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Abstract

Indoor positioning has attracted considerable attention for decades due to the in-
creasing demands for location based services. In the past years, although numerous
methods have been proposed for indoor positioning, it is still challenging to find a
convincing solution that combines high positioning accuracy and ease of deploy-
ment. Radio-based indoor positioning has emerged as a dominant method due to
its ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator)
has been investigated in the area of indoor positioning for decades. However, it
is prone to multipath propagation and hence fingerprinting has become the most
commonly used method for indoor positioning using RSSI. The drawback of fin-
gerprinting is that it requires intensive labour efforts to calibrate the radio map
prior to experiments, which makes the deployment of the positioning system very
time consuming. Using time information as another way for radio-based indoor
positioning is challenged by time synchronization among anchor nodes and times-
tamp accuracy. Besides radio-based positioning methods, intensive research has
been conducted to make use of inertial sensors for indoor tracking due to the fast
developments of smartphones. However, these methods are normally prone to ac-
cumulative errors and might not be available for some applications, such as passive
positioning.

This thesis focuses on network-based indoor positioning and tracking systems,
mainly for passive positioning, which does not require the participation of targets
in the positioning process. To achieve high positioning accuracy, we work on some
information of radio signals from physical-layer processing, such as timestamps
and channel information. The contributions in this thesis can be divided into two
parts: time-based positioning and channel information based positioning. First,
for time-based indoor positioning (especially for narrow-band signals), we address
challenges for compensating synchronization offsets among anchor nodes, design-
ing timestamps with high resolution, and developing accurate positioning methods.
Second, we work on range-based positioning methods with channel information to
passively locate and track WiFi targets. Targeting less efforts for deployment, we
work on range-based methods, which require much less calibration efforts than fin-
gerprinting. By designing some novel enhanced methods for both ranging and po-
sitioning (including trilateration for stationary targets and particle filter for mobile
targets), we are able to locate WiFi targets with high accuracy solely relying on ra-
dio signals and our proposed enhanced particle filter significantly outperforms the
other commonly used range-based positioning algorithms, e.g., a traditional parti-
cle filter, extended Kalman filter and trilateration algorithms. In addition to using
radio signals for passive positioning, we propose a second enhanced particle filter
for active positioning to fuse inertial sensor and channel information to track in-
door targets, which achieves higher tracking accuracy than tracking methods solely
relying on either radio signals or inertial sensors.
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Chapter 1

Introduction

Positioning humans and objects indoors with high accuracy is a prerequisite for a
large range of services in navigation, assistant living, health care and many more
areas. The Global Positioning System (GPS) [92] as the dominating solution out-
doors falls short to deliver reliable performance in indoor spaces, which triggers
investigations on indoor positioning systems in recent years. Despite the impor-
tance of location information it is still challenging to find a convincing solution
that combines high positioning accuracy and ease of deployment. In this work,
positioning accuracy is defined as the error between the estimated location and the
ground truth location of the target. Ease of deployment is for reducing calibration
efforts to deploy the system. The development of such systems covers several as-
pects including the choice of system architecture and processed radio parameters
to derive location. The inherent merits and weaknesses of each choice, combined
with the stringent positioning requirements, make the system design a nontrivial
task.

1.1 Overview

In the past decades, numerous methods have been proposed to solve indoor po-
sitioning issues like vision [75], magnetic sensor [113], radio [124] and inertial
sensor [50] based positioning. Vision-based positioning processes video data for
positioning. In this technology, optical devices like cameras are mounted at fixed
locations to extract visual features as spatial references and form a map. Then,
acquired new visual features are matched to the map to locate the target. The
drawback of this technology is its high costs to mount cameras. Features of in-
door magnetic fields have been recently proposed to construct the map for indoor
positioning because it is ubiquitous and magnetic sensors are available in modern
smart phones. This technology has been recently used for indoor navigation at
the terminal side. Nowadays, radio signals are also ubiquitous indoor. For exam-
ple, signals of WiFi and cellular networks have covered most of the indoor areas.
Therefore, intensive research has been conducted to adopt radio signals for indoor
positioning. Besides indoor navigation, location information estimated by using
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radio signals is also used for many other applications, such as network planning
and user behaviour analysis. In this work, we mainly work on radio-based indoor
positioning. Additionally, inertial sensor information is investigated to improve the
performance of radio-based indoor positioning. Therefore, radio-based positioning
and Pedestrian Dead Reckoning (PDR) based on inertial sensors (also called Iner-
tial Measurement Units (IMUs)) are described in more details in the remainder of
this section.

1.1.1 Radio-based Indoor Positioning

Location (or position) information can be conveyed in absolute location and rela-
tive location. Absolute location describes the location of a place (or target) based
on a fixed point in the map. The most common way is to identify the absolute
location using coordinates such as latitude and longitude crisscross the earth or X
and Y axes in a local coordinate system. A relative location describes the location
of a place (or target) relative to another absolute location. Radio-based indoor po-
sitioning is used to estimate the absolute location of a target in a local coordinate
system.

