event occurs, the provider triggers
a notification to the consumer. A subscriber-based communication model is a
necessary precondition for running parts of business processes on smart objects,
as these often need to react to specific events.

Time triggered While it can be argued that time-triggered is just a subclass of P/S
in IoT there are many sense and send applications. This specific pattern is so
common that it deserves to be a category of its own.

The R/S pattern is supported by Linked USDL. To support events we added a
small event vocabulary, called usdl4iot-event. Based on existing studies of event-based
systems [174] we identified the following subset of typical P/S operations that we
support in usdl-event: (i) register event subscriptions, (ii) remove event subscriptions,
(iii) decouple resources from events and (iv) specify means of delivery, for example,
callbacks.

Quality of Information is a subset of the more general concepts of Quality of Service
and uncertainty of information. In the Internet of Things domain Quality of Information
is of special interest when dealing with sensors and actuators. We have only imperfect
sensing technologies, and insufficient and/or incomplete contextual knowledge. This
means that sensors and actuators inherently have the problem that the information
provided or the action performed might not be correct, imprecise or depend on some
statistical model. Therefore the uncertainty of the data a service can provide has to be
sufficiently described.

In the Internet of Things domain a common approach is to look at two specific
Quality of Information aspects: Quality of Sensing and Quality of Actuation. We
modeled the vocabulary based on previous work on quality of information parameters,
as shown in Table 5.1
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Property Description

Precision
Sheikh et al.[348],
Buchholz et al.[64]

How exactly the provided context information mir-
rors the reality[64], Granularity with which context
information describes a real world situation [348]
Typical metrics: Depends on subject, e.g. position
precision of a localization in cm

Freshness
Sheikh et al.[348], Buchholz et
al.[64]

Time that elapses between the determination of con-
text information and its delivery to a requester [348]

Typical metrics: Time span / Age of data, in seconds

Uncertainty of Informa-
tion, Probability of cor-
rectness, Trust worthi-
ness, Confidence, Cer-
tainty
Sheikh et al. [348], Buchholz et
al.[64], Laskey et al.[228], Gu
et al.[146], Loke[239]

Probability that a piece of context information is
correct [64], How likely is that the provided informa-
tion is correct. [64] Probability that an instance of
context accurately represents the corresponding real
world situation, as assessed by the context source, at
the time it was determined [348]

Typical metrics: percentage values, levels, probabil-
ity function

Table 5.1: Quality of Information: Overview of Concepts

The four Linked Data principles map very well to the RESTful paradigm [50],
which is currently predominant in the web and has great chances of dominating the
Internet of Things as well [149]. Linked USDL for IoT was therefore designed with the
primary goal of supporting the RESTful paradigm.

The Linked USDL core vocabulary can be extended by the following further
domain-specific ontologies [76]. They can be used to extend Linked USDL for IoT.

usdl-price usdl-price can be used to describe price structures in the service industry.
According to the maturity classification as described in [76] it is regarded as
ready to use and validated.

usdl-agreement usdl-agreement [135] covers functional and non-functional quality of
service. It is classified as having past the proof-of-concept phase and is now in
validation [76].

usdl-sec This module covers security aspects of a service. Service providers can use it
to describe security related features of their services. It is classified as being in
the proof-of-concept phase [76].
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usdl-ipr This USDL module covers legal aspects of accessing a service, such as access
rights and copyrights. It is classified as being in the proof-of-concept phase [76].

5.2 Design Principles

The Linked USDL vocabulary for IoT (USDL4IoT) follows the same lightweight ideas
as Linked USDL does. Our vocabulary is developed in an iterative use-case driven
approach [283]. The goal of Linked USDL for IoT is to allow publishing and retrieving
of IoT-Services in heterogeneous environments and to standardize the common core, i.e.
the properties all these services have in common. We aim to capture the most important
concepts only. Domain-specific details are delegated to additional ontologies, following
one of the core ideas of Linked Services. We specified the communication patterns up
to a degree that allows to model typical IoT-service interactions. Nonetheless, it would
be possible to extend it to also support full-blown web-services and more complicated
interaction schemes.

Considering the original design decisions of Linked USDL [296], and aiming for a
becoming a regular member of the Linked USDL family of vocabularies, we identified
four principles that guided the design of Linked USDL for IoT: lightweight, coherency,
extensibility and compatibility. We choose them in order to ensure a seamless integration
of Linked USDL for IoT into the Linked USDL core vocabulary and the already existing
extensions. In the following we will briefly describe the four principles and their main
properties:

1. Lightweight: We wanted to cover the most important aspects only, avoiding
the possibility of over-specifying and, therefore, limiting the applicability of the
vocabularies. In particular, domain-specific knowledge needs to be specified by
(external) ontologies. This is inline with the original design methodology of
Linked USDL that was centered on the reuse of widely adopted vocabularies
[296].

2. Coherency: Our extension needs to integrate well into Linked USDL. Concepts
and modeling style should follow the one used in Linked USDL to ensure that it
seamlessly integrates into the existing Linked USDL vocabulary.In our opinion
introducing a modeling-style that differ from what is used in the core ontology
would lower the acceptance of the IoT extension.

3. Extensibility: The vocabulary is designed with evolution and extensibility in
mind. It needs to integrate well with existing well-known external ontologies.
The concepts need to be generic enough to provide extension points for domain-
specific vocabularies.

4. Compatibility: We aim for compatibility with existing (high-level) concepts and
for easy integration into existing systems.
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5.3 Linked USDL

Linked USDL is one specific realization of the Linked Services concept [76, 231]. To
maximize interoperability, Linked USDL adopts, whenever possible, existing RDF(S)
vocabularies such as QUDT [171]. It creates explicit ontological links to domain-
specific ontologies. While this is the origin of the name Linked Services, we foresee a
lot of potential in actually linking one part of the service description to more detailed
information defining the very same service. A brief overview on how Linked USDL for
IoT can be embedded into further related vocabularies is shown in Chapter 5.6.

To our knowledge Linked USDL is the only standardization effort driven by large
corporations with the goal of expressing not only purely functional aspects of a service,
but also the business and operational aspects. A comprehensive introduction into each
of these aspects can be found in Barros et al. [29].

Figure 5.2: Excerpt from the Linked USDL ontology (based upon [296]); see
http://www.linked-usdl.org for the complete ontology

An excerpt of the Linked USDL ontology is shown in Figure 5.2. In the following
we will introduce the concepts of Linked USDL as specified in [231] and released under
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a Creative Commons license.

usdl:Service

A usdl-service describes a service. It is the initial entry point for service consumers. The
description contains functional properties of the service, described by the interaction
protocol as well as non-functional properties described by qualitative or quantitative
values [231].

Listing 5.1: Linked USDL service definition

usdl:Service a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://linked-usdl.org/ns/usdl>;
rdfs:label "Service"@en ;
rdfs:subClassOf gr:ProductOrService .

Linked USDL for IoT bases all of its service descriptions on usdl:service. Every
Linked USDL for IoT service is, therefore, also a Linked USDL service.

usdl:ServiceOffering

A ServiceOffering is an offering made by a gr:BusinessEntity to its customers. An
offering is part of the business side of Linked USDL. It usually includes a price, legal
terms, and service level agreements.

Listing 5.2: Linked USDL Service offering

usdl:ServiceOffering a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://linked-usdl.org/ns/usdl>;
rdfs:label "Service Offering"@en ;
rdfs:subClassOf gr:Offering .

An actual service is added to a particular ServiceOffering using the include property.
usdl:ServiceOffering allows specifying bundles of services traded as one entity. It is
not meant for creating composite services. All Linked USDL for IoT service offerings
are modeled with usdl:ServiceOffering.

Listing 5.3: Linked USDL relationship between service and service offering

usdl:includes a rdf:Property;
rdfs:isDefinedBy <http://linked-usdl.org/ns/usdl>;
rdfs:label "includes"@en ;
rdfs:subPropertyOf gr:includes;
rdfs:domain usdl:ServiceOffering;
rdfs:range usdl:Service .
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usdl:ServiceModel

A ServiceModel is used to model ’classes’ of services, which means services that share
some characteristics. The property usdl:hasServiceModel is used to connect a service
to a service model. A software vendor can use the service model to classify its services
into IoT and non-IoT services.

Listing 5.4: Linked USDL Service Model

usdl:ServiceModel a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://linked-usdl.org/ns/usdl>;
rdfs:label "Service Model"@en ;
rdfs:subClassOf usdl:Service, gr:ProductOrServiceModel .

usdl:hasServiceModel a rdf:Property;
rdfs:isDefinedBy <http://linked-usdl.org/ns/usdl>;
rdfs:label "has service model"@en ;
rdfs:domain usdl:Service;
rdfs:range usdl:ServiceModel;
rdfs:subPropertyOf gr:hasMakeAndModel .

usdl:InteractionPoint

When thinking about accessing a service, an InteractionPoint is an actual step in
accessing and performing operations of the service. As Linked USDL was designed
to represent not just pure technical services, but services of any kind, this could be
an interaction between two applications, but it could also be an interaction between
two or more humans. On a technical level, this could translate into calling a SOAP
Web Service method, or, in the case of Internet of Things, a CoAP endpoint. The
usdl-interaction point is, therefore, the attach point for an usdl4-iot:event.

Listing 5.5: Linked USDL InteractionPoint

usdl:InteractionPoint a rdfs:Class, owl:Class;
rdfs:subClassOf usdl:TimeSpanningEntity;

rdfs:isDefinedBy <http://linked-usdl.org/ns/usdl>;
rdfs:label "Interaction Point"@en ;

InteractionPoints can have temporal relationships between them. Therefore, they
are a subclass of usdl:TimeSpanningEntity. TimeSpanningEntitiy is used to introduce
temporal ordering between interaction points, such as precede and succeed relationships.

Listing 5.6: Linked USDL hasInteractionPoint

usdl:hasInteractionPoint a rdf:Property;
rdfs:isDefinedBy <http://linked-usdl.org/ns/usdl>;
rdfs:label "has interaction"@en ;
rdfs:domain [a owl:Class; owl:unionOf (usdl:Service usdl:

ServiceModel)];
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rdfs:range usdl:InteractionPoint .

The semantical link to the input and output of an interaction point is modeled with
the properties usdl:receives and usdl:yields. The range of both of them is rdfs:class, so
it is possible to establish a link to an arbitrary domain specific ontology.

Listing 5.7: Linked USDL receives and yields definition

usdl:receives a rdf:Property;
rdfs:isDefinedBy <http://linked-usdl.org/ns/usdl>;
rdfs:label "receives"@en ;
rdfs:domain usdl:InteractionPoint;
rdfs:range rdfs:Class.

usdl:yields a rdf:Property;
rdfs:isDefinedBy <http://linked-usdl.org/ns/usdl>;
rdfs:label "yields"@en ;
rdfs:domain usdl:InteractionPoint;
rdfs:range rdfs:Class.

The communication taking part at an interaction point is modeled as Communi-
cationChannel. The term was chosen to be rather generic because Linked USDL was
designed to support all kinds of communication. Linked USDL itself does not define any
specific CommunicationChannels. In case of human contacts, it could refer to vCard
(e.g. email, phone). Operations in Linked USDL for IoT are modeled as communication
channels.

5.4 IoT-specific Vocabularies

In the following, we discuss the actual implementation of Linked USDL for the IoT
(in short, LinkedUSDL4IoT). We generally distinguish between a semantical and a
technical part. The semantical part is mainly used to model the semantic relations,
whereas the technical part is mainly used to model the specific parts of a technical
endpoint.

5.4.1 Vocabulary: Endpoint and Application-layer Support

We model the supported application-layer protocol as ApplicationProtocol class. Proto-
col layers below the application layer are out of scope, but they could be modeled in an
orthogonal way, if needed.

Listing 5.8: Linked USDL for IoT: Application Protocol class

usdl4iot-ep:ApplicationProtocol a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:label "Application Protocol"@en ;
rdfs:comment "Technical high-level application protocol"@en .
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We support the two most common REST-based application layer protocols, namely
HTTP and CoAP. Our main focus in this thesis was CoAP, hence all the experiments
were conducted based on a CoAP application layer. HTTP could be an option for
systems based on less constrained devices. As a third option, we foresee the use of
custom (REST-like) protocols. We define a separate application protocol endpoint for
that case (APCustom). Custom protocols are a subclass of APCustom.

Listing 5.9: Linked USDL for IoT: Application layer protocol definitions

usdl4iot-ep:APCoAP a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:label "CoAP Application Protocol"@en ;
rdfs:comment "CoAP Application Protocol"@en ;

rdfs:subClassOf usdl4iot-ep:ApplicationProtocol .

usdl4iot-ep:APHttp a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:label "HTTP Application Protocol"@en ;
rdfs:comment "HTTP Application Protocol"@en ;

rdfs:subClassOf usdl4iot-ep:ApplicationProtocol .

usdl4iot-ep:APCustom a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:label "Custom Application Protocol"@en ;
rdfs:comment "Custom Application Protocol"@en ;

rdfs:subClassOf usdl4iot-ep:ApplicationProtocol .

Independent of the underlying application-layer protocol, we will follow the notions
of operations and parameters. The abstraction chosen for modeling services can be
used for any underlying application-layer protocol that can be mapped to operations
with accompanying input and output parameters.

Listing 5.10: Linked USDL for IoT: Application layer protocol definition - Operation

usdl4iot-ep:Operation a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:label "Operation"@en ;
rdfs:comment "An operation offered by the service, yielding an

output for a given input"@en ;
isSubclassOf usdl:CommunicationChannel.

usdl4iot-ep:Parameter a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:label "Parameter"@en ;
rdfs:comment "A parameter conceptually describes the input or

output of an operation"@en .

Based on that abstraction, we define the properties that define an operation – namely
hasInput, hasOutput, hasType, isOptional, representAn and hasValueLink. The first two
further define an operation and its parameter. hasInput connects an operation with a
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parameter and marks it as an input parameter; hasOutput works similarly for output
parameters. A datatype is attached to a parameter by using hasType. Furthermore, a
parameter can be marked as optional.

The remaining two properties representAn and hasValueLink are used for semantical
linking. representAn links to the semantic concept a parameter represents. For example,
a temperature parameter could have a datatype of xsd:float. All that is known up to
this point is that there is a parameter and that it expects or return a float value. To
interpret this value at higher level, the representsAn semantical link can be used to,
for example, link this parameter to a temperature ontology and more specifically to
the entity TemperatureCelcius. Now, from a semantic point of view, it is obvious that
the parameter represents a temperature in degree Celcius and that it is (technically)
encoded as a float value.

Listing 5.11: Linked USDL for IoT: Application layer protocol definitions

usdl4iot-ep:hasInput a rdf:Property ;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:domain usdl4iot-ep:Operation ;
rdfs:range usdl4iot-ep:Parameter .

usdl4iot-ep:hasOutput a rdf:Property ;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:domain usdl4iot-ep:Operation ;
rdfs:range usdl4iot-ep:Parameter .

usdl4iot-ep:representsAn a rdf:Property;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:comment "Connects a parameter to the high level concept

it represents"@en ;
rdfs:domain usdl4iot-ep:Parameter ;
rdfs:range rdfs:Class .

usdl4iot-ep:hasType a rdf:Property;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:comment "The parameter value’s type, e.g. xsd:int for

integers"@en ;
rdfs:domain usdl4iot-ep:Parameter ;
rdfs:range rdfs:resource .

usdl4iot-ep:isOptional a rdf:Property ;
rdfs:domain usdl4iot-ep:Parameter ;
dfs:comment "Specifies whether parameter is required for the

operation"@en ;
rdfs:range xsd:boolean .

usdl4iot-ep:hasValueLink a rdf:Property ;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:comment "Specifies the parameter’s concrete value in the

output document"@en ;
rdfs:domain usdl4iot-ep:Parameter ;
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rdfs:range rdf:Literal .

5.4.2 Vocabulary: Event Support

The usdl4iot-event vocabulary is used to describe events and a generic publish/subscribe
communication pattern. We decided not to support any further refinement of events, as
this is to be defined by the application scenario. For example, an event could be raised
if the temperature of a given good is above a given threshold. The vocabulary therefore
can get by with two classes: An Event and a Publisher.

Listing 5.12: Publiser/Event interface in Linked USDL4IoT

usdl4iot-event:Event a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-event>;
rdfs:label "Event"@en ;
rdfs:comment "Any kind of event occuring within the scope of

the service"@en .

usdl4iot-event:Publisher a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-event>;
rdfs:label "Publisher"@en ;
rdfs:comment "Actor which autonomously generates events"@en .

On a semantic level, we attach the publisher to the interaction point of the usdl-core
ontology. Each publisher can support an infinite number of events via the hasEvent
property.

Listing 5.13: Publiser/Event interface in Linked USDL4IoT

usdl4iot-event:hasPublisher a rdf:Property;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-event>;
rdfs:domain usdl-core:InteractionPoint;
rdfs:range usdl4iot-event:Publisher.

usdl4iot-event:hasEvent a rdf:Property;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-event>;
rdfs:domain usdl4iot-event:Publisher;
rdfs:range usdl4iot-event:Event.

On an operational level, we need to connect the events generated and the subscribe
and unsubscribe operations to endpoint operations. Each event is connected to a sub-
scribe (hasSubscribeOperation) or unsubscribe operation (hasUnsubscribeOperation)
and can generate one or more output parameters (generates).

Listing 5.14: REST verbs in Linked USDL4IoT

usdl4iot-event:hasSubscribeOperation a rdf:Property ;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-event>;
rdfs:domain usdl4iot-event:Event ;
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rdfs:range usdl4iot-ep:Operation .

usdl4iot-event:hasUnsubscribeOperation a rdf:Property ;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-event>;
rdfs:domain usdl4iot-event:Event ;
rdfs:range usdl4iot-ep:Operation .

usdl4iot-event:generates a rdf:Property ;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-event>;
rdfs:comment "The output generated each time the event occurs"

@en ;
rdfs:domain usdl4iot-event:Event ;
rdfs:range usdl4iot-ep:Parameter .

5.4.3 Vocabulary: Quality of Information Support

The Quality of Information (QoI) concept has been introduced in Chapter 5.1. In
the spirit of Linked USDL we reuse the agreement vocabulary to implement a small
lightweight Quality of Information vocabulary. The Agreement vocabulary is visualized
in Figure 5.3. We briefly introduce the main concepts that we build on, based on the
original specification of the Linked USDL - Agreement [135].

Figure 5.3: Linked USDL Agreement

AgreementTerm A single term of an SLA.
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Guarantee An agreement term of an SLA.

AgreementCondition A constraint or axiom within a SLA. It is connected with a
concrete ServiceProperty via the refersTo association.

ServiceProperty The property of a given service, e.g. freshness.

Metric A metric defines how a ServiceProperty is measured.

We model the following properties that we identified in Chapter 5.1 and summarized
in Table 5.1: Precision, Freshness and Certainty.

The three QoI properties are of type ServiceProperty in Linked USDL-Agreement
terminology. The properties do not standalone, they typically need to refer to some
subject. The QoI property freshness, for example, could relate to the sensing interval of
a specific temperature sensor. The integration of the QoI properties into usdl-agreement
is visualized in Figure 5.4.

Listing 5.15: Quality of Information in Linked USDL4IoT

usdl4iot-qoi:Precision a rdfs:Class, owl:Class
rdfs:label "Precision"@en ;
rdfs:comment "Precision QoI property"@en .

rdfs:subClassOf usdl-agreement:ServiceProperty .

usdl4iot-qoi:Freshness a rdfs:Class, owl:Class
rdfs:label "Freshness"@en ;
rdfs:comment "Freshness QoI property"@en .

rdfs:subClassOf usdl-agreement:ServiceProperty .

usdl4iot-qoi:Certainty a rdfs:Class, owl:Class
rdfs:label "Certainty"@en ;
rdfs:comment "Certainty QoI property"@en .

rdfs:subClassOf usdl-agreement:ServiceProperty .

Figure 5.4: Quality of Information ServiceProperties

The metric for each QoI property depends on the subject of the ServiceProperty.
Considering precision, for example, Sheikh et al. [348] lists four possibilities:

Boolean The precision can be represented by true or false only.
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Numeric Information that can be represented by numerical values, for example the
precision of a temperature reading.

Incremental Sets A series of sets, which progressively represent higher information
value.

Weighted Sets Sets of discrete values that cannot be arranged in a series of increasing
precision. An assigned weight shows the information value of each set.

Given the wide range of possible subjects and their metrics, we follow the Linked
USDL principle of delegating them to specialized ontologies. From a SLA point of
view, for Internet of Things services, standardization in terms of what the possible
QoI properties are is more important than specify each and every detail of its metric.
Based upon our initial usdl-qoi more quality of information ServiceProperties could be
specified, if needed.

5.4.4 Vocabulary: REST Support

The usdl4iot-rest vocabulary further refines the endpoint specification by mapping it to
the RESTful paradigm.

We support REST-based systems using the well-known methods/verbs GET, PUT,
POST, DELETE, HEAD, TRACE, and CONNECT. These verbs are supported by
HTTP. CoAP supports only the subset GET, PUT, POST and DELETE.

Listing 5.16: REST verbs in Linked USDL4IoT

usdl4iot-rest:Method a rdfs:Class, owl:Class
rdfs:label "Method"@en ;
rdfs:comment "A RESTful verb"@en .

usdl4iot-rest:POST a rdfs:Class, owl:Class ;
rdfs:label "POST"@en ;
rdfs:comment "POST"@en ;

rdfs:subClassOf usdl4iot-rest:Method .

usdl4iot-rest:PUT a rdfs:Class, owl:Class ;
rdfs:label "PUT"@en ;
rdfs:comment "PUT"@en ;

rdfs:subClassOf usdl4iot-rest:Method .

usdl4iot-rest:GET a rdfs:Class, owl:Class ;
rdfs:label "GET"@en ;
rdfs:comment "GET"@en ;

rdfs:subClassOf usdl4iot-rest:Method .

usdl4iot-rest:DELETE a rdfs:Class, owl:Class ;
rdfs:label "DELETE"@en ;
rdfs:comment "DELETE"@en ;

rdfs:subClassOf usdl4iot-rest:Method .

111



usdl4iot-rest:HEAD a rdfs:Class, owl:Class ;
rdfs:label "HEAD"@en ;
rdfs:comment "HEAD"@en ;

rdfs:subClassOf usdl4iot-rest:Method .

usdl4iot-rest:TRACE a rdfs:Class, owl:Class ;
rdfs:label "TRACE"@en ;
rdfs:comment "TRACE"@en ;

rdfs:subClassOf usdl4iot-rest:Method .

usdl4iot-rest:CONNECT a rdfs:Class, owl:Class ;
rdfs:label "CONNECT"@en ;
rdfs:comment "CONNECT"@en ;

rdfs:subClassOf usdl4iot-rest:Method .

The uniform interface, as introduced in Chapter 2.4, is defined by URI templates.
URI templates (and similar concepts) have been defined early on as part of several
specifications, including WSDL [88] and WADL [154]. Subsequently, it has been
standardized. We support a simplified subset of URI templates as defined in RFC6570
[144]. URI templates are used for describing Uniform Resource Identifiers through
variable expansion. They provide an easy mechanism for abstracting resource identifiers
in such a way that the variable parts can be easily identified and described. RFC6570
defines URI templates as follows:

URI Templates are similar to a macro language with a fixed set of
macro definitions: the expression type determines the expansion process.
The default expression type is simple string expansion, wherein a single
named variable is replaced by its value as a string after pct-encoding any
characters not in the set of unreserved URI character. [144]

In usdl4iot-rest, we define two main classes as entry points for describing the
uniform interface: URITemplate and URIBinding. The URITemplate represents a
pattern to model an URI containing placeholders to be replaced by input parameters.
The URIBinding binds a certain placeholder in a URI template to the parameter whose
value should replace it.

Listing 5.17: URI templates

usdl4iot-rest:URITemplate a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:label "URI Template"@en ;
rdfs:comment "A pattern to model an URI containing

placeholders to be replaced by input parameters"@en.

usdl4iot-rest:URIBinding a rdfs:Class, owl:Class;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-ep>;
rdfs:label "URI Binding"@en ;
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rdfs:comment "Binds a certain placeholder in a URI template to
the parameter whose value should replace it"@en.

usdl4iot-rest:hasPlaceholderName a rdf:Property;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-rest>;
rdfs:comment "Name of the placeholder to be replaced in the

template, without the curly brackets’"@en;
rdfs:domain usdl4iot-rest:URIBinding ;
rdfs:range rdf:Literal .

usdl4iot-rest:hasPlaceholderParameter a rdf:Property;
rdfs:isDefinedBy <http://research.sap.com/IoT/usdl4iot-rest>;
rdfs:comment "Defines the parameter whose value should be used

for the replacement"@en;
rdfs:domain usdl4iot-rest:URIBinding ;
rdfs:range usdl4iot-ep:Parameter .

The usdl4iot-rest:hasPlaceholderName property binds a placeholder name to a
literal and hasPlaceholderParameter is used to define the parameter whose value
should be used as a replacement for the placeholder (called string expansion [144] in
RFC6750 terminology). Therefore, it makes the implicitly available information about
placeholders within the URI template explicit. For each of these bindings, (semantic)
information about the meaning of the parameter is added.

5.5 Representations

The representation of resources for REST-based and non REST-based systems with and
without semantics has been a research topic that received a lot of attention during the
last years. Linked USDL4IoT, as a service description language, does not prescribe any
specific data representation. Nonetheless, at the time of writing, JSON and its semantic
counterpart JSON-LD seems to be the upcoming de-facto standards. JSON is currently
used in many new RESTful enterprise developments. Moreover, the need for JSON
(JavaScript Object Notation) [60, 114] to be extended to support semantics as well
has been identified by the W3C. In 2014 it released a W3C Recommendation called
JSON-LD [226].

Linked USDL for IoT can easily be integrated into JSON/JSON-LD, XML-based
formats such as WSDL, as well as part of a pure textual description.

JSON-LD was designed so that developers would not need to know about any other
semantic web technology [226]. It is, quite close to regular JSON. It is syntactically
fully compatible with JSON; hence, all tools and preexisting toolchains can be reused.
In the same way as our architecture provided a smooth path towards semantics, JSON-
LD aims for a smooth integration into already existing tools. One of the design goals
of JSON-LD was to lower the entry barriers for enterprise developers. JSON-LD, like
Linked USDL for IoT, is not a complete technology stack. According to the authors
(JSON-LD) needs ontologies to express domain semantics [226]. LinkedUSDL4IoT
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and JSON-LD complement each other, and combined with the IoT-stack and domain-
specific ontology form a complete technology stack.

JSON/JSON-LD and Linked USDL for IoT can be integrated in two different
ways: First, in the case of only JSON (without -LD) a semantical link from each
returned data to the semantics can be established by using the unique ValueLink, which
can be attached to parameters. The processing system now make the link from the
data representation to the service description. This approach can also be followed for
JSON-LD. Furthermore, JSON-LD can be used independently by referring to the same
ontologies as Linked USDL for IoT, thus giving the same references to the same entities
in its response.

To connect WSDL/SOAP with Linked USDL, we leverage on ideas from WSDL-S
[6]. WSDL-S based references (modelReference) from a WSDL description to a high
level ontology is currently used by most semantic approaches, including the OWL-S
[249, 251, 250] and WSMO [122, 322] approaches. OWL-S and WSMO are introduced
in Chapter 2.11.2 and Chapter 2.11.3.

WSDL-S Schema definition excerpt based on [6]

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s

/examples/purchaseOrder.wsdl"
xmlns:wssem="http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/

examples/purchaseOrder.wsdl"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<attribute name="modelReference" type="anyURI" use="optional"/>
[...]
</schema>

Notably, we use WSDL-S and its wssem:modelReference to connect operations
and parameters with Linked USDL for IoT endpoints, and encode the same semantic
information there. Furthermore, parameters can be mapped to their respective Linked
USDL for IoT description by using the ValueLink again. In that case, the link between
an endpoint and higher level semantics is solely done through usdel4iot-ep:representsAn
and, on a service level, the usdl:yields and usdl:receives properties.

To sum up, we now have a vocabulary for specifying the actual means of accessing
an IoT-service by specifying the application layer protocol, operations the service can
perform, as well as the data encoding. Moreover, links to domain-specific ontologies
can be specified. We would like to emphasize here that this description is meant to
be used for constrained devices. More complex services that demand features going
beyond the current capabilities of our vocabulary, are not in the scope of Linked USDL
for IoT. The structure of the vocabulary is designed to be extensible though. We expect it
to evolve over time and incorporate many more features known from today’s enterprise
architectures.
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5.6 Relationship to further Ontologies

Linking vocabularies instead of a one-fits-it-all approach is one of the main design goals
of Linked USDL. In this section we briefly introduce some ontologies that could be
used with Linked USDL for IoT to form a larger service ecosystem. Linked USDL4IoT
can be embedded into a more comprehensive framework, in conjunction with other
ontologies, to describe the Internet of Things domain fully. Of course, domain specific
aspects of an IoT-application are not covered by these and external ontologies are still
needed.
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Figure 5.5: Relationship to Further Ontologies

The most prominent ontology in the sensor network field, and one of the few that
has reached consensus among many researches, is most likely the Semantic Sensor
Network (SSN) ontology4. The SSN ontology provides a rather high-level vocabulary
to describe sensor network landscapes, that is, sensor nodes and sensor observation and
measurement data. It does not provide any service support, generic IoT-enablement nor
any support for units or quantities of sensor measurements. The service part is covered
by Linked USDL and Its IoT extensions. Considering the Internet of Things one can
leverage on the IoT-A domain model[33] and its concepts. It introduces the concept of
Physical Entities to describe real-world things, devices and resources connected to it, as
well as services as means to access information about physical entities or to manipulate
them.

Data interoperability will require the use of standardized ontologies beyond our
service vocabularies. Neither SSN, Linked USDL nor Linked USDL4IoT do prescribe
any quantitative datatypes. A recent approach driven by NASA and TopQuadrant for
standardization of quantities, units, dimensions, and data types is QUDT5. It is one of

4http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
5http://www.qudt.org/
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the most comprehensive approaches for standardizing datatypes and quantities, and it
has the potential to be the de-facto standard in the coming years.

5.7 Illustrating Example of a Sensor Service Modeled in
Linked USDL4IoT

We will now model a specific service for a temperature sensor. The service description
is modeled in Linked USDL4IoT. The mote provides a temperature service (tempera-
tureMoteService) and supports a publish/subscribe interface. The technical interface
is realized with CoAP (usdl4iot-ep:APCoAP). The REST-endpoint is described by
URITemplate and URIBinding. It has the URL /sensor/number, where number is an
exemplary placeholder for a sensor. The mote can support different sensors. It returns
its data in Celsius (measuredTemperatureParameter).

Listing 5.18: Linked USDL4IoT temperature service description

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix usdl-core: <http://www.linked-usdl.org/ns/usdl-core#> .
@prefix : <> . # Same as base URI
@prefix usdl4iot-ep: <http://research.sap.com/IoT/usdl4iot-ep#> .
@prefix usdl4iot-event: <http://research.sap.com/IoT/usdl4iot-

event#> .
@prefix usdl4iot-rest: <http://research.sap.com/IoT/usdl4iot-rest

#> .

:temperatureMoteService a usdl-core:Service;
usdl-core:hasInteractionPoint :temperatureMoteInteractionPoint;
usdl4iot-ep:hasEndpoint :temperatureMoteCoAPEndpoint.

:temperatureMoteInteractionPoint a usdl-core:InteractionPoint;
dcterms:title "Temperature Interaction Point";
usdl-core:yields :temperatureConcept;
usdl-core:hasCommunicationChannel :measureTemperatureOperation;
usdl4iot-event:hasPublisher [a usdl4iot-event:Publisher;
usdl4iot-event:hasEvent :temperatureChangeEvent].

:temperatureConcept a skos:Concept; #should be replaced with some
real ontology

skos:prefLabel "Temperature".

:measureTemperatureOperation a usdl4iot-ep:Operation;
usdl4iot-ep:hasInput :sensorNumberParameter;
usdl4iot-ep:hasOutput :measuredTemperatureParameter.

:measuredTemperatureParameter a usdl4iot-ep:Parameter;
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dcterms:title "Temperature";
gr:unitOfMeasurement "CEL";
usdl4iot-ep:representsAn :temperatureConcept;
usdl4iot-ep:hasDataType xsd:float.

:sensorNumberParameter a usdl4iot-ep:Parameter;
dcterms:title "Sensor number";
usdl4iot-ep:hasDataType xsd:int.

:temperatureMoteCoAPEndpoint a usdl4iot-ep:Endpoint;
dcterms:title "Temperature Endpoint";
usdl4iot-ep:hasApplicationProtocol [a usdl4iot-ep:APCoAP];
usdl4iot-ep:hasOperationImplementation :

measureTemperatureOperationImplementation,
:subscribeTemperatureOperationImplementation,
:unsubscribeTemperatureOperationImplementation.

:measureTemperatureOperationImplementation a usdl4iot-ep:
OperationImplementation;

usdl4iot-rest:restMethod [a usdl4iot-rest:GET];
usdl4iot-rest:hasURI :sensorURI
usdl4iot-rest:implementsOperation :measureTemperatureOperation.

:sensorURI a usdl4iot-rest:URITemplate;
usdl4iot-rest:hasTemplate "/sensor/{number}";
usdl4iot-rest:hasBinding :sensorURIBinding.

:sensorURIBinding a usdl4iot-rest:URIBinding;
usdl4iot-rest:hasPlaceholderName "number";
usdl4iot-rest:hasReplacementParameter :sensorNumberParameter.

:temperatureChangeEvent a usdl4iot-event:Event;
dcterms:title "ChangeEvent";
dcterms:description "The measured temperature value has changed

";
usdl4iot-event:hasSubscribeOperation :

subscribeTemperatureOperation;
usdl4iot-event:hasUnsuscribeOperation :

unsubscribeTemperatureOperation;
usdl4iot-event:generates :measuredTemperatureParameter.

:subscribeTemperatureOperation a usdl4iot-ep:Operation;
dcterms:description "Temperature Subscription Operation";
usdl4iot-ep:hasInput :sensorNumberParameter.

:unsubscribeTemperatureOperation a usdl4iot-ep:Operation;
dcterms:description "Temperature Unsubscription Operation";
usdl4iot-ep:hasInput :sensorNumberParameter.

:subscribeTemperatureOperationImplementation a usdl4iot-ep:
OperationImplementation;

usdl4iot-ep:followsStandard true;
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usdl4iot-ep:hasContentType "application/json-ld";
usdl4iot-rest:hasURI :sensorURI;
usdl4iot-rest:implementsOperation :subscribeTemperatureOperation

.