Some radio signals are particularly fit to indoor positioning, such as Ultra Wide
Band (UWB) signals, which achieve sub-meter positioning accuracy. However,
such signals require additional devices to support indoor positioning and are only
used in some particular scenarios or applications such as mobile robot navigation
[70], assistant living [38] or health care [134]. For example, positioning with UWB
signals used in mobile robot navigation [70] is achieved by equipping robots with
UWB sensors. In assistant living [38] or health care [134] applications, the tar-
get people including patients or elderly people need to carry the UWB nodes for
positioning. However, in some scenarios, it is impractical to use these specific
devices. For example, passengers in an airport need their location information to
be navigated to their boarding gates. In a shopping mall, the shop owners are
interested in their customers’ location information and investigate their buying be-
haviours. To provide such indoor positioning services, large amount of research
has been conducted to adopt more commonly used radio signals for indoor posi-
tioning. Particularly, IEEE 802.11 (WiFi) is currently the dominant local wireless
network standard for short-range communication in indoor environments and is the
leading technology for indoor positioning [124, 123, 24, 129]. IEEE 802.15.4, e.g.,
Zigbee, is another wireless standard for short-range communication. It is widely
used in home automation, wireless sensor network and industry applications. It has
attracted interests of researchers as an alternative toWiFi positioning [106, 57]. Be-
sides short-range communication techniques, indoor positioning based on cellular
networks such as GSM [119], UMTS [27] and LTE [43], has also been investigated
for decades, due to their wide coverage and large number of end users.

By analyzing some radio parameters of the received packets such as Received
Signal Strength Indicator (RSSI), timestamps, and channel information, numerous
radio-based positioning algorithms have been proposed to locate the targets. Radio-
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based indoor positioning is classified as range-based and range-free techniques.
Range is defined as the distance between the target and an Anchor Node (AN).
ANs are deployed at known locations to estimate the location of the target.

Fingerprinting [124, 24, 129] is the most commonly used range-free method,
which consists of two steps: offline training and online positioning. The purpose of
offline training is to build up a radio map, which contains features of radio signals
like RSSI or channel information in different training locations, i.e., fingerprints.
Online positioning is the procedure to locate the target based on the radio map. In
online positioning, pattern matching algorithms are adopted to match the measured
radio signal features to the fingerprints in the radio map. This method achieves
high positioning accuracy but is very labour intensive to calibrate (train) the radio
map, which makes the deployment of the system very time consuming. Although
fingerprinting has been developed for decades, nowadays intensive research is still
conducted in this area, especially for automatic offline calibration [91], which can
dramatically reduce calibration and deployment efforts.

In contrast to fingerprinting, range-based indoor positioning methods do not
rely on the radio map but need to convert the measured radio signal parameters
(features) to the propagation distances between the target and different ANs. These
methods consist of two steps: ranging and positioning. In the ranging phase, differ-
ent radio parameters can be converted to the range information based on different
propagation models. For example, time information is converted to range consid-
ering the speed of radio signals [87]. Received signal strength can be converted to
range using a commonly used Log-Distance Path Loss (LDPL) model [49]. After
ranging, positioning algorithms are adopted to convert the range information to the
location of the target. Trilateration or multilateration algorithms, which model the
positioning problem as a convex optimization problem, are often used to locate
stationary targets. Bayesian estimation methods, e.g., Kalman filters and particle
filters, which consider the tracking problem as a Hidden Markov Model (HMM),
are more suitable to track mobile targets. Compared to fingerprinting, range-based
indoor positioning requires less labour efforts for calibration and deployment prior
to positioning, although it normally needs to calibrate the ranging models.

1.1.2 Pedestrian Dead Reckoning

In contrast to radio-based indoor positioning, PDR [50, 121] leverages inertial sen-
sors in smart phones e.g., accelerometer, magnetometer, and gyroscope, to estimate
the relative location of the target by detecting steps, estimating stride length and
heading orientation. By integrating the estimated relative locations at sequential
time intervals, PDR systems can track the trajectories of targets. In contrast to
inertial sensors used in mobile robot navigation, inertial sensors in smart phones
are normally cheap and suffer from measurement noise. Because PDR integrates
the relative locations at sequential time intervals, small positioning errors resulting
from the noise in low cost inertial sensors are magnified and therefore PDR is nor-
mally prone to accumulated errors. Since radio-based indoor positioning estimates
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Figure 1.1: A Passive Indoor Positioning System for WiFi Users

the absolute locations and inertial sensor information used in PDR provides relative
locations between sequential time intervals, these two methods are complementary.
Therefore, numerous hybrid approaches [64, 104, 50] have been proposed to fuse
the inertial sensor information and radio information to improve the tracking/posi-
tioning accuracy.

1.1.3 Active and Passive Positioning Systems

Irrespective of the positioning algorithms, indoor positioning systems are classified
as active and passive positioning systems based on the target’s participation. In an
active positioning system, target devices need to actively participate in the position-
ing process. In a passive positioning system, the target devices are oblivious to the
positioning process. These two types of positioning systems fit different demands
of different applications. For example, as the aforementioned application, where
the passengers want to be navigated to their boarding gates, it normally requires the
users’ devices, i.e., smartphone, to actively participate in the positioning process.
Passive positioning systems for WiFi users are attractive for third-party providers
of positioning and monitoring services. For example, shop owners can passively
capture the radio signals from their customers’ devices and locate the users in a
remote server. Figure 1.1 shows an example of a passive positioning system for
WiFi users. Compared to active positioning, which mainly relies on the users’ de-
vices, passive positioning systems require additional equipments (signal sniffers)
to passively capture the radio signals and locate the target users in a powerful re-
mote server. Passive positioning systems can support positioning multiple targets
and run positioning algorithms with high computation requirements.

1.2 Problem Statement

Numerous algorithms have been proposed for indoor positioning to adopt differ-
ent radio parameters and inertial sensors. However, different positioning methods
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pose different challenges. In this section, we review the challenges and state the
problems that we target to solve in this thesis.

1.2.1 RSSI-based Indoor Positioning

RSSI is one of the most commonly used radio parameters for indoor positioning,
because it is available in most of the commercial devices. As described in [126],
parameters extracted from the received radio signals for positioning are classified
as coarse-grained and fine-grained. Coarse-grained parameters are obtained from
MAC (Media Access Control) layer on the packet level, which is after physical-
layer processing. Fine-grained parameters are extracted during physical-layer pro-
cessing, which provide more information for positioning than coarse-grained pa-
rameters. RSSI is a coarse-grained parameter obtained fromMAC layer in ZigBee,
WiFi and other wireless technologies. The main drawback of RSSI is its temporal
fluctuations in complex indoor environments because of channel fading. Channel
fading is classified as multipath induced fading and shadow fading.

In indoor environments, a radio signal propagates to a receiver through multi-
ple propagation paths, in which the signals have different delays, attenuations and
phase shifts. Then, RSSI is simply calculated as the power of the received signal,
which combines multiple versions of the original signal. Therefore, a small change
in the multipath propagation may lead to significant changes of the relative phases
in constructive or destructive signals as shown in Figure 1.2. This will cause sig-
nificant fluctuations in RSSI. This fading is introduced by multipath propagation
and hence it is called multipath induced fading. The operating frequency of a ra-
dio signal plays an important role in the multipath effects. For a higher operating
frequency, the wavelength of the signal, which is the distance that the radio sig-
nal travels during the period of one radio cycle, is shorter and correspondingly the
phase varies more over the same propagation distance. Therefore, operating at a
higher frequency, the reflected signals face more dynamic phase shifts from the
original signal and the multipath induced fading is more severe. Nowadays, most
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of the commonly used radio signals operate at very high frequency. For example,
WiFi operates on 2.4GHz and 5GHz, which faces significant multipath effects.

Shadow fading is caused by obstacles between the transmitter and receiver,
such as walls, doors and people. The radio signals penetrating obstacles are attenu-
ated. Because of the complex indoor environments, this kind of attenuation is very
difficult to measure or model. Some path loss models have been proposed such as
the LDPL model [49], which is more suitable for a wide range of environments
but is inaccurate for indoor environments. Because the layouts in different indoor
environments are normally different, a generic model introduces large errors.

Because of multipath induced fading and shadow fading, range-based indoor
positioning relying on RSSI is challenging. Therefore, fingerprinting is currently
the most effective method for indoor positioning based on RSSI. However, as men-
tioned before, fingerprinting is very labour intensive and costs large amount of cal-
ibration efforts. In this thesis, we aim to provide a positioning solution, which
provides high positioning accuracy but also has low calibration efforts. To
achieve this goal, some fine-grained radio parameters at the physical layer instead
of RSSI are adopted for range-based indoor positioning.

1.2.2 Channel Information for Indoor Positioning

Channel information is an important characteristic in OFDM (Orthogonal Fre-
quency Division Multiplexing) systems, which have multiple subcarriers operating
on different frequencies. Channel information can be classified as CSI (Channel
State Information) in frequency domain and CIR (Channel Impulse Response) in
time domain. CSI provides channel information with amplitude and phase over
multiple subcarriers. CIR characterizes amplitude and phase information over mul-
tiple propagation paths in time domain. CIR can be converted to CSI by Fast
Fourier Transform (FFT) and CSI to CIR by Inverse FFT (IFFT).

In contrast to RSSI as a coarse-grained MAC layer radio parameter, CSI and
CIR are fine-grained physical layer radio parameters, which can be considered as
fine-grained power information but are able to characterize the signals from multi-
path propagation. However, as mentioned in several works [132, 126], CIR can just
distinguish clusters of propagation paths instead of each individual paths. There-
fore, CIR can only mitigate multipath propagation but not completely eliminate
the effects. Additionally, it has very limited improvement on shadow fading in
Non Line Of Sight (NLOS) condition. Therefore, even if CIR as a fine-grained
information is used for indoor positioning, it still has remaining ranging errors.
Therefore, in this thesis, we work on an accurate model for ranging by using
channel information and robust positioning algorithms tomitigate the remain-
ing ranging errors.

Additionally, how to extract CSI information is another problem for indoor
positioning with this fine-grained information. Most of the work using CSI or
CIR for indoor positioning relies on a special WiFi card (IWL5300), which extracts
CSI based on an improved firmware provided by the authors of [60]. There are sev-
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eral limitations to use the firmware such as the resolution of channel information,
working mode and no CSI from overheard packets. Therefore, to design a passive
indoor positioning system by using CSI information from overheard packets, we
can not rely on this WiFi card and other commercial WiFi cards.