:unsubscribeTemperatureOperationImplementation a usdl4iot-ep:
OperationImplementation;

usdl4iot-ep:followsStandard true;
usdl4iot-rest:hasURI :sensorURI
usdl4iot-rest:implementsOperation :

unsubscribeTemperatureOperation.

5.8 Conclusions

In this Chapter we introduced Linked USDL for IoT. Linked USDL for IoT is a service
description language tailored to the needs of the Internet of Things. It is based on Linked
USDL and consists of four different vocabularies: an endpoint and application-layer
support vocabulary, event support, quality of information and a REST-layer support
vocabulary. They address different aspects of IoT-services. As Linked USDL for IoT is
based on Linked USDL, it can use all of its extensions for modeling high-level service
properties. Furthermore, as it is currently being actively developed further extensions
are likely. Linked USDL for IoT has been designed with RESTful IoT systems in
mind, but it can be used for custom projects as well. It is flexible enough to be used in
very constrained environments with data representations that just transmit a minimal
necessary amount of data.

The advantages of Linked USDL for IoT are manifold: It decouples the technical
interface and its service description. It enables interoperability not only at a technical
layer, but also on a semantic level. Furthermore, it allows several endpoint technologies
and data representations. Compared to, for example, WSDL, it is not tightly coupled
to a particular technical stack. It could be used with XML and JSON in the same way.
A more in-depth comparison and evaluation of Linked USDL is presented in Chapter
8.5. In the end, not only the technical interfaces form the Internet of Things, but the
combination of technical services and (distributed) service descriptions. The fact that
descriptions can be distributed has several advantages. First, the service description on
the IoT-device can be kept limited to a minimum, if desired. Second, Linked USDL for
IoT can be used as an entry point for discovering more information about all entities
involved in the service. The service description can therefore be used as part of an
enterprise business modeling framework.
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Chapter 6

CoAP and OData

In this chapter we contribute two protocol implementations OData [274] and the
Constrained Application Protocol (CoAP) [353] on very constrained devices. To our
knowledge, we are the first that target constrained devices with OData [ 379]. Further-
more, we contribute a discussion of semantic modeling options for OData enabled
systems and relate OData to traditional semantic web technologies. We also discuss
lessons learned from using Java on such an embedded platform.

6.1 Introduction

Following our strategy, as outlined in Chapter 1, of looking into a bottom-up and a
top-down approach towards the integration of semantics-aware protocols into Enterprise
systems, we implemented and evaluated two protocols on the Mote Runner environment:
CoAP and OData. CoAP is an IETF standard targeting REST-based systems on
constrained devices. A detailed introduction into CoAP is in Chapter 2.5. OData is
an enterprise-level REST-based protocol that is semantics-aware. It gained a lot of
attention recently and is the de-facto standard related to semantics-aware enterprise
protocols.

CoAP can be used as application-layer protocol for the bottom-up approach, since
CoAP endpoints can be described with Linked USDL for IoT. We described the bottom-
up approach in detail in Chapter 5. Therefore, no further semantic information needs to
be provided. Meanwhile, OData is already semantics-aware and it does not necessarily
need an external description language.

We use OData to illustrate a possible top-down approach for IoT-devices. To our
knowledge we are the first to use OData on such constrained devices. We explain
why OData can be considered semantics-aware. We also discuss some implementation
decisions that were taken, as well as show usage scenarios and discuss the use of OData
in a comprehensive semantics-aware IoT context.

In the following, we first relate the two protocols to our overall strategy of exploring
a bottom-up approach and a top-down approach towards semantics-awareness. We then
describe our core CoAP implementation and the supported extensions. CoAP is used as
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REST-based interface for OData. We briefly introduce OData and then continue with
describing its usage on constrained devices.

6.2 CoAP

This section presents a CoAP implementation for a reactive VM-based OS. The imple-
mentation is also used as the underlying protocol for the OData implementation that we
present in Chapter 6.3. Our codebase was not only used in this thesis, but also as part
of the EU PPP FI-WARE. The CoAP codebase developed for the FI-WARE project
is available as open source1. We focused on the base CoAP specification as outlined
in RFC 7252 [353], and two extensions: block-wise transfer [352] and observe [162].
Block-wise transfer provides application layer fragmentation support. The observe
option extension allows applications to specifically subscribe to changes in measured
data. The CoAP protocol, the block-wise, and observe extensions are introduced in
Chapter 2.5.

6.2.1 CoAP on a Reactive VM-based OS

CoAP is a light-weight REST-based protocol that shares some similarities with HTTP.
Due to the verbosity of HTTP for constrained devices, CoAP has been suggested and
standardized by the IETF[354]. CoAP uses an interaction model similar to HTTP, but
typically acts in server and client roles. As CoAP has been specifically designed for
constrained environments, it has low overhead and low parsing complexity. Compared
to HTTP, it is designed to work with a non-reliable transport layer (UDP) and it does
not rely on the transmission control provided by transport-layer protocols such as TCP.
A more through description of CoAP, including the message formats and its interaction
model, can be found in Chapter 2.5.

Supporting CoAP on a very resource constrained (class 0) devices is a non-trivial
task that combined with a reactive VM based operating system poses some interesting
challenges:

1. Serving requests should be implemented in an energy-efficient way that permits
the motes’ battery depletion, as these devices usually operate for long periods
of time without recharging. The battery could be drained if the sensors are not
started, suspended, and resumed properly.

2. The implementation must guarantee that responses are sent to the client in a timely
manner, as timeout periods have to be obeyed. This is not always trivial because
motes have limited computing and network capabilities, and a slow request
could potentially interfere with newer ones. That leads to the need of supporting
concurrent requests from different clients so that they can all experience the same
quality of service.

1https://github.com/MR-CoAP/CoAP
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3. Scaling is one of the main issues, as the overhead generated by the metadata
that describes the clients and their requests has to be stored in a limited memory
space. Storing and updating metadata on flash memory is inefficient as increases
computation time and energy consumption.

In the following, we present our CoAP (Constrained Application Protocol) imple-
mentation for the Mote Runner Operating system. First, we give a brief overview of
our implementation of the Constrained Application protocol and two of its extensions:
block-wise transfer and observe. We then proceed with how redirections can be imple-
mented in a semantical context, before we discuss some of our experiences with Java
on very constrained devices.

6.2.2 Implementation

In the following we present our CoAP implementation. It collects real-time information
from sensors installed on the mote. To enable communication via the 6LoWPAN
protocol among the motes and between the motes and the gateway, we make use of
the MRv6 assembly (Mote Runner 13 and later) or 6lowpan assembly (Mote Runner
11) that come shipped with Mote Runner. The assembly is the first to be loaded on the
motes during the simulation which also defines which motes acts as a gateway and what
kind of topology will be used. A more in-depth description of MRv6 can be found in
Chapter 2.3.3.

The functionality of the CoAP implementation is split over five main files:

CoapSocket Main entry point for applications.

Message.java Protocol processing. CoAP messages are encoded and decoded here.

Request.java Request allows abstracting requests from actual CoAP messages.

ObserveRequest.java Abstracts a request with observe option set.

Core.java Provides a basic implementation of the ”well-known” CoRE functionality
[280]. It has to be extended by an application with its provided resources.

The main message flow of our CoAP implementation is shown in Figure 6.1. The
main interface towards our CoAP service is the CoAP Socket class. It extends the UDP
socket interface. All the message decoding is performed within the message class. It
contains all the required functionalities for message decoding and encoding. The actual
business logic is implemented by a ServiceHandler. As soon as the CoAP service class
ensures that a valid packet has arrived, it is delegated to the appropriate service handler.
We will now describe the main functionality in detail:

When a client makes a request, the incoming packet is received by the MRv6
or v6lowpan assembly and a Mote Runner application can process it by overriding
the onPacket method of the UDPSocket class. The CoapSocket class overrides this
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handleMessage(coapMessage)
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return

decode()
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CoapSocket MessageClient ServiceHandler

handleMessage(coapMessage)
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return

decode()

onPacket()

Figure 6.1: CoAP implementation: Core interactions

onPacket method and expects any packet arriving over this particular UDP port to be
CoAP-encoded. The actual handling of CoAP packets is application dependent. In
the following, we describe the extended packet management as implemented by us.
Different applications, for example, on even more constraint devices or when timing
and amount of requests is known could implement a different strategy.

The strategy we implemented needs to have a buffer for incoming packets. Packets
that are still being processed could cause others to fill the incoming buffer, if processing
takes longer than expected or if a burst of incoming traffic occurs. To avoid such
delays we opted first to examine the packet about the type of information it carries,
for example which sensor data to retrieve and to store a stripped-down version of it
in a queue located in the applications heap memory where it remains until the entire
response has been sent back to the client. The queue also contains some metadata that
identifies the network location of the client and the type of the submitted request. This
approach scales, as the number of clients the mote can store information about, is linear
to the amount of memory available. As long as there are still packets in the queue,
we periodically process packets from the incoming queue. The mote exhibits pseudo-
concurrent behavior. It is able to concurrently serve multiple requests of different types
and the clients do not have to wait for others to be served first. We also need to keep a
queue of already sent CON messages, as these could get lost and may need to be sent
again in case of a lost packet.

Most of the actual CoAP processing is performed in the Message class. It provides
decode() and encode() messages for decoding and encoding messages. Parsing the
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header is not a complicated task. The main effort of the whole code goes into option
handling. Options are delta encoded and, thus, we provided an Iterator-like interface to
scan through the options. This interface is tailored towards a use, where the applications
scans all options once. Finding an option later is an expensive task, as all the options
have to be examined from the beginning. Applications that create a new CoAP message
should also add options according to their numbers. Otherwise, a lot of recalculation
and memory operations have to be performed which decrease performance significantly.

6.2.3 Redirections

Redirections are not automatically supported in CoAP. To help implementing our
distributed descriptions, there are several possibilities:

Reintroducing 3.xx message codes The 3.xx message code group, which in HTTP
is responsible for redirections, is not available in the current CoAP draft. The
3.xx message code group was part of earlier drafts, but was removed before
standardization. Reintroducing the group solves the problem of redirection, but it
would result in a non standards compliant use of CoAP.

CoAP options CoAP options could be used to define an application-layer redirection.
They are application-specific, but protocol-compliant. The solution of using
CoAP options has the disadvantage of needing application support.

Content type A special CoAP option, content-type, can be used to define an appli-
cation layer redirection. The type of the content would be x-redirect and it
would signal a redirection content. The advantage of this approach is that the
content-type can easily be translated to HTTP and, thus, it is usable in any kind
of bridging or conversion between CoAP and HTTP.

Data encoding The forth option is to use linking functionality defined in the data
representation itself. In case of RDF, for example, the owl:sameAs functionality
can be used to model that the two URIs actually model the same entity.

The only standard compliant version that does not need application support is
encoding the redirections whenever possible within the resulting data. This has the
disadvantage that some result has to be delivered. It is not possible to redirect without
actually replying to the request. If this is not desirable, we suggest to use application
layer redirection as content type. In the long term, reintroducing the 3.xx messages
codes into CoAP would be, from our point of view, the optimal solution.

6.2.4 Validation

We validated our implementation with a third party implementation, Californium [218],
for automated testing, and Copper [216] as its browser based incarnation. Californium,

123



written at ETH Zurich, is a cloud-ready implementation of CoAP. Compared to many
other implementations it was not written with any constraints in mind. It is written in
Java and works only on rather powerful devices. Copper is a browser-based CoAP client.
It offers easy testing with an interface that can be used by human users. Californium
comes with example applications that also test exceptional states and illegal message
exchanges. Californium participated in several ETSI plug-tests [232, 84] which ensures
conformability with standards. We used Californium for (automatic) interoperability
testing using its plug-test code to test the implemented features.

6.2.5 Embedded Java: Experiences and Lessons Learned

The CoAP code was completely written in the Mote Runner Java dialect. The main goal
of using Java on an embedded platform is to ease development of embedded applications
on a memory-managed high level embedded platform. Typically, the development was
quite straight forward. We didn’t experience a steep learning curve that some report for
other competing embedded platforms like TinyOS and its nesC language [365, 384, 387].
Anyone knowing the basic fundamentals of the Java programming language was able
to write applications within hours. The Mote Runner environment proofed to be easy to
use for researchers and developers proficient in the Java programming language and,
thus, confirmed our initial assumption of its easy applicability within an enterprise
environment.

While developing a more bit-and-byte oriented protocol, such as CoAP, we encoun-
tered some unexpected difficulties: Java does not provide unsigned data types. This is a
particular problem when translating a specification based on unsigned datatypes to such
a platform. This caused some readability problems and made bit-shifting operations
more complicated than necessary. Many bugs in our initial implementation were solely
due to such conversion errors. For future versions of embedded Java platforms, we
would suggest adding at least unsigned versions of bytes and integers.

Furthermore, we experienced some out-of-memory situations. As memory is not
explicitly allocated in Java, the feeling for how much memory is allocated got sometimes
lost. For performance reasons the Mote Runner documentation suggests reusing objects
whenever possible.

6.3 OData

In the following we introduce a top-down approach for getting a semantics-aware
protocol on embedded IoT-devices. We did all our experimental research with OData
Protocol Version 3.0 (short: OData v3), and we will henceforth refer to that version
as OData. We will also explain (semantics-related) advancements of the more recent
OData Protocol Version 4.0 (short: OData v4) and focus on how it could improve the
current system where appropriate. First, we briefly introduce OData and its growing
importance in the market, explaining why OData is a good candidate for a semantics-
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aware protocol. In the following, we first give a brief introduction into OData in Chapter
6.3.1, before we will present our implementation in Chapter 6.3.2. In Chapter 6.3.3,
we show how OData and semantics can be combined in an IoT-context. We conclude,
in Chapter 6.3.3.2, by analyzing the differences between OData and the Resource
Description Framework (RDF).

6.3.1 Introduction

Recent advances in the typical protocol stack of Wireless Sensor Networks (WSNs),
particularly the use of IP technology, and the demand of businesses for real-time
monitoring and real-time decision support has increased the need for enterprise systems
to interoperate directly with wireless sensor nodes. One of the major benefits of
6LoWPAN based networking is the use of standard technologies and common and
well-understood architectures to integrate smart objects into enterprise systems.

In a typical 6LoWPAN-based [351] WSN protocol stack, as shown in Chap-
ter 1.4, there is a trend towards applying existing application-level protocols and
paradigms. In a (networked) enterprise architecture as it exists today, one can observe
two main paradigms: (Web-) services, like SOAP and standardized by a variety of
standards known as WS-*, and REpresentational State Transfer (REST)[127]. The
REST paradigm is explained in Chapter 2.4. REST architectures have become particu-
larly important in Internet of Things applications, as sensors and actuators can often
be naturally represented as resources identified by URIs. Both protocols, CoAP and
OData, follow the REST-paradigm.

OData [274] is a data access protocol based on widely-used technologies (HTTP,
AtomPub and JSON). Traditionally, either custom interface were offered or SOAP-
based services. Later on, with the rise of Internet, often custom REST-based APIs were
added. A typical SAP ERP system, for example, offers the following interfaces towards
an user:

Business Application Programming Interface (BAPI) BAPI is a proprietary proto-
col for accessing business objects within an SAP system. They represent the way
of exposing services in the early, non standardized, days of computing where
every vendor had its own way of accessing data and interoperability was mainly
achieved through custom built adapters

Enterprise Services Enterprise services are SOAP/WSDL-based web services. They
reflect the second wave of technology introduced in the early 2000s

REST-based services REST-based services were introduced in late 2011 and allow
interoperability on a semantic level based on Web technologies.

OData, compared to the formerly predominant SOAP services, follows a REST-
based approach, aims for semantic interoperability, and follows a more lightweight
approach than traditional XML-based web services. Recognizing the growing demand
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for exposing services to customers and partners as part of a networked industry, many
IT vendors have extended their offerings with OData support. In general, one observes
a trend towards OData in many IT organizations. SAP, for example, makes its whole
Business Suite available through OData additionally to already existing APIs aiming
towards making OData the sole standard for all of its products. Windows Azure, the
cloud platform of Microsoft, can be accessed through OData [205, 219] as well as their
ERP offering Dynamics [39] among many others. Other than these examples, showing
the acceptance of OData in the ERP and the cloud sector, many more offerings available
that can produce and consume OData [367].

The OData protocol was not designed to work with constrained devices in the first
place. It was originally designed to work with more heavy-weight clients, like in com-
municating enterprise systems or communication between an enterprise system and a
mobile phone. The OData standard defines two ways for data representation (sometimes
called serialization), from which one is rather heavyweight: ATOM/AtomPub [282]
and JSON [98]. The two formats are used to represent the result of a service call. They
are also used to model the service itself, using the common schema definition language.
A more detailed overview into the data representation in OData is given in Chapter
2.6.4.

Semantic modeling in OData follows a close-world assumption, where everything
is supposed to be known. Its entities (the objects to be modeled) and the relations are
stored in the Entity Data Model (EDM). In the case of a temperate sensor, for example,
an OData model would need to have the entities for sensors and temperature with a
specialization of TemperatureInCelcsius. Nonetheless, the entity model can be shared
among parties.

The general concept shares some similarities with the Semantic Web our definition
of Linked Services. Concepts for mapping OData to the (RDF-based) semantic web
exist. The data models can be described in EDM terms using the conceptual schema
definition language (CSDL) [271]. A more detailed introduction into OData, with a
broader overview of its data model can be found in Chapter 2.6.

6.3.2 OData on Wireless Sensor Motes

In the following we will, in Chapter 6.3.2.1, first briefly elaborate on possible deploy-
ment options and then continue with discussing data representation in Chapter 6.3.2.2,
followed by the protocol stack in Chapter 6.3.2.3.

6.3.2.1 Deployment Options

For exposing single IoT-devices or whole sensor networks towards enterprise systems
with OData several deployment options are possible. The two most common options are
illustrated in Figure 6.2. In this section, we will discuss the deployment considerations
of implementing an OData-enabled system.
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Figure 6.2: Deployment Options

The first option is illustrated in Figure 6.2a: OData can be used to access whole
sensor networks (Entity Model), with a gateway as entry point. The sensor network
itself communicates internally with a different protocol stack that is typically tailored
to low energy consumption or low latency. The application logic for making requests
and setting up the sensor network to satisfy a request resides in the gateway. The OData
gateway can be either a sensor node itself, or a platform with more computing power.

The second option is shown in Figure 6.2b. The enterprise system interacts directly
with single motes over the OData protocol. This pattern is usually applied when single-
board sensor platforms or embedded devices are used. We will consider only this
approach, as one of the main visions of the future Internet of Things is to be able to
communicate with and directly address independent motes. The first approach is no
different from any other gateway or proxy approach, as the sensor network is completely
independent from the enterprise communication. We will not explore this option further.
Instead, we will only consider only scenarios where the motes themselves communicate
through OData.

6.3.2.2 Data Representation

OData supports two representations: XML (as in ATOM) and JSON. An introduction
to the OData data representation is given in Chapter 2.6.4.

We investigated both options, as the current standards up to OData v3 require
that OData services must support the ATOM encoding and should support the JSON
encoding. The upcoming v4 of the standard loosens those in favor of more lightweight
clients, as it specifies that OData service must support at least one of the two.

In our experiments we included a compressed version of both XML and JSON.
We opted to use general purpose compression algorithms. Previous research at the
CDS working group by Dolfus and Braun [110] showed that standard compression
algorithms have a quite decent compression performance, even compared to specialized
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algorithms. A comparison of compression results, memory, and CPU resource con-
sumption that motivated our work, as well as a thorough discussion of the feasibility of
different compression approaches on very constrained devices are given in Chapter 2.8.
Furthermore, implementations are widely available on all platforms for Class 0 devices.
We used a standard implementation that uses flash memory for paging and caching,
thus circumventing the problem of limited RAM. The data was generated when sensing
and cached, and in case compression did not yield to better results the original was
used. In cases where nothing, for example, in a service description, or only parts of the
compressed data changes information can be pre-computed. The data dictionary can
be pre-computed up to the point where the data changes and is stored on the mote to
increase compression speed.

The use of EXI for very constrained platforms was considered, but its feasibility re-
mains unclear. Reported memory consumptions for an embedded EXI implementation
[78] are higher than for LZW-based formats. To our knowledge, only one implemen-
tation on an 8kb mote exists. Caputo et al. [68] describe such a platform for Contiki
and 8kb platforms, nonetheless without the support of EXI schema encoding or any
decoding. No further information on compression restrictions or about the energy or
memory consumption is given.

6.3.2.3 IoT OData Stack

OData was originally designed to work with HTTP. Nonetheless, every HTTP-like
CRUD-based protocol is a suitable option for OData, as long as it can be mapped to
HTTP. A CoAP to HTTP mapping has been demonstrated by Castellani et al. [79]. In
this work, we will base our implementation on CoAP as a protocol to communicate with
the motes directly. HTTP could be used in an Enterprise system for communication
with an proxy.

TCP

HTTP

ATOM 

ODATA

IP

UDP

CoAP

ATOM

ODATA

6LoWPAN

Enterprise
System

IoT device

JSON JSON
Application
layer

Transport layer

IP layer

Figure 6.3: OData stack on enterprise system vs. OData stack on mote
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In Figure 6.3, the standard OData stack is compared with our CoAP-based stack.
The network layer is in both cases IP-based: IPv4/IPv6 vs. 6LoWPAN in the Internet
of Things. The transport layer in a typical enterprise OData stack is the TCP proto-
col, whereas in our IoT-Stack it is a combination of UDP for transport and (parts of)
CoAP for transmission control. On top of that, there is HTTP or CoAP, respectively.
Considering the traditional ISO/OSI stack, CoAP can be seen as a cross-layer protocol
providing more or less the same functionality and also incorporates elements of TCP
(transmission control, message deduplication). On top of HTTP/CoAP the stack is iden-
tical for enterprise systems and smart objects. Data is transported in either ATOM/XML
or JSON format while the data and resource handling is done as specified by the OData
protocol itself. An OData query in CoAP notation looks as follows:

coap://︸ ︷︷ ︸
protocol

[a:b:c:d:e:f]/service.svc︸ ︷︷ ︸
IPv6 address of mote and service

/sensors/temperature︸ ︷︷ ︸
resource

? $filter=temp gt 20︸ ︷︷ ︸
query

In our implementation, instead of HTTP, we use the CoAP protocol. We directly
address the mote through its IPv6 address which is then routed over 6LoWPAN. The
service caller is unaware that its request goes to a mote. All other parts of the request
stay the same. The only limitation is that each request needs to fit into one CoAP and,
thus, one UDP packet. Responses can be larger and are transmitted block-wise.

6.3.3 OData and Semantics

In the following, we first introduce how OData and semantics can be combined in
an IoT-context. An overview of the general modeling approach of OData is given in
Chapter 2.6.4. We then compare RDF and OData from different viewpoints. First, we
give a brief overview on the differences between RDF and OData from a conceptual
and from a technical point of view. We then continue with discussing first approaches
for integration of OData and RDF that are currently being discussed in the OData
community.

6.3.3.1 Semantic Annotations in an IoT-Context

OData, especially OData v3, is considered by some as ”semi-semantical”. Real-world
implementations often depend on additional knowledge that is stored and implemented
in the enterprise system. As described in Chapter 8.7, additional knowledge about the
returned values need to be provided by the system. OData allows to model return values
with EDM native types or by introducing a type system. In addition, it allows the use of
annotations. The annotations can be used to decorate the model and allow the OData
system to specify additional information about the value. The W3C open Data on the
Web group uses them to map [4] OData on RDF types.

The number of vocabularies and support of semantic annotations was very limited
before OData v3. Therefore, the term ”semi-semantical” could be considered as justified.
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Before the introduction of annotations some vendors, for example, SAP had their own
semantic extensions to express business logic.

Listing 6.1: Annotations: OData vendor specific extensions

<Property Name="temperature" Type="Edm.Int16" sap:unit="Celsius"
/>

In OData v3, the concept of annotations was introduced. They were, similar to
the original SAP concept, unstructured information to store any kind of annotations,
including semantics. As shown in Listing 6.2, terms and strings are used to express
semantic relationships. The annotation is added to the description of the property.

Listing 6.2: Annotations: OData v3

<property name="temperature" type="Edm.Int16">
<ValueAnnotation Term="Measures.Unit.Temperature" String="

Celsius">
</property>

OData v4 enhanced the concept of annotations and made them first-class citizens in
the OData world. OData allows annotations both on a metadata level (Metadata annota-
tions), as well as on an instance level (Instance annotations). Metadata annotations are
valid for the whole service. They can be attached, for example, to a property. Instance
annotations are used for just that instance of the return set.

Listing 6.3: Annotations: OData v4

<Property Name="temperature" Type="Edm.Int16">
<Annotation Term="Measures.Unit.Celsius" />

</Property>

Different modeling options are possible. For example, the above could also be
implemented as a string.

Listing 6.4: Annotations: OData v4 - as string

<Property Name="temperature" Type="Edm.Int16">
<Annotation Term="Measures.Unit" String="Celsius" />

</Property>

In addition, the annotations can be made available via hyperlinks. This means that
even the annotations and the semantic information can be made available as part of a
HATEOS-driven engine.

Listing 6.5: Annotations: OData v4 - as path

<Property Name="temperature" Type="Edm.Int16">
<Annotation Term="Measures.Unit" Path="sensorUnit" />

</Property>
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<Property Name="sensorUnit" Type="Edm.String" />

Of course, different, and more complicated vocabularies can be build with anno-
tations. A comprehensive introduction is given in the OData v3 [271] and OData v4
[286] specifications.

With OData v4 [287] more vocabularies are introduced, which are interesting for
IoT: for example, a core vocabulary that can be used to annotate the capabilities of
the OData service. This is especially relevant for OData services that are used in the
Internet of Things, as they allow specifying what a service running on a constrained
device can actually do. For example, some capabilities of OData (i.-e. some queries)
might not be supported or might be supported only in a limited scope. OData v4 also
supports a measures vocabulary. The measures vocabulary is used to describe amounts
and measured quantities. Obviously, this vocabulary is of special interest in the IoT
domain.

To sum up, prior to OData v3, vendor-specific extensions had to be used. Only
starting with OData v3 did the protocol have capabilities to describe services seman-
tically. OData v3 already supports relating things with each other (as RDF does) and
querying data (as SPARQL) does. It lacks (standardized) vocabularies though and
offers limited support of annotations. The situation changed with OData v4. It provides
more extensive support of annotations and started to introduce vocabularies. As soon as
OData v4 use becomes more widespread and if some standard vocabularies evolve, it
could become the enterprise standard for semantically-enriched data services.

6.3.3.2 OData and RDF: A Comparison

We now briefly compare the properties of OData and RDF. Of course, they were created
from different backgrounds and with different underlying goals. Nonetheless, they
share some key similarities which we will briefly discuss. An overview of the different
properties of OData and RDF and their similarities and differences is summarized in
Table 6.1. Understanding the differences is important to be able to compare Linked
USDL for IoT and OData in a larger context. Linked USDL and Linked USDL for IoT
are typical representatives of the RDF-based service description family.

OData and RDF share the same conceptual model based on an entity-attribute-
value graph data model. OData prescribes a data representation format, while RDF
does not. Typically, RDF is represented as N3, Turtle or more recently JSON-LD. As
discussed in Chapter 6.3.3.1, OData previously lacked – to some degree – semantic
modeling capabilities. One of the main issues interoperability faces is the availability
of standardized vocabularies. Nonetheless, the number of vocabularies is increasing.
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Property RDF OData

Model Entity-Attribute-Value Graph Entity-Attribute-Value Graph
Main data represen-
tation format(s)

Non mandatory: Mainly
triples (N3), Turlte, JSON-
LD

ATOM (XML), JSON

Operations CRUD CRUD
Data storage Not mandatory, but RDF and

the development of triple
stores are closely connected.
Commonly, triple stores are
the backbone of RDF imple-
mentations.

None mandatory, OData was
designed to be seen as an ab-
stract interface to any type of
data. OData coined the term

Extensibility Open world assumption Closed-world assumption
Semantics Semantic Annotations

(v3,v4), vendor specific (v2)
inherent

Vocabularies many few
Standardization W3C OASIS

Table 6.1: OData vs. RDF comparison

6.3.3.3 OData and RDF/SPARQL

An early approach for integration of OData and RDF-encoded knowledge was presented
by Microsoft Research and DERI. They expose data stored within a RDF triple store
through OData [163]. A generalized RDF to OData converter was developed. The basic
schematics of the architecture is shown in Figure 6.4. The converter accesses the RDF
data through a SPARQL interface and maps it to OData. The mapping configuration
was stored in user-defined rule sets and not automated.

The rule-set generates both data-feeds for the actual data (services accesses) and the
metadata that describes the service and the semantic information based on the original
RDF triple store.

Further research at SAP is currently underway that aims for integration of OData
into RDF. Kirchhoff and Geihs [203] propose a semantic extension of the Service
Metadata Document to make OData available for integration with the semantic web.
They defined a mapping from the Entity Data Model (EDM), which is described with
CSDL, to RDF graphs. Similarity to the Microsoft Research approach, but more
advanced, templates are used for mapping.

For querying OData with RDF technologies Kirchhoff and Geihs also present a
SPARQL interface for OData [204]. The general architecture of their proposed system
is shown in Figure 6.5. A client issues SPARQL queries to the system. The Query
Engine receives the request and evaluates it using the templates that are stored in
their service registry. In case the data exposed by one of the services is relevant for
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RDF2OData Converter
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Configuration

File

SPARQL
endpoint

OData output

Figure 6.4: Overview of RDF2OData architecture [163]

Due to the complexity and frequent changes of the internal ERP 
database schema neither of these two approaches can be used. As 
explained in Section 3, the ontology that is the foundation of the 
ERP SPARQL endpoint must model the business object types, 
their properties and their relations among each other. The direct 
mapping as proposed by the RDB2RDF Working Group cannot 
be used because the business object types usually do not have a 
direct mapping in the database schema. Instead business objects 
are often distributed across several tables. These tables and their 
columns which represent the properties of the business objects 
often have none-descriptive names. Hence, the direct mapping 
approach would result in a very complex ontology with several 
concepts for most of the business object types. Although it is 
possible to define a customized mapping by using the R2RML 
this solution has several drawbacks as well: 

 The ERP database schema consists of several thousands 
of tables which are often difficult to understand. This 
makes it very complicated to define the mapping. 

 The fact that the business object types usually do not 
have a direct mapping in the database schema makes it 
even more difficult to define the mapping. 

 The database schema changes over time, i.e. it is not 
unusual that a new version of the ERP system has a 
different database schema than the previous one. Thus, a 
customized mapping based on the database schema 
would be valid only for a specific version. An adaption 
would be necessary for each new version. 

Due to these reasons it is practically not feasible to manually 
define a mapping based on the database schema. A better solution 
is to place the SPARQL endpoint on top of existing ERP 
interfaces that allow the direct retrieval of business objects. This 
has several advantages: 

 The interfaces are far less complex than the database 
schema and they are well documented which simplifies 
the definition of the mapping. 

 The functions and services of the interfaces are assigned 
to business objects. Furthermore, they allow the direct 
retrieval of the data of the business objects. This 
simplifies the mapping to the corresponding business 
object concepts of the ontology. 

 A mapping defined with regard to a specific ERP 
version will be valid for many future versions as 
downward compatibility is guaranteed for a long period 
of time. 

 Functions and services released with a new version can 
be made available to the SPARQL endpoint easily by 
just adding a new mapping definition without changing 
the old one. 

The SAP ERP provides several interfaces to access business 
objects. We considered the following: Business Application 
Programming Interface (BAPI), Enterprise Services (ES) and SAP 
NetWeaver Gateway. The BAPI is a set of remote function call 
(RFC) modules that are grouped according the business objects. 
BAPIs can be called from many different programming 
environments, e.g. ABAP, Java (SAP Java Connector), .NET (SAP 
Connector for Microsoft .NET). The Enterprise Service interface is 

a SOAP/WSDL-based Web Service interface. Currently, the 
interface provides services for over 330 business objects of the 
SAP ERP system. New Enterprise Services are added if a business 
need is identified by the Enterprise Services Community. 
Downward compatibility is guaranteed for the Enterprise Services 
as well as for the BAPI. SAP NetWeaver Gateway is a new 
development framework that can be used to expose business 
object data as REST based services. Currently, it does not provide 
as many predefined services as the BAPI or the Enterprise 
Services and it is not available on many ERP systems. Therefore, 
we build our system on top of the Enterprise Services.  

3. Architecture 
In this section we describe the main components of the system. 
Figure 3 shows the overall architecture of the semantic ERP layer 
(S-ERP Layer). The layer provides a SPARQL endpoint on top of 
the ERP system. It can be used by client applications to query the 
ERP system. 
A SPARQL query sent by the client is received by the 
Orchestration Engine (OE) where it is transformed into an internal 
data model. Based on the syntactic and semantic descriptions of 
the Enterprise Services stored in the Service Registry the 
Orchestration Engine determines the Enterprise Services that need 
to be called to answer the query. The OE sends the orchestration 
information to the Execution Engine which calls the 
corresponding Enterprise Services. The result is either forwarded 
directly to the Orchestration Engine which returns it to the client 
or, if reasoning is needed, it is forwarded to an RDF Adapter.  

SAP ERP

Orchestration 
Engine

Execution 
Engine

Triple 
Store

SPARQL 
Processor

RDF Adapter

Reasoner

R

R

R
Service 
Registry

S-ERP Layer

R

Client 
Application

 

Figure 3: S-ERP layer architecture. 
The RDF adapter transforms the business object data into the 
RDF data format. Rule-based reasoning is provided by a reasoner 
that operates on the RDF data stored in the triple store. The actual 
SPARQL query sent by the client is executed by the SPARQL 
processor against the data in the triple store. 

The ontology is the central component of the whole system as it 
determines the data that can be queried from the ERP system. It 
must reflect the business objects, their attributes and associations 
to other business objects. However, as the S-ERP layer uses the 
Enterprise Services to retrieve the data from the ERP system the 
ontology has to be aligned with the data model used by the 
Enterprise Services. This data model is based on the Global Data 
Types (GDTs) [9]. The GDTs are SAP-wide standardized data 
types derived from the Core Data Types as specified in the 
UN/CEFACT Core Component Technical Specification (CCTS) 
[1]. They are described in XML Schema and directly used by the 
Enterprise Services. Figure 4 shows the relation between the 
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Figure 6.5: SPARQL-OData-Layer architecture [204]

the successful evaluation of the query, the Query Engine creates an URI that is then
forwarded to the execution engine. The execution engine performs the actual call to
the OData service. The OData service responds with ATOM or JSON documents that
are transformed into RDF graphs (RDF Adapter). The RDF graphs can be used in
rule-based reasoning engines (Reasoner). A SPARQL processing engine executes the
SPARQL query against the data stored in the semantic data storage (triple store). The
final result is passed to the Query Engine which returns it to the client. The complete
architecture and its logical foundations can be found in [202].
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6.4 Conclusions

In Chapter 1.3, we introduced our general idea of investigating a bottom-up and a top-
down approach. We introduced a CoAP implementation and an OData implementation
for constrained devices. Furthermore, we discussed several properties of OData and
related them to the needs of a semantics-aware enterprise utilizing IoT-devices. CoAP
in conjunction with Linked USDL can be used to implement a bottom-up approach.
OData, coming from the enterprise-world, can be seen as an top-down approach.

We presented our implementation of the Constrained Application Protocol (CoAP)
on a reactive VM-based operating system (see Chapter 2.2). We implemented the
base CoAP specification, as outlined in RFC 7252 [353] and two extensions: block-
wise transfer [352] and observe [162]. Implementing the CoAP protocol on a Class
0 [54] (see Chapter 1.4) device exposes some specific challenges. First, we deal with
very constrained devices both in computing capabilities and memory. Especially, a
memory-aware implementation of the options as defined by CoAP in its latest versions,
needed some effort to reduce the number of processing steps without allocating too
much memory. Previous versions of CoAP used linearly ordered options, which are
way easier to handle on-mote, but consumed more bytes when transferred. Here the
design of the CoAP protocol should be easier to implement in Class 1 (and above)
motes. CoAP implementations for Class 0 devices should refrain from using too many
options.

In Chapter 4.7 we already mentioned the need of redirections to support linking
parts of a service description together. CoAP does not have this property at the moment.
We therefore discussed four possible solutions: 3.xx message codes, CoAP options,
Content Type and Data encoding. We concluded that, while the 3.xx family might be
the most desirable, currently the most promising solution is to move the problem to the
application itself. In our opinion this is a gap in the standard that needs to be addressed
in future CoAP releases.

We implemented all of our work in Java. Using Java was quite an advantage as every
team member was able to start after a minimal ramp-up phase. While implementing
a protocol like CoAP some downsides emerged: The CoAP specification, like most
protocol specifications, assumes a C-like 8bit unsigned byte datatype or, more generally,
the availability of unsigned datatypes. It was therefore not straightforward to implement
the specification and lead to some hard to track errors and unnecessary calculations and
type casts. We believe an embedded version of Java should support unsigned datatypes
to ease implementation of such protocols.

We introduced an IoT stack for OData. Instead of using HTTP, the more recent
CoAP protocol can be used. OData was used as a representative of a new class of
service description languages. It follows a different approach than RDF-based service
description languages, such as Linked USDL for IoT. It combines semantics-awareness
with a RESTful protocol that does not need external semantic annotations or extensions.
Linked USDL for IoT separates the service description from the representation. There is
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no representation prescribed and minimal data representations can be used. Furthermore,
Linked USDL for IoT is better integrated into the semantic world, leveraging on
semantic technologies and linking well known vocabularies. The advantage of OData
is that it can be easily integrated into Enterprise systems without the need for any
adoptions. It is standardized and used by a large number of corporations. Existing
tooling can be reused, as well as programming frameworks and libraries. OData follows
a close world assumption. Semantic-annotations are possible and likely to be further
extended in upcoming OData versions. The amount of vocabularies will most likely
increase as well. OData does not need to stay in its ”silo”. OData and RDF-based
semantics do not need to be mutually exclusive. First approaches for integrating OData
with RDF exist.

OData responses are typically rather large, at least compared to what has been used
in the sensor network community so far. Compression helps reducing transmission
times and, thus, total energy consumption. As far as compression is concerned, based
upon previous research as discussed in Chapter 2.8, we opted for a standard compression
scheme. These have shown to work reasonably well compared to more specialized
compression algorithms. They work for both ATOM and JSON representations, as well
as any kind of data that might be collected by the system. Furthermore, they have shown
low computational and memory overhead, and, thus, are suitable for very constrained
devices. Moving away from very constrained devices to a platform with more memory
and computational power, the choice might have to be reconsidered.

Interoperability with enterprise systems is one of main arguments for using OData.
On the downside, one has to stay within the ”closed world” of OData. OData currently
offers less semantic modeling abilities and was coined ”semi-semantic” by some people,
because of its lack of integration into the semantic web. This seems to be justified for
OData v2, but less justified for OData v3 and with OData v4, semantic annotations are
fully supported. The situation on standard vocabularies also changes currently. OData
v4 already has some standardized vocabularies, for example, for core capabilities and
measurements. Given the standardization power of the OData supporters within OASIS,
the OData community could soon have its own set of standard vocabularies. This would
enhances OData’s interoperability capabilities and, at some point, might enable the
breakthrough of semantic interoperability in enterprises.
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Chapter 7

REST Sleepy Node Integration

Sleepy Nodes, in an IETF context [311], are a recent research area that aim to not only
use energy-aware protocols on the networking, routing, or hardware layer but also take
the application layer into account [311, 312]. Towards a user, it has the unique property
that it always needs to appear as connected to the network. We contribute to sleepy
nodes’ research by introducing key components needed to utilize them in a semantics-
aware enterprise [372]. First, we present a light-weight REST-based sleepy node
protocol. Second, we describe a measurement framework that implements different
strategies to map sensing requests to actual nodes. The general goal of the framework
is to maximize the network lifetime by explicitly sending nodes to sleep based on
available information about the applications properties. It tries to combine requests that
can be served together, without violating deadlines. We compare an optimal strategy,
based on exhaustive search, a random first-fit, and a heuristic that is based on the
observation that subsequent requests are more likely to be combined than those that
not follow each other time-wise. We call this heuristic dynamic partitioning. Third,
we present an energy model that is tailored towards the needs of such a measurement
framework. It enables a scheduler to decide on sleeping times based on the additional
energy needed to serve requests, the time and energy needed to change to the sleep
state, and the estimated energy savings due to sleeping. Furthermore, some external
support (e.g. by a platform) is necessary for sleepy nodes, because, by definition, they
are required to appear as connected to the network. We show that our measurement
framework integrates very well in our architecture as presented in Chapter 4. Last,
we discuss how mid- to longterm sleeping can be integrated into an existing hardware
platform. We extend the 6LoWPAN protocol of the Mote Runner system, considering
the limitations of imprecise clocks. In this context, we argue about the advantages of a
modern platforms with more advanced deep sleep modes and very precise hardware
clocks.
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7.1 Introduction

In addition to service-based interoperability one of the main issues in industrial use of
small battery-powered devices is energy saving. The integration of enterprise systems
and Internet-of-Things (IoT) devices based on semantically enriched protocols and
services enables IoT devices to act according to additional knowledge available on a
semantic or application layer.

In the past, the problem of energy saving on the protocol-level [59], routing [178,
345], in the MAC layer [13, 400, 385], or on the actual hardware [309, 304, 300] has
been studied extensively. While the MAC-layer or routing support for sleepy nodes
(or sleep states) performs quite well, these functionalities are typically unaware of any
timing or operational aspects of the application layer and, therefore, cannot leverage on
that.

In the following, we introduce an application-layer REST sleepy node implementa-
tion and measurement framework for saving energy [ 372]. We define, based upon the
IETF definition [311], a sleepy node as follows:

A sleepy node is a node that may sometimes go into a sleep mode to save
energy and that temporarily suspends all protocol communication. A sleepy node
will otherwise remain in a fully powered-on state where it has the capability to
perform any protocol communication. To the user, the sleepy node always appears
as connected, thus being part of the network.

Sleepy nodes that perform mid- to longterm sleeping can be used whenever these
sleeping times can be calculated by the application layer. In the following, we will look
into a monitoring framework with soft real-time constraints. Usually, the design space
of real-time applications is divided into three disjunctive classes [356]:

Hard real-time: A deadline is called hard, if the consequence of not meeting it is a
failure and there are potentially severe consequences.

Firm real-time: A deadline is called firm, if the data produced ceases to be useful as
soon as the deadline expires, but the consequences of not meeting the deadline
are not severe.

Soft real-time: A deadline is called soft, if it is not hard or firm and the utility of the
results decreases over time after the deadline expires. Compared to a hard real-
time system, in a soft real-time system the miss of a deadline has no catastrophic
consequences. The data produces is still to some degree relevant, even if the
deadline has expired.

We are solely considering near real-time IoT systems [289] with soft quality of
service requirements. Most enterprise applications that are part of the IoT have soft real-
time requirements. In many cases, the data has some value even when it is late. Hard
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real-time applications are not considered in this work. The delays and unpredictability of
over-the-air transmissions make hard real-time difficult to achieve [83], if the acceptable
deadlines are small. Körber et al. [213] and Lill/Sikora [237] report success under ideal
conditions in the 5ms to 8ms hard-real requirements. An overview by Paavola et al.
[290] concludes that current wireless solutions, such as IEEE 802.11, IEEE 802.15.1,
IEEE 802.15.4 and ZigBee are inapplicable for hard real-time applications with trigger
times around 5ms. Nonetheless, such applications can rarely be considered as part of
the Internet of Things. Moreover, it is even more unlikely that they can profit from mid-
to long range sleeping.

We will build on the application scenario as introduced in Chapter 4.6.2. The
implementation is the monitoring of goods throughout the supply chain. For example,
a container may be monitored very infrequently while being transported in a cargo
ship, more frequently while staying at a harbor and again less frequently while being
transported in a truck.

In the following, we first present the application REST API that can be used to put
a node to sleep. To comply fully with the definition of a sleepy node, we need some
platform support. We describe a possible platform in Chapter 7.3. The platform needs
to determine if there is a potential energy consumption benefit in putting a node to sleep.
For this we propose an energy model in Chapter 7.4. Next, as a second perquisite for
the successful implementation of the platform we need to adopt the network layer. We
explain our modifications to the MRv6 protocol in Chapter 7.5. Finally, we put all the
pieces together and present a measurement framework that can be used as scheduler in
a sleepy node aware platform.

7.2 REST API

The REST API for accessing the sleepy node functionalities is kept simple and light-
weight. It consists of a resource called sleepy that each node has to support and only
two operations. The first operation is for putting a mode to sleep. The second operation
is for retrieving its status. The resource and the operations are shown in Table 7.1. We
support a JavaScript Object Notation (JSON)[60] representation with the parameters
as key-value pairs. We decided against using CoAP options, which would have had
the advantage of being more compact as they are stored in the message header itself.
Nonetheless, such a design would be tightly coupled to CoAP. The use of specialized
resources allows easier integration into non CoAP REST IoT-systems, like those built
on top of HTTP.

The get statement is special in some sense. In case of an accessible node it can
return status information, like the next scheduled sleep period or the time already spent
sleeping. If the mote is sleeping, it can, for obvious reasons, not answer the request. In
that case platform support is needed. It lets the node appear connected to the network
and replies to the request instead of the node.
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Main Resource: sleepy

Op Parameter Description

POST duration Puts a node to sleep for a given amount of time (in ms)
GET duration

state
Returns the remaining sleep time or the state of the node.

Table 7.1: Sleepy Nodes: REST API

7.3 Integration of Sleepy Nodes into the Enterprise Inte-
gration Platform

To comply fully with the previously given definition of a sleepy node, some support
of an external system is needed. According to the definition of a sleepy node, to the
user the node has to always appear as connected. Operations on the mote, therefore,
need support if the node is sleeping. This can be achieved with an external integration
platform such as the one we described in Chapter 4. We will now describe how such
supported can be implemented as part of our integration platform.

The high-level schematics of the needed new components are shown in Figure 7.1.
The new components integrate seamlessly into our architecture (as described in Chapter
4). The following additions are made: A command and control (C&C) module issues
commands, such as sleep requests, to the sensor nodes. As a sleepy node always appears
connected to the network, the platform acts as a transparent proxy, intercepting calls
to sleepy nodes and returning the state and/or cached values in case they are sleeping.
As our sleepy node implementation is to be used as part of a semantically-enriched
IoT platform, the state of the sensor network (in this particular case, sleeping or not
sleeping) is stored as part of the sensor network description.

The following three main interactions between a client requesting data and the node
that provides this data are possible: (1) The node is not sleeping and the client can
directly work with the node. (2) The node is sleeping and a client requests data. The
request is intercepted by the transparent proxy. It returns the requested data together
with the age of the information and an indication that it came from a proxy. The client
can now either work with this data or query the sleeping time of the node and schedule
a new query later on. (3) The node is sleeping, but a request that cannot be handled by
the proxy arrives. This could be the case as no data has been cached, because the node
requested that this particular resource is not to be cached, or because it is a request that
has side effects. In such cases, the proxy will indicate the unavailability of the node and
the client has to query about when the node will be available again and schedules its
queries accordingly. In each case, the data can then be retrieved either by polling or via
a notification (e.g. CoAP observe)

As outlined in Chapter 7.3, we are working with semantic descriptions instead of a
resource directory [350]. Furthermore, we envision the use of an integration platform
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Figure 7.1: High-level schematics of a REST integration platform

that manages and issues the sleep states. The usage of an integration platform has
the advantage of letting the sleepy node always appear connected to the network and
reachable, even when there is access only to cached values.

A standalone implementation where the user, acting as a client, queries the network
description (i. e. SSN) directly and issues calls only when the node is awake is possible.
Alternatively, a scheduler can be used as an intermediate client.

A scheduler is particularly useful in use cases like the monitoring of goods through-
out a supply chain or a warehouse (see Chapter 4.6.2). The user may request a new
monitoring task from the scheduler, which can then leverage on knowledge available
from the semantic description repository as well as from being aware of other already
scheduled monitoring tasks, to handle it more efficiently. Depending on the objective at
hand, different task allocation strategies can be used.

To demonstrate our framework’s potential, we will present a windowing-based
measurement framework in Chapter 7.6, with our goal being energy saving to maximize
the network lifetime. To assess the strategies, we use an energy model that will be
briefly introduced in the next section. In Chapter 8.8 we evaluate the sleepy-node
implementation in conjunction with a supporting framework and a number of task
allocation strategies.
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7.4 Energy Model

The measurement framework needs to be able to determine if there is any benefit in
sending a node to sleep. For this, it relies on an (analytical) energy model that we will
introduce here.

7.4.1 Introduction

Energy estimations, if not measured directly, are typically made by estimating the time
an application stays in a specific energy mode or by counting the number of messages
sent and received. Given that the radio is often the most energy-consuming part of
an IoT device, the message counting approach is considered good enough for many
applications. Often, a three state radio model is assumed in which listening (receive),
transmit and sleep states are considered [179, 161, 400, 302]. Models with higher levels
of sophistication also consider the states of the CPU or of specific sensing devices
[341, 200, 346].

7.4.2 Energy Model

We use a hybrid approach, in the sense that we consider the duration spent in some
energy modes (idle and sleep) and the energy needed to react to different events
(processing, sending and receiving). It is more accurate than message counting, but less
accurate than measuring hardware states. Given the warm-up and cool-down times of
devices, the presented strategies will look for large savings. Therefore, the objective
of the energy model is not to get highly accurate solutions, but to define situations in
which sleeping is more energy efficient than idling.

For every node, we distinguish between the following modes, each with a different
level of power consumption:
• Protocol Idle: The node is connected to the network and participates only in

required communication protocol activities.
• Protocol Sleeping: The node does not participate in any communication protocol

activity. The nodes’ radio is turned off. Infrastructure support is needed to make
a sleepy node appear reachable to users.
• Sensing: The node is collecting data from its sensor
• Computation: The node performs computations
• Communication: The node is transmitting or receiving application data packets

through its radio
To present our model properly, we first make the following assumptions and defini-

tions: Esense, the energy consumed by a sensing request, and Esleep, the energy needed
for processing and executing a sleep request, have negligible variance. Packet payloads
do not vary considerably either. We call the amount of energy spent for receiving one
packet and then transmitting one, Ecomm. In protocol idle, a node is only consuming
(on average) power Pidle for necessary protocol activity. Similarly, in protocol sleeping
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a node is consuming constant power Psleep. Psleep and Pidle should not be confused
with the CPUs idle or sleep energy states.

We can now express an approximation of the energy En consumed on node n with
specific numbers of requests m, and the duration a node n stays in a specific state tnstate
as:

En = tnidle · Pidle + tnsleep · Psleep︸ ︷︷ ︸
time based

+mn
sense · Esense +mn

sleep · Esleep +mn
comm · Ecomm︸ ︷︷ ︸

event based

Pidle is determined by the lower-layer communication protocol. In a beacon-based
protocol (like MRv6) it depends on the number N of connected edges, namely the
number of neighbour nodes it is connected to:

Pidle = P base
idle +N · Pneighbour

idle

where P base
idle is the power consumed by participating in the communication protocol

regardless of the number of connected nodes (neighbours) and Pneighbour
idle is the extra

power required for each connected node.
It is important to differentiate between time-based and event-based energy and

power consumption. The relationship between time-based and event-based is as follows:
Psleep is time-based, while Esleep is event-based. Esleep is the energy needed to send a
node to sleep, wake it up again, and reattach it to the network. The energy consumed
between going to sleep and waking up is tnsleep · Psleep.

7.5 Implementation of Mid- and Longterm Sleeping in MRv6

In the following, we will briefly introduce how we extended MRv6 [180], the 6LoWPAN
implementation that ships with Mote Runner, to support mid- and longterm sleeping
periods. A brief introduction into 6LoWPAN is given in Chapter 2.3.2. The MRv6
protocol is described in Chapter 2.3.3. The extension of MRv6 came with some
challenges that we had to overcome. The main challenge was to wake a node up before
it was needed so that it would be available on time, taking into account the time it needs
to attach to and leave the network as well as imprecise drifting clocks. First, we present
our modifications and extensions of MRv6 in Chapter 7.5.1. Then we go on to discuss
clock-drift in Chapter 7.5.2.

7.5.1 MRv6 Extensions for Sleepy Node Functionality

In order to support the application-layer sleepy node protocol, we had to extend the
MRv6 protocol to enable the sleep states. As discussed in Chapter 7.4.2, the Mote
Runner VM decides in which states the devices go. Therefore, we had to design the
protocol so that it stops executing even the MAC layer protocol. This enables the Mote
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Runner system to put the radio device (among others) into sleep mode. The upper layer
protocol had to be modified such that the disassociation functionality of the original
MRv6 protocol does not query the children nodes, as they are unable to answer in a
planned deep sleep (protocol off) state.

Every (non-edge) mote that is loaded with the MRv6 component alternates between
parent and child roles. Both roles keep track of their own state, reflecting the association
or communication stage they are currently in. Either may change several states within
a single communication period. Each of these states has several expectations on the
behavior of the counterpart (parent or child) that we had to consider.

After a mote has been successfully associated with a parent, it starts participating in
the super-frame (see Chapter 2.3.3). At the beginning of the communication period the
mote adopts the child role in STATE CHILD RECEIVE BEACON. It schedules a radio
receive operation in order to listen for a beacon from its parent. The timestamp when the
beacon is expected to arrive is calculated by adding BEACON INTERVAL MILLIS to
the timestamp of the last received beacon. If the node is sleeping, none of this happens.
The node cannot act as parent for its children and the children cannot communicate
with the parent.

Our sleeping functionality is exposed to Mote Runner applications as an MAC layer
interface. Any application running on the mote can put it to sleep for m milliseconds
by calling Mac.scheduleSleep(ms). The MAC layer will then calculate the sleeping
time for the radio and then instructs the child-part (see Chapter 2.3.3) of the MRv6 layer
to prepare for sleeping by also saving the timestamp that the next beacon is expected by
calling the newly introduced function Child.handleSleepRequest, so that it does not
have to go through the energy-costly and time-consuming procedure of reassociating
with its parent afterwards (see Chapter 2.3.3.3 for the association process). First, the
number of communication periods (π) that the requested sleeping time amounts to is
calculated:

π =

⌊
msSleep

BEACON INTERV AL MILLIS

⌋
Then, π beacon intervals are added to the timestamp of the last received beacon to form
the next timestamp that we will be listening to for a parent beacon:

nextBeaconTs =

lastBeaconTs+ π ·BEACON INTERV AL MILLIS (7.1)

After ensuring that there are no more pending packets to be transmitted by the mote,
the MAC layer switches the radio off and sets a timer callback that will go off after
the sleeping duration is over. The total time that the timer will count is calculated by
subtracting an offset from the total requested sleeping time, in order to compensate for
the radio state switches overhead and the mote wake-up (tovh) time.
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wakeUpTs =

lastBeaconTs+ π ·BEACON INTERV AL MILLIS − tovh (7.2)

Furthermore, clock drift has to be considered. We will take a closer look into clock
drift in the next section.

7.5.2 Clock-Drift Considerations

The clock on most platforms is rather inaccurate and might drift over time. This means
that two clocks on two nodes might not run at the exact same speed compared to each
other. The clock drift problem, although a major issue in many distributed algorithms
for WSNs, is not as dramatic in a coarse-grained sleepy node implementation as ours,
as no exact timing is necessary. We only have to ensure that the node is awake at a
given time. In sleeping periods in the magnitude of minutes and hours the impact of
waking up motes some seconds before it is actually needed is negligible, compared
to the savings of long term sleeping. Nonetheless, we want to keep the extra energy
needed to compensate the clock-drift small.

Clock drift is measured in parts per million (ppm). Nowadays, a typical (non
compensated) crystal clock has a drift of around 20ppm [63]. Nonetheless, boards that
are more recent sometimes already have compensated crystals. The IEEE 802.15.4
standard specifies a maximum drift of 40 ppm [184]. 20ppm translate to

Dpercent =
Dppm

106
∗ 100

=
20

106
∗ 100, forDppm = 20

= 0.002%

(7.3)

So, given one day with 86400 seconds, the expected clock drift per day is 1.78
seconds, or around 400ms for a 10 hour period. As shown in Maroti et al. [ 248] most
clocks lag behind in time. As a consequence, the drift makes them timeout earlier
instead of too late. We will see later on (Chapter 7.6) that in the window task allocation
scheme we are using, all nodes wakeup periodically at the beginning of a window.
We assume window sizes in the range of multiple hours as an absolute maximum.
Therefore, the expected clock drift is within a range that can be handled by the protocol
without too much additional energy waste while waiting for the beacon.

Recent platforms come with more precise clocks. The Waspmote Pro platform,
for example, uses the DS3231 [255] from Maxim Integrated. It is a highly accurate
realtime clock with an integrated temperature-compensated crystal oscillator (TCXO).
It has an accuracy of only +-2ppm. In common temperature ranges its accuracy is even
close to 0ppm. Figure 7.2 shows the drift ppm (delta frequency) of a DS3231 compared
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Figure 7.2: MAXIM DS3231 drift [255]

to crystals that are not temperature compensated. Therefore, on the Waspmote Pro
platform, the clock drift we have to compensate for can be calculated as follows:

Dpercent =
Dppm

106
∗ 100

=
2

106
∗ 100, forDppm = 2

= 0.0002%

(7.4)

These bounds can be improved by sophisticated estimation schemes that can be
plugged into our implementation. Brzozowski et al. [63] investigated clock drift
behavior with typical MicaZ motes by applying drift prediction based on samples
gathered during runtime with moving average and linear regression algorithms.

Furthermore, to increase accuracy (thus sacrificing energy) the motes could turn on
in intervals and synchronize with the global time base (beacons). Maroti et al. [248]
have shown that in MicaZ modes, which can be considered similar to IRIS or Waspmote
Pro, linear regressions models can be used to predict the clock drift. In experiments
with lengths of 8 hours and 18 hours, the average absolute error was 2.24µS in the
first experiment and 1.48µS in the second. The maximum absolute error was 8.64µs
in the first experiment and 6.48µS in the second. Dai and Han implemented a similar
approach as part of their TSync protocol [99].
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If there is significant clock drift, after waking up, the mote might start listening for
its parent beacon either sooner or later than it actually arrives. In the first case, there
will be an extra energy overhead, proportional to the clock drift value, as this is the time
that the mote keeps its radio on waiting for the parent beacon redundantly. In the latter
case, the beacon we aimed for might be missed. Therefore, the mote will again have to
wait with its radio on, until the next parent beacon arrives. In the worst scenario for
both cases, the time that the mote spends with its radio unnecessarily on, will be equal
to a whole beacon interval.

To reduce the possibility of loosing the parent beacon in the case of positive clock
drift, we can wakeup one or two intervals earlier, by subtracting a value θ. Furthermore,
we need to account for the overhead caused by waking up and turning the radio on
again (tovh).

nextBeaconTs = lastBeaconTs

+ (π − θ) ·BEACON INTERV AL MILLIS

− tovh − tdrift
(7.5)

There is a tradeoff when calculating good safety offset values that ensure that the
node wakes up before the targeted beacon and can join the network quickly: If we
use a bigger offset than needed, energy is wasted unnecessarily. But, if the offset is
not big enough to cover the potential drift, then the radio will have to stay on for a
whole beacon interval, which is even worse. If the clock drift magnitude, as well as an
approximation of the average sleeping time that we expect to be requested are available,
we can calculate a good safety offset as follows:

tdrift = tsleep · pdrift (7.6)

For example, in case we rarely expect to request a mote to sleep for more than 2500
seconds and the measured clock drift is less than 2ppm, then by applying the above
formula we get a 5ms safety offset.

In case of even lengthier sleep durations when large clock drifts are present, the
delay until the mote becomes responsive again might even exceed one beacon interval.
Regardless of the effect on energy consumption, it has to be accounted for during the
higher-level sleeping time calculation.

When the sleep timer expires, the radio is switched back on and the mote adopts the
child role again, but this time starting in a new state that we added to the MRv6 state
model: STATE CHILD SYNC BEACON. This state is identical to
STATE CHILD RECEIVE BEACON, except for the fact that it listens to the global
superframe to get in sync with the network again.

The sleep routine was designed to be invoked from the application layer, so that the
mote may offer a REST go-to-sleep service.
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7.6 Measurement Framework

We introduce a measurement framework that solves a soft real-time task allocation
problem in a time-sliced (windowed) environment. We present three windowing
based task allocation (WBTA) strategies that map sensing requests to actual nodes.
The proposed system shows the potential of a centralized sleep planning system by
leveraging knowledge available at the application layer. The objective of the WBTA is
to measure the entities at the required intervals, while aiming for an enhanced overall
network lifetime. We first give a detailed problem formulation in Chapter 7.6.1. We
then introduce the task allocation strategies in Chapter 7.6.2. Next, in Chapter 7.7, we
explain the dynamic partitioning heuristic in a step-by-step example.

7.6.1 Problem Formulation

We assume a given static WSN topology and a list of entities that need to be measured
on defined time periods. These measurements can only be performed by defined sensor
sets. Our main objective is to generate a close-to-optimal (”best effort”) querying
schedule that accommodates all given entity measurements, considering latency and
energy saving requirements. We defineS to represent the set of all sensors andE to be
a set of entities, whose properties we want to monitor over time. First, we introduce the
following terms as part of our notation:

• Measurement: A measurement for an entity is a defined period in time (times-
tamp and time tolerance) at which a measurement should be performed. More
than one sensor may be eligible to perform it.

• Query: A query is a specific request to a sensor of the WSN to perform a
measurement. It may combine more than one measurements, as long as they are
within time constraints and the assigned sensor is eligible to perform all of them.
A query can be seen as an instance of one or more measurements.

Furthermore, for each entity ei ∈ E, we define the tuple (S, ω, δ) with

• S: S ⊂ S set of sensors that can measure the property of the entity

• ω: time period between subsequent measurements

• δi: the time tolerance within which a measurement is acceptable

We leverage on the high-level sleeping services, as introduced in Chapter 7.3, taking
into account the period ω, the tolerance δ, and the set of possible sensors S, to send
nodes into a sleep mode in order to save energy and achieve an enhanced network
lifetime. A visualization of the scenario is shown in Figure 7.3. In the illustration,
there are four nodes in the network (N0,N1,N2,N3) and three entities (E1, E2, E3)
representing some goods to be monitored . E1 is in the sensor range of nodes N1 and
N2. E2 is in the range of the nodes N3 and N1. E3 is only in the range of node N3.
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Figure 7.3: Measurement Framework: Illustration of the problem formulation

We assume that within the first window four measurementsM1, M2, M3 and M4 have
to be performed. M1 and M3 measure a property of E1. M2 measures a property of
E2 and M4 measures a property of E3. Each of these measurements has a tolerance
associated to it. The tolerances of M1 and M2 overlap, so the system could decide to
combine the two measurements into one actual query for node N1. The tolerances of
M3 and M4 overlap as well, but there is no common sensor. So, no decision has to be
taken and M3 is mapped to a query of N2 (in this particular example, N1 could also
have been selected). M4 is realized as query to N3. The resulting sleeping times are
shown in the bottom left corner. In the beginning all nodes can sleep, then N1 needs
to be awake to answer the query. It then can go to sleep again. Later, the remaining
two queries have to be performed. Node N2 awakes to execute the second query and,
finally, N3 will respond to its query.

7.6.2 Implementation of the Windowing-based Task Allocation Frame-
work

In the following, we present the implementation of the WBTA and the task allocation
strategies.

The scheduling task can be roughly expressed as mapping a set of required mea-
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surements to a sequence of scheduled queries. Our base scheduler uses a priority query
queue (soonest timestamp first).

There is no explicit sleeping schedule. The sleeping requests are issued immediately
after the sensing queries have been completed. Calculation of the sleeping time for each
node is performed by the scheduler as follows: The scheduler examines the queries
queue, searching for the soonest timestamp where the node will be needed next either
for sensing or for communication. It then calculates the time interval from the current
timestamp to this timestamp and subtracts a communication overhead. This is the
maximum duration that the node can be allowed to sleep. Sleeping is omitted if this
duration is less than a defined threshold, where the energy overhead for sleeping is
bigger than the gain. The sleeping times are always constrained by the window length.
At the end of every window, all nodes in the network are awake.

The basic querying loop is shown in Algorithm 1, where the sleeping times calcula-
tion is provided by the procedure CalcSleepTime.

The scheduling occurs in time windows of length L and is described in Algorithm
2. At the beginning of each window w, Mw, the set of measurements that have to be
performed within this particular window, is calculated. Procedure CalcWindowQueries
is then called to map these measurements to a queue of queries. We present a number
of different strategies for this in Chapter 7.6.3.

In order to balance the power load over the nodes, we use a control policy based on
penalties for their utilization. We evaluate the sensors used for a measurement from
the set of possible sensors, according to their expected effect on the energy footprint of
the whole network. The penalty pn for each sensor Sn is calculated as the quotient of
the average energy (m) over all nodes by the nodes’ residual energy (εnres). We use the
penalty to prevent over-utilization of one sensor to increase the network lifetime.

εnres = εninit − εn, ∀n ∈ S
pn =← m

εnres
,∀n ∈ S (7.7)

A penalty with a value larger than 1 means that the respective node has already
consumed more energy than its counterparts. Further selections of this particular sensor
will result in an even higher utilization and, thus, in larger penalized costs. This will
cause the scheduler to avoid choosing that node in favor of one that yields lower
penalized cost.

Using the aforementioned penalty rule when choosing a sensor has two main
advantages:

• Modeling of heterogeneous networks with different initial energy reserves for
different nodes is possible.

• As a nodes’ energy residual approaches zero, the denominator becomes very
small, effectively yielding a very high penalty for the utilization of the node.
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Algorithm 1 Base querying loop

1: while true do
2: NEWWINDOW

3: for all n ∈ S do
4: tnsleep ← CALCSLEEPTIME(n)

5: Issue sleep request for tnsleep on node n
6: end for
7: while QueryQueue not empty do
8: nextQuery← QueryQueue.remove()
9: wait until timestamp of nextQuery

10: execute nextQuery
11: for all nodes that were used do
12: tnsleep ← CALCSLEEPTIME(n)

13: Issue sleep request for tnsleep on node n
14: end for
15: end while
16: end while

1: procedure CALCSLEEPTIME(n)
2: for all q ∈ QueryQueue do
3: if q uses node n then . either for sensing or for communication
4: tdiff ← q.ts− tsnow
5: twind ← windowEnd− tsnow
6: tsleep ← min(tdiff , twind)− tcomm

7: if tsleep ≤ tthreshsleep then
8: return tsleep
9: else

10: return 0

11: end if
12: end if
13: end for
14: end procedure

Hence, any choice that risks a node being depleted will be harshly penalized and,
thus, avoided.

The calculation of these penalties is done as part of Algorithm 3. EvalQueries is
given a query queue as input and it returns an energy cost for its potential realization.
Calling SimulateConsumption will produce the states we expect the networks’ nodes to
be in, after executing the given queries within the current window.

GetEnergyMap is then called to provide the energy that has been consumed on
each sensor within the windows time interval according to these states. GetEnergyMap
calculates the consumed energy using the linear energy model and scaled with the
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Algorithm 2 New Window and penalty update
1: procedure NEWWINDOW

2: windowStart← windowEnd . previous window’s end
3: windowEnd← windowStart + L
4: UPDATEPENALITES

5: Mw ← {m ∈M : windowStart ≤ m.ts < windowEnd}
6: QueryQueue←CALCWINDOWQUERIES(Mw)
7: end procedure
1: procedure UPDATEPENALTIES

2: ~ε← GETENERGYMAP(0, currentT imestamp)
3: m← mean(~ε)

4: εnres = εninit − εn,∀n ∈ S . εninit indicates the initial energy reserve of sensor
n

5: pn ← m
εnres

,∀n ∈ S
6: end procedure

penalty vector ~p. The penalties are updated at the beginning of each window, as shown
in procedure UpdatePenalties.

Algorithm 3 Base Evaluation of Queries
1: procedure EVALQUERIES(Q)
2: SIMULATECONSUMPTION(Q)
3: ~ε← GETENERGYMAP(windowStart, windowEnd)
4: penalizedEnergy ← ~ε · ~p
5: return penalizedEnergy
6: end procedure

7.6.3 Scheduling Strategies

In the following, we present three strategies for scheduling the tasks within a window:
an exhaustive strategy (Chapter 7.6.3.1), a memoization strategy (Chapter 7.6.3.2)
and first fit (Chapter 7.6.3.3). The memoization strategy, as we will show, performs
only slightly worse than the exhaustive strategy. The exhaustive strategy, also known
as exhaustive search or bruteforce, guarantees finding the optimal solution for the
clustering problem, with respect to our given window and query evaluation system. It
has exponential complexity and works only for small problem sizes within reasonable
time bounds. The first fit strategy tries to compensate for overusing power resources by
randomly choosing a sensor, without any optimizations or combinations.