1.2.3 Time-based Indoor Positioning

Physical-layer time information is another fine-grained information, which can be
used for ranging. Time-based indoor positioning is challenging mainly due to two
aspects: synchronization between ANs and timestamp accuracy. Due to the high
speed of radio signals, i.e., 3 · 108m/s, a small synchronization offset between
ANs generates large positioning errors. It is nontrival to achieve synchronization
accuracy between ANs in the range of nanoseconds, especially for large scale de-
ployments where shared cables between ANs for synchronization are normally in-
feasible. Therefore, it is important for time-based indoor positioning to find a
reliable synchronization solution between ANs, quantify the synchronization
offset, and compensate the offset.

The accuracy of timestamps is influenced by two factors: bandwidth of sig-
nals and multipath propagation. At physical layer, narrower bandwidth leads to
longer duration of a signal’s symbol, which is defined as a pulse in digital base-
band transmission. A timestamp is given at the time when a reference symbol in
a received packet is received. Benefiting from its extremely short symbol dura-
tion, UWB signals achieve timestamps with nanosecond accuracy. However, for
signals with narrower bandwidth, how to distinguish the time delay within one
symbol duration is a challenge. For example, the bandwidth of a GSM signal is
200KHz and the symbol duration is 5µs. Therefore, a solution should be designed
to estimate the time delay within 5µs. Additionally, replicas of the original signal
from different propagation paths arrive at the receiver with different delays. Due
to the long symbol duration, the waveforms of original signal from the direct path
and replicas from reflection paths overlap with each other within one symbol du-
ration. The timestamp for the signal from the direct path is required to calculate
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the range based on the propagation delay. However, as shown in Figure 1.3, be-
cause of the overlap between the signals from the direct path and reflection paths,
it is very challenging to distinguish them and generate a timestamp on the direct
path. Therefore, multipath propagation severely influences the ranging accuracy
using time information, especially for narrow-band signals. Hence, a positioning
algorithm needs to be designed to use this time information for narrow-band
signals to locate the user.

1.2.4 Challenges for Passive and Active Indoor Positioning

Passive indoor positioning systems are attractive for third-party providers of po-
sitioning and monitoring services. In contrast to active positioning, which can
leverage all the available information such as inertial sensors in smart phones, one
of the critical challenges for passive positioning is the limited amount of available
information. Since the targets or users do not actively participate in the positioning
process, inertial sensor information measured at the terminal side (users) can not be
transmitted to the AN sides. It can only utilize the measured radio parameters, such
as RSSI, time information and channel information, and hence passive positioning
systems rely on the radio-based indoor positioning. Therefore, how to efficiently
use these limited radio parameters to accurately locate the users is a problem
in passive positioning systems.

Active indoor positioning systems can leverage more information besides ra-
dio parameters, such as inertial sensors. As mentioned before, radio based in-
door positioning provides absolute locations in a local coordinate system and PDR
algorithms give relative locations between sequential time intervals. These two
methods are complementary and it is intuitive to fuse these information for indoor
positioning and tracking. Therefore, how to fuse these available information in-
cluding inertial sensors and radio parameters to accurately track the users is
a problem that we aim to address in this thesis for active positioning systems.

1.3 Thesis Contributions

The main goal of this thesis is to provide indoor positioning and tracking solu-
tions with high accuracy and low calibration efforts (ease of deployment) by using
fine-grained physical layer information of radio signals. First, this thesis mainly
contributes to passive indoor positioning with two fine-grained radio parameters,
i.e., time information and channel information. Second, we also contribute to ac-
tive indoor positioning by fusing the inertial sensor information and channel infor-
mation. The contributions in this thesis are supported by theoretical analysis and
evaluated in real-world prototype systems. All our positioning algorithms and sys-
tems are designed and implemented at the network side. Therefore, our work has
potential to be used by third-part providers for location based services or network
operators for network planning. For example, parts of our proposed algorithms
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have been transferred to our Swiss industry partner (DFRC AG) in the Eurostar
project (In3DGuide). They adopt our proposed physical layer timestamps (in Sec-
tion 1.3.1) in their prototype system to analyze the activities of GSM users.

1.3.1 Time-based Indoor Positioning

The first contribution in this thesis is in the area of time-based passive indoor posi-
tioning with narrow-band signals [79, 80, 82, 81]. We propose several novel meth-
ods to address the aforementioned challenges in time-based positioning: evaluating
and compensating synchronization offsets, designing high-resolution timestamps,
and developing positioning algorithms. Details are listed below:

• GPS synchronization between ANs is evaluated based on the timing error
in the signal processing procedure. First, we calculate the clock offsets be-
tween two GPS synchronized ANs using a signal processing method called
time recovery. Second, to estimate the clock skews from the noisy clock
offset measurements, we propose to adopt Savitzky-Golay (S-G) filter to
smooth the noisy measured clock offsets and then accurately calculate the
clock skews by differentiating the filtered clock offsets. The main findings
in this work are that the maximum clock offset between two GPS synchro-
nized devices reaches 171ns but the clock skew is smaller than 1.37 · 10−9.
The large synchronization offsets lead to large positioning errors with a tra-
ditional Time Difference Of Arrival (TDOA) method.

• Synchronization compensation is achieved in this work by combining GPS
synchronization and an enhanced TDOA method called Differential TDOA
(DTDOA). DTDOA introduces a Reference Node (RN) to the TDOA tech-
nique to compensate the momentary synchronization offsets and eventually
improves the positioning accuracy. We offer an analytical model to formally
describe the time components of TDOA and the proposed DTDOA method.

• High-resolution physical-layer timestamps are designed for two kinds of
narrow-band signals, i.e., GSM and IEEE 802.15.4 signals, inspired by in-
formation from signal processing at the physical layer. The timestamp is
taken with a resolution of nanoseconds.

• Two novel positioning algorithms based on DTDOA for narrow-band sig-
nals are proposed in this work. The first one adds to range-based positioning
algorithms and employs a Linear Least Square (LLS) algorithm for DTDOA
by introducing a new intermediate parameter. The second one (DTDOA-
based fingerprinting) adds to range-free positioning and it is the first to pro-
pose and demonstrate the feasibility of DTDOA-based fingerprinting in in-
door environments.

• Two systems for GSM and IEEE 802.15.4 signals have been designed us-
ing Software Defined Radio (SDR) techniques to extract the high-resolution
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physical-layer timestamps and locate the target with time information. Based
on these two systems, we have evaluated the proposed algorithms including
DTDOA-based LLS and fingerprinting. We are able to achieve around 10m
ranging accuracy for GSM signals in an outdoor environment with weak
multipath effects. Although limited by its narrow bandwidth with IEEE
802.15.4 signals, DTDOA-based LLS is still challenging to achieve accu-
rate indoor positioning, the ranging and positioning accuracy is clearly im-
proved by using DTDOA compared to a traditional TDOA. Furthermore, we
compare the performance of DTDOA-based fingerprinting and RSS-based
fingerprinting in different scenarios. The measurement results show that
DTDOA-based fingerprinting achieves quite similar performance as RSS-
based fingerprinting but in NLOS conditions DTDOA-based fingerprinting
performs better than RSS-based fingerprinting. DTDOA-based fingerprint-
ing achieves a mean accuracy of 3m.

1.3.2 Indoor Positioning for Stationary Targets using Fine-Grained
Power

The second contribution [78] is in the area of passive indoor positioning for IEEE
802.11n signals by using fine-grained power (channel information). Details are
listed below:

• A passive positioning system for WiFi targets, which can extract channel
information from the overheard packets to design some novel methods for
ranging and positioning, is the first contribution in this work. As mentioned
before, the currently used WiFi card IWL5300 for CSI extraction can not be
used for passive positioning. We propose to use SDR techniques to design
the WiFi signal sniffers, which act as ANs in the positioning procedures. By
decoding the WiFi packets from the physical layer, we estimate the CSI and
CIR by using the long preambles in WiFi packets.

• Ranging by using CIR is achieved by two steps. First, we mitigate the
multipath propagation by extracting the strongest power in CIR as the power
from direct path. Second, a novel Nonlinear Regression (NLR) method for
ranging is proposed to more accurately map the power information to the
propagation distance in complex indoor environments.

• A new trilateration approach, joining the Weighted Centroid (WC) and
Constrained Weighted Least Square (CWLS) algorithms, is proposed to mit-
igate the impact of ranging errors.

We evaluate our system in a comprehensive set of measurements including sta-
tionary and mobile targets under complex indoor propagation conditions. Experi-
mental results demonstrate that our proposed NLR model achieves higher ranging
accuracy than the LDPL model. Furthermore, the WC-CWLS positioning algo-
rithm achieves higher accuracy and is more robust to ranging errors than the LLS
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andWC algorithms. By combining the NLRmodel for ranging and theWC-CWLS
algorithm for trilateration, the mean positioning accuracy of the system achieves
2.4m.

1.3.3 Indoor Tracking for Mobile Targets using Fine-Grained Power

The third contribution [77] is to extend the aforementioned passive positioning
system (IEEE 802.11n) to support tracking a mobile target by using the enhanced
ranging method and designing an enhanced particle filter. Details are listed below:

• An enhanced particle filter for indoor tracking by improving the likelihood
function on the observation parameters and introducing a single coordinated
turn model is proposed in this work. For particle filters, we have three main
scientific contributions. First, instead of using a constant velocity moving
model as in most indoor tracking works, we propose to adopt a single co-
ordinated turn model, which considers the angle variation of the moving
direction in the movement state and provides higher tracking accuracy for a
passive tracking system. Second, we investigate the impact of ranging er-
rors on the likelihood function in the particle filter and the relation between
ranging outputs and ranging errors. By weighting the likelihoods of rang-
ing outputs from different ANs, our particle filter mitigates the influence of
ranging errors. Third, in a passive positioning system, speed information is
normally unavailable to the tracking process because the system can not get
the inertial sensor information from the target. In our system, we consider
the moving speed limitation on the likelihood by filtering out the uncom-
monly large moving speed for people in indoor environments.

• The enhanced ranging methods based on CIR for multipath mitigation and
the NLR model for mapping the power to propagation distance (in Section
1.3.2) are also adopted in this work. Considering the movement of the tar-
get, we smooth the sequentially measured fine-grained power by a Savitzky-
Golay (S-G) filter, which considers the trend of power changes in the moving
window, to further mitigate the multipath effects.

We evaluate our proposed enhanced particle filter in complex indoor environ-
ments and compare it to some other commonly used positioning and tracking al-
gorithms. Our proposed enhanced particle filter outperforms the others, such as
Kalman filter and trilateration algorithms. Our system passively tracks the WiFi
target with an accuracy of 1.5m for 50% and 2.3m for 90%.