For every window w, a set of measurements Mw that are to be mapped to queries
is given. Consider an arbitrary partition of Mw, consisting of a family of sets called
clusters C, with
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⋃
C = Mw, 0 /∈ C,∀C1, C2 : C1 6= C2 → C1

⋂
C2 = 0 (7.8)

We call the partition C valid if all Ci ∈ C can be mapped to queries. For a cluster
Ci to be mapped to a query, the following constraints need to be satisfied:

1. There is at least one sensor eligible to perform all measurements.
2. There is an overlap of the time tolerance intervals among all of its measurements.
In order to map a cluster that fulfills the above constraints into a query, we extract

a common timestamp and sensor for it. The common timestamp is calculated as the
mid-point of the common intersection of the time tolerance intervals of all the clusters’
measurements. The sensor selection depends on the strategy and is described in the
respective sections. We will refer to the above conditions as time tolerance and sensor
constraints, respectively, in the context of combining measurements into queries.

7.6.3.1 Exhaustive Strategy

The optimal solution for the clustering problem, within our windowing and query
system, is applying an exhaustive approach (backtracking with constrained satisfaction).
An exhaustive approach considers all possible partitions of the set Mw and evaluates
them. The exhaustive approach is outlined in Algorithm 4. First, all possible partitions
are calculated and then each one is evaluated. The evaluation (and sensor selection) in
procedure EvalPartition is performed as follows: The clusters are examined in reverse
chronological order. First, the intersection of the sets of eligible sensors of all the
measurements is calculated. Afterwards, for every sensor in the resulting set, a query
is constructed and evaluated according to its energy profile in procedure EvalQueries
(as defined in Algorithm 3. The sensor that yields the lowest penalized energy cost is
selected and the resulting query is added to the queries queue. After all clusters have
been mapped to queries, the resulting query queue is evaluated and the outcome is
returned. 1

The exhaustive approach has exponential time complexity, as the total number of
possible partitions for a set of n measurements is the Bell number2 Bn =

∑∞
i=0

Bi
i! n

i =

ee
n−1. In practice, it may only be applied to small windows and, thus, will only be used

for benchmarking.

7.6.3.2 Dynamic Partitioning

In the following, we present an alternative to the exhaustive approach. Instead of
considering all possible partitions, we order the measurements Mw according to their
timestamps and check only the ones that combine neighboring measurements using a
greedy strategy. It calculates a local optimum and never reconsiders its choice. This

1This is equal to the cost that was returned by the evaluation of the sensor selected for the last query
added. Therefore this second evaluation need not be actually done.

2Named after Eric Temple Bell, the Bell numbers count the number of partitions of a set. Bn counts
the number of different ways to partition a set of n elements
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Algorithm 4 Exhaustive Window Queries Calculation
1: procedure CALCWINDOWQUERIES(Mw)
2: SPw ← all possible partitions of window measurements set
3: Pbest ← argminP∈SPw

EVALPARTITION(P,Mw)
4: return generated queries for partition Pbest

5: end procedure
1: procedure EVALPARTITION(Pw, Mw)
2: Qw ← empty queue
3: for all cl ∈ {Pw sorted backwards} do
4: Mcl ←Mw(cl) . get measurements in this cluster
5: ts← mean timestamp over Mcl

6: Scl ← {∩(S ∈Mcl)} . ∩() represents reduction with intersection
7: sbest ← argmins∈Scl

EVALQUERIES( [ new Query(ts, s, Mcl) , Qw ] )
8: Qw.add(new Query(ts, sbest, Mcl))
9: end for

10: return EVALQUERIES(Qw)
11: end procedure

problem can be solved by applying memoization [ 96]. We call this heuristic dynamic
partitioning.

Next, we briefly present the main steps of this strategy: The approach is shown
in detail in Algorithm 5. As we are following a memoization approach, we examine
previously solved subproblems and combine their solutions during the construction of a
|Mw|x |Mw| matrix representing subpartitions. The upper triangular part of the matrix,
excluding the diagonal, is not used. An illustration of such a matrix can be seen in
Table 7.2. Within the lower triangular part of the matrix, the (x,y) coordinates represent
a sequential set of measurements within Mw, starting at measurement Mx and ending
at measurement My, with x ≤ y. This means that cell (x,y) holds the best known valid
partition of all measurements (Mx,Mx+1, ..,My) ∈ Mw. By populating the matrix
step-by-step for each subset of sequential measurements we end up with the partition
that, after being mapped to a query queue, has the lowest known cost for the whole
window. This approach does not necessarily yield the optimal solution; nonetheless, in
practice, it performs quite well as measurements that can be combined appear often in
sequence when ordered by timestamp. Experimental results are presented in Chapter
8.8.

The matrix is evaluated column-wise starting at column x = |Mw|. At the beginning
of each column-wise evaluation, y equals x, because the upper triangular part of the
matrix is not used. Next, y is increased as long as y < |Mw|. Afterwards, the next
column is evaluated. The diagonals are filled trivially, as a set of only one element
has only one possible partition and thus can be filled in directly. For each non trivial
sequence of measurements Mx, ..,My we select one element after the other as a pivot
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element dividing the sequence into two. The two sequences are then evaluated, either
by computation or by matrix-lookup and concatenated into one solution. The best
valid concatenation is added to the table. Repeating this iteratively will end with the
desired solution in cell (1,|Mw|). In Chapter 7.7 we illustrate this strategy within a
comprehensive example.

Algorithm 5 DP Window Queries Calculation
1: procedure CALCWINDOWQUERIES(Mw)
2: n← |Mw|
3: Ptable[i][i]← [i], ∀i ∈ [1, n]

4: for fr ← n− 1, 0 do
5: for w ← 1, n− fr − 1 do
6: to← fr + w

7: pivbest ← argminpiv←fr,to EvalSplit(fr, to, piv, Ptable)
8: end for
9: if pivbest = to then

10: Ptable[fr][to]← [ range(fr, to) ]
11: else
12: Ptable[fr][to]← [ Ptable[fr][piv], Ptable[piv + 1][to] ]
13: end if
14: end for
15: return generated queries for partition Ptable[1][n]

16: end procedure
1: procedure EVALSPLIT(fr, to, piv, Ptable)
2: if piv = to then
3: subP ← [ range(fr, to) ]
4: else
5: subP ← [ Ptable[fr][piv], Ptable[piv + 1][to] ]
6: end if
7: if to < n then
8: P ← [ subP , Ptable[to+ 1][n] ]
9: else

10: P ← subP

11: end if
12: if P breaks time tolerance or sensors constraints then
13: return∞
14: else
15: return EVALPARTITION(P )
16: end if
17: end procedure
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7.6.3.3 First Fit Strategy

We compare the dynamic partitioning strategy with two alternative strategies as bench-
marks. The first benchmark we use to evaluate the dynamic partitioning strategy is the
exhaustive strategy that we already introduced in Chapter 7.6.3.1. As a second bench-
mark for comparison, we use a first-fit algorithm operating within the same windowing
framework. It creates a new query for every measurement, picking one of the eligible
sensors at random. The first fit algorithm is shown as Algorithm 6.

Algorithm 6 First Fit Window Queries Calculation
1: procedure CALCWINDOWQUERIES(Mw)
2: Qw ← empty queue
3: for all m ∈Mw do
4: S ← eligible sensors for m
5: s← random sample from S

6: ts← timestamp of m
7: Qw.add(new Query(ts, s, m))
8: end for
9: return Qw

10: end procedure

7.6.4 Dynamic Measurement Request

Up to this point, we assumed that the system has to consider only periodic measurements
known in advance for a given time window. This is a reasonable assumption in many
enterprise environments. We will now relax this constraint and describe how the
system can be adapted in order to react to dynamic, not pre-known, measurement
requests. Our schedulers now need to accommodate incoming measurements that are
submitted externally to our system in a dynamic, perhaps unknown, fashion. First, in
Chapter 7.6.4.1, we describe how the system can react to arbitrary (previously unknown)
measurement requests. We also propose a countermeasure that is based on a probability
distribution to schedule probable measurements and, thus, can proactively turn on a
sensor. We call this strategy ”virtual measurements”, because from a systems point of
view they are not real measurements at the beginning of a window, but just expected
measurement requests. Virtual measurements are explained in detail in Chapter 7.6.4.2.

7.6.4.1 Arbitrary Measurement Requests

We assume that on top of the static periodic measurements in each window, we may
also get measurement requests for any entity at arbitrary times. This means we weaken
the assumption that all measurements are known a-priori. As described in Chapter
7.6.1, the scheduling takes place at the beginning of the window, which means that
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sensors will only be awake and available for the intervals they are needed for the already
scheduled queries. Now, assuming that an incoming request has to be served that was
not previously scheduled at the beginning of the window, the scheduler handles it as
follows: First, the scheduler iterates the queue of the remaining scheduled queries for
that particular window to find sensors that could also perform the new measurement. If
such a query is found, then the measurement can be added to this query and nothing else
has to be done; the latency of the response depends solely on the time until this query.
Alternatively, the scheduler can look for eligible sensors in the communication paths
from the sink to the nodes used by the remaining scheduled queries. If such sensors are
found, that is, if one of the nodes in the communication path can be utilized for sensing
while being awake for enabling communication anyway - then a new query is scheduled
for this node. The timestamp is chosen to be similar to the one from the original query.
Finally, in case neither is possible, we schedule the measurement for the next window.
A countermeasure that decreases latency at the cost of energy is described in Chapter
7.6.4.2. We call it virtual measurements.

7.6.4.2 Virtual Measurements

In order to reduce the latency of the dynamic incoming requests as described in Chapter
7.6.4.1, we can choose to include some “virtual measurements”. These virtual mea-
surements require the scheduler to reserve nodes that can be used to measure an entity,
by keeping them awake for a defined time interval within the window. We call these
measurements virtual as they do not necessarily represent a real measurement, but are
treated by the scheduler as such and, therefore, are virtual until a real measurement is
added to the system.

For each entity, this interval reflects the expectation about when it is most probable
to receive an actual incoming measurement request. Virtual measurements have a start
and end timestamp, and they are processed by the scheduler in the same way as regular
measurements. The scheduler tries to combine the virtual measurements along with
real ones, by sharing sensors and using the ones that have consumed less energy, in the
exact same fashion as it would if only real measurements were used. When assigning
actual measurements to queries, separate virtual queries are created for each virtual
measurement. Finally, when the time comes to execute a virtual query, no real query is
issued, but the associated node and all required nodes in the communication path are
kept awake for the time interval defined by the virtual measurement.

To define those intervals, we assume an underlying probability distribution for each
entity. In our experiments we used a Gaussian distribution, but any other distribution
could be used as well. The distribution describes the expected timestamp of the next
dynamic measurement request. It is obvious that every virtual measurement induces an
energy overhead equal to the energy that would be preserved if the nodes were sleeping
instead. This energy-latency trade-off can be controlled by adjusting the interval lengths
of the virtual measurements. We will refer to that as the confidence level.

The lower the (required) confidence level of an incoming query the better it is
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expected to fit the estimation of the underlying distribution. A required confidence level
of 0 means that we believe all incoming messages will arrive exactly when expected,
a confidence level of 0.1% means that we choose an interval such that 10% of the
measurements are expected to be covered, while a (theoretical) confidence level of
1 means that we will be extending the waiting window according to the underlying
distribution, in order to be 100% sure that we will be able to answer the message.

For example, if we assume a normal distribution for all arbitrary incoming messages,
we can say we expect the next measurement for an entity to arrive in t+30 minutes from
now, with a standard deviation of 5 minutes. To be 70% confident that we will be able
to answer the request right away - resulting in low latency - we will have to schedule
a virtual measurement covering the time interval from 24.818 to 35.182 minutes. As
those numbers already suggest additional 10min of awake time results in a considerable
potential additional energy consumption. The total amount of additional energy in
idle-mode compared to sleep-mode depends on the energy characteristics of the used
hardware and protocol stack. The actual energy consumption depends on when the
measurement request actually arrives.

Therefore, the confidence levels should be chosen reasonably with respect to the
properties of the assumed distribution.

7.6.5 Packet Loss

In case a query is not answered by the mote for any reason – for example, because of
packet loss due to interference – it is repeated immediately a number of times before
being dropped. The default maximum number of retries we used was three. The delay
resulting from the retransmissions might cause a measurement to miss the deadline
defined by the related entity’s tolerance. In a near-real time system this behavior is
tolerated. Of course, every packet loss will cause an additional energy overhead.

7.7 Example

This section focuses on applying the dynamic partitioning heuristic (Algorithm 5)
by examining an example, based on a some small exemplary data set. We will first
describe the setup of the example before we proceeding to demonstrate our heuristic,
the dynamic partition strategy. We conclude the example by discussing the sensor
selection.

7.7.1 Scenario

The setup is illustrated in Figure 7.4. We consider the third window, starting at
tstart=100 and ending at tend=150. We assume four entities and one measurement each
(see Chapter 7.6.1). The measurements that have to be scheduled within the window
are also listed in Table 7.2.
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Figure 7.4: Measurements arrival and assignment to queries

We introduce the following notation in accordance with the definitions presented in
Chapter 7.6.3

• To refer to each measurement, we will use the measurement numbers (#) given
in Table 7.2. Notice that the measurements are already sorted according to their
timestamps : ts1 ≤ ts2 ≤ ts3 ≤ ts4.

• We will represent an ordered set (sequence) of measurements, using curly
brackets. For example, the sequence of our window’s measurements is Mw =

{1, 2, 3, 4}

• To refer to clusters within partitions, we will use square brackets. [2 3], for

Measurement # ts Entity # tolerance (δ) avail. sensors (Spi)
1 113 3 11 [4, 5, 6]
2 120 1 6 [3, 5]
3 130 2 8 [1, 3]
4 140 4 13 [5]

Table 7.2

159



Measurement # 1 2 3 4
1 [1]
2 - [2]
3 - - [3]
4 - - - [4]

(a)

Measurement # 1 2 3 4
1 [1]
2 - [2]
3 - - [3]
4 - - [3] [4] [4]

(b)

Measurement # 1 2 3 4
1 [1]
2 - [2]
3 - [2 3] [3]
4 - - [3] [4] [4]

(c)

Measurement # 1 2 3 4
1 [1]
2 - [2]
3 - [2 3] [3]
4 - [2 3] [4] [3] [4] [4]

(d)

Measurement # 1 2 3 4
1 [1]
2 [1 2] [2]
3 - [2 3] [3]
4 - [2 3] [4] [3] [4] [4]

(e)

Measurement # 1 2 3 4
1 [1]
2 [1 2] [2]
3 [1 2] [3] [2 3] [3]
4 - [2 3] [4] [3] [4] [4]

(f)

Measurement # 1 2 3 4
1 [1]
2 [1 2] [2]
3 [1 2] [3] [2] [3] [3]
4 [1 2] [3] [4] [2 3] [4] [3] [4] [4]

(g)

Table 7.3: DP window queries scheduling . Entries that result from full
partitions are highlighted in red. When a concatenation of smaller subpartitions is used,
it is highlighted in blue and the participating subpartitions in yellow.

example, is a cluster containing measurements #2 and #3. We use the same
notation to refer to the measurements that a query combines, as we already
defined a one-to-one mapping from clusters to queries.

• Finally, we use square brackets again to group clusters, thus producing partitions
of the respective sequences. For example, [ [1] [2 3] [4] ] is a partition of Mw.
This means that measurement #1 is executed as a query. Measurement #2 and
measurement #3 are combined into one query. Measurement #4 is again executed
as a query on its own.

7.7.2 Dynamic Partitioning

This section illustrates the behavior of the dynamic partitioning algorithm based on some
small exemplary data set. A visualization of the measurements and their tolerances
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is shown in Figure 7.4. As explained in Chapter 7.6.3.2, the goal of the dynamic
partitioning algorithm is to find a good valid partition of Mw.

The algorithm fills in a 4x4 matrix – here called Ptable – with the best-known
valid partitions for each sequence within Mw. Cell Ptable[columni][rowj] = (i, j)

will be filled in with the best known valid partition of {i, .., j}, i ≤ j, ignoring the
measurements previous to i and using the best known valid partitions already computed
for {j + 1...n}. The final cell to be filled in – in this example (1, 4) – will contain the
desired solution.

Following this, we use the term ”subpartitions” to refer to partitions of the respective
subsequences of Mw that correspond to each cell of Ptable. To follow the example,
please refer to Table 7.3, where each step is illustrated. The energy values are calculated
using the linear energy model as described in Section 7.4. The values used in this
example are not artificial. They are based on a real hardware platform as used in the
evaluation section. We will be going through the algorithm step by step, by filling in
the respective cells in the matrix.

The diagonal cells are filled trivially, as there is only one possible partition of a set
with one element – that is, we cannot combine a measurement with any other. This
sufficiently bootstraps the algorithm (see Table 7.3(a)). We start with the first non-trivial
cell, (3, 4).

Cell (3,4): The entry of cell (3,4) is the best possible valid partition of {3 4}. Only
two partitions are possible [ [3] [4] ] and [ [3 4] ]. The dynamic partitioning heuristic
determines the possible partitions, by choosing one distinguished element of the set: the
pivot element. The pivot element is chosen one by one from left to right. The first pivot
element, at 3, yields the partition [ [3] [4] ]. This means a separate query is needed
for the measurements #3 and #4. The energy cost returned by the evaluation function
here is assumed to be 2.21. Next, we move the pivot element to the right. The second
possible pivot, at 4, yields the partition [ [3 4] ]. At this point, we need to evaluate if
the two measurements can be combined. For this, the partition needs to be valid, as
defined in Chapter 7.6.3. The two measurements satisfy the tolerance constraints and
could be combined. A combination is possible, because the possible interval of M#4

is t4 = 140± 13and t3 = 130± 8. For example, t=130 would be a time where both
measurements could be performed within their tolerances. Nonetheless, M#4 can only
be performed by sensor 5. M#3 can be measured by sensor 1 and sensor 3. As the sets
of eligible sensors do not overlap the partition is not valid. It has a cost of∞. As there
is only one valid partition, this partition is added to the table. As shown in in Table
7.3(b), [ [3] [4] ] is added into the matrix. We proceed to the next column.

Cell (2,3): The cell (2,3) is processed similarly as cell (3,4). The two possible pivot
elements yield the partitions [ [2] [3] ] and [ [2 3] ]. To calculate the energy consumption
and update the penalty map, the algorithm also takes the remaining measurements until
the end of the window into account – in this case measurement 4. A lookup reveals the
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best respective partition. Here it is the trivial one, [[4]].
Measurements 2 and 3 have one common eligible sensor - sensor #3 - meaning

that since they also satisfy time tolerance constraints, they can be combined into one
query. To evaluate partition [ [2][3] ], three queries with measurements [2] [3] and [4]

are calculated. We assume this returns a total cost of 2.56. To evaluate the performance
of subpartition [ [2][3] ], two queries with measurements [2 3] and [4] are considered.
The assumed cost is 2.42. [2 3] is added in the matrix as shown in Table 7.3(c).

Cell (2,4): In cell (2,4) the number of elements in the set increases. There are now
three elements in the set (2,3,4). For pivot element 2, a lookup at cell (2,2) retrieves the
trivial partition [ [2] ]. A second lookup at cell (3,4) contains the partition [ [3] [4] ].
As illustrated, the algorithm is greedy and does not reconsider a decision it made once.
The best partition calculated in cell (3,4) is used, even if in this particular situation a
different partition combing (2,3,4) might be more optimal. The concatenation of the
lookups in cell (2,2) and (3,4), [ [2] [3] [4] ], has a total cost of 2.56. Similarly, for
pivot element 3 and partition [ [2 3] [4] ] a cost of 2.42 is returned. Pivot element 4

yields partition [ [2 3 4] ]. This combination is encountered for the first time; hence, no
entry in the matrix exists for it yet. However, as [ [3 4] ] was not a valid partition, it is
obvious that [ [2 3 4] ] is also not valid. Therefore, [ [2 3] [4] ] is added to the matrix.
The result of this step is shown in Table 7.3(d). We continue with the next column.

Cell (1,2): The two pivot elements lead to the two partitions [ [1] [2] ] and [ [1 2]
]. For the remaining measurements until the end of the window, a lookup of cell (3.4) is
necessary: It contains subpartition [ [3][4] ]. The resulting partitions, after appending to
the aforementioned are respectively: [ [1] [2] [3] [4] ], which yields a cost of 2.91 and [
[1 2] [3] [4] ], which yields a cost of 2.56. [ [1 2] ] is entered into cell (1,2), as shown
in Table 7.3(e).

Cell (1,3): Similarly to (3,4), we get 1, 2 and 3 as pivot elements. They yield the
following partitions and respective costs:

[ [1] [2 3] ]→ 2.77

[ [1 2] [3] ]→ 2.56

[ [1 2 3] ]→∞

[1 2] [3] is added to the matrix, as shown in Table 7.3(f).

Cell (1,4): We now proceed to the final cell. The pivot elements are 1, 2, 3 and 4.
The resulting partitions and their costs are:

[ [1] [2 3] [4] ]→ 2.77

[ [1 2] [3] [4] ]→ 2.56
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[ [1 2 3 4] ]→∞.

As the partition [ [1 2] [3] [4] ] has the lowest cost it is added into the matrix. As
this is the last cell to be filled in, the algorithm returns this partition as a solution for the
whole window.

7.7.3 Sensor Selection

If more than one eligible sensor exists for a query combining one or more measurements,
one has to be selected. This is always done as part of any partition’s evaluation. It is
described in detail here in the context of our example.

Assuming partition [ [1 2] [3] [4] ] for the window we discussed above, the sensor
selection starts by examining the clusters in reverse order.

The last cluster, and hence the first to be examined is [4]. Sensor #5 is the only
one eligible to perform measurement #4. So the decision here is trivial.

The next cluster is [2]. There are two sensors eligible to perform measurement#2

– namely #1 and #3. The energy model yields a cost of 2.21 for sensor #1 , while
usage of sensor #3 yields 2.42; therefore, we will query #1 for this measurement.

The final cluster is [1, 2]. The intersection of the sensors eligible to perform these
measurements only contains sensor #5; therefore, we again select it trivially.

7.7.4 Final queries

Summing up all of the above, the arrival of the measurements along with the tolerances
of their respective entities and the actual assignment to queries can be seen in Figure
7.4. The four measurements due in the window between 100s and 150s, are performed
by issuing three queries: The first is for sensor #5, and it combines measurements #1

and #2. The second one is for sensor #1 and performs measurement #3. The last
one is for sensor #5 again and performs measurement #4. One can observe that the
queries indeed satisfy the tolerances of the entities they measure.

7.8 Conclusions

Energy management and saving of energy is not only a network-layer or hardware
problem, but can also be tackled at the application-layer. The presented sleepy node
implementation is leveraging on semantics that are stored in an enterprise system. The
nodes with mid- and longterm sleeping capabilities, which adhere to the definition
of a sleepy node, provide a simple REST API. To unleash the full power of sleepy
nodes, platform support is needed. This is, first to ensure that the node appears as
connected to the user. Second, in our case, it enables the centralized scheduling. The
integration into a semantics-aware enterprise platform is very promising because it
can directly leverage on the semantic information stored within the platform. The
knowledge of measurements allowed us to create a system that can only be reconfigured
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after a specified amount of time. We call this a window. The achievable sleeping
time depends on this window size. In addition, we tried to increase the sleeping
time and the number of sleeping nodes by considering soft real-time tolerances. We
combine multiple measurements into one query, considering the overlapping of their
tolerances. We added three different possible algorithms to our system: An exhaustive
strategy that tries every combination. It yields the optimal solution, but has exponential
complexity. We added a greedy heuristic based upon the fact that measurements that
can be combined into one query typically follow each other time wise. Thus, instead of
evaluating all solutions, only the ones following each other are potentially considered.
Finally, we also added a very simple first fit algorithm. The first fit and the exhaustive
approach are used as benchmarks in our evaluation. They represent the most optimal
solution, within our constraints, and a naive solution.

The actual integration into the MRv6 protocol and the Mote Runner environment
required the adaptation of the beaconing and heartbeat functionalities for leaving the
network without being recognized as lost and rejoining of the network. For the in-
time or ahead-of-time rejoining the network and the calculation of the sleeping times
the clock drift is a problem that has to be considered: For non TCXO crystals, as
used in the IRIS platform the clockdrift can become considerable over time. The
situation for TCXO-based systems, as the Waspmote Pro platform, is quite better
and less conservative wakeup times can be achieved. Later on, when we show the
evaluation results, it is demonstrated that the network lifetime greatly benefits from the
advanced (deep) sleep mode of the Waspmote Pro platform. The evaluation results of
our implementation are presented in Chapter 8.8.

164



Part IV

Evaluation

In the fourth part of this thesis we present evaluation results. The evaluation
itself is divided into an empirical evaluation and an experimental evaluation. We first
describe the evaluation framework used, before we present the actual results. On the
empirical side we present the results of a survey on semantics and IoT, and an evaluation
comparing Linked USDL for IoT with related approaches. We apply a software
architecture analysis method on our proposed architecture. On the experimental side,
we present our results of using OData and CoAP on the Mote Runner environment. We
then conclude with describing the results of our sleepy nodes implementation on IRIS
motes and on Waspmote PRO.
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Chapter 8

Evaluation

This chapter describes the evaluation of our contributions. We apply two different
evaluations methodologies. First, we perform an empirical evaluation based on a
surveys, stakeholder workshops, and architectural evaluation methods to evaluate our
enterprise integration architecture (Chapter 4) and Linked USDL for IoT (Chapter 5).
Second, we perform an experimental evaluation of the REST-based protocols OData
and CoAP (Chapter 6) and the Sleepy Node implementation (Chapter 7).

In both cases, for the empirical and the experimental evaluations, we first describe
the evaluation framework used. The evaluation framework introduces the theoretical
background, as well as the used tools and measurement methods. For each part, we
then present and discuss the actual evaluation results.

8.1 Empirical Framework

The architecture, as described in Chapter 3 and Chapter 4 and the general Linked USDL
for IoT approach, described in Chapter 5, are evaluated using empirical methods.

The empirical evaluation framework consists of three parts:

• An architecture evaluation framework that is used to evaluate the architecture
presented in Chapter 4.

• A survey among industry experts and academia with regard to the potential of
semantic IoT-integration, including the used and expected technology stack.

• An evaluation of different types of service descriptions based upon existing
literature, internal requirements and stakeholder workshops.

We leverage on three different data sources. The three sources were:

1. The drivers we identified in our own work – namely interoperability, enablement
of sense-making and enablement of real-time business decision support (internal
source)
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Figure 8.1: Evaluation process

2. The Internet of Things-Architecture (IoT-A) project (external source)

3. Domain experts (internal and external sources)

The evaluation process is illustrated in Figure 8.1. Based on this requirement
mining process, we were able to consolidate nine core requirements that an ideal service
description language should fulfill. One important first source are the requirements we
have towards a semantic enterprise integration system. As these requirements might be
biased, we also included further internal and external experts. To gain more insight into
the needs of the industry, we gained access to experts knowledge from within SAP and
partners. We leveraged on the results of the Internet of Things-Architecture (IoT-A)
project. This allowed us to access expert knowledge not only within SAP, but also from
our partners and from a selected IoT stakeholder group. The information we gathered
from our internal assessment, as well as the insights from the stakeholder workshops
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[34, 259] were used as an input for a survey we started in mid-2013 and concluded in
early 2015 [376, 377]. This allowed us to broaden the basis of our evaluation. Bassi et
al. [34] provide an overview of the general findings of the IoT-A project, including a
comprehensive description of the requirements engineering process used in the project.
Within the IoT-A project, requirements from a wide variety of stakeholders of IoT-based
systems have been collected. Based on this feedback the IoT-A project derived 184
unified requirements1. Out of these, we distilled the ones related to semantic services
and IoT. These three data sources led to a comprehensive view on the contemporary
needs of IoT-system users and providers. First, Chapter 8.2 will present a scenario-
based architectural evaluation and its methodology. Chapter 8.4 will present the setup of
the survey, its methodology and the results. We will conclude the empirical evaluations
in Chapter 8.5 by presenting the foundations of the service description evaluation and
then proceed with the actual results.

8.2 Architecture Evaluation Framework

We will use an architecture evaluation framework to assess the proposed architecture
that we described in Chapter 4. Evaluation of software architectures is a lively research
field that has a large industrial impact [22, 199]. Several software architecture evaluation
methodologies have been developed, especially in the last 20 years [24, 347]. Software
architecture evaluation can be performed at different points during the software devel-
opment life cycle. Basically, two different types of evaluations can be distinguished:
early evaluation and a late evaluation [238]. Early evaluations are performed during
or shortly after the specification phase, but typically before implementation. Late
evaluations are performed after the system is implemented and running. They are used
to compare against earlier versions of the system or to evaluate changes. Maranzano
[245] further distinguishes between an architectural discovery and an architecture
review. Architectural discovery is performed very early in the process with high-level
requirements and typically focuses on the desired functionality attributes. Later, but
still before implementation, an architecture review can take place to closer examine
quality attributes such as performance, portability, and usability more closely.

8.2.1 Architecture Evaluation

A number of software architecture evaluation methods have been suggested. The
objective of any software architecture evaluation method is to ensure that the architecture
fulfills its requirements. Any evaluation is therefore a validation of architectural
decisions with regard to given requirements. Nonetheless, there is little consensus
on the technical and non-technical quality attributes that such an assessment method
should address.

We perform an architectural discovery based on two methodologies:

1available online: http://www.iot-a.eu/public/requirements
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• Software Architecture Analysis Method (SAAM) [198]. SAAM is is one of the
oldest and best-known software architecture evaluation methods. It originates
from the Software Engineering Institute (SEI) of Carnegie Mellon University
(CMU). It is widely used in academia and industry [105, 30]. SAAM is based
on scenarios. Requirements and quality properties are mapped onto scenarios
and evaluated. SAAM was originally developed to assess the modifiability of
software architectures, but it was soon extended to also cover further quality
attributes such as extensionability, scalability, and functionality.

• Recommended Best Industrial Practice for Software Architecture Evaluation
[1]. This summarizes best practices and lessons learned in software architecture
evaluation. It is also published by the SEI of CMU. It is based upon real-world
experiences in applying methods as SAAM.

Method Generality Level of Detail Phase

Questionnaire General coarse early
Checklist domain-specific varies middle
Scenarios system-specific medium middle
Metrics general or domain-specific fine middle

Table 8.1: Evaluation Approaches (shortened, [1])

Possible evaluation approaches are shown in Table 8.1. Questionnaires are general
in nature and they can be applied to any kind of architectures. Checklists are already
more detailed and domain-specific. Checklists in an organization evolve over time and
document an organizations past experiences in a domain.

Abowd [30] recommends the sole use scenarios, if there are no questionnaires or
checklists available. Questionnaires and checklists for an architecture have to evolve
over time. They are often not unavailable in the architectural discovery stage.

SAAM in its original form is a seven-step process where the steps have to be passed
through sequentially [199, 23], as illustrated in Figure 8.2. The steps are:

Architecture description The architecture or architectures under investigation should
be described in an architectural notation that is well-understood by all involved
parties.

Scenario discovery / collection In the first phase scenarios are collected and refined.
The SEI, inventors of SAAM, propose [199] to use brainstorming [90] or similar
techniques to ensure a broad range of possible scenarios.

Classification of scenarios and prioritization In the previous phase scenarios were
only collected. In this phase the collected scenarios are categorized, and a
prioritization has to be done. In this phase it is decided which scenarios are to be
evaluated.
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Figure 8.2: Software Architecture Analysis Method (SAAM) [23]

Individual scenario evaluation SAAM evaluates each discovered scenario by map-
ping it onto the relevant parts of the architecture. It investigates whether the
architecture supports the scenario directly. In that case it is called a direct scenario.
If it does not support the scenario directly, it is called an indirect scenario.

Assess interactions of scenarios Different scenarios, which may necessitate changes
to the same component are called to scenarios that interact in that component
or connector. Scenario interaction measures the extent to which the architecture
supports an appropriate separation of concerns [197].

Overall assessment During this phase, the scenarios and their interactions are col-
lected. A weight is assigned to each scenario based on how much it contributes
to the overall success of the system. Alternatives for major ”pain points” in the
architecture can be collected, if proposed during the process or if there were
architectural alternatives.

8.2.2 Architecture Evaluation Methodology

In the following we present the applied methodology based on SAAM and its industrial
application. We follow an approach similar to SAAM combined with lessens learned
from its industrial application. The approach follows six phases:

1. Development of Business Use Cases

2. Requirement deduction

3. Ranking of Requirements

4. Development of Scenarios and mapping to Ranked Requirements

5. Assessment of Scenarios
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Figure 8.3: Scenario-based Evaluation process used for evaluation

6. General Assessment

The phases are illustrated in Figure 8.3. The phases are sequentially traversed in
a waterfall-like process model. If, in a later process phase, an issue with an earlier
process step is discovered one has to go one phase back and from there on follow the
waterfall again. In the following sections we will discuss each of these phases.

8.2.3 Development of Business Use Cases

It is important for every evaluation to understand the underlying business drivers or
business goals and the overall context in which the architecture will be used. We are
using business stories as use-cases, similar to the way stories are used in agile methods
such as SCRUM [91] or Extreme Programming [254]. Business Use Cases are at a
higher level of abstraction than scenarios. Business use-cases should explain the ”why”
and the business context and not the concrete ”what” and ”how”.

8.2.4 Ranked Requirements

Requirements are used to scope the evaluation. Industrial experience suggests not using
more than three to five requirements [30]. The ranked requirements are on the output of
the architectural evaluation process.

8.2.5 Scenario-based Evaluation

We perform a scenario-based evaluation. Before describing the scenario development
phase in detail, however, we must define what a scenario is and what kinds of scenarios
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exist. A scenario is a particular use-case that represents a typical or anticipated use
of the system. We use scenarios in the same way that we employed use-cases and
user-stories to describe high-level business use cases. Scenarios allow catching not only
functional but also non-functional quality properties. Typically, one can distinguish
between three kinds of scenarios [26]:

Use case: This it the typical or anticipated use of the final system. Such scenarios
reflect the normal state or operation of the system. If the system is yet to be built,
these would be about the initial release. The architecture should be able to fulfill
a scenario without any modifications to the scenario.

Growth scenario: A growth-scenario is an expected and probable modification of the
system.

Exploratory scenario: Exploratory scenarios consist of further, typically deeper, mod-
ifications of the architecture. Exploratory scenarios might involve extreme
changes to the system.

8.2.6 Scenario Development and Mapping to Requirements

In the scenario development phase typical user-stories are generated. They describe the
anticipated use of the system from a users point of view. User is a rather generic term
here and be either a human or technical user (software component).

8.2.7 Scenario Assessment

In the scenario assessment phase the scenarios are mapped onto the architecture. For
each scenario it is evaluated how the architecture contributes to realizing the particular
scenario. Use cases should be supported directly; otherwise, a gap in the architecture
has been identified. Growth scenarios should be addressed by the architecture with
minor modifications or additions. Exploratory scenarios can help to find the boundaries
of the architecture and to name its limitations.

8.2.8 Overall Assessment

This phase collects the scenarios and their interactions and puts them in relation with
each other. Furthermore, all other findings during the evaluation are collected and put
into context.

8.3 Software Architecture Evaluation

We will now evaluate the architecture as described in Chapter 8.3.1 using the method-
ology of Chapter 8.2. In Chapter 8.3.1, we first present the business drivers, then
describe the requirements and rank them in Chapter 8.3.2. In Chapter 8.3.3 we deduce
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scenarios and evaluate them. Eventually, in Chapter 8.3.4, we conclude with the overall
assessment.

8.3.1 Business Case

To evaluate our software architecture we use two typical and closely connected IoT
use cases: supply chain management and retail. In particular, we will consider the two
following cases:

• Transport monitoring with smart load carrier

• Sensor-based quality control

Transport monitoring with a smart load carrier and the Sensor-Based Quality Control
are based on the corresponding IoT-A use cases [34]. Having already sketched parts of
the transport monitoring scenario in Chapter 4, we will now present its overall context.

The business case assumes a truck on the road or a ship. It illustrates the usage of
sensor technology in the supply-chain in order to monitor the quality of perishable goods.
The scenario is typically associated with the terms intelligent container [222, 108, 241]
and smart logistics [48, 326]. The sensor information is directly linked to an alerting
functionality in order to allow human personnel to react to critical events related to
the temperature of the monitored goods. Most important for a deployment in real
business situations, the cool chain history is also linked to an electronic delivery note
that is exchanged with the retailers backend system upon goods receipt. The business-
case shows how sensor-enabled smart load carriers (e.g. containers) may prevent the
transported goods from being damaged due to environmental influences. To monitor the
frozen goods, for example, while driving on the road, each load carrier is turned into a
smart item with the help of a mobile sensor environment. In this context the load carrier
is called smart because it is equipped with a sensor node that may communicate with
other devices wirelessly. With this hardware every load carrier continuously measures
its environmental parameters. A truck driver, for example, may transport frozen goods
from a distribution center to a retail shop. The goods reside within or on top of smart
load carriers, which know the critical temperature ranges of the food specified as part
of an Service Level Agreement (SLA). Upon the loading of the load carriers on the
truck, the truck driver is linked to these and is now responsible for them. During the
commissioning of each pallet, several batches of goods are loaded on top of it and
linked to the pallet identifier. Therefore, the pallet knows which kinds of goods are put
on top of it and which environmental values have to be monitored. Drivers load pallets
on to their truck according to a loading list given to them.

The sensor-based quality control scenario shows how sensors monitor perishable
goods in a store or warehouse. The sensor infrastructure and its measurements are
used to estimate the quality of a rare and expensive form of good. Depending on the
luminance, humidity, and temperature of the environment, the estimated future quality
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of the good is calculated. Prices are reduced, even before a perceivable degradation
of quality occurs. Applying this sensor-based quality control and combining it with a
dynamic pricing strategy [403, 123], ensures that the store can sell the goods before
quality degradation could to occur. Dynamic pricing is a real-time tool for price
optimization strategies that has always been crucial for profit maximization. With IoT
technologies dynamic pricing is no longer performed on static information such as best
before end dates in the transaction data of the backend ERP system, but it is based on
real time data gathered from a sensor infrastructure. Up to 20% of perishable goods
never reach the consumer [170]. They are disposed of earlier, either in the store or
in the supply chain as shown in Table 8.2. The utilization of sensing technology is,
therefore, an interesting concept for implement quality control of perishables, thus,
reducing waste and increasing profits at the same time.

Type Percentage Total (in 106 kg)

Fruit 9% 2604
Fresh 14% 1919
Processed 4% 686

Vegetables 6% 3123
Fresh 10% 2314
Processed 3% 809

Dairy products 11% 4245
Fluid Milk 12% 2967
Other 10% 1728

Meat/Fish 3% 1236

Total 10% 19474

Table 8.2: Retail food loss (Estimated food loss in the USA in 2008 [data from [170]],
Data for selected goods and total)

The dynamic pricing system is shown in Figure 8.4. Such a system has been
developed and is running in the SAP Future Retail Center. It compromises of the
following main components:

i Sensing Devices: The sensing devices gather information about the physical world.
We use MEMSIC IRIS motes running IBMs Mote Runner system [73].

ii Electronic Shelf Labels (ESLs): The ESLs are used as actors in the system. They
show the current price of a given good and are to be attached to the shelves.

iii Linked Services (in a service repository): The services provided by the sensing
devices are stored in a service repository, as well as those provided by the Electronic
Shelf Labels (ESL). All services are modeled in Linked UDSL. The sensing devices
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Figure 8.4: Technical Realization of a Dynamic Pricing business process

have a CoAP endpoint, while the ESLs use an HTTP REST interface at application
level.

iv Service Resolution Infrastructure: We are using a resolution infrastructure [165] for
discovery services. The resolution infrastructure contains the associations between
sensing devices, actors and the corresponding service information. It also offers
location-based and semantic service discovery functionalities.

v Integration Platform: An prototype integration platform, based on SAP RWIP
[242] for communication with SAP systems enhanced with the ability to produce
semantics-aware Linked USDL based services (see Chapter 4.6 and Chapter 5),
is used in in order to make the wireless sensor nodes and the ESLs accessible. In
Figure 8.4 only the essential parts of the prototype are shown.

vi Business Process: The adaption of the retail price, as shown by the ESLs, is
managed by an IoT-aware business process [267]. A prototype IoT-aware BPMN
modeler was used. It measures the environmental parameters and adjusts the price as
needed. The process model contains declarative descriptions of the particular good
for which it can be executed, as well as the IoT-related operations (sensing or acting).
The execution engine then generates a SPARQL query based on these descriptions
and queries the resolution infrastructure for the corresponding IoT services. Upon
the execution of the process, the engine accesses the service endpoints. In addition,
the execution engine writes the environmental parameters and the prices into the
SAP retail system.
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8.3.2 Ranked Requirements

The requirements have already been detailed out in Chapter 4.6.1. We briefly repeat the
requirements and rank them starting with the most important first. As noted in Chapter
8.2.4 and recommended by Bass et al. [30] we will limit ourselves to the five most
important requirements.

#R1 Linked Services: The architecture should be able to use linked services as intro-
duced in Chapter 4.4. It should be able to follow links and download service
descriptions.

#R2 Constrained Resources: The architecture must be able to deal with devices that
are constrained in terms of memory, computation and communication.

#R3 Reconfigurability and Reprogrammability: Changing requirements and cost
pressure will lead to the need of a constant reconfiguration and shared use of
resources. Therefore, it is essential that the devices can be reconfigured and
reprogrammed easily.

#R4 Service Discovery: The ERP system should be able to discover services provided
by the constrained devices.

#R5 Standard Technologies: Use of standard technologies for direct access of IoT
devices

8.3.3 Scenarios

In the following we present eight scenarios that were derived from the business drivers
in conjunction with the ranked requirements. Five scenarios consider typical use-cases,
two are growth scenarios and one exploratory scenario. We use the integration platform
as described in Chapter 4 combined with experiences from the business use case, and
prototype described in Chapter 8.3.1 as subject under evaluation.

8.3.3.1 Scenario 1

Scenario # 1 is a use-case that addresses Linked Services (R#1), constrained resources
(R#2) and service discovery (R#4)

Description

The container is arriving at different harbors or at the retailer as described in the business
scenario. Linked Service descriptions need to be exchanged, they are stored on the
mote. The ERP system later on wants to utilize the semantic data stored on the smart
device for reasoning.

177



Architectural Mapping

On the mote there is a technical endpoint, that runs, for example, CoAP. The service
description is stored on-device and can be retrieved upon arrival at the harbor. On the
integration platform an agent for the Mote Runner system is running an adapter for
the MRv6 protocol. Later on, this allows, direct access to the motes. The discovery
agent, in cooperation with the Mote Runner adapter, detects a new mote and adds it
to the list of newly detected motes. It is now monitored by the lifecycle controller.
The integration platform now downloads its service description. The enterprise system
stores the service description in a service repository. From that point on, its available to
the industry-specific reasoning engines within the enterprise system.

Conclusions

Based on the architectural mapping the scenario can be fulfilled by the proposed
architecture. The major risks discovered are not of architectural nature, but come from
standardization. The interface for accessing the service description needs to be either
standardized, or at least, known to all adapters.

8.3.3.2 Scenario 2

Scenario #2 is a use-case that addresses Linked Services (R#1) and constrained re-
sources (R#2).

Description

In this scenario we assume a very constrained device. We assume that it has some
memory to describe its basic services, but not even have enough memory available to
store all related service information. It still needs to be able to attach to the enterprise
system. A service level agreement and further sensor-specific information is stored on
the repository of the shipping company that owns the container.

Architectural Mapping

The scenario can be implemented by the architecture. This scenario shows how linked
data principles can be used to obtain further information about almost anything, includ-
ing hardware specification. The basic service description is processed as in scenario
#1. The main difference is that the service now can be completed by the service de-
scription agent and the resolve RDF agent. It is assumed that an Internet connection is
available. The Linked Services approach allows using a domain-specific ontology to
describe service characteristics. For example, the hardware specifications of the sensors
involved (luminance, humidity, and temperature) could be described via an ontology
and downloaded from the manufacturers homepage, following the links in the original
service description. The data can be loaded on-demand. For example, when the service
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description agent tries to retrieve the service level agreement, instead of getting the
data delivered by the mote, it gets a redirection. It follows the links in this redirection
until it has all the data it needs. The data could be stored in an enterprise system of the
shipping company. The respective service is stored in a service repository and made
available to its partners in the enterprise network.

The description of a basic service also allows using the mote in situations, where no
Internet connection is available. In that case, the mote could still be used for monitoring
tasks and be synchronized only at harbors.

Conclusions

The scenario can be fulfilled. The challenges and risks concerning linking different
sources together are more an a management and standardization level than on a technical
level: all involved parties need to agree on some ontologies in order to be able to link
services. Availability and correctness needs to be guaranteed, as well.

8.3.3.3 Scenario 3

Scenario # 3 is a use-case that addresses reconfigurability and reprogrammability (R#3)

Description

A container should get a new configuration. It has to be reconfigured by replacing the
technical service on the mote and its service description. Both are stored on the mote
and should be replaced on-the-fly.

Architectural Mapping

The enterprise system needs to instruct the integration platform to reflash the device.
The lifecycle-controller ensures that the device is marked as invalid for the time being
and it is currently reconfigured and reprogrammed. The physical resource adapter of
the system communicates with the service management unit of the device to store new
data. This can be either done before or after the actual reflashing of the software on
the device. It is highly hardware-specific. For the integration platform to perform this
operation a (vendor-specific) PRA is necessary, or alternatively some standard has to be
established. After the reflashing of the device it is reattached to the integration platform.
Its service description is downloaded and integrated into the system.

Conclusions

This scenario can be generally fulfilled by the architecture. Some technical precondi-
tions have to be fulfilled: The mote must be able to receive a new service description,
and store it on the mote. Before or after that it also must be able to be ”reflashed”,
preferably with minimal to no human interaction.
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8.3.3.4 Scenario 4

Scenario # 4 is a growth-scenario. It addresses Linked Services (R#1) and constrained
resources (R#2), and service discovery (R#4).

Description

A new device technology should be incorporated into the system. It uses a proprietary
protocol to attach and reattach to the network and for transportation. The communication
at the application-layer is done via a standardized protocol.

Architectural Mapping

The first step is that a new physical resource adapter for this particular device/protocol
combination has to be written. The device would need to support reconfiguarability
and reprogrammability on the device to support R#4. Otherwise, it is not possible to
support that requirement. In addition, access to the network needs to be achieved by
providing software drivers for the IPI. The actual communication with the device can
then happen via a standardized technology.

Conclusions

This scenario can be generally fulfilled by the architecture. It depends on the actual
characteristics of the hardware, if and how many of the requirements can actually be
fulfilled. This is not a limitation of the architecture though. In order to improve inter-
operability of different hardware devices, it would be necessary to further standardize
those aspects.

8.3.3.5 Scenario 5

Scenario # 5 is a growth-scenario that addresses Linked Services (R#1), constrained
resources (R#2), and service discovery (R#4).

Description

The growth-scenario is shares some similarities with Scenario #4. A new device
technology should be incorporated into the system. It uses a proprietary protocol
to attach and reattach to the network as well as for transportation. The protocol is
proprietary and it is not possible that an ERP (or the Internet in general) at any point
can directly connect to it. Nonetheless, the ERP should be provided with a service via a
standardized technical interface.
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Architectural Mapping

The first step is that a new physical resource adapter for this particular device/protocol
combination has to be written. The device would need to support reconfiguarabilty and
reprogrammability on the device to support R#4. Otherwise, it is not possible to support
that requirement. In addition, access to the network needs to be achieved by providing
software drivers at least for the adapter. To allow access from the ERP or the Internet in
general a proxy solution needs to be written. The integration platform could create a
simple proxy, accessible through standard web technologies like HTTP or CoAP. The
actual technical interface on the device is then called by the physical resource adapter.

Conclusions

The architecture could support this scenario as well, with minimal changes. One
possible way would be to generate a proxy out of a given service description. The
service description would have to specify the technical interface towards the ERP. The
device needs to provide a means to access the actual functionality. Next, automatic
proxy generation could be applied. As long as the device access can be mapped to
a RESTful protocol this could be done automatically. If the protocol itself is also
proprietary handwritten glue code might be necessary. The ERP would then access the
technical interface on the IPI and not on the device directly.

8.3.3.6 Scenario 6

Scenario # 6 is a use-case that addresses Linked Services (R#1) and constrained
resources (R#2).

Description

The dynamic pricing scenario include ESLs (Electronic Shelf Labels) as third-party
actuators. The architecture should be able to include actuators.

Architectural Mapping

Out of scope of the architecture is currently real-time support. The actuators need
to be accessible via standard Internet technologies. This currently comes with some
limitations: delay, jitter and packet loss needs to be considered, as well as drifting
unsynchronized clocks. A scenario like the described electronic shelf label can be
integrated easily, because its updates rates are typically not time-critical.

Conclusions

The architecture supports this behavior. Real-time support with immediate response is
currently out of scope of the architecture. It can support soft realtime and firm realtime,
but hard realtime cannot be achieved without architectural modifications.
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8.3.3.7 Scenario 7

Scenario # 7 is a use-case that addresses Linked Services (R#1), constrained resources
(R#2) and modeling of service characteristics (R#5).

Description

We are assuming a very constrained device. The device is not able to store even a small
service description. It can hold some data though.

Architectural Mapping

Even, if no service description is stored on the mote the architecture can still accom-
modate this situation. The minimal requirement is that there is a endpoint available;
running software that can at least return one redirection. This redirection links to an
external resource – for example, on an enterprise system of the container shipping
company. The enterprise system can connect to the device through an adapter. Now, the
service description can be processed as if it were available directly on the sensor mote.
This scenario requires the availability of an Internet connection. In rural scenarios or
on a ship without a working Internet connection, it would not be possible to connect to
the device.

Conclusions

The use-case can be fulfilled. It has imitations though, when no Internet connection is
available. As a general recommendation, all motes should provide at least a minimal
service description that allows to interconnect with the device. Nonetheless, for the
motes to be self-descriptive in all scenarios, a minimal service description on the mote
is necessary.

8.3.3.8 Scenario 8

Scenario # 8 is a exploratory-scenario.

Description

In future, it might well be that more and more computation (business process decom-
position [158]) is happening on the device. As a result, the interactions between the
devices and the integration platform or the enterprise backend will increase.

Architectural Mapping

The problem of supporting this scenario does not directly involve the integration
platform. Orchestration of the services needs to be done on the ERP side and it does
not directly involve the integration platform. In future, additional semantic descriptions

182



might support such an orchestration engine and it might even allow automatic matching
of services.

Conclusions

Business process decomposition [158] support can be achieved by using the integration
platform. Nonetheless, all the logic of orchestrating this additional logic needs to be
done in the ERP system.

8.3.4 Overall Assessment

We performed a scenario-based assessment of the proposed architecture. The archi-
tectural mapping has shown that the proposed architecture in principle is capable of
fulfilling the defined requirements and their underlying business drivers. The use of
linked services and semantics are on an architectural level able to enable interoperability
and scalability. Devices and information from different vendors can be incorporated.
Some risks have been identified as well. Given the assumed technology stack (REST-
based services, IP/6LoWPAN based, CoAP) it is pretty obvious that the architecture
is currently targeting only soft-realtime systems. A move towards firm-realtime or
even hard-realtime seems basically possible, but most likely will require changes to the
architecture and the protocol stack. Very constrained devices that lack self-description
capabilities can be integrated as well. Nonetheless, in such scenarios an Internet
connection is mandatory.

8.4 Survey

We conducted a survey on semantics with an emphasis on the potential of semantics in
enterprise IT systems. Semantics are currently being intensively researched by both
industry and academia. Our objective was to identify the actual needs of IoT with
regard to semantic support and to identify current shortcomings. We also investigated
reasons for the perceived ”semaphobia”. Lanthaler and Gütl [225] coined the term
semaphobia to describe the fear of an average developer to use semantic technologies.
We first describe the methodology in Chapter 8.4.1, then the threats to its internal and
external validity in Chapter 8.4.2, before we proceed to discuss the results of the survey
in Chapter 8.4.3.

8.4.1 Methodology

The survey was distributed among domain experts, from industry (among others: SAP,
IBM, NEC, Orange, Telefonica) and academia. While some experts were recruited
directly, the majority of the respondents were self-selected. The survey was conducted
online, with anonymity being guaranteed and technically enforced by the system. As
the IoT is a very broad field, we did not ask questions about mobile phone development,

183



and limited protocol related questions specifically to systems where an ISO/OSI-like
stack [406] is used. The questionnaire was designed to be rather short, as we did not
expect professionals to spend more than five to ten minutes on it. To further speed
up the process the survey mostly contained multiple-choice and ranking questions
and only very few free text entries. The survey included a control question: the
question if semantics will play a significant role in future IoT was repeated. Incomplete
questionnaires and those failing the sanity check were not taken into consideration.

Some questions ask for agreement or disagreement with statements about the IoT or
semantics. We chose a 4-point Likert [236] scale. The Likert-scale allows participants
to specify their level of agreement or disagreement, typically on an agree-disagree scale,
for a number of different statements. In literature, especially in psychology, there is
plenty of research on the optimal number of Likert items and the value of a neutral
answer. It is widely acknowledged that the number of ”negative” options, should equal
the number of ”positive” options. Furthermore, the number of people choosing a neutral
option decreases with the number of options given [253]. The optimal number of
answer options depends on the subject of the survey. For example, to express feelings,
having more options, closer to ten, seem to be more favorable [305]. When choosing
to agree or disagree with statements, a lower number might be more suitable, as it
otherwise remains unclear how different subjects perceive the difference between two
choices [81]. Therefore, we decided to use a four-point Likert scale without a neutral
option to force people to form an opinion, even if it is only a slight tendency towards
one or the other side. The scale is quite intuitive and should not leave the subjects much
room for interpretation. They can agree or disagree, or they need to give a tendency in
one or the other direction.

We asked the participants specifically to focus on constrained networks and wireless
projects, and more specific on IEEE 802.15.4 and similar based protocols. We particu-
larly asked not for mobile (phone) development, as for example an IPad-based shopping
assistant. The participants were asked to focus on communication with constrained
devices and the constrained devices themselves.

8.4.2 Threats to internal or external validity

As the study was conducted anonymously, it is not possible to validate that the claims
made are valid. No incentives were given for participating. Most industrial participants
worked with IoT-systems in industrial automation, retail or logistics. The responses by
participants from academia were (if a sector was chosen) mainly from automation and
logistics, and the broad areas of smart city. The survey was mainly distributed in an
environment that is close to enterprise systems and enterprise resource planning, or to
semantic systems. Furthermore, most of the projects and the research in the surveyed
community are traditionally based on IEEE 802.15.4 and similar. As this was our
main research focus and we were particularly interested in the needs and views of this
group. We did not survey other IoT-fields – for example mobile development based
upon IEEE 802.11. Therefore, some of the results might not be generalizable to other
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problem domains or communities. Semantics is one of the major concerns in nowadays
enterprise systems and the participants of the survey are probably from a community
that is more likely to use semantic technology and more verbose application-layer
protocols, than for example, a more ”bit-and-byte”-orientated community, such as
the automotive sector. Nonetheless, we assume the results to be generalizable to any
enterprise (ERP-) and semantics-prone community. For other communities, further
research is suggested.

8.4.3 Results

In the following, we present and discuss the results of the survey. We categorize the
results into four groups: (i) general statistical information about the participants and
their skillsets, (ii) protocols, (iii) semantics and (iv) enterprise integration.

8.4.3.1 Participants

The total number of participants was 178. Their experience levels, origin and skillsets
are detailed in Table 8.3. There were twice as many participants from industry as from
academia. The majority of participants had at least three years of professional experi-
ence and a more than basic understanding of IoT and semantics. Most participants had
at least some experience with semantics and IoT. Naturally, the expertise in enterprise
systems and enterprise interoperability was higher for industry participants.

8.4.3.2 Protocols

In the following we give an overview on our results with regard to the used protocol
stack. We survey the currently used protocols on the network layer, transportation
layer and application-layer. We were mainly interested in the penetration of REST-
based protocols and the progress of standardized protocols. In the past two decades,
especially 802.15.4 networks were often associated with custom made, specialized and
often proprietary, protocols. Industry used a lot of vendor-specific, non standardized
protocols. This started to change with initiatives such as ZigBee, 6LoWPAN and a
general industry-wide trend towards more integration and standardization.

The views of the community with regard to the current IoT-protocols have been
surveyed with a 4-point Likert-style questionnaire. The Likert items and the responses
are illustrated in Figure 8.5. First, we asked if current application-layer protocols are
considered sufficient for the special needs of IoT-applications. In total, there was a
small majority towards more work needs to be done on the application layer. A large
majority believes that network management protocols need more work to adopt them
towards IoT, suggesting the need for further research in this area. There seems to be
consensus that most future IoT-applications will be IP-based to some degree, and a bias
towards REST-based architectures. In total 87% of the participants opted for a future
IP-based Internet of Things. Especially, the participants from industry (90%) expressed
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Participants

Origin Career level

Total 178 Entry 23 Professional 64
Industry 114 Industry 9 Industry 47

Academia 64 Academia 14 Academia 17

Advanced 91
Industry 58

Academia 33

Experience (years)

<=2 23 6-9 44 >=15 5
Industry 9 Industry 34 Industry 4

Academia 14 Academia 10 Academia 1

3-5 93 10− 14 13
Industry 58 Industry 9

Academia 35 Academia 4

Sector

Industrial automation 26 Home automation 12 Retail 31
Industry 20 Industry 7 Industry 29

Academia 6 Academia 5 Academia 2

Transportation and logistics 12 Smart City 7 Healthcare 3
Industry 8 Industry 4 Industry 2

Academia 4 Academia 3 Academia 1

Vehicular communications 5 IoT-in general, other 82
Industry 2 Industry 42

Academia 3 Academia 40

Skills (self-assessment)

IoT Semantics (general) Enterprise Systems

Beginner 28 Beginner 42 Beginner 37
Industry 17 Industry 28 Industry 8

Academia 11 Academia 14 Academia 29

Some experience 59 Some experience 80 Some experience 43
Industry 28 Industry 48 Industry 19

Academia 31 Academia 32 Academia 24

Advanced 81 Advanced 49 Advanced 84
Industry 61 Industry 34 Industry 74

Academia 20 Academia 15 Academia 10

Expert 10 Expert 7 Expert 14
Industry 8 Industry 4 Industry 13

Academia 2 Academia 3 Academia 1

Table 8.3: Participant group: Experience and Skills. All numbers are total numbers,
typically further splited into academia and industry participants. Skill-sets are based on
self-assessment.
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Figure 8.5: Usage and potential of IoT-protocols (on a 4-point Likert scale)

the opinion that the IoT will be largely IP-based. This matches the results given in
Table 8.4. We always asked for the protocols that are used at the moment, the planned
protocols and the expected industrial use.

Curr Please select the protocols you are currently using in your project(s). Please
consider only the protocols you are actually using for communication with your
IoT-device.

Planned Considering the near- to midterm future of your project(s) (3-5 years outlook).
Please check the protocols that you would most likely use for any new projects,
or advancements of your current projects. What protocols would you use right
now if you would have to start a new project? Please consider only the protocols
you are actually using for communication with your IoT-device

Expected Please select the project you think new projects will use or you generally
expect the industry to use in future. What do you think the industry will/should
choose in general for future IoT-projects? In which direction do you think the
industry will move?

The planned usage and the further expected usage of standard protocols is very
high. The HTTP protocol family is the most frequently used in industry. CoAP,
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as a second RESTful protocol, also attracted quite some attention. But this was
mainly in academia and not as much in industry. MQTT [177] was also mentioned
by quite a few participants. Interestingly, the expected usage of CoAP and MQTT is
significantly higher than the planned. This could be due to the recent attention that
both protocols have received. AMQP [390], an alternative to MQTT was mentioned
only very infrequently. WebSockets did not attract widespread use either. WebSockets
had to be manually entered by the participants though, so the numbers for the expected
use are most likely not conclusive. However, what can be said is that WebSockets did
not make it into a generally accepted IoT concept – at least, not to a degree where our
participants would naturally have mentioned it ”as to be used” protocol. SOAP, which
is otherwise widely used in enterprises [132], does not seem to play a major role in
the IoT. Surprisingly, ZigBee is not that widely used either. Nonetheless, this could be
explained by the surveyed community. The OData protocol is not yet considered to be
an ”IoT-protocol”.

On the network and the transport layers, the answers showed a trend towards
standardization as well. The data indicates that two types of IoT-streams coexist at the
moment: Developments based upon small very constrained devices with specialized
protocols and already quite some developments on platforms capable of running less-
constrained protocols, such as IPv6 and TCP. This development is most likely driven
by the general need for standardization, in conjunction with advances in hardware, a
significant drop in hardware prices and the recent advent of many new platforms. The
numbers show that most people expect standardization towards the high-level protocols
or their IoT adoptions (such as 6LoWPAN). This correlates well with the expectations
of our participants regarding REST-based and IP-based IoT-developments in future.

8.4.3.3 Semantics

Apart from the used protocols, we were mainly interested in the views and the general
attitude of the community with regard to semantic technologies and semantics in
general. Semantic technologies and semantics have been around for some time now,
but they have not yet gained the widespread use that was once predicted. We asked our
partiticpants what are, in their opinion, the main obstacles hindering the widespread
adoption of semantics in the Internet of Things. The participants were given a list of six
typical reasons that might be an obstacle for the wide-spread use of semantics. They
were asked to rank these reasons from the most influential reason to the least influential.

In Figure 8.6(a) we show the main obstacle – that is, the one the participants
ranked first. The most frequently mentioned issues were knowledge / awareness of
development staff and standardization, followed by development tool support. The
differences between the responses of industry participants and academic participants
were small. Only the infrastructure seems to be viewed more critically by academia
than by industrial participants. Figure 8.6(b) shows the same numbers in weighted and
normalized ways. As mentioned earlier, the participants were asked to rank the six
possible obstacles from most important to least important. We multiplied all ”most
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Network layer Curr Plan Exp Transport layer Curr Plan Exp

IPv4 16.29% 7.86% 6.17% UDP 25.84% 25.28% 51.66%
Industry 21.92% 11.40% 7.89% Industry 34.21% 34.21% 56.14%
Academia 6.25% 1.56% 3.12% Academia 10.93% 9.37% 43.75%

IPv6 29.21% 56.17% 85.39% Reliable UDP (non
CoAP)

6.74% 6.17% 20.24%

Industry 35.08% 64.91% 86.84% Industry 5.26% 3.50% 14.03%
Academia 18.75% 40.62% 82.81% Academia 9.37% 10.93% 31.25%

6LoWPAN 45.50% 80.33% 97.75% Reliable UDP
(CoAP)

23.59% 36.51% 68.53%

Industry 49.12% 80.70% 98.24% Industry 20.17% 36.84% 67.54%
Academia 39.06% 70.31% 92.18% Academia 29.68% 35.93% 70.31%

Custom 802.15.4
protocol

49.43% 33.14% 20.22% TCP 47.19% 60.11% 76.40%

Industry 38.59% 19.29% 10.52% Industry 60.25% 77.19% 78.94%
Academia 68.75% 57.81% 37.50% Academia 23.43% 29.68% 71.87%

Custom (other) 21.91% 23.03% 10.11% Custom/other
(TCP-like)

36.51% 29.77% 18.53%

Industry 19.29% 21.05% 7.89% Industry 30.70% 21.92% 12.28%
Academia 26.56% 26.56% 14.06% Academia 46.87% 43.75% 29.68%

Zigbee 8.98% 9.55% 51.68% Custom/other 42.13% 39.32% 16.29%
Industry 10.52% 10.52% 53.50% Industry 33.32% 29.82% 10.52%
Academia 6.25% 7.81% 48.43% Academia 57.81% 56.25% 26.56%

Application Layer Curr Plan Exp Curr Plan Exp

CoAP 23.59% 40.44% 62.92% AMQP 1.12% 1.12% 1.12%
Industry 12.28% 32.45% 59.64% Industry 0.87% 0.87% 0.87%
Academia 43.75% 54.68% 68.75% Academia 1.56% 1.56% 1.56%

HTTP(S) 54.94% 55.06% 76.40% KNX 6.17% 5.61% 11.79%
Industry 63.15% 65.78% 75.43% Industry 7.89% 7.01% 9.64%
Academia 39.04% 35.93% 78.12% Academia 3.12% 3.12% 15.62%

SOAP 12.35% 8.42% 16.85% MODBUS 7.86% 8.42% 7.86%
Industry 18.42% 12.28% 20.17% Industry 10.52% 10.52% 7.89%
Academia 1.56% 1.56% 10.93% Academia 3.12% 4.68% 7.81%

ODATA 2.80% 3.93% 5.05% MQTT 20.78% 23.03% 49.43%
Industry 3.50% 5.26% 6.14% Industry 28.94% 32.08% 57.01%
Academia 1.56% 3.12% 3.12% Academia 6.25% 6.25% 35.93%

CAN 6.17% 6.17% 5.06% WebSockets 2.24% 2.24% 1.68%
Industry 7.89% 7.89% 6.14% Industry 2.63% 2.63% 1.75%
Academia 3.12% 3.12% 3.12% Academia 1.56% 1.56% 1.56%

Other/Custom 29.77% 29.21% 29.77% Zigbee 13.48% 13.48% 38.20%
Industry 20.17% 15.78% 23.68% Industry 15.78% 16.66% 47.36%
Academia 46.87% 51.56% 40.62% Academia 9.375% 7.81% 21.87%

None 4.49% 4.49% 1.12%
Industry 0.00% 0.00% 0.00%
Academia 12.50% 12.50% 3.13%

Table 8.4: Used Protocols, in percentage of the participants (in total, and per group)
choosing the respective protocol. Participants could choose more than one protocol.
The responses are categorized into current usage (curr), planned knowledge (plan) and
the anticipated or expected use of the industry in future (exp)
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Figure 8.6: The main obstacles for not using semantic technologies (”semaphobia”).
Participants had to rank the reasons from most important to least important. Results in
percent of main reason (top ranked) and all reasons weighted by importance

important” entries with six, the second most important with five and so on. Here,
it becomes even more evident that education of developers and standardization is
considered the main obstacle for the use of semantic technologies. Tools support, for
both domain experts and developers did not rank very high. Academia considered
tool support for domain experts irrelevant, while industrial participants gave it only
a minor importance. We found this quite surprising as semantic tool support for
business specialists is still considered a weak spot in the business modeling community
[47, 169, 55]. Nonetheless, the participants’ views might be due to the fact that system
designers are not yet fully convinced of semantic technologies, and therefore the
importance of business users is not yet particularly high and therefore not visible yet.

The attitude of the community towards semantics, and more explicitly semantics in
the IoT was surveyed with a four point Likert-style questionnaire. The individual Likert
items and the distribution of the answers are shown in Figure 8.7. Most participants
agree that semantics will play a role in future IoT systems. Some think that it is too
bloated/an academic toy, or as one of the participants stated in a personal mail to us
that it is ”a hype from bored academics that no one will remember in a few years”

Next, we proceeded to ask the participants about the actual usage, opportunities
and main advantages of using semantic technologies. We presented the participants
with a list of seven opportunities of semantics in the Internet of Things as identified by
us. The seven opportunities are:

Self-healing If an overall system is able to detect the situation that individual parts of
it do not work as intended and automatically takes measures to either repair or
replace these parts, the system is said to be self-healing [186]
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Figure 8.7: Usage and potential of semantics (on a 4-point Likert scale)
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Self-configuring A self-configuring system can be described as having the property
that it does not require manual configuration before it is ready to be used. In
other words, a self-configuring system automatically adapts to its environment
and to the needs of the user. [186]

Reasoning/Sense Making Reasoning enables backend systems to automatically per-
form reasoning on data coming from various sources. Semantic annotations can
to be understood and processed by enterprise IT systems.

Device Management Device Management is concerned with information about the
used devices and their capabilities.

Management of Things Things, or entities, are the subjects of the Internet of Things.
This can be any physical object of interest to a system. Semantics make properties
of and connections between things explicit.

Interoperability at technical level Interoperability at a technical level is concerned
with the description of the technical interface of services, e.g. what calls can be
made to a technical endpoint, how the resources look like.

High-level interoperability Interoperability is not restricted to the technical layer only.
Interoperability at a semantic level allows systems to not only know that the
received value is a float, but that it is a float representing a temperature with a
given precision and that it is monitoring a specified good.

The participants were given the same short definitions. They were asked where
they see the most opportunities for semantics to make an impact on IoT. They could
choose from a range of none to any. The results are presented in Figure 8.8. The main
advantages of semantics are seen in high-level interoperability and reasoning, followed
by the management of things. Interoperability at an endpoint level, a topic that is also
addressed by our integration platform, is not yet seen as an area where semantics can
contribute a lot. The differences between academia and industry were negligible.