1.3.4 Fusing Inertial Sensor Information and Fine-Grained Power
Information for Indoor Tracking

Finally, we contribute to active indoor positioning by fusing inertial sensor infor-
mation and fine-grained power information with a second enhanced particle filter
[76].
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• An enhanced particle filter to fuse the CIR-based ranging and velocity in-
formation is proposed in this work. The two input parameters, i.e., ranges
and velocity, are fused in the likelihood function of observations in particle
filters. These two parameters are adopted to filter out the particles with low
probabilities to observe the measured ranges and velocity.

• MIMO (Multiple Input and Multiple Output) techniques, which intro-
duce space diversity into the communication systems by using more than
one antennas at the transmitter and receiver, are adopted in this work to miti-
gate the multipath effects in the ranging step. The aforementioned enhanced
ranging methods with CIR and the NLRmodel (in Section 1.3.2) are adopted
to estimate the range information from each receiving antenna. To utilize the
spatial diversity between different antennas, we average the estimated ranges
from multiple antennas to mitigate the influence of multipath effects.

• An efficient method to estimate the velocity of the mobile target is pro-
posed in this work to use the timestamped values from the accelerometer and
compass sensors in a smart phone.

• A network-based positioning system, which runs our proposed tracking
algorithms in a central server, is implemented. Compared to terminal-based
positioning system, a network-based positioning system is able to run algo-
rithms with high complexity. In our system, all ANs are implemented on
cheap commercial devices and are able to collect inertial sensor and CSI
information from the received WiFi packets.

We evaluate our system in a complex environment along three different moving
paths. Our proposed tracking method achieves 1.3m for mean accuracy and 2.2m
for 90% accuracy, which is more accurate and stable than PDR and range-based
positioning methods.

1.4 Thesis Outline

This thesis is structured as follows. In Chapter 2, we describe the background
knowledge of this thesis. We review some basic knowledge for GSM, IEEE 802.15.4,
IEEE 802.11, and their decoding methods in software defined radio techniques. We
introduce the background and related work in the area of indoor positioning. Then,
our main contributions are structured in two parts. Part I (Chapters 3 and 4) intro-
duces our work on time-based indoor positioning for narrow-band signals. Part II
(Chapters 5, 6, and 7) introduces our work on indoor positioning and tracking with
fine-grained power for WiFi signals.

In Chapter 3, we investigate the methods for synchronization evaluation and
high-resolution timestamps. Based on the findings in Chapter 3, we introduce our
proposed DTDOA algorithms including LLS and fingerprinting in Chapter 4.
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Chapter 5 describes the passive indoor positioning system for WiFi signals
using fine-grained power (channel information) and mainly targets in trilateration
algorithm for stationary targets. In Chapter 6, we introduce an enhanced particle
filter to extend the passive indoor positioning system for WiFi signals to support
tracking mobile targets. Chapter 7 describes a second enhanced particle filter to
fuse the inertial sensor and fine-grained power information for an active positioning
system.

Finally, Chapter 8 concludes the thesis by summarizing the contributions of
this work, and discusses interesting and promising future directions of research.
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Chapter 2

Background and Related Work

2.1 Introduction

As introduced in Chapter 1, indoor positioning has become an emerging technique
to support the increasing demands for location based services, which provide new
commercial opportunities based on the locations of users. Intensive research has
been conducted in this area in the past few years. In this chapter, we review back-
ground and related work for indoor positioning including radio-based and inertial
sensor based methods.

In the remainder of this chapter, some knowledge of wireless communications,
which is used in our work including GSM, IEEE 802.15.4 and IEEE 802.11, is in-
troduced in Section 2.2. Software defined radio techniques are presented in Section
2.3. In this section, the decoding methods in SDR for IEEE 802.15.4 signals, IEEE
802.11 signals, and GMSK modulated signals that are used in GSM are also re-
viewed. In Section 2.4, range-free positioning algorithms including fingerprinting
and centroid algorithms are introduced. Ranging based on different radio param-
eters, which is the first step for range-based positioning algorithms, is reviewed
in Section 2.5. Trilatration and multilatration algorithms for stationary targets are
reviewed in Section 2.6. Bayesian estimation including Kalman filters and particle
filters for tracking mobile targets are respectively introduced in Sections 2.7 and
2.8. Section 2.9 presents some related work for indoor tracking based on inertial
sensors. In Section 2.10, we review some work to combine the radio-based and
inertial sensor based tracking. Finally, Section 2.11 concludes this chapter.

2.2 Wireless Communication Technologies

We first review some knowledge about the wireless communication technologies
related to our work, especially for physical layer signal processing.
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2.2.1 GSM

Cellular networks provide radio coverage over a wide geographic area by distribut-
ing large number of based stations over land areas. The providers of cellular net-
works provide voice and data services to the end users. At the end of the past cen-
tury, the second generation (2G) [7] of cellular network, i.e., GSM (Global System
for Mobile Communication), was already widely spread [115]. It is mainly used
to provide voice communications for mobile users. With the increasing demands
for mobile data communication, the third generation (3G) [10] of cellular network
provides the additional transmission of non-voice data such as UMTS (Universal
Mobile Telecommunications System). Currently, the fourth generation (4G) [12],
e.g., LTE (Long Term Evolution), has become the most emerging technique to sup-
port higher data traffic for mobile end users.