Given that most people think there is potential in semantics, it is interesting to see
its actual usage: We summarized the results in Table 8.5. Participants could choose
from a list of widely-recognized uses of semantics and select what they are using it for
today, if they do. They were asked to express what their short- to midterm plans are
and what they think the industry will move towards. In this case, the question was not
where they see most benefit or most opportunities, but to which degree they are using
the technology and what they think will happen.

Reasoning seems to be one of the most important topics discussed currently. Given
that research on protocols and energy efficiency has been conducted for more than
two decades now it is, in our opinion, just the logical consequence that IoT-research
moves one layer or two layers up and is spending more resources on application topics.
Considering the huge interest in reasoning, it could also be the main driver behind
describing things, services and devices.
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Figure 8.8: Attitude towards opportunities/usages of semantics in IoT (in percentage of
participants per item, multiple selections were possible)

This part of the survey was followed by a question that asked for any specific
IoT-related ontology people could think. There were some mentions of enterprise
internal ontologies. The only ontology that was mentioned more often was SSN.

8.4.3.4 Enterprise Integration

We were also interested in enterprise or, more generally, ”outer world” integration. The
Internet of Things vision, to some degree, assumes direct use- and addressable smart
objects. We call that direct access, which means with only transparent network devices,
if any. A network device is called transparent, if other devices on a network do not need
to be aware of its existence. On the other side of the spectrum are gateway solutions,
where communication is done via some intermediary that also offers the services. In
such a setup, for example sensors, do not appear directly and they are not directly
addressable or known to the service consumer. We call this a gateway access. A typical
example for a gateway solution is some enterprise monitoring tool, where the sensors
are connected through a specialized protocol to the gateway. On the gateway the date is
collected and the gateway is the interface towards the outer world. Also, many home
automation systems follow the same principle. The participants had to choose if their
(main-) product/prototypes fall into or are closer to the first or second scenario. In
total, direct access is used more often than a gateway solution (57.86% vs. 42.13% of
all participants). Industry participants choose direct access (64.9%) more often than
participants from academia, while academia had a slight bias towards gateway (56.2%).
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Usage

Curr Plan Exp

Description of Things 28% 46% 82%
Industry 32% 51% 86%

Academia 22% 37% 73%

Description of high level
(semantic) services

14% 33% 73%

Industry 15% 43% 76%

Academia 11% 14% 68%

Description of low level
(technical) services

6% 14% 28%

Industry 4% 9% 25%

Academia 8% 20% 34%

Description of Devices 11% 28% 61%
Industry 11% 29% 69%

Academia 11% 23% 48%

Reasoning 38% 69% 88%
Industry 42% 77% 91%

Academia 29% 46% 82%

Configuration 3% 5% 25%
Industry 3% 4% 24%

Academia 5% 6% 26%

Table 8.5: Usage of semantic technologies for the mentioned reason (in total, and per
group) in percent. Participants could choose more than one reason. The responses are
categorized into current usage ( curr), planned knowledge (plan) and the anticipated or
expected use of the industry in future (exp)

Direct Access seems to be more common now, than gateway solutions. In this question,
the participants were forced into one option and should think about their current main
project. Nonetheless, in our opinion both options are valid in the Internet of Things.
A sensor node that is accessible via HTTP over a more powerful gateway is in our
belief not necessarily worse than using direct access. Gateway solutions help reducing
the total energy consumption by applying specialized protocols and many solutions
working or doing research with such specialized protocols might still choose a gateway
approach.

We were also interested in how the IoT-devices are configured, for example if they
can automatically connect to a network without any manual work, or if the end user has
to configure the device or if some kind of administrator has to configure the devices
first. We differentiated the following four scenarios:

Fully-automatic: The configuration of the IoT devices is automatic, after an optional
initial setup or one-time network configuration. Devices can potentially be added
and removed with further configuration steps.

End-user: The end-user is responsible for the configuration of the device – for example

194



by entering connection data.

Administrator, on-site: A technically skilled administrator has to be on-site to add
and remove devices and to execute some configuration steps that go beyond what
an (less experienced) end-user can do.

Administrator, semi-automatic: A technically skilled administrator has to execute
some configuration steps on a regular basis that go beyond what an (less experi-
enced) end-user can do.

Fully-automatic and semi-automatic configurations are used most often. On-site
configuration, where a technically skilled administrator has to work on-site, is also
common in industry to some degree. There is a huge gap between academia and industry
in manual end-user configurations. It is widely used by academic participants and only
seldom by industrial participants. It seems likely that the end-user, in many cases, is
the research team itself.
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Figure 8.9: Internet of Things - Configuration (in total, and per group) in percent of
all participants selecting this option. Participants could choose no, or more than one
option.

Finally, we asked two questions regarding data gathering, data aggregation and
data processing for monitoring tasks. Participants could choose to answer one or
both questions, or to skip the questions. First, we asked where the processing of
the monitoring data or the data aggregation takes place. We offered three different
possibilities: on the device, on the gateway or in a backend-system. Second, we asked
where the view of the system materializes and how it is gathered. The options were:
device level (autonomous), centralized (event-based or time-based push), centralized
(poll), or centralized (stream). The results are summarized in Table 8.6. Data processing
and aggregation is mainly happening on a backend-system or on a gateway. Typically,

195



it seems that devices push information to the monitoring application in either an event-
based or a time-based way. Stream processing is not yet widely used.

Processing of tasks / data aggre-
gation

% Overall control and view on applica-
tion

%

device level 11.79% device level (autonomous) 15.16%
on a gateway 26.40% centralized, push, time-interval 14.04%
on a backend-system 34.26% centralized, push, event-based 25.28%

centralized, poll 11.79%
centralized, real-time stream 8.98%

Table 8.6: Data processing and overall system (application) view (non mandatory
question), answers in percentage of all participants choosing this option

8.4.4 Conclusions

We conducted a survey among domain experts from industry and academia. On one
hand, to get an overview of the state of semantics, the Internet of Things and its relation
to enterprises. On the other hand, the survey served as an input to our evaluation of
Linked USDL for IoT. First, we surveyed the general feeling about Internet of Things
and Semantics. It seems to be widely anticipated that the (future) Internet of Things
will be largely REST-based and IP-based. This might not be surprising at a first glance.
Nonetheless, abstracting from the buzzword IoT and taking the history of the wireless
sensor networks into account, this was not a compulsory development, especially in an
enterprise environment. First, because a considerable part of nowadays IoT community
developed out of the sensor and actor community, as well as automation. In the past,
both communities were to a considerable extend grounded in (sometimes proprietary)
protocols that were neither IP-based nor REST-based, but still many solutions have
been advertised as being part of the IoT. The IP or Internet part in such solutions, if
at all, was often not more than a gateway that provided some services. The services
themselves were technically realized through specialized protocols between the gateway
and some constrained devices. Second, also the enterprise community, which has only
very recently moved towards REST-based protocols. In the past, many enterprise
companies based their products on either SOAP-services or proprietary protocols, such
as RFC and BAPI. Specialized protocols still have its share in the current IoT, but
most of our participants are already using standardized technologies or plan to move
towards standardized technologies, so a convergence towards REST-based and IP-based
protocols can be expected. It is interesting that Enterprises move towards IoT-protocols,
instead of moving enterprise protocols (as SOAP) towards IoT. CoAP, to some degree,
seems to be in a special position. It was used by many participants from academia, but
not by many from industry. Nonetheless, many industry participants nonetheless stated
that they will consider it for future projects. In our opinion, it remains open whether
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the protocol really will get a considerable industrial usage, or if the expected usage is
mainly based on the recent hype the protocol has received in the IoT community. The
surveyed community was split (see Figure 8.5) when asked if todays application-layer
protocols sufficiently address the special needs of IoT. The used protocols might change
in future, with increasing hardware capabilities: The use of standard Internet protocols,
suggests that more capable hardware is used now, something that was not always
assumed as given in the past. This might further influence the protocol stack towards
the use of4 existing and mature technologies, or the new upcoming developments in the
Internet such as HTTP/2 [40] or SPDY [116]. Even SOAP might experience a revival
then. Applications could also use a more powerful node as application gateway that
uses a specialized protocol for communication with sensor nodes and a standardized
protocol for communication with the outer world. It seems that the aspect of direct
communication with devices, as predicted by the IoT vision, is becoming increasingly
common. Significantly less participants were using a gateway approach than the number
direct communication. Combined with the expected IP-protocol use, this number can
be expected to grow in the upcoming years.

The overall picture with regards to semantics is even more diverse. The general
applicability and reasonability of semantics seems not to be denied. Nonetheless, the
use of semantics is still not that high, a phenonemon coined ”semaphobia”. The main
current and expected usage of semantic information seems to be for reasoning and for
increasing interoperability. This is not surprising as sensor data is predestined for basing
business decisions on them. As the semantic technology has not been surveyed, it is
unclear if there is an end-to-end semantic scenario or if the sensor data is transformed
into some semantic representation to be able to do reasoning. Description of Things
ranked second in usage, most likely this is due to its usage in reasoning applications.
Still, the reluctance to use semantic technologies in general was also observed by
us. Quite some participants agree to the statement that semantic technologies do not
provide additional benefits over standard technologies. Reasoning, for example, does
not necessarily need to use RDF or other (standard) semantic (web-) technologies. The
top reason for ”semaphobia”, is seen in a lack of training and awareness, followed by a
lack of standardization in terms of vocabularies and ontologies. Standardization of the
actual semantic technologies or support from tools and infrastructure (e.g. triple-stores)
did not rank high. We assume that with the next generation of computer scientist joining
the industry the acceptance of semantics will raise, as many of those will already have
had contact with machine-learning, reasoning and semantics during their studies.

8.5 Linked USDL for IoT

In the following section, we will evaluate Linked USDL for IoT and several other
description languages with regard to nine selected evaluation criteria.
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8.5.1 Introduction

We present a qualitative evaluation comparing Linked USDL for IoT with more tradi-
tional technologies like WSDL, and competing semantic approaches like SA-WSDL
and OWL-S. A brief introduction into those technologies and related concepts can be
found in Chapter 2. First, we briefly introduce the used methodology and present the
nine evaluation criteria that we use to evaluate the different service description lan-
guages. We then evaluate the semantic and non-semantic service description languages,
including Linked USDL for IoT, with regard to this evaluation criteria. Finally, we
present the conclusions that can be deduced from our evaluation.

8.5.2 Methodology

We perform a criteria-based evaluation based upon an internal requirements-gathering
process, the IoT-A stakeholder workshops and our survey (unified evaluation criteria).
The applied evaluation process is shown in Figure 8.1. The internal requirements and
the results of the IoT-A stakeholder workshops influenced the survey and they were
also used in the unified evaluation criteria. Based on the requirements mining process,
as described in detail in Chapter 8.1, we distilled the following nine properties that a
service description has to fulfill and six characteristics that a corresponding IoT-system
should have. First, we introduce the nine service description related characteristics:

Endpoint agnostic: Endpoint agnostic means that the service description should be as
independent of any specific technical endpoint technology as possible. The differ-
ent technical endpoints in a sensing enterprise are typically heterogeneous. There
exist proprietary protocols, like RFC or BAPI, webservices (SOAP), semantic
web-enabled interfaces (often RDF-based), as well as specialized protocols like
CoAP to mention only a few. Endpoint refers to any of those technical real-
izations of a service. Any service description language that is chosen needs to
support such formats and to describe them in a semantically interoperable way.

Support of Business Aspects: A service description needs to provide more informa-
tion than just the mere technical details on how to call a technical interface.
Therefore the selected service description language should be able to express
business aspects like Service Level Agreements (SLAs) or pricing.

Distributed Descriptions: Nowadays, services can be composed of parts from dif-
ferent vendors. We foresee the need of storing parts of a composed service
description at different locations. For example, the Quality of Information param-
eters of a specific sensor node can be stored on the ERP of the sensors’ vendor.
The service description should be able to capture such dependencies.

Self-Description capabilities: Service descriptions should be able to allow smart
items to describe themselves. The service description should ideally be stored on
the smart item itself.
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Quality of Information: In sensing environments is the capability of describing qual-
ity of information (QoI) parameters particularly important . Sensors often have
a limited sensing range or work different in special conditions. The service
description should be able to express such QoI parameters.

Semantic Extensions possible: To enable reasoning and interoperability on a seman-
tic level the service description needs should be customizable/extendable for
specific domains.

Infrastructure support: Infrastructure and tool support is essential in an enterprise
environment. A service description, which does only exist in paper, but without
tooling support for using it as part of a programming language or store it in
appropriate repositories is not sufficient for professional use.

Standardization: Standardization of one of the key drivers of interoperability. There-
fore, we evaluated the service description languages also towards standardization
or standardization efforts.

Discovery of further information / knowledge base: A service description can be
used as a base to find further information from a knowledge base, for example
about the sensed entity.

We compared the Linked USDL approach first with other service description
languages, both semantic and non-semantic. We compared Linked USDL for IoT with
WS-*, hRESTS, WADL, OWL-S and SEREDASj. The WS-* family was selected
because of its widespread use. OWL-S is represents a semantics-based language mainly
using WSDL. SEREDASj represents a recent approach based on JSON-LD.

We carefully examined each service description language. To control an examiners
bias we used the survey to determine the importance of these properties for possible
users of a service description language. The results of our evaluation are presented in
the next section.

8.5.3 Evaluation

In the following, we present the results of our evaluation. As described in the previous
section we identified nine properties related to service description languages. We
used these properties as evaluation criteria. First, we present a grading of the nine
evaluation criteria to show their perceived importance. Next, we perform a criteria-
based evaluation. Finally, we combine the findings of the grading and the criteria-based
evaluation into a multi-variant comparison.

8.5.3.1 Evaluation Criteria Grading

As part of our survey, the participants where asked to grade each item by their perceived
importance, as shown in Table 8.7. The scale ranked from one point (low importance)
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up to seven points (high importance). Each item was graded separately. No ranking
between items was enforced. We then classified the nine properties based on the average
values into three classes: high importance, medium importance and low importance.
The average values formed three clusters. One outlier with an average value of 2.69.
The remaining eight properties formed two clusters: four of them are between 4.6
and 5.2, the other four have average values larger than 5.5. The classification and the
average values are depicted in Table 8.7.

Avg Importance

Endpoint agnostic 2.69 Low

Business Aspects 5.08 Medium
Distributed Descriptions 5.19 Medium
Self-description capabilities 4.67 Medium
Quality of Information 4.83 Medium

Infrastructure 5.62 High
Semantic Extensions 5.52 High
Standardization 5.88 High
Discovery of further information /
knowledge base

5.56 High

Table 8.7: Grading of the different evaluation characteristics (external, survey)

8.5.3.2 Criteria-based Evaluation

We now present the results of the evaluation. We compared Linked USDL for IoT
with WS-*, hRESTS, WADL, OWL-S and SEREDASj. The results are summarized in
Table 8.8. Each attribute was given a value on an nominal scale ranging from does ”not
fulfill requirement at all” [-], ”can be supported by additional modules or is generally
supported by the chosen paradigm” [0], ”supports requirements with some constraints
or limitations” [(x)], to ”fully supports requirements” with little or no limitations [X].
In the following we will examine each property individually.

Endpoint-technology Agnostic The property ”endpoint-technology agnostic” was
the only one to be given a low priority in our survey. For further analysis we divided the
property into three sub-properties: We distinguished between SOAP and REST, where
REST stands for all kinds of REST-based system regardless of the actual technology
in which the endpoint was realized (e.g. CoAP or HTTP) or its maturity (see Chapter
2.10.3). Furthermore, we looked into how far the service description could be used to
model any arbitrary endpoint technology or paradigm. Linked USDL for IoT, OWL-S
and to some extend the WS-* family support different endpoint technologies. Linked
USDL for IoT was designed with REST-based endpoints in mind, but can support
SOAP/WSDL and integrates well with a variety of data representations. OWL-S,
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L-USDL4IoT WS-* hRESTS WADL OWL-S SEREDASj

Endpoint-technology ag-
nostic

X (x) 0 0 X 0

SOAP (x) X - - X -
REST X (x) X X X X
Arbitrary Paradigm X - - - (x) 0

Business Aspects X (x) - - (x) 0

Service Level Agreements X X - - - -
Pricing X - - - - -
Business concepts integra-
tion

X 0 0 0 0 0

Quality of Information X 0 - - 0 0

Self-description capabili-
ties

X X 0 X X X

Distributed Descriptions X 0 0 0 X 0

Semantic Extensions X 0 0 0 X X

Infrastructure 0 X 0 0 0 0

Standardization 0 X - 0 0 0

Discovery of further in-
formation

X 0 0 0 X 0

Table 8.8: High-level qualitative analysis of the capabilities of different service descrip-
tion languages

supports WSDL/SOAP by default, but could also be used in conjunction with REST.
The WS-* family is a special case: the widely used, and widely with WS-* associated
WSDL 1.1 [88] specification, only supports SOAP-like interfaces. WSDL 2.0 [86]
added support for REST-based systems, mainly through the HTTP binding extensions
[85, 244]. However, it did not gain widespread use. In theory, other extensions could be
provided. However, no such attempts are known to us. All the other service description
languages are either bound to SOAP or the REST-paradigm. hRESTS, WADL and
SEREDASj were build for RESTful, mainly-HTTP based, technical interfaces.

Support of Business Aspects Support of business aspects is a requirement mainly
influenced by our definition of IoT-service as something that goes beyond a pure
technical interface. In the evaluation this favors languages that already have a more
comprehensive view of the term ”service”. All semantic approaches would be exten-
sible to support business aspects. We again selected three sub-aspects of the general
requirement: (i) service level agreements, with the restriction that it should also be
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possible to model non-technical requirements (ii) pricing, as an example of a pure
business aspect and (iii) general business concept integration as an indicator of whether
concepts from any business domain could be added.

As linking ontologies was one of the main design goals of Linked USDL, the
strength of our Linked USDL for IoT approach is to seamlessly integrate all kinds of
business aspects. As the original research goal of its predecessor USDL was to support
business aspects, its successor Linked USDL also comes with modules for Service
Level Agreements and Pricing. OWL-S and SEREDASj generally can support business
aspects. Several ontologies exist that can be used with OWL-S for describing service
level agreements, for example DAML-QoS [404] and QoSOnt[109]. Compared to
Linked USDL for IoT, which is able to describe the base actors of service interactions
and which was designed to connect service actors and further ontologies, OWL-S
would need more work to model general business concepts. Nothing specific is known
to us with regards to SEREDASj. Nonetheless, it is in principle capable of using
business-related ontologies as well. The whole modeling would happen outside of
SEREDASj, though. The WS-* family supports the description of some business
aspects. WS-Agreement [12] and WS-Policy [25] could be used to model service level
agreements.

Self-description Capabilities All description languages generally provide self-
description capabilities. The only exception is hRESTS being a microformat that
usually needs to be delivered in conjunction with a describing webpage. Hence, the
effort to provide self-description capabilities is therefore considered a magnitude higher
than with one of the other approaches. The issue that typically needs to be solved is the
size of description, in case the smart item does not provide enough storage. One way is
to compress the descriptions; the other is to store as much as possible on the smart item
and distribute most (maybe optional, or advanced) parts on the Internet.

Distributed Descriptions All semantic approaches generally allow service descrip-
tions to be distributed. Typically, they do not have to be stored on a single repository.
Linked USDL for IoT, OWL-S and SEREDASj can therefore support distributed de-
scriptions. The Linked Services Architecture (Chapter 4), which uses Linked USDL,
supports this property as it is one of its main design goals. WS-* follows more an ”all
or nothing” mentality, but some parts can be distributed. For example, a WSDL can
be combined with a corresponding WS-agreement file. hRESTS and WADL do not
specifically support the distribution of descriptions. To our knowledge, only Linked
USDL for IoT particularly emphasizes the distribution and linking aspect to decrease
the amount of data to be stored on the mote and to enable interoperability of IoT devices.

Semantic Extensions While USDL and OWL-S started as conceptual languages for
describing services at a higher level, and not necessarily technical endpoints, WSDL and
WADL started as interface descriptions. WSDL, as well as its REST-counterpart WADL,
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were originally designed to describe technical endpoints in a syntactical way, and only to
some degree in a semantically interoperable way. Therefore, semantic extensions were
designed to annotate semantic information to these languages. SA-WSDL (Semantic
Annotations for WSDL) or SA-REST are examples of such extensions.

Infrastructure and Tooling WS-*, in particular WSDL, is currently the most widely
used service description language for describing web services. It also has the most
complete infrastructure and tooling support. The core standard, WSDL, has excellent
tooling support. This does not necessarily include all further standards and extensions.
Support of semantic modeling with SAWSDL, for example, often has to be implemented
manually on top of general WSDL libraries. WADL and hRESTS do not have significant
tool support. Semantic Web based languages (RDF/OWL) have gained significant
attention recently. Tooling support has increased a l3ot over recent years and libraries to
manipulate RDF/OWL files are now available for all major languages. Nonetheless, it
is still much behind the infrastructure and tooling support that the WSDL-family offers.
Furthermore, while RDF/OWL tooling support is increasing, semantic service support is
not. There is a Protege2 Plugin for OWL-S3 [115]. Although, active development seems
to have stopped around 2007. Only one maintenance release has been published since.
Linked USDL provides a web-based service editor4. Service marketplaces and service
repositories are also being developed [107], leading to a complete service eco-system.
Some tools support WADL, for example the GlassFish EE Application server [131].
No extended tooling or infrastructure support is known for hRESTS. SEREDASj can,
to some extend, built upon the tooling and infrastructure support of JSON. Nonetheless,
no extended tooling or infrastructure support is known. As only WS-* has a rich set of
specialized tooling and infrastructure, combined with a very lively community we rated
all but WS-* with a rating of 0. WS-* clearly is the gold standard regarding this criteria.

Standardization The W3C family, especially WSDL, is currently the most important
standard used to describe services. All the large enterprise systems provide SOAP
support to some degree. In total, there are more than 150 specifications with a different
degree of standardization as part of the W3C or OASIS. All other service descriptions
are not even close to that degree of standardization. A W3C unified service description
language incubator group [196] was initiated in 2010. It concluded its work with a
reworked USDL specification [28]. The standardization efforts so far have not lead to
a W3C (or other) standard USDL. Meanwhile, its successor Linked USDL has some
enterprise sponsors that could eventually lead to a further standardization efforts or the
establishment of a de-facto standard. For this reason standardization was ranked with
a ”0”, as it is an ongoing effort and backed by a community. WADL was submitted
by SUN Microsystems to the W3C. Nonetheless, the community did not pick-up the

2http://protege.stanford.edu
3http://owlseditor.semwebcentral.org/index.shtml
4http://www.linked-usdl.org/ and https://github.com/linked-usdl/usdl-editor
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submission. There also seem to be no further investments by Sun up to this point.
OWL-S is also a W3C submission, but standardization has not progressed since 2004.
hRESTS was brought into an STI working group [210]. No further standardization
efforts are known for hRESTS and SEREDASj.

Discovery of further information Next, we looked at how easy it is to connect
”things” based on the service description language. We were mainly interested to see if
it is possible to break out of the service description and connect different repositories
that may be part of the Internet of Things. Linked USDL for IoT, SEREDASj and OWL-
S support such linking of knowledge repositories, because the underlying technology
already supports that. WADL and hRESTS could be used in such a way, but it is not
really part of their specifications and both would need further extensions. WS-*, to
some degree, can be used to link repositories. However, this would be complicated
as WS-* was not designed with such a goal in mind. Typically, it is used as part of a
closed world – for example in an enterprise – to link business models and services, as
in BPMN/BPEL setups.

8.5.3.3 Multivariate Comparison

Based on the previous analysis we did a multivariate comparison of the different
approaches. First, we quantified the qualitative results. A property that did not fulfill
the requirements was mapped to zero. The nominal value [0] was mapped to the range
]0; 0.5], [(x)] to [0.6; 0.7] and [X] to [0.8; 1.0]. The results are visualized in Figure 8.10
as radar charts [292]. Service description languages with a similar fulfillment of the
evaluation criteria have approximately the same distance from the center point. The
larger the corresponding area of a service description language in the graph is, the better
the overall fulfillment of the evaluation criteria will be. We visualized all approaches
and, for better visual comparison, also only the semantic approaches. Furthermore, we
also take the importance weighting (see Table 8.7) into account. The weighted scores
accentuate differences on criteria that are heavily weighted [310].

The semantic approaches generally fulfill the evaluation criteria better, but lack in
standardization and infrastructure support. Considering only the semantic approaches,
it can be seen that Linked USDL for IoT fulfills the requires better than or as well as
OWL-S and SEREDASj. Only, the infrastructure and tooling is less mature than for
OWL-S.

8.5.4 Conclusions

The evaluation criteria used to examine Linked USDL for IoT are based upon an internal
requirements engineering process and the IoT-A stakeholder workshops. In total, we
considered nine evaluation criteria. We compared Linked USDL for IoT against five
related approaches: The WS-* family, hRESTS, WADL, OWL-S and SEREDASj.
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Figure 8.10: Radar charts of the different approaches and the degree they fulfill the evaluation
criteria
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We showed that Linked USDL for IoT, as a part of the Linked USDL family,
fulfills most requirements. Compared to the current gold standard, – that is, the WS-*
family – it lacks infrastructure and tooling support, as well as standardization. In
those two aspects WS-* is clearly superior to all other service description languages.
Linked USDL comes with some specialized tooling and can use all RDF-based tools.
Nonetheless, the lack of infrastructure and tooling is blatant when compared to the rich
tooling of WS-*. Only, WS-* has gone through a standardization process. The work
on Linked USDL itself was initiated within the W3C USDL Incubator Group. It is
mainly driven by SAP, the Knowledge Media Institute of The Open University, and the
University of Coimbra.

Linked USDL for IoT is stronger in the area of modeling business aspects. Fur-
thermore, it is – naturally – more tailored towards the needs of Internet of Things
applications: It supports distributed descriptions, comes with a Quality of Information
vocabulary, and generally offers a better support for semantic extensions. The WS-*
protocol family, representing a non-semantic means of describing services, of course
lacks any semantic modeling abilities. Extensions for WSDL exist (see Chapter 2.11),
but do not have gained widespread adoption.

In comparison with its direct competitors – OWL-S and SEREDASj – it is either
on par (OWL-S) or even more advanced (SEREDASj). Both, OWL-S and SEREDASj,
lack support for business aspects. OWL-S is not specifally tailored towards the needs of
the IoT, although some research exists. OWL-S did not develop into an integrated suite
of complementary languages, but is more based on isolated research. Development of
the OWL-S generally seems to have stalled, recently. Tooling support, for example
the Protegee plugin has not been further development since 2007. Linked USDL has a
web-based marketplace and service editor and currently is under active development.
SEREDASj is a relatively new development; it is not specifically made for the IoT
as well. It is tightly coupled to JSON and is only a description language (similar to
WSDL) and does not come with any vocabularies of its own. Linked USDL for IoT
and OWL-S are not tightly coupled to the RESTful paradigm, while SEREDASj solely
is based on a RESTful design.

For industry-wide adoption of Linked USDL for IoT it needs to improve on tooling
and standardization. Furthermore, with increasing adoption it would need to be strictly
decided which parts of a service-ecospace should be standardized as part of the Linked
USDL family of vocabularies, and which parts should be left for external (linked)
vocabularies. An open standardization process would prevent users from fearing a
vendor lock-in and strengthen their belief in a further development of the language.
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8.6 Experimental Evaluation Framework

We designed a (semi-) automatic toolchain for measuring different properties of IoT ap-
plications and protocols within the Mote Runner simulation environment. As discussed
in Chapter 2 the Mote Runner system comes with a simulator called Saguaro. For
the application it is transparent if it runs on a simulated platform or on real hardware.
Within the simulation environment measurements of energy consumption and memory
consumption are possible. Measuring round trip time (RTT) and service access time
(SAT) can be done either on hardware or also within the simulation. The definition of
Service Access Time is introduced in Chapter 8.6.3. In the following we will present
the main parts of the experimental evaluation framework.

8.6.1 Simulation Environment

The Mote Runner simulation is a real-time simulation with actual code execution. The
simulation environment was used to gather the results for the OData evaluation. Further-
more, it was used to derive the energy estimations in the sleepy node implementation
and for validation of the algorithms.

8.6.2 Memory Usage measurements

The Mote Runner environment provides two tools to measure the memory consumption
of an application. Heap and stack usage can be measured over time. It is possible to
stop the execution of the Mote Runner assembly at any possible event and retrieve
memory usage data. As the Mote Runner environment is controlled and manipulated
a script like the one shown in Listing 8.1 is used. It attaches itself to the (memory)
frame creation event. Whenever this event occurs the registered listener is called and it
retrieves memory information.

Listing 8.1: Memory usage measurements in the Mote Runner simulation environment

for (var i = 0; i < this.motes.length; i++) {
var mote = this.motes[i];
var conditions = Bugz.args2conds(Saguaro.EV_VM_FRAMESTART, 1);
mote.getImpl().programHaltConditions(conditions, BLCK);

}

[...]

var listener = function(/** Sonoran.Event */hev, /** Saguaro.
Connection.EventListeners */eventListeners) {

[...]
if (evname !== Saguaro.EV_FRAMESTART) {

return;
}

for (var i = 0; i < _this.motes.length; i++) {

207



var mote = _this.motes[i];
var data = mote.getImpl().inspectResources(BLCK).getReply().

data;
var stack = data.vmstack[1];
var theap = data.theap[1];
if (stack != -1 && stack < _this.freeStack[i]) _this.freeStack

[i] = stack;
if (theap != -1 && theap < _this.freeTheap[i]) _this.freeTheap

[i] = theap;
}

[...]

The memory measurements produce a human-readable result and, of course, can
also be redirected to disk. The human readable output looks as follows:

Listing 8.2: Memory usage measurements in the Mote Runner simulation environment

---------------------------------------
Maximum Resource Usage:
---------------------------------------

| STACK | THEAP
02-00-00-00-00-5A-E3-D1 | 52 | 536

FREE | 912 | 3256
AVAILABLE | 964 | 3792

02-00-00-00-00-5A-E3-D0 | 52 | 536
FREE | 912 | 3256

AVAILABLE | 964 | 3792
---------------------------------------

The memory usage measurements should not be used together with time-based
measurements, as it increases the execution time while recording memory usage data.
Therefore, the data gathered for memory and all time-based measurements (energy,
access times) were retrieved in different runs.

8.6.3 Service Access Time Measurements

We usually measure the service access time. The service access time is defined as
follows:

Service Access Time (SAT): Service access time (SAT) is the time it takes for a ser-
vice request to be sent to the recipient, processed, sent back and decoded by the
service requester.

The SAT can be seen as the service-oriented equivalent of the round trip time.
For CoAP calls, and therefore also for OData, we used Californium [218], a CoAP
implementation for more powerful devices, from ETH Z ürich. Californium is written
in Java using heavyweight technologies. Its design goal was not particularly the use on
embedded devices, but ease of use from a developers point of view.
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8.6.4 Energy Measurements

The Mote Runner platform provides a tool that writes a trace of the power consumption.
Basically, there are two approaches for estimating the energy consumption: hardware
(attached or in circuit) measurements and simulation-based approaches. Approaches
based on hardware rely on additional components on the mote (to provide run-time
measurement of energy consumption) or it means the complicated and time consuming
use of oscilloscopes and multimeters. Due to the nature of the used devices these
measurements are quite accurate. Hurni et al. [179] studied the accuracy of software
based estimation compared to sophisticated (in circuit) hardware measurements. They
reached the conclusion that the while due to inaccuracies in the production of electronic
components, differences of more than 4% are possible. Protocol generic, per node cali-
brated parameters could reduce the difference to as low as 1.13%± 1.15%. The paper
conveys that software-based energy estimation can be a valuable alternative to using
sophisticated measurement hardware. Therefore, software based power consumption
measurements are more than feasible when comparing protocols and yield results that
are very close to in circuit measurements.

The energy tracer outputs a given point in time for a specific mote as triple (tn, pn,
rn), where tn is a timestamp given in nanoseconds starting from the beginning of the
simulation, pn is the current draw in nano-ampere and rn is the reason for changing the
energy state based on the internal state machine. As soon as the state in the simulation
changes and, thus, the power consumption (current draw), a new triple (tn+1, pn+1,
rn+1) is generated.

Figure 8.11: Visualized current trace as produced by the Mote Runnner simulation
environment

209



A trace, as written by the Mote Runner simulation environment is shown in Listing
8.3. The energy traces of different energy states are shown in Figure 8.11. The figure
shows the energy trace of a periodic application doing some calculations periodically ev-
ery 10 seconds and sending data after every second periode. The radio is in sleep mode
in between. The peaks at around 1.8∗107nA are the short transmitting phases, the calcu-
lations are around 1.4 ∗ 107nA, while the sleeping in between is around 5 ∗ 106nA. The
Mote Runner simulation environment, in conjunction with our evaluation framework,
allows an a-posteriori analysis and simulation of different hardware characteristics. We
used that feature to simulate different behavior of the Waspmote Pro for scenarios with
deep sleep and without deep sleep.

Listing 8.3: Power measurements in Mote Runner Simulation environment

[nS] [nA] [State]
12221068740 17602000 RUN
12221100870 7612000 IDL
12222352067 17602000 RUN
12222370157 12602000 HLT
12223346701 17602000 RUN
12223346701 12602000 HLT
12223346701 17602000 RUN
12223346701 20402000 TXING
12223351561 10412000 IDL
12223922701 20402000 RUN
12223922701 17602000 ACTIVE
12223925941 7612000 IDL
12223925941 17602000 RUN
12223947001 16002000 IDLE
12223961581 6012000 IDL
13222630406 16002000 RUN
13223624403 14002000 LED off

Within a given time interval [ta, tb], using an energy consumption function Ψ(t)

and an ordered set of energy level change points p = (t0 = ta, t1, t2, ..., tn = tb) the
overall energy consumption E(ta, tb) can be calculated via discrete integration:

E(ta, tb) =

∫ tb

ta

Ψ(t)dt

=

n−1∑
x=0

Ψ(tx) ∗ (tx+1 − tx)

(8.1)

We wrote a tool in Java that takes the output of the Mote Runner simulation
environment, reads it, performs some operations on the data and outputs the energy
consumption. The framework is shown in Figure 8.12. First, the power measurements
triples (ti, pi, ni) are read, then some processing can be done one the data, like filtering
for different motes or applying a different energy profile. This is particularly useful for
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Figure 8.12: Energy evaluation framework

performing ”what-if” analysis without having to run the simulation again. For example,
the impact of a different sensor technology could be evaluated based on datasheet
information or the impact of different sleep modes can be evaluated. We used this to
conveniently simulate the impact of different sleep modes – for example, the hibernate
mode on the Waspmote Pro platform or to see how a different radio would have affected
the total energy consumption. The total energy consumption can be either based on the
internal values of the Mote Runner plugin or via state-based plugins for the what-if
simulations of other platforms. The output of Mote Runner energy measurements are
typically given in mAs in all Mote Runner documentation and publications. We are
following this convention.
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8.7 OData Stack

In this section we perform a quantitative analysis of our OData implementation and,
consequently, the CoAP implementation. We are using the software (Mote Runner) and
hardware (IRIS) as described in Chapter 2. First, we present the experimental setting
that was used to perform our experiments (Chapter 8.7.1). As outlined in Chapter
6.3.2.1 we are communicate with the mote directly. The enterprise system has direct
access to the mote and communicates with it without an intermediary gateway.