Frequency Band

Despite the vast development in 3G and 4G networks for data communication,
GSM remains the world’s most widespread mobile communication standard, espe-
cially for less developed countries. The 3rd Generation Partnership Project (3GPP)
[2] specifies the GSM frequency bands of 900MHz and 1800MHz as the operating
bands in Europe and most of other parts of the world. Since GSM is used for voice
communication, whose data rate is only 270.833 kbit/s, the bandwidth of GSM is
very narrow. For example, the E-GSM 900 uplink band ranges from 880MHz to
915 MHz. It has 124 channels and each one is only 200kHz wide.

GMSK and MSK Modulation Schemes

GSM adopts a modulation scheme called GaussianMinimum Shift Keying (GMSK),
which is a frequency shift keying modulation scheme with continuous phase. GMSK
is a modified version of MSK by using a Gaussian filter before the modulation
stage [96]. Figure 2.1 shows a general block diagram of the MSK and GMSK
modulators. Bits (1, 0) are converted to Non-Return to Zero (NRZ) (−1, 1) data
waveform. Then NRZ data passes a filter for pulse shaping to limit the bandwidth
of the signal. A filter with a half-sine pulse shape (Figure 2.2(b)) is used for MSK
and a Gaussian pulse shape (Figure 2.2(a)) for GMSK. Compared to MSK, Gaus-
sian pulse shaping in GMSK smooths the trajectory of the MSK signals and hence
stabilizes instantaneous frequency variations over time. Then the filtered data is
sent to a FM (Frequency Modulation) modulator. The resulting signal is

s(t) = ej2πh
�∞

i=−∞ aiq(t−iT ). (2.1)

In this expression, the amplitude of the signal is normalized to one. ai is the NRZ
data and h is the modulation index, which is equal to 0.5 for MSK and GMSK. q(t)
is given by q(t) =

� t
−∞ g(τ)dτ , where g(t) is the pulse shape filter as in Figure

2.2(a) and 2.2(b).
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Figure 2.1: MSK Modulation
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Figure 2.2: Pulse Shapes for GMSK and MSK

At the receiver side, there are different ways to decode a GMSK/MSK sig-
nal. A commonly used and efficiently implementable method is N-bits differential
detection [128]. Figure 2.3 shows an example of 1-bit differential detection. In
1-bit differential detection, the phase difference between two sequential incoming
signals is first calculated as

Δϕ(t) = arg{r(t)r∗(t− T )}, (2.2)

where r(t) is received signals. This differential phase is sampled at time t = nT
and the differential phase at time nT is given by

Δϕ(nT ) = 2πh

� nT

t=(n−1)T

+∞�

i=−∞
aig(t− iT ) + Δϕnoise, (2.3)

where Δϕnoise is the additive noise. For MSK, the phase difference only depends
on the current bit as

Δϕ(nT ) =
π

2
an +Δϕnoise. (2.4)

For GMSK, the phase difference depends on three consecutive bits as

Δϕ(nT ) =
π

2
(α−1an−1 + α0an + α+1an+1) + Δϕnoise. (2.5)

The three parameters α−1, α0 and α+1 depends on the multiplication of the Gaus-
sian filter’s 3dB bandwidth (B) by the bit period of the transmission (T), i.e., BT.

Delay T
Phase Shift

π/2r(t) r(t­T) r*(t­T) Δϕ(t)
Phase Slicer

an

Figure 2.3: MSK Demodulation
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Figure 2.5: IEEE 802.15.4 Modulation and Spreading

For BT = 0.25, α0 = 0.589 and α−1 = α+1 = 0.205 [73]. Therefore, the Gaus-
sian filter introduces inter symbol interference. This phase difference is fed into a
slicer for decision.

2.2.2 IEEE 802.15.4

The IEEE 802.15.4 standard [11] specifies the physical and MAC layers for low-
data rate and low-power applications. It is widely used in home automation [61],
wireless sensor network [102] and industry applications [100]. The IEEE 802.15.4
standard is the basis for ZigBee [120] and WirelessHART [34], each of which
extends the IEEE 802.15.4 standard by developing the upper layers. IEEE 802.15.4
defines two physical layers including 2.4 GHz and 868/915MHz physical layers.
Since 2.4GHz is used worldwide and also adopted in our work, this section only
covers the physical layer and some parts of the MAC layer on the 2.4GHz band.

Modulation Schemes and Bandwidth

A total of 16 channels are available in the 2.4GHz band and each channel occupies
a bandwidth of 2MHz as shown in Figure 2.4. Data can be transmitted on one of
these channels or hopping on different channels [101].

Figure 2.5 shows the block diagram of the modulation and spreading on the
2.4GHz band in a transmitter. Bits from the Physical Protocol Data Unit (PPDU)
with a data rate of 250 kbit/s are converted to data symbols of 4 bits. Then, these
data symbols get spread according to a set of spreading sequences as in Table 2.1,
which generates a stream of chips at 2 MChip/s. This mechanism is called Direct
Sequence Spread Spectrum (DSSS) [62]. The output stream is modulated with an
Offset-Quadrature Phase Shift Keying (O-QPSK) with half-sine pulse shape [11].