8.7.1 Experimental Setting
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Figure 8.13: Experimental setting

All experiments were conducted with IRIS motes. The technical details and spec-
ifications of the IRIS mote can be found in Chapter 2.1.2. All measurements were
performed within the Mote Runner simulation environment. We were only interested
in scenarios, in which the mote communicates directly with the enterprise system
following the Internet-of-Things vision. No application-layer gateway was used. The
experimental setting is shown in Figure 8.13. The motes were running the Mote Runner
v11 with a 6LoWPAN network stack, as shown in Figure 6.3. The Mote Runner v11
6LoWPAN stack is tailored towards predictability and not optimized for low energy
consumption or high throughput. Some optimization-potential has been addressed
with later versions of MRv6. Please refer to Chapter 2.3.3 for more details on MRv6.
We assume our results to be generalizable to other platforms and protocols as well,
because the ratios between sending, receiving, sensing and using CPU time should be
comparable on all platforms.

8.7.2 Mote Setup

The OData service we are exposing consists of one mote with three different sensors
(temperature, humidity and light), where each has a unique ID, a name and can return a
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value (data). As outlined in Chapter 6.3, service discovery is done through the service
description and the metadata information. The service description of our service looks
as follows:

Listing 8.4: ”OData Service”

<?xml version="1.0" encoding="utf-8" ?>
<service xml:base="http://tmpsvc.sap.com/OData.svc/" xmlns="http

://www.w3.org/2007/app" xmlns:atom="http://www.w3.org/2005/
Atom">

<workspace>
<atom:title>Default</atom:title>

- <collection href="Sensors">
<atom:title>Sensors</atom:title>

</collection>
</workspace>

</service>

The JSON representation is more compact and therefore more suitable for con-
strained devices:

Listing 8.5: ”OData Service - JSON”

{"odata.metadata":"http://tmpsvc.sap.com/OData.svc/\$metadata","
value":[{"name":"Sensors","url":"Sensors"}]}

The $metadata keyword, which provides information about the sensors looks as
follows:

Listing 8.6: ”OData Service - metadata”

<?xml version="1.0" encoding="utf-8"?>
<edmx:Edmx Version="1.0" xmlns:edmx="http://schemas.microsoft.com/

ado/2007/06/edmx">
<edmx:DataServices m:DataServiceVersion="3.0" m:

MaxDataServiceVersion="3.0" xmlns:m="http://schemas.microsoft.
com/ado/2007/08/dataservices/metadata">

<Schema Namespace="Mote" xmlns="http://schemas.microsoft.com/ado
/2009/11/edm">

<EntityType Name="Sensor">
<Key><PropertyRef Name="ID" /></Key>
<Property Name="ID" Type="Edm.Int32" Nullable="false" />
<Property Name="Name" Type="Edm.String" m:FC_TargetPath="

SyndicationTitle" m:FC_ContentKind="text" m:FC_KeepInContent="
false" Nullable="false" />

<Property Name="temp" Type="Edm.String" m:FC_TargetPath="
SyndicationSummary" m:FC_ContentKind="text" m:FC_KeepInContent
="false" Nullable="true"

<ValueAnnotation term="Measurements.Unit.Celsius">
</property>
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<Property Name="humi" Type="Edm.String" m:FC_TargetPath="
SyndicationSummary" m:FC_ContentKind="text" m:FC_KeepInContent
="false" Nullable="true" />

<ValueAnnotation term="Measurements.Unit.Humidity">
</property>

<Property Name="lght" Type="Edm.String" m:FC_TargetPath="
SyndicationSummary" m:FC_ContentKind="text" m:FC_KeepInContent
="false" Nullable="true" />

<ValueAnnotation term="Measurements.Unit.Light">
</property>
<Property Name="data" Type="Edm.String" m:FC_TargetPath="

SyndicationSummary" m:FC_ContentKind="text" m:FC_KeepInContent
="false" Nullable="true" />

<ValueAnnotation term="Measurements.Unit">
</property>
<EntityContainer Name="APPService" m:IsDefaultEntityContainer="

true">
<EntitySet Name="Sensors" EntityType="Mote.Sensor" />
</EntityContainer>

The metadata encodes that our mote has entities (in OData notation) of type
Mote.Sensor. These entities have certain properties (ID, name, and data) as well
as corresponding datatypes. Furthermore, the set Sensors as specified in the service
description is further defined to be of type Mote.Sensor. The $metadata request in
OData v3 is only specified for ATOM/XML. OData v3 does not support the metadata
document as part of a JSON representation. As per OData v4 the JSON representation
is also supported now. The responses of the motes are based on that schema.

Listing 8.7: ”OData service- sample response: ATOM”

<d:temp xmlns:d="http://sap.com/dataservices" xmlns:m="http://coap
/metadata">24</d:temp>

The same result in JSON verbose format [272] would look as follows:

Listing 8.8: ”OData service - sample response: JSON”

{"odata.metadata":"[::::1]/OData.svc/$metadata#Edm.String","temp
":"24"}

As baseline for a system that is not OData-enabled, we choose pure CoAP as
application layer protocol with a small data representation. This baseline could be used
as data representation in an external service description such as Linked USDL for IoT.
In the following we will refer to this baseline simply as CoAP, in comparison to JSON
and ATOM. The message representation in the CoAP baseline is then in the form of
comma delimited property:value pairs, as shown in the following code fragment:

Listing 8.9: ”OData payload - sample CoAP response”
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id:<sensor_no>,n:<sensor_name>,d:<value>

A means of discovery resources is the CoRE Link Format[349], accessible through
the .well-known/core interface. There is a subtle difference between the ./well-known/core
and OData service discovery: the CoRE Link Format supports Resource Discovery,
while OData aims for Service Discovery. The CoRE Link Format provides web linking
as specified in RFC5988[281] and can be used to discover the links hosted by a CoAP
server. It returns information in a link-header style format [ 281]. A minimal resource
description for a similar resource based access to the mote could look as follows:

Listing 8.10: ”OData Service - metadata in Core Link Format”

</temp>;rt="temperature";ct=0;if="sensor"</hum>;rt="humidity";ct
=0;if=sensor,</light>;rt="light";ct=0;if="sensor"

First, the resource is named – in this case ”/temp”, for temperature sensor. Then the
resource type (rt) and the content type (ct). The rt attribute is string used to assign an
application-specific semantic type to a resource [349]. In case the CoRE-Link Format
is used in conjunction with Linked USDL for IoT, it can be used for linking the two.
The interface ”if” specifies the interface to be used, in our case sensor. This is also an
application specific string. The ct attribute specifies the content type, as described in
the CoAP specification [354]. A content type of zero means plain text.

Q1 GET coap://[]:1024/OData.svc?$metadata
Q2 GET coap://[]:1024/OData.svc/sensors
Q3 GET coap://[]:1024/OData.svc/sensors(0)
Q4 GET coap://[]:1024/OData.svc/sensors(0)/ID
Q5 GET coap://[]:1024/OData.svc/sensors(0)/Name
Q6 GET coap://[]:1024/OData.svc/sensors(0)/temp
Q7 GET coap://[]:1024/OData.svc/sensors?$filter=

Data gt 42
Q8 GET coap://[]:1024/OData.svc/sensors?$filter=

Data eq 60 and Name eq humidity

Table 8.9: Queries

8.7.3 Results

In the following we investigate a typical IoT-scenario in which a backend system is
directly communicating with the mote. The queries used to evaluate the properties of
the system are listed in Table 8.9. The computational complexity increases with each
Qi. In the rest of the work we will refer to these queries as Qm

i or Qmi, where i is
the query number as listed in Table 8.9, and m is either A for OData/ATOM, J for
OData/JSON and C for CoAP, with or without the compression suffix CP
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Figure 8.14: Service access time (in ms, blockwise-transfer with block size 64 Byte)
for queries Q1 to Q8 sorted by QA

n payload size

Query ATOM ATOM/CP JSON JSON/CP COAP

Q1 1627 1164 — — 115
Q2 1643 906 191 156 63
Q3 604 443 110 105 23
Q4 99 96 74 74 4
Q5 94 88 85 84 13
Q6 87 82 76 76 4
Q7 1199 734 148 100 39
Q8 761 523 108 108 18

Table 8.10: Payload size (in Bytes), compressed (CP) and uncompressed

The resource consumption of the on-mote implementation is shown in Table 8.11.
It is seen that the memory consumption of the OData/ATOM implementation is larger
than the memory consumption of JSON. Nonetheless, the JSON implementation is
comparable to a pure CoAP implementation in terms of resource consumption. We
did not optimize for resource consumption – for example, some memory blocks were
pre-allocated to have a big enough table available for sensor data and the dictionary,
and might not be actually used. More aggressive implementations are possible. Only
stack and heap are critical because the IRIS platform offers only 8kb of which nearly
half is already used by the Mote Runner VM. Flash is not that much of an issue on the
hardware platform. The IRIS mote offers 128KB of program flash and another 512KB
of data flash. The actual payload of each query is shown in Table 8.10.

For each query Q1...Q8 we measured the service access time, that is, the time from
a request being issued by the the service consumer until the answer has been decoded.
The results (averaged over 100 runs) are shown in Figure 8.14 for uncompressed data
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COAP JSON ATOM

Stack Heap Flash Stack Heap Flash Stack Heap Flash

Q1 232 3271 3850 — — — 292 3543 4255
Q2 232 3284 3850 292 3460 3931 292 3552 4255
Q3 232 3252 3850 292 3432 3931 292 3476 4255
Q4 232 3244 3850 292 3436 3931 292 3408 4255
Q5 232 3248 3850 292 3440 3931 292 3496 4255
Q6 232 3248 3850 292 3448 3931 292 3416 4255
Q7 232 3316 3850 292 3500 3931 292 3524 4255
Q8 232 3404 3850 292 3528 3931 292 3548 4255

Table 8.11: Memory consumption (maximum, in bytes)

and in Figure 8.15 for compressed data. For small result sets the difference between
the three formats is negligible. Larger data sets change the situation. Compression can
decrease the service access time considerably for large ATOM requests and, to some
degree, the JSON requests. CoAP and JSON remain at low service access times, but the
ATOM format increases the service access time rapidly because of the amount of data
to be transmitted. Compression does help in case of ATOM, but is still considerably
worse than JSON. It reduces the energy consumption and the service access times, but
not to a degree where it could compete with JSON or even CoAP. Devices that are less
constrained would profit from more advanced compression schemes. Unfortunately,
OData v3 does not support a metadata JSON representation, so at least once a download
of the metadata is necessary.

The CoAP block size also affects the service access time. A 6LoWPAN packet, even
if fragmented, is typically more efficient than the CoAP block option in settings that do
not suffer packet loss and when WSN links do not suffer from congestion often [ 240].
In such cases they show a better performance than the CoAP block option. Nonetheless,
in cases of packet loss or when fragmentation is not available or exceeds the capabilities
of the system, CoAP blockwise transfer can be used. Furthermore, block-wise transfer
has the additional advantage that allows the server to be stateless. A block-wise transfer
does not need any connection setup or memory of previously sent blocks. Most highly
constrained devices are running on so few memory that the handling of additional state
and possible caching of packets would exceed their capabilities. In our implementation
we therefore rely mainly on the CoAP block option. The relationship between CoAP
block sizes and the resulting service access times are shown in Figure 8.16. Early
negotiation of block sizes is assumed. The simulation was idealistic as we assumed no
packet loss, and minimal to no application-related overhead (e.g. sensing) that might
cause later transmission. Due to limitations of the MRv6 protocol [180], we did not
take the overhead of the IP-layer fragmentation or the adaption-layer fragmentation into
account, but only the transmissions and receptions of packets. The VM-based approach
of Mote Runner might have added some delays as we do not control the hardware. It is
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possible that the VM delays sending by a slot or two (e.g. garbage collection, different
tasks running). Other than that, the response times typically did not vary by more than a
few slots for the same amounts of packets send when running with the MRv6 protocol.

We experimented with non-standard block sizes (see also Chapter 2.5) to estimate
the effects of an unconstrained block size negotiation. As shown, the effects were
relatively low. So, the restriction is sufficient. The main factor reducing the response
time is the number of new block requests. A block size of 32 bytes, of course, requires
twice as many new block requests than a 64 byte block size.
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Figure 8.15: Service access time (in ms, blockwise-transfer with block size 64 Byte)
for queries Q1 to Q8 (compressed) sorted by QA

n payload size. CoAP (see also Figure
8.14) as baseline for comparison (always uncompressed)

The energy consumption evaluations were performed within our simulation en-
vironment. In Figure 8.17 and Figure 8.18, we show the energy consumption of
OData/ATOM, OData/JSON and CoAP once for a block size of 64 bytes and 256 bytes.
As can be seen, the advantages of a more machine-readable and machine-interpretable
data representation is payed with higher energy consumption. The ATOM response
needs most energy, for the obvious reason of more air time, but also as there are many
transfers from flash memory to RAM. The energy consumption of JSON, and especially
JSON/CP, is comparable or only slightly higher than the CoAP baseline. Smaller block
sizes lead to more data transfer for the block requests and responses, as well as more
computation to process these requests and thus an increase in energy consumption.
The advantage of a smaller block size is increased reliability and in case of very lossy
network increased throughput. Furthermore, they avoid fragmentation on lower layers.

8.7.4 OData versus Linked USDL

In the following we will briefly compare OData and Linked USDL for IoT. They follow
different design philosophies, which leads to certain strengths and weaknesses. The
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Figure 8.17: Energy consumption (in mAs, serving a series of 100 requests, blocksize
64 Byte)

main advantage of OData is its industrial support. Unlike Linked USDL, it prescribes a
data representation. Linked USDL for IoT provides far richer modeling possibilities. It
has a more comprehensive service idea – for example, it allows model business aspects,
human work, and interaction patterns among other things. As discussed in Chapter
6.3.3.2 for reasoning purposes, a mapping from OData to RDF can be performed.
OData is more than just a service description, it is also a query language. Linked USDL
for IoT is not designed to work on that level. Extending Linked USDL for IoT with
complex query capabilities might also not be desirable. However, further extensions of
Linked USDL for IoT that allow modeling such query interfaces easily are possible.

A Linked USDL implementation that uses JSON-LD as data representation would
have approximately the same resource consumption and general behavior as we ob-
served in the OData/JSON case. Linked USDL for IoT is able to ”semantify” our CoAP
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Figure 8.18: Energy consumption (in mAs, serving a series of 100 requests, blocksize
256 Byte)

baseline as well. Each mote has a core link format description and a Linked USDL
service description, similar to Listing 5.18. Thereby, the energy and service access
times could be reached by using Linked USDL as external service describing, linking
the result sets to their respective semantics. In case of more complex result sets, of
course, the size of the Linked USDL payloads and the necessary modeling effort would
also increase.

8.7.5 Conclusions

We performed an experimental feasibility study on the applicability of OData on Class
0 devices. Based on the terminology we introduced in Chapter 1.1, this represents
a top-down approach for enabling REST-based interoperability in a semantics-aware
enterprise. As shown, there is a considerable energy overhead of ATOM/XML over
the CoAP baseline. The SATs are also much higher and they render the ATOM rep-
resentation as an almost impossible choice for battery-powered constrained devices.
Compression significantly improved both the SAT and the energy consumption. In
case of a Class 0 device, it is still not feasible unless the device communicates very
infrequently. Given our experimental platform, we could not improve much on this.
Class 1 and higher devices could benefit from more advanced ATOM/XML represen-
tations using XMI and other technologies. More details can be found in Chapter 2.8.
Nonetheless, compared to JSON the advantage of the baseline shrinks. The difference
between JSON/JSON-CP and CoAP is the price to be paid for an enterprise protocol on
an IoT-node. The overall energy consumption was comparable. The CoAP baseline did
consume significantly less energy than ODATA, but typically not significantly less than
the JSON or JSON/CP representation. In terms of SAT, the JSON representation was
between 1.38 and 2.62 times the respective SAT of the COAP baseline. JSON/CP had
SATs between 1.20 and 2.62 times the baseline. Of course, as shown in Chapter 2.8,
real performance gains from the compressed versions are to be expected for larger data
sets when lot of sensor data has to be transmitted. For exampleQ7, where the amount
of data was reduced to three thirds of the original, the SAT time immediately decreased
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by around the same. The critical $metadata information, one of the weak points of
OData v3, decreased from around 6.0 times the baseline to 4.0 times the baseline. From
a pure SAT and energy point of view, this makes the bottom-up approach using Linked
USDL for IoT more attractive. In contrast, the use of an industry standard increases
interoperability immediately, without the need for Linked USDL. One is then, of course,
limited to the semantic expressiveness of OData. A major drawback of OData v3 is
the fact that the $metadata, thus the place were all the semantics is provided, has no
representation in JSON and thus always needs to be transmitted as ATOM/XML. The
situation changed with OData v4 so that future OData implementations on IoT systems
can benefit from a $metadata JSON representation.

8.8 Sleepy Nodes

In the following, we present the evaluation results of the sleepy node framework as
described in Chapter 7. First, we describe the experimental setup. We proceed by
determining the constants in our energy model and discussing the impact of clock drift.
Afterwards, we evaluate our implementation and the three allocation strategies within
the windowing framework.

8.8.1 Experimental Setup

We used a network of seven nodes (n0...n6) – including the sink (n0) – in a binary tree
layout running the MRv6 protocol (see Chapter 7.5). We simulated Waspmote PROs
and IRIS Motes with hardware capabilities as explained in Chapter 2. If not specified
otherwise, the following default parameters were used to run the experiments:

In most experiments we assumed the energy state for all the nodes as follows
(n0, ..., n6) = (∞, 2Eleaf , 2Eleaf , Eleaf , Eleaf , Eleaf , Eleaf ). For leaf nodes we as-
sumed either EES1 ≡ Eleaf=10J, EES2 ≡ Eleaf=100J or EES3 ≡ Eleaf = 2000J .
The results scaled well with different energy values. The sink was assumed to have
infinite power reserves and therefore the power consumption on it was ignored.

A variable number of entities was used, 8 ± 3, the entities measurement periods
varied from 3*103 seconds to 7 ∗ 103 seconds. The experimental setup is a scaled
down version of a supply chain or warehouse scenario, with rather frequent monitoring
of perishable goods, or medicine that allows time for longer sleeping periods. The
measurement tolerance per entity was up to 20% of its measurement period. The
window size used was equal to the mean measurement period. 50% of the entities could
be measured by 2 sensors, 30% by 3 and 20% by 4. The assignment of eligible sensors
to entities according to the above percentages was done by sampling from a uniform
random distribution. All the values presented in the results are typically averages among
a number of runs (up to 15), using the same parameters. For every run the random
number generator was initialized with a different seed. We used the Monte Runner
environment v14.
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8.8.2 Energy Model

To be able to compare different sensor selections for some given measurements, we have
to be able to calculate the energy that would be spent on each node of the WSN. We
approximate this by using the linear energy model (Chapter 7.4). From a computational
point of view, as this is only an estimation based on a linear model, the calculation takes
virtually no time. The energy model, as shown in the following formula, was already
discussed in Chapter 7.4.

En = tnidle · Pidle + tnsleep · Psleep︸ ︷︷ ︸
time based

+mn
sense · Esense +mn

sleep · Esleep +mn
comm · Ecomm︸ ︷︷ ︸

event based

In this chapter, we present the actual values we derived for the two hardware
platforms. The simulation framework allows us to measure durations, states and current
draw. Furthermore, we can control the input parameters, in particularly the number
of requests, and the time in protocol sleep and protocol idle mode; therefore, we can
use ordinary least squares (OLS) regression analysis [ 314] to determine the unknown
variables in our linear equation.

The general idea is to model a variable (En) as a linear function of others. OLS
minimizes the sum of squared errors between the estimations by applying the model
and observations as measured in simulation. En has been measured, as well as tsleep
and tidle. The number of requests msense, msleep, and mcomm have been varied. For
both platforms (IRIS and Waspmote), we performed a large number of (automated)
experiments over several hours to get enough data to fit our model. In the end, we got
hundredths of Megabytes of Data. Every experiment was repeated in four different
modes of network operation, so that we could extract correlated and uncorrelated
features for approximating the different energy components of our model. The different
modes of operation were:

• Querying and Sleeping: Normal mode of operation. Nodes are put to sleep
between measurements.

• Querying Only: Only measurement queries are issued. The nodes are not put to
sleep between measurements.

• Sleeping Only: Only sleep requests are issued. No measurements are performed.

• Idle Only: The network is initialized and left in the idle state for the whole
duration of the experiment. Neither queries nor sleeping requests are issued for
any of the nodes. There is no network activity other than the one imposed by the
MRv6 protocol itself.
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For all components given in Equation 8.8.2 we derived the following energy and
power values:

Esense = 4.62891 ∗ 10−3J

Esleep = 3.45422 ∗ 10−3J

Ecomm = 6.82133 ∗ 10−4J

Psleep = 3.60 ∗ 10−5W

P base
idle = 1.70 ∗ 10−2W

Pneighbor
idle = 4.64 ∗ 10−4W


IRIS

Esense = 1.99402 ∗ 10−3J

Esleep = 6.30984 ∗ 10−3J

Ecomm = 5.27001 ∗ 10−4J

Psleep = 6.00 ∗ 10−6W

P base
idle = 1.71 ∗ 10−2W

Pneighbor
idle = 4.61 ∗ 10−4W


Waspmote Pro

We used two-thirds of the data to determine the parameters in our equation and
one-third of it for validating our model with two metrics: the mean absolute percentage
error and the coefficient of determination. The mean absolute percentage error (MAPE)
is defined as

MAPE =
1

n

n∑
i=1

∣∣∣∣Vi − V i

Vi

∣∣∣∣ ∗ 100 (8.2)

where Vi is the actual value of the observation and V i its statistical forecast. MAPE
expresses its accuracy as a percentage and describes how large the mean absolute
percentage error is. Its lower bound is zero and it has an unlimited upper bound. A
lower value means a better match of the actual observation and its statistical forecast.

The coefficient of determination R2 indicates how well the data fits its statistical
forecast as well. R2 is defined as:

R2 = 1−
∑n

i=1(Vi − V i)
2∑n

i=1(Vi −AV G(V ))2
(8.3)

The coefficient ranges from zero to one. The closer the coefficient is to one, the
better the fit. A coefficient of one means a perfect fit.

We calculated for IRIS motes:

MEAPIRIS = 1.09

R2
IRIS = 0.99951

(8.4)
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and for the Waspmote Pro Platform:

MEAPWaspmote = 1.71

R2
Waspmote = 0.99903

(8.5)

Both metrics show, for both platforms, a good fit between the expected value and
the simulated value. In the following, the simulated sleepy node algorithms use the
energy model with those derived parameters.

8.8.3 Clock-Drift and Energy Considerations

We have already discussed clock drift and its consequences in Chapter 7.5.2. Now, we
quantify its impact on energy consumption. Clock-drift is important because it prevents
a node to wake-up at the exact calculated moment. Depending on the clock-drift the
calculated and the actual clock-drift can differ substantially. Calculations are presented
in Chapter 7.5.2.

At this point, we are solely looking at the impact on energy consumption. The
energy consumption of a mote that is sleeping and about to wake up and rejoin the
network is shown in Figure 8.19. The least energy is consumed if the node wakes up at
exactly the right time, catches the beacon and immediately joins the network. This is
illustrated in the graphs at point ppm=0. Assuming a clock-drift of, for example, 10ppm
an additional 0.008J is spent on the IRIS mote (see Figure 8.19). In an experiment we
observed that the maximum energy overhead caused by drift is in the order of 1 ∗ 10−2J
per 5000 seconds sleep request. As can be seen, clock-drift that causes the mote to
wake up earlier than required is typically better than clock-drift that will cause missing
the beacon. A miss just after the beacon forces the mote to keep listening for a nearly
full beacon interval.

8.8.4 Sleepy Node Implementation

In the following, we present the results of the conducted experiments based on the
three strategies introduced in Chapter 7: first Fit, an exhaustive approach, and dynamic
partitioning. The three strategies can be summarized as follows. For further details
please refer to Chapter 7.6.3

Exhaustive Strategy (ea): The optimal solution for the task allocation problem,
with regard to our energy model and within the given window, is computed by applying
an exhaustive approach (backtracking with constrained satisfaction). An exhaustive
approach considers all possible partitions of the set Mw and evaluates them. It has
exponential time complexity.

First Fit (ff): As a second benchmark for comparison, we use a first-fit algorithm
operating within the same windowing framework. It creates a new query for every
measurement, picking one of the eligible sensors at random.
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Figure 8.19: Energy consumption for node answering a 5000s sleep request, sleeping
for that amount of time and then waking up. The chosen beacon interval here is 250ms.
For the largest drifts of 25 ppm presented, the clock offset over 5000 seconds is 125 ms.

Dynamic Partitioning (dp): Instead of considering all possible partitions, we
order the measurements Mw according to their timestamps and check only the ones that
combine neighboring measurements in a greedy way. The rationale for this strategy is
the observation that measurements that can be combined often appear in sequence.

In the presentation of the results we normalized the window sizes (ws) and toler-
ances according to the mean entity measurement period. For ws=0.5, therefore the
actual length of a window in seconds (Lwindow) was half of mean(ω). For ws = 2,
Lwindow was twice mean(ω).

ws =← Lwindow

mean(ω)

tolerancee ←
e.δi

mean(ω)
∀e ∈ G

To compare the two platforms in a better way, we typically normalized the energy
and network lifetimes with respect to the maximum value of the IRIS mote. As described
in Chapter 7.6, the task-allocation algorithm tries to take advantage of the knowledge of
the measurement timings and sensor distribution, in order to reduce energy overhead by
combining measurements into the same query. Therefore, the capability of a possible
combination relies on two factors (see Chapter 7):

1. the entities tolerances

2. the sensors overlapping
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Figure 8.20: Comparison of the different task allocation algorithms, IRIS Platform (left
hand side) and Waspmote Pro platform (right hand side), EES1. The window size is
expressed relatively to the mean entity measurement period

Figure 8.20 presents a comparison of the allocation strategies (first fit, dynamic
partitioning, exhaustive). The metric for lifetime was defined as the time until the
first node ”dies” because of energy depletion. The simulated lifetimes are idealistic.
The battery technology, timing and intensity of the applied load and the physical
environments have an impact on the actual lifetime, as demonstrated by Feeney et al.
[121].

The exhaustive algorithm is only slightly better than the dynamic partitioning
approach. This renders the latter a very good approximation. The lifetime gain for
longer windows is substantial even in the case of the first fit algorithm, where no
measurement combinations occur. This is due to all the nodes waking up at the end
of each window, which induces considerable energy costs. The longer the windows
are, the more rarely the scheduling has to be performed. Hence, the nodes can sleep
for longer periods before they have to wake up again for the scheduling of the next
window. This also explains why the other two strategies do not perform significantly
better than the first-fit strategy for small window sizes (< 1): For very small window
sizes there was not much of a difference between the three strategies, because there
were not enough opportunities to go to sleep at all. For larger window sizes (>= 1) the
first-fit strategy reached significantly lower lifetimes than the other two strategies. On
the Waspmote Pro and with a window size of two, for example, first-fit only reached
around 60% of the lifetime of the other two strategies.

It is obvious that the Waspmote platform is superior in terms of network lifetime
due to its better energy characteristics and better real-time clock. The lifetime of the
application on the Waspmote Pro platform was around 1.5 times the lifetime on the
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Figure 8.21: Comparison of the different task-allocation algorithms, IRIS platform,
EES3. The window size is expressed relatively to the mean entity measurement period

IRIS platform.
A simulation of a long-running experiment is shown in Figure 8.21. The window

sizes varied between one and ten. Due to the computational complexity of the exhaustive
approach we were running the experiment only with the dynamic partitioning and the
first fit strategies. Up to a window size of five the lifetime increases significantly, due
to longer sleeping periods. From that point on, the increase in lifetime starts to level
off. On both platforms starting from a window size of five or six no significant lifetime
increase was observed. It has to be noted though, that longer window sizes do not allow
the system to adopt to change, as discussed in Chapter 7.6.4.

We now quantify the impact of tolerances on the lifetime. Figure 8.22 shows how
lifetime varies with window size for different tolerance values. This experiment used
only the dynamic partitioning strategy. As expected, larger tolerance values result in
lifetime improvement, as more combinations are possible. The effect increases with an
increase of the window size. The impact on the Waspmote Pro platform seems higher
than on the IRIS platform. This is explained by the very low energy consumption on
Waspmote Pro while sleeping. On that platform, additional sleeping time contributes
more significantly to the network lifetime than on the IRIS platform. Of course, very
large tolerances lead to best results, but only rarely reflect real-world scenarios. Between
the very large tolerance scenarios and the very low tolerance scenarios there is a group
in the middle with a considerable lifetime increase compared to the low tolerance group.

Next, we evaluated the impact of sensor overlap. Naturally, a high amount of
overlapping will prolong the network lifetime due to our penalty based scheduler. Figure
8.23 presents the lifetime of the network for varying number of eligible sensors and
percentage of overlapping occurring among them. Lets call ns the number of sensors

227



IRIS WASPMOTE PRO

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

lif
et

im
e 

(n
or

m
al

iz
ed

)

window size

tolerance = 0.00
tolerance = 0.05
tolerance = 0.10
tolerance = 0.20
tolerance = 0.25
tolerance = 0.50
tolerance = 0.75
tolerance = 1.00

(a)

0

0.5

1

1.5

2

0 1 2 3 4 5 6

lif
et

im
e 

(n
or

m
al

iz
ed

)
window size

tolerance = 0.00
tolerance = 0.05
tolerance = 0.10
tolerance = 0.20
tolerance = 0.25
tolerance = 0.50
tolerance = 0.75
tolerance = 1.00

(b)

Figure 8.22: network lifetime vs window size for different tolerance values. IRIS
platform (left hand side) and Waspmote Pro platform (right hand side), EES1, both
tolerance and window size are expressed relatively to the mean entity measurement
period

that is indicated by the different lines in the plot. The overlapping percentage expresses
the percentage of entities that could be measured by ns sensors. The remaining entities
in this series of experiments could only be measured by one sensor. For example, for
50% overlapping, we get the result of an experiment where 50% of the entities can be
measured by three different sensors and the rest can only be measured by one. Similarly
to when varying the tolerance, considerable improvement in lifetime is observed when
the number of sensors eligible to measure the entities is increased and more overlapping
between them occurs. The penalty-based sensor allocation (see Chapter 7.6.2) ensures
that all sensors are more or less equally utilized.

8.8.4.1 Dynamic Behavior of the System

We now evaluate the dynamic behavior of the system, as explained in Chapter 7.6.4.
First, we add an arbitrary incoming measurement that is unknown to the system.
Second, we extend our evaluation by assuming the system has some knowledge about
the probability distribution of the incoming, otherwise unknown, measurements over
time. We use the concept of virtual measurements as explained in Chapter 7.6.4.2.

Dynamic incoming measurements, as introduced in Chapter 7.6.4, are served by
adding separate requests that are unknown to the scheduler at the time of scheduling.
The scheduler has to dynamically do a best effort integration into its plan or schedule
them for the next window. We modeled those incoming measurements, for each e ∈ E,
by adding new measurements reusing the existing experimental framework.
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Figure 8.23: Network lifetime vs sensors overlapping percentage. IRIS platform (left
hand side) and Waspmote Pro platform (right hand side), EES1, for different numbers
of sensors overlapping. Percentage values are normalized to [0,1]

Figure 8.24 shows the incoming requests response latency for varying window
length, as well as the corresponding lifetime. The latency for an incoming measurement
is measured as the difference between the time it is requested and the time it is actually
returned. Latency, in this case, is always the time until fresh data is delivered as
a response to a request. In a real-world scenario, some callers might be satisfied
with cached data, if they wish so. We did not further consider caching scenarios, as
this measurement would not be visible to the scheduler anyway. It is also expressed
relatively to the mean entity measurement period:

latencym =
tsreturned − tsrequested

mean(ω)

Prolonging the windows results in increased latencies. This is because measure-
ments cannot be served in a particular window have to wait until the start of the next
window. At the same time, the larger the window size is, the more probable it is that a
query able to accommodate an incoming measurement has already been scheduled and
has not yet been executed.

Next, we added virtual measurements (Chapter 7.6.4.2) in order to make the system
more responsive to dynamic measurements. To derive the time intervals of the virtual
measurements, we assume a Gaussian distribution from which we were sampling the
timestamps for the simulated dynamic incoming queries. We used the same assumptions
as in Chapter 8.8.1 to choose a mean µ, with σ = 0.1µ. In an ideal case, this means
that if we choose a confidence level of 0.2 we will observe 20% of the incoming
measurements to be within our virtual measurements interval. In a real-world scenario
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Figure 8.24: Network lifetime and latency vs window size, IRIS platform (left hand side) and
Waspmote Pro platform (right hand side),EES1. The window size is expressed relatively to the
mean entity measurement period.
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this could be an intelligent container moving along the supply chain that is expected
to reach waypoints at a given time, but the actual arrival cannot be precisely detected
– for example, because of traffic. Figure 8.25 provides an overview of the change
in the network lifetime and the latency of the incoming measurements when virtual
measurements with varying confidence levels are used for different window sizes. It is
seen that with increasing required confidence levels, the gain from prolonging windows
is very small compared to the loss from keeping the nodes awake with the virtual queries.
The higher the required confidence level, the longer the node has to be switched on,
waiting for the query, resulting in higher energy consumption and thus lower network
lifetime. The lower the confidence levels, the higher the latency due to missed wrongly
assumed virtual measurements.

This trade-off between network lifetime and the reduction of the incoming measure-
ments latency is shown in Figure 8.26. The effect is quite strong, as high confidence
levels lead to high duty-cycles and few sleeping periods. If network lifetime is the key
property of a system, then it should be designed in such a way that, as far as these
arbitrary incoming messages are concerned, either the system is provided with a very
good estimation of when the actual measurements will happen with lower deviations
than the one we assumed, or such that latency is not an issue. A system, where the
sensor measurement can be predicted with a deviation of only a few seconds or it is not
happening at all otherwise, might work well with large confidence levels. Furthermore,
a protocol with a better idling energy footprint than MRv6 should be considered.

8.8.4.2 Packet Loss

Packet loss, as mentioned in Chapter 7.6.5, may cause measurements to miss their
deadlines and impacts network lifetime. In the experiment presented in Figure 8.27
we varied the percentage of packet loss from low to high for five different tolerances
(5s, 10s, 25s, 50s and 100s). The closer the tolerance is to the round-trip time the more
likely a deadline miss is to occur. Nonetheless, even small tolerances are still somewhat
resilient towards deadline misses for relatively small to moderate packet loss rates. The
network lifetime is relatively independent of the tolerance. Naturally, it is very sensitive
to packet loss. In harsh and loosy environments the system architect would have to
adapt the combination logic of the dynamic partitioning algorithm: measurements could
be excluded from the combining algorithm if the remaining time were be smaller than a
given threshold, to ensure that a retry is possible within the time constraints.
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Figure 8.25: Network lifetime and incoming measurements latency vs virtual measurements
confidence level, IRIS Platform (left hand side) and Waspmote Pro platform (right hand side),
EES2, for different window lengths
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Figure 8.26: Lifetime and latency change, IRIS platform (left hand side) and Waspmote Pro
platform (right hand side),EES2, with varying confidence levels covered by virtual measurements
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Figure 8.27: Percentage of measurements made outside entities tolerance and network lifetime
for varying percentage of packets lost and tolerance values. EES1. Percentage values are
normalized to [0,1]
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8.8.5 Conclusions

We presented the evaluation results of our application-layer sleepy node implementation
as introduced in Chapter 7. Our experimental platform, Mote Runner, started to support
a second platform – Waspmote Pro – with Mote Runner beta13. Based upon our on-mote
simulation and evaluation framework (Chapter 8.6) we evaluated our implementation on
IRIS and Waspmote Pro motes. A modern platform such as Waspmote Pro provides a
huge benefit compared to previous platforms with regard to mid- and longterm sleeping,
due to its advanced sleep states.

First, we derived a hybrid energy model that is used to calculate the savings of
a deep sleep compared to idling. Within our windowing-based framework (Chapter
7.6) we evaluated three different strategies: a first fit, an exhaustive strategy and a
heuristic named dynamic partitioning. The dynamic partitioning heuristic is based on
the observation that measurements that can be combined (executed together) are often
sequential in time. We have shown that the dynamic partitioning approach does not
perform significantly worse than an exhaustive (optimal) approach and considerably
better than a simple first fit. It could be shown that the sleepy nodes implementation
on Waspmote Pro achieved an enhanced network lifetime that was up to 50% higher
than on IRIS motes. Without sleeping, the energy consumption for idling and running
is comparable on both platforms. One of the main problems with sleepy nodes is that
they cannot respond to any request while sleeping; thus, they, cannot react in a dynamic
environment. We also evaluated our system in such dynamic scenarios: first, by just
using the next available mote (if any) to serve a request in this window. Second, we
assumed that the system knows the probability of a request, but not its exact timing. To
cope with them, we introduced virtual measurements. The measurements are called
virtual, because at the time of scheduling its not yet clear when they will become
real measurements. The scheduling algorithm now keeps the mote on for the time
period specified by the virtual measurements in order to increase the responsiveness
of the system. Our experiments have shown though, that such a strategy – while
indeed increasing the responsiveness – decreases the network lifetime significantly. It
is important that system designers carefully choose a window size that matches their
requirements concerning network lifetime. The less often the system changes, the
better and the more soft their real-time requirements are. Higher tolerances allow the
algorithm to combine more measurements and, therefore, save energy.

Knowledge about this long term sleeping periods cannot be derived easily by the
motes themselves, or by a network-layer protocol. A semantics-aware enterprise can
benefit from the knowledge of its entities to maximize the energy savings. Sleepy
nodes, in conjunction with a windowing-based framework, allow the system to maintain
a degree of flexibility in order to adapt to a changing environment. Sleepy nodes
can benefit from a semantic platform in various ways. First, the data stored about
entities and positions can be derived easily. In addition, the dynamic behavior can be
significantly improved if the system is able to reason about upcoming measurement
requests. In combination with learning algorithms that leverage on the semantic data
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and gathered data, patterns could be deduced that improve the forecast of measurements
and adopt virtual measurements accordingly.

8.9 Conclusions

In this chapter, we presented the evaluation results of our work. We applied empirical
and experimental research methodologies. Our empirical evaluation stands on three
pillars: first, an internal requirements gathering process (internal stakeholders and
domain experts); second, a broader and structured requirements gathering process based
upon the IoT-A stakeholder workshops; third, a survey on the use of semantics in the
IoT. In addition, we applied an architecture evaluation methodology to gain insight
into the strengths and weaknesses of our proposed architecture. The experimental
evaluation is based on the Mote Runner platform running JAVA-based applications. We
prototyped our CoAP, OData and Sleepy Node implementation and measured, among
others, response times and energy.

The proposed architecture has been evaluated using an architecture evaluation
methodology based on SAAM [198] and extended with industry best practices. The
methodology is described in Chapter 8.1. Our scenario-based architecture analysis
showed that the architecture generally fulfills the requirements. It is flexible enough to
accommodate a variety of changes. The semantic-awareness approach using Linked
Services fits the needs of enterprises well. However, we also identified some risks. The
architecture and its components are not well suited for hard real-time requirements.
Additional effort is necessary to adopt it accordingly and to introduce mechanisms to
support hard real-time requirements.

The stakeholder workshops and the survey generally showed an expected move
of IoT-applications towards standardization – mainly towards REST-based systems
built upon IP-technology (6LoWPAN) – and an increased interest in semantics. The
stakeholder workshops and the survey were conducted in a community that traditionally
worked with 802.15.4 networks, we especially did not survey mobile (as in IPad or
IPhone) related developments. The use of specialized protocols, which traditionally
played an important role in the IoT community, is declining. They are expected to be
almost completely replaced by already existing standards. On the application layer the
participants were split when asked if today’s application-layer protocols sufficiently
support the special needs of IoT-applications. All other layers are clearly expected to
move towards standards. One explanation could be that the large payloads generated by
application-layer protocols and their processing complexity are beyond the constraints
of those devices. The energy and processing power needed to use protocols such as
SOAP is a magnitude higher than of simple protocols such as CoAP. Furthermore, in
the past a lot of research has been done on the network, transport and the MAC-layer.
The lack of standardized application-layer protocols could also be because the IoT-
market is still yet to be established. Initiatives, for general-purpose application-layer
protocols like CoAP are relatively new. Different future solutions – for example, in the
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area of home automation, could compete and finally converge towards a standard. Of
course, with better battery technology coming up and the availability of more low-power
platforms, it is also possible that traditional technologies like HTTP, its successors, or
SOAP will play a major role even in future (constrained) IoT-applications. The need for
general-purpose specialized IoT-protocols thus might vanish and applications, which are
so constrained that they cannot run such a protocol, will then use a specialized protocol
and an application gateway solution. The use of semantics is anticipated and some need
for it seems to be recognized, mainly driven by the anticipation of machine-learning
systems. Of course, the the enterprise community is very much interested in such
opportunities. A more traditional ”bit-and-byte”-oriented community as, for example,
automotive might have a different view. The results might not be easily generalizable to
domains other than an enterprise/ERP community. We also looked into a phenomenon
called semaphobia[225] – the observation that many developers are somewhat reluctant
to use semantic technologies, even if they see benefit in it. The top reason, most of our
participants assumed to be responsible for this effect, are knowledge and awareness of
the development staff, followed by a lack of standardization.

We compared Linked USDL for IoT with related approaches based on a set of
criteria. Our criteria-based evaluation shows that Linked USDL for IoT fulfills most
requirements. Compared to the current gold standard, – that is, the WS-* family –
it lacks infrastructure and tooling support, as well as standardization. In those two
aspects WS-* is clearly superior to all other languages, including Linked USDL for IoT.
Nonetheless, Linked USDL for IoT is stronger in the area of modeling business aspects.
Furthermore, it is — naturally — more tailored towards the needs of Internet of Things
applications: it supports distributed descriptions, comes with a Quality of Information
vocabulary, and generally offers a a better support for semantic extensions. The WS-*
protocol family, representing a non-semantic means of describing services, of course
lacks any semantic modeling abilities. In comparison with its direct competitors, OWL-
S and SEREDASj, it is either on par (OWL-S) or even more advanced (SEREDASj).
Both, OWL-S and SEREDASj, lack support for business aspects. Besides, SEREDASj
is currently tightly coupled to JSON. For industry-wide adoption of Linked USDL for
IoT it needs to improve on tooling. An open standardization process would prevent
users from fearing a vendor lock-in and strengthen their belief in a further development
of the language.

As part of our architecture, we prototyped two protocols on the Mote Runner
platform: CoAP and OData. OData was chosen as a top-down approach for making
semantics available on constrained IoT-devices. Our proof-of-concept implementation
showed that OData can be made available to such devices. We compared OData in its
two representations JSON and ATOM/XML with a CoAP baseline. The CoAP baseline
could be made semantics-aware using Linked USDL. Therefore, it can be seen as a
possible data representation in a bottom-down approach. The difference between the
baseline and OData representation can be considered the price to be paid for semantics
on our IoT-platform. The ATOM/XML representation is possible, but both its power
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consumption and its service access times are order of magnitudes larger than with
JSON or the CoAP baseline. Compression improves the situation for queries with
larger payloads and reduces both the power consumption and the service access times.
In the case of the ATOM representation compression reduced large payloads, as the
mandatory $metadata, from around 6.0 times the baseline to 3.8 times the baseline.

The JSON representation performed better and was close to the CoAP baseline,
but on average also had a relative penalty of between 1.2 and 2.6 times the CoAP SAT
value. Compression did not contribute much in the JSON case for small payload sizes.
In the worst case it still needed around twice as much time as the CoAP representation.
The energy consumption was much lower than the energy consumption of ATOM, and
often as good or only slightly worse than the CoAP baseline. The still widely used
OData protocol v3 has the drawback that the overall metadata cannot be specified in
JSON representation, because it is undefined. This changed with OData v4. The change
will make it even more suitable for IoT-applications. Considering that our IoT-platform
is on the lower end of the spectrum (a Class 0 device), OData can be expected to be an
even more viable alternative on more powerful devices.

We evaluated our sleepy node implementation. The application-layer sleepy node
implementation serves as an example of how a semantics-aware enterprise can benefit
from the information available at the application layer, for example in a supply chain
or warehouse scenario. The sleepy node architecture and implementation integrates
well into our proposed platform. Our experiment was based on two IoT-platforms: IRIS
and Waspmote Pro. The Waspmote Pro has an advanced sleep state that consumes only
very little energy and thus achieved considerably higher energy savings than the IRIS
platform. First, we had to extend the existing MRv6 implementation to to allow mid- to
longterm sleeping periods. The challenge here was to integrate into the beacon-based
protocol and to calculate a wake-up point that is close to the expected next beacon after
sleeping. We derived a hybrid energy model for both platforms. The energy model can
be used to calculate beneficial sleep times. We were able to show the general benefit of
application-layer sleepy nodes. We experimentally evaluated three different strategies:
a first fit, an exhaustive approach and a heuristic named dynamic partitioning. We
demonstrated that within a time-sliced (windowed) environment this heuristic – based
upon combinable subsequent measurements – further reduces the energy consumption.
It achieved only slightly worse network lifetimes than the exhaustive approach and
generally performs better than first fit. The windowing approach we used has some
benefits and some drawbacks. Beneficial for the calculation of the sleeping periods is
that no changes to the system are expected. This allows an calculation of the sleeping
periods. Nonetheless, this is also one of the major drawbacks: Changes to the system
can only be done at the beginning of each window. Larger window sizes have shown to
increase the network lifetime, therefore there is a trade-off to be made between window
size and the number of possibilities to change the system.

For requests that arrive between two windows one naive approach would be to just
schedule it for the next window and inform the requester. Another way of handling such
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situations would be to return cached data and information about the age of the data. We
experimented with two different scenarios: we try to serve arbitrary incoming requests
anyway, and we consider requests that are expected i.e. a known probability distribution
exists. In the first case we try combine the request with an already known measurement
and schedule the request there, or look into the communication paths for a suitable node.
If no such node exists, we resort to the naive strategy of scheduling it starting from the
next window. For requests were such a node exists, the data can be served earlier than
by waiting for the next window. We also tested scenarios in which we assume to know
the probability distribution of some expected requests. We still want to leverage on
sleeping, instead of keeping the node on all the time waiting to serve the request. We
schedule therefore some virtual measurements i.e. measurements that might become
real queries. For the virtual measurements we specified confidence levels. The higher
the confidence level the longer we wait for the query. Virtual measurements reduce
the time we need to answer the requests that would otherwise be handled like arbitrary
requests. Nonetheless, the higher the confidence level the smaller the network lifetime.
Therefore, a good estimation of the time frame the requests arrives is necessary for long
network lifetimes.
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Part V

Conclusions and Outlook

In this part of the thesis we summarize our work and present the main conclusions.
We also provide on Outlook presenting opportunities for further work.
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Chapter 9

Conclusions and Outlook

Semantics-aware integration and REST-based services are considered major challenges
in future enterprise scenarios coined as theSensing Enterprise. The Internet of Things,
still being a relatively constrained environment, is currently in the lead with regard
to applying semantic technologies. More and more vendors, such as Google, are
entering the field with semantic technologies. This thesis explored various aspects of
the service-based integration of IoT-devices into a semantics-aware enterprise. We
presented conceptual and architectural work on IoT-services, and their integration
into semantics-aware enterprises. Based on our integration platform we explored two
approaches of semantics-aware enterprise integration: a bottom-up approach and a
top-down approach. The bottom-up approach semantically enriches existing protocols.
It is based on Linked USDL for IoT, a service description language specifically tailored
towards the needs of the IoT. We developed Linked USDL for IoT as an extension of the
Linked USDL family of vocabularies. The top-down approach is based on an already
existing semantics-aware enterprise protocol which we moved to and evaluated on
constrained devices. Furthermore, we discussed possibilities of modeling IoT-specific
entities and properties with OData.

We extended our proposed integration platform to support also sleepy nodes. Sleepy
nodes are IoT-devices that go to sleep, but still appear as connected to the user. We
introduced a windowing-based measurement framework supporting three allocation
strategies: a first-fit, an exhaustive approach and a self developed heuristic called
dynamic partitioning. We were able to show that dynamic partitioning performs
significantly better than first fit and only slightly worse than the exhaustive approach.
We also investigated how a window-based framework can react to requests that are
unknown at the beginning of a particular window.

9.1 Conclusions

In Chapter 3, we conducted a literature survey on definitions and usages of services
in the Internet of Things. At the beginning of our work, we realized that the term
IoT-service was often used in an intuitive way and that its relationship to the Internet
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of Things in general was unclear. We suggested a definition of Internet of Things
services that differs from the more common idea of using service as a synonym for
technical interface. Our definition based on the term ”transaction” that is consistent with
definitions found in service science. The classification and the surrounding concepts
are centered on the entity and not that much on the technical representations or means
of realization through low-level services. This idea guides the work on Linked USDL
for IoT, which we introduced in Chapter 5. We presented conceptual work on the
architectural building blocks and design considerations for an Internet of Things service
integration framework. We showed how services can be integrated into the Internet of
Things-Architecture, which is semantics-aware.

Chapter 4 built on the ideas of Internet of Things-services in general and described
how they can be embedded into an enterprise environment. We presented an architecture
for an IoT-aware enterprise, typically named the sensing enterprise. Its novelty is the
combination of two concepts – linked services and distribution – which, when combined,
serve the needs of both enterprises and small constrained IoT-devices. We argue that
(distributed) linked services are especially well suited for IoT-applications given their
limited battery power, as well as storage and processing constraints. They allow only a
minimal subset of the service description to be stored on the mote. More information can
be accessed on-demand. We identified the key drivers that will drive enterprises in the
coming years, namely: interoperability, use of standardized technologies, enablement
of sense-making, and realtime business decision support. Especially interoperability,
sense making, and real-time business support would benefit from semantic service
descriptions and linked services. We suggest an abstraction named semantic physical
business entity, which can be used in enterprise architectures and especially in modeling
environments.

Linked USDL for IoT, our extension of Linked USDL for supporting the Internet
of Things, is presented in Chapter 5. It has the advantage of being a service description
language that goes beyond the technical interface. It consists of different modules that
cover functional, operational and business aspects. In addition, it allows the usage
of already existing domain specific vocabularies, because it is modeled in RDF. We
extended Linked USDL to support REST-based IoT technical interfaces and properties
that are IoT-specific. We contribute four new vocabularies to Linked USDL to support
Internet of Things applications. Each of this vocabularies targets a specific aspect of
the Internet of Things. The covered aspects are events, quality of information, technical
endpoints and the REST paradigm. Furthermore, we embedded it into related ontologies.
We evaluated Linked USDL for IoT by performing a criteria-based evaluation and a
multivariate comparison. We identified nine key properties a service description for the
IoT should have and their importance. The criteria-based evaluation compares Linked
USDL for IoT to related approaches, namely WS-*, hRESTS, WADL, OWL-S and
SEREDASj. The multivariate comparison also takes the importance of the properties
into account. In the IoT-domain, we showed – based on our nine properties – an
advantage of RDF-based languages over traditional XML-based technologies. Linked
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USDL for IoT is one of the few approaches that have light-weight design principles
in mind. To some degree, however, it lacks tool support and standardization. In these
two aspects (tool support and standardization) WS-* can be seen as gold standard and
Linked USDL for IoT and similar approaches will have to catch up.

Our empirical results are supported by a survey, stakeholder workshops, and internal
experts. In particular, we were interested in the acceptance of semantics in the IoT,
and its relationship to IoT-technologies. We can conclude that, within the surveyed
group, there is a strong expectation towards the future enterprise IoT to be based on
RESTful paradigms supporting standards known from the Internet community. On the
application-layer the participants were split when asked if today’s application-layer
protocols sufficiently support the special needs of IoT-applications. One explanation
could be that the large payloads generated by application-layer protocols and their
processing complexity are beyond the capabilities of those devices. HTTP, for example,
is quite verbose. It remains open in our opinion if advances in hardware and new
developments on the web (like HTTP/2 or SPDY) will reduce the need for a general-
purpose IoT application-layer protocol, or if the IoT-community will have its own
protocol stack. It is interesting that Enterprises move towards IoT-protocols, instead of
moving enterprise protocols (as SOAP) towards IoT. The observation that semantics
while being advocated for many years now still did not gained widespread use could
be explained by the lack of training and the fact that the first generations of computer
scientist educated in semantic web just entered the enterprises. In general, most people
see potential for semantics in the Internet of Things and expect usages starting from
describing things and services up to reasoning on a semantic layer.

As explained in Chapter 1.4 our IoT-stack is based on CoAP as application-layer
protocol. We implemented a CoAP solution on the Mote Runner platform. In particular,
we implemented the base specification [353] and two extensions: block-wise transfer
[352] and observe [162]. We implemented the CoAP protocol (like all our software) in
Java. On one hand, it was quite an advantage because the ramp-up time was quite low,
compared to – for example – nesC. On the other hand, however, it was counter-intuitive
to work with the CoAP specification which is based on unsigned datatypes. The use of
Java in low-level and protocol programming would, in our opinion, greatly benefit from
unsigned types. For allowing (distributed) linked services some kind of redirection
possibility is desirable, similar to what HTTP offers. CoAP does not have this property
at the moment. We therefore discussed for possible solutions: 3.xx message codes,
CoAP options, Content Type and Data encoding. We concluded that, while the 3.xx
family might be the most desirable, currently the most promising solution is to move
the problem to the application itself. In our opinion this is a gap in the standard that
needs to be addressed in future CoAP releases.

We evaluated a top-down approach by using an existing semantics-aware enterprise
protocol and applied it to Class 0 IoT-motes. We propose the OData protocol as an
end-to-end solution for the integration of REST-based sensor networks into enterprise
IT systems. We concentrated on direct communication with the Mote. Interoperability
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with enterprise systems is one of main arguments for using OData. On the downside,
one has to stay within the modeling capabilities of OData: OData currently offers fewer
semantic modeling abilities than description languages based on RDF. It was coined
”semi-semantic” by some people, because of its lack of integration into the semantic
web. This seemed to be definitely justified for OData v2, already less justified for OData
v3. With OData v4, semantic annotations are fully supported. Notably, the OData
entity abstraction fits a typical sensor network usage very well, including abstracting
the topology and the sensors (or actors) as entities. This makes OData a very good
abstraction for systems that can be seen as sensor network databases. Querying the
sensor network becomes easily possible, as well as accessing temporal data. Moreover,
these can be carried out in a standardized RESTful way that is immediately accessible
by other applications. Compared to Linked USDL for IoT OData follows a close-world
assumption. Linked USDL for IoT is better integrated into the semantic world and
leverages on semantic technologies and linking well known vocabularies together. A
combination or integration of Linked USDL and OData, or more general RDF-based
languages and OData, is a current research field.

We implemented a proof-of-concept OData-enabled prototype on the IRIS platform.
The difference in resource usage and transmission time between the baseline and OData
representation can be considered the price to be paid for semantics on our IoT-platform.
The ATOM/XML representation is possible, but both its power consumption and its
service access times are order of magnitudes larger than with JSON or the CoAP
baseline. Compression improves the situation and reduces the power consumption and
the service access times. In the case of the ATOM representation compression reduced
large payloads, as the mandatory $metadata, from around 6.0 times the baseline to 3.8
times the baseline. Nonetheless, in most cases it is still considerably higher than the
JSON or CoAP representation. For a single temperature query with a minimal ATOM
representation, it needed 40% more time than JSON and around twice (93% more)
the time of the baseline. The JSON representation for this single temperature call was
around one third slower than the CoAP baseline.

The JSON representation, in general, performed better and was close to the CoAP
baseline, but on average still was in the range of 1.2 to 2.6 times the CoAP SAT
value depending on the query. Compression did not contribute much in the JSON
case for queries resulting in small payload sizes. This is to be expected though, as
(dictionary-based) compression needs more and repetitive data to perform better and
significantly reduce the payload. For example Q7, a query with a lot of payload
where the amount of data could reduced to three thirds of the original: the SAT
time immediately decreased by around the same and also power consumption was
reduced significantly. The effect is expected. As shown in Chapter 2.8, a strength
of general-purpose compression algorithms are large amounts of sensor data [110].
Therefore, OData as a sensor database with queries that return a lot of data, for example
collected over a day, will almost certainly benefit strongly from the general purpose
compression. Within a very constrained environment, as provided by the IRIS platform,
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the differences between the resource usage in terms of memory, processing time and
energy consumption of ODATA/JSON, compared to a pure CoAP solution, could be
considered small enough to justify the benefits of a full semantic integration, while the
ATOM representation is clearly not feasible unless for small use-cases. ODATA/JSON
proved to be a worthwhile alternative to pure CoAP solutions, providing enterprises
and other systems direct access to data-driven IoT-devices. In contrast to the CoAP
baseline solution, direct and standardized access the to semantic information is possible.
Moreover, for an enterprise system a sensor node or a wireless sensor network is just
another datasource that can be used in business processes, just like any other datasource
without the need for adapters or special low-level information. XML processing should
be avoided. JSON was superior to ATOM in almost every aspect. Transmission of
large ATOM files should be, if possible, redirected to a system with more performance
capabilities.

In addition to interoperability, energy efficiency is one of the major issues in wireless
sensor system. The concept of sleepy nodes, as defined by IETF [313], is relatively
new in the community. Sleepy nodes are sensor nodes that might be in an energy
saving mode for some time and thus not available for any communication, but, by
definition, a sleepy node should appear as being connected to the network to the user.
In Chapter 7 we present an implementation of a Sleepy Nodes extension to our IoT and
semantics-aware enterprise architecture. Sleepy nodes can leverage on the semantic
knowledge stored in enterprise repositories to save energy. Our prototype system was
running on two hardware platforms: MEMSIC Iris and Waspmote Pro. The Waspmote
Pro has a more precise clock and a hardware deep sleep mode. Compared to the IRIS
platform, which does not have such a deep sleep mode, the Waspmote Pro platform
had a significantly longer lifetime. We derived a hybrid energy model, combining
time-based aspects and event-based aspects, for both hardware platforms to calculate
beneficial sleeping times. We were able to show that our model predicts the actual
energy consumption quite accurately. The MRv6 implementation had to be modified to
support mid- and longterm sleeping periods. The wakeup time had to be calculated to
be as close to a beacon as possible, thus reducing the time a node has to keep his radio
on.

We compared three different allocation strategies: exhaustive, first fit and a self-
developed heuristic, which we named dynamic partitioning. As expected, the exhaustive
approach performed best, but is only feasible for a small number of sensors and entities.
Within the constraints of the windowing-based framework the dynamic partitioning
approach performed significantly better than the first-fit algorithm, and only slightly
worse than the exhaustive approach. We also adopted our windowing-based system to
cope with requests that are either unknown at the beginning of a window or only the
probability of a request is known in advance. We introduced the concept of a virtual
measurement, allowing the system to guess the arrival of a request. This increases
the responsiveness of the system, but sacrifices a lot of energy. Keeping the mote on
in order to wait for a virtual measurement to become a real measurement has a large
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impact on the system lifetime and thus should preferably only be used if the period in
which a virtual measurement becomes a real measurement is small.

9.2 Outlook

The Internet of Things is expected to grow tremendously over the next decade. Gartner
predicts $2.5M per minute in IoT spending and 1M new IoT devices sold every hour
by the year 2021. We expect significant growth not only in the consumer sector, but
especially in the enterprise sector.

Linked USDL for IoT currently is capable to describe services in the IoT following
a REST-based input/output concept. Having semantically-enriched services is a pre-
condition for many upcoming applications. We hope that the vocabulary is taken up by
the semantics community and further integrated into reasoning and machine learning
scenarios. Furthermore, non REST-based endpoints could be added to increase the
compatibility with legacy enterprise systems. Interoperability between systems could
be further improved by automatically generate endpoints depending on the application.
It would then be possible to generate, for example, a SOAP/WSDL endpoint in addition
to a REST endpoint.

We proposed a semantics-aware enterprise architecture and some modeling concepts
that center around semantics. We would encourage further work on modeling IoT with
semantics in a BPMN-context and its automatic execution. Engines and concepts (such
as SPBQL) need to be fully specified and integrated into an business process execution
framework. We would like to see experimental results of such a platform. Further
work on the distribution of service descriptions, versioning and the combination of
distributed service descriptions would also be worthwhile.

OData is an upcoming semantics-aware protocol, which can also play a major role in
IoT-applications. Our experiments were conducted with OData v3 and should be moved
to OData v4 and its JSON representation. With more advanced hardware platforms
new energy measurements with better compression schemes would be interesting for
both JSON and also XML. Our modeling of services and sensors for the IoT was based
on the capabilities of OData v3. More work on how to model the IoT on OData v4
would be interesting. For a better integration of OData into the Internet of Things new
vocabularies are required. Thus, work on the specifications of those vocabularies and
their standardization is necessary. Recent work on the integration of OData and the
traditional SPARQL/RDF-based semantic web looks quite promising. This would also
allow to merge and combine Linked USDL for IoT and OData-based services.

The sleepy node implementation could be enhanced in several ways. The current
implementation is very much bound to the capabilities of the Mote Runner Platform
and its MRv6 protocol. We suggest to further investigate its behavior on different
platforms and with different protocol stacks, with cross-layer approaches in mind. We
expect further gains in network lifetime when all layers are implemented in an energy
efficient way. Not only the network lifetime as a whole would improve, but especially
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our concepts for reacting to dynamic behavior would benefit. For example, virtual
measurements would probability perform much better with a more energy efficient
MAC and network protocol that is consuming less energy while idling. The dynamic
partitioning strategy could be extended. For example, it currently always just takes the
current window into consideration. A look-ahead could be implemented that combines
measurements from two windows, if the tolerances allow it. The window sizes are
currently fixed and chosen by the designer. Dynamic window sizes are an option that
would add further flexibility to the system. The virtual measurement concept could also
be applied to different scenarios with different underlying probability distributions.

To summarize, interoperability and integration on all layers, including the semantic
layer, will be the key for enabling a magnitude of new applications. Compared to the
semantic web, which was suggested to be the next big game changer, but did not keep
these promises, we suggest a more pragmatic approach. Instead of describing the whole
world we go step-by-step. The reluctance to use semantics, termed as ”semaphobia” by
Lanthaler and Gütl [225, 223] will shrink over time when semantics are used sense-fully
and are gradually introduced into software products. Google for example, announced in
2015 a dedicated operating system for the Internet of Things, and in this context even
more important a project called Weave that can be used to semantically describe things
using JSON based semantics. Widespread use of semantics, and especially semantic
descriptions of things and services, is in our believe only a matter of time. The future
will be based upon semantic interoperability, but it will be different than the semantic
web movement predicted.
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Part VI

Appendix



Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Net-
works (IETF specification).

A Ampere.

ACK acknowledgement.

API application programming interface.

BPMN Business Process Model and Notation.

CoAP Constrained Application Protocol.

CON confirmable message (CoAP).

CoRE Constrained RESTful Environments.

CSMA carrier sense multiple access.

ERP Enterprise Resource Planning.

EXI efficient XML interchange.

GPIO General Purpose Input Output.

HTML hypertext markup language.

HTTP hypertext transfer protocol.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

IoT Internet of Things.

IoT-A Internet of Things-Architecture.
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IP Internet Protocol / Integration Platform.

IPI Integration Platform instance.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

J Joule.

JSON JavaScript Object Notation.

JSON-LD JavaScript Object Notation - Linked Data.

LAN Local area network.

M2M machine-to-machine.

MAC medium access control.

MOTE Wireless Sensor Node.

MR Mote Runner.

MRv6 Mote Runner Implementation of IPv6.

OWL Web Ontology Language.

PBE Physical Business Entity.

PDU protocol data unit.

PHY physical layer.

PRA Physical Resource Adapter.

PSU Power Supply Unit.

RDF Resource Description Framework.

REST Representational State Transfer.
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RX receiving.

SPARQL SPARQL Protocol and RDF Query Language (re-
cursive acronym.

SPBE Semantic Physical Business Entity.

TCXO Temperature Compensated Crystal Oscillator.

TX transmit, sending data.

UART universal asynchronous receiver/transmitter.

UDP User Datagram Protocol.

URI Uniform Resource Identifier.

USDL Unified Service Description Language.

V Volt.

VM Virtual Machine.

W Watt.

WSN Wireless Sensor Network.
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Alexander Salinas Segura, Matthias Thoma, and Joachim W Walewski, “A pro-
cess for generating concrete architectures,” in Enabling Things to Talk. Springer,
2013, pp. 45–111.

[57] Andrés Boza, MME Alemany, Llanos Cuenca, and Angel Ortiz, “Event Manage-
ment for Sensing Enterprises with Decision Support Systems,” Annals of Data
Science, vol. 2, no. 1, pp. 103–109, 2015.

[58] Adam Brandenburger and Barry Nalebuff, Co-opetition. Broadway Business,
2011. ISBN 978-0385479493

[59] Torsten Braun, Thiemo Voigt, and Adam Dunkels, “Energy-efficient TCP op-
eration in wireless sensor networks,” Praxis der Informationsverarbeitung und
Kommunikation, vol. 28, no. 2, pp. 93–100, 2005.

[60] Tim Bray, “RFC7159: The JavaScript Object Notation (JSON) Data Interchange
Format,” Internet Engineering Task Force (IETF), 2014.

[61] Dan Brickley and R. V. Guha, Eds., RDF Vocabulary Description Lan-
guage 1.0: RDF Schema, ser. W3C Recommendation. W3C, Feb. 2004,
http://www.w3.org/TR/rdf-schema/.

[62] S Brown and CJ Sreenan, “Updating software in wireless sensor networks: A
survey,” Dept. of Computer Science, National Univ. of Ireland, Maynooth, Tech.
Rep, 2006.

[63] Marcin Brzozowski, Hendrik Salomon, and Peter Langendoerfer, “On efficient
clock drift prediction means and their applicability to IEEE 802.15.4,” in Em-
bedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International
Conference on. IEEE, 2010, pp. 216–223.
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dissertation, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr.
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[113] Mathilde Durvy, Julien Abeillé, Patrick Wetterwald, Colin O’Flynn, Blake
Leverett, Eric Gnoske, Michael Vidales, Geoff Mulligan, Nicolas Tsiftes, Niclas
Finne et al., “Making sensor networks IPv6 ready,” in Proceedings of the 6th
ACM conference on Embedded network sensor systems. ACM, 2008, pp.
421–422.

[114] ECMA, The JSON Data Interchange Format. ECMA International, October
2013. [Online]. Available: http://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-404.pdf

[115] Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri, Shahin
Sadaati, and Rukman Senanayake, “The OWL-S editor–a development tool
for semantic web services,” in The Semantic Web: Research and Applications.
Springer, 2005, pp. 78–92.

[116] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana, and Kadangode K Ra-
makrishnan, “Towards a spdyier mobile web?” IEEE/ACM Transactions on
Networking, vol. 23, no. 6, pp. 2010–2023, 2015.

[117] ETH Zurich, “BTnode Rev3 Sensor Guide.” [Online]. Available: btnode.ethz.ch

[118] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
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prise,” in FInES workshop at FIA, 2012.

[336] SAP AG, “BAPI — Introduction and Overview,” 1997.

[337] Naveen Sastry and David Wagner, “Security considerations for IEEE 802.15.
4 networks,” in Proceedings of the 3rd ACM workshop on Wireless security.
ACM, 2004, pp. 32–42.

[338] Robert R Schaller, “Moore’s law: past, present and future,” Spectrum, IEEE,
vol. 34, no. 6, pp. 52–59, 1997.

[339] Jochen Schiller, Achim Liers, and Hartmut Ritter, “ScatterWeb: A wireless sen-
sornet platform for research and teaching,” Computer Communications, vol. 28,
no. 13, pp. 1545–1551, 2005.

283



[340] Jochen Schiller, Achim Liers, Hartmut Ritter, Rolf Winter, and Thiemo Voigt,
“Scatterweb-low power sensor nodes and energy aware routing,” in System Sci-
ences, 2005. HICSS’05. Proceedings of the 38th Annual Hawaii International
Conference on. IEEE, 2005, pp. 286c–286c.
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Address Rümlangstrasse 55

8052 Zürich
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