A traditional O-QPSK is a phase modulation scheme with a rectangular pulse
shape [103]. If O-QPSK is equipped with a half-sine pulse shape, it is equivalent
to MSK [109]. Therefore, we can use the demodulation mechanism for MSK to
demodulate the O-QPSK signals, such as one-bit differential detector as in Figure
2.3. The spreading sequences in Table 2.2 is used for MSK decoding (O-QPSK
with a half-sine pulse shape) [109].
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Table 2.1: Spreading Sequence for O-QPSK in IEEE 802.15.4 [109]
Symbol Chip Sequence

0 11011001110000110101001000101110
1 11101101100111000011010100100010
2 00101110110110011100001101010010
3 00100010111011011001110000110101
4 01010010001011101101100111000011
5 00110101001000101110110110011100
6 11000011010100100010111011011001
7 10011100001101010010001011101101
8 10001100100101100000011101111011
9 10111000110010010110000001110111
10 01111011100011001001011000000111
11 01110111101110001100100101100000
12 00000111011110111000110010010110
13 01100000011101111011100011001001
14 10010110000001110111101110001100
15 11001001011000000111011110111000

Table 2.2: Spreading Sequence for MSK in IEEE 802.15.4 [109]
Symbol Chip Sequence

0 x1100000011101111010111001101100
1 x1001110000001110111101011100110
2 x1101100111000000111011110101110
3 x1100110110011100000011101111010
4 x0101110011011001110000001110111
5 x1111010111001101100111000000111
6 x1110111101011100110110011100000
7 x0000111011110101110011011001110
8 x0011111100010000101000110010011
9 x0110001111110001000010100011001
10 x0010011000111111000100001010001
11 x0011001001100011111100010000101
12 x1010001100100110001111110001000
13 x0000101000110010011000111111000
14 x0001000010100011001001100011111
15 x1111000100001010001100100110001
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Figure 2.6: IEEE 802.15.4 Frame Format
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Figure 2.7: IEEE 802.11n Channels

Frame Structure

As shown in Figure 2.6, a PPDU frame includes the preamble sequence, the Start
of Frame Delimiter (SFD), the frame length and the MAC Protocol Data Unit
(MPDU). The preamble sequence consists of four bytes 0x00, which is used to
synchronize to the incoming signal. SFD is defined as one bye of 0xA7, which is
used to indicate the end of the preamble. The frame length indicates the length of
MPDU.

At MAC layer, a MPDU consists of the Frame Control Field (FCF), the data se-
quence number, the address information, the frame payload, and the Frame Check
Sequence (FCS). FCF indicates the type of received packet and the address in-
formation. FCS is the CRC-CCITT 16-bit checksum of the MPDU. It uses the
polygon x16+x12+x5+1, which is equivalent to the hex number 0x1021. Please
find more details about the individual parts in the IEEE 802.15.4 standard [11].

2.2.3 IEEE 802.11

The IEEE 802.11 standard [13] specifies the physical and MAC layers for Wire-
less Local Area Network (WLAN). IEEE 802.11b [8] is an early version of IEEE
802.11, which was released in 1999. IEEE 802.11b adopts DSSS at 2.4GHz and
has a maximum data rate of 11 Mbit/s. IEEE 802.11a and IEEE 802.11g are two
versions with OFDM, which can achieve a maximum data rate of 54Mbps. IEEE
802.11a [9] operates on 5GHz and IEEE 802.11g [11] on 2.4GHz. Each channel
occupies 20MHz bandwidth as shown in Figure 2.7. IEEE 802.11n was released
in 2009, which operates on 2.4GHz and 5GHz. IEEE 802.11n includes many en-
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Figure 2.8: 3× 3 MIMO

hancements that improve WLAN range, reliability, and throughput. At the physi-
cal (PHY) layer, advanced signal processing and modulation techniques have been
added to exploit multiple antennas and wider channels (20MHz and 40MHz). At
the MAC layer, protocol extensions make more efficient use of available band-
width. These High Throughput (HT) enhancements can boost data rates up to 600
Mbps. Since we work on IEEE 802.11n, we review some relevant knowledge in
IEEE 802.11n in the following subsections.

Physical Layer in IEEE 802.11n

At physical layer, there are twomain features in IEEE 802.11n: OFDM andMIMO.
OFDM is already used in IEEE 802.11a/g. MIMO was first introduced to IEEE
802.11 standards in the version of IEEE 802.11n.
MIMO is an important physical layer technique in the IEEE 802.11n standard,

which uses multiple antennas at transmitter and receiver to increase data through-
put and to improve the robustness of the transmission [39]. MIMO transmits differ-
ent signals over the individual antennas. Because different antennas face different
propagation channels, MIMO introduces space diversity to the system. The signals
transmitted over different antennas can adopt different coding, delay, and phase
control during processing. By adopting these advanced techniques in MIMO, the
data rate is increased without introducing more bandwidth. For example, Figure
2.8 shows a 3 × 3 MIMO system. Each spatial stream in IEEE 802.11n provides
a maximum rate of 150 Mbps at 40MHz bandwidth. 3× 3 MIMO provides 3 data
streams and thus the maximum rate can achieve 450 Mbps [39].
OFDM [39] is adopted at the physical layer in the IEEE 802.11n standard to

achieve high data rates. In an OFDM system, the available frequency spectrum
is divided into several subcarriers, which are orthogonal to each other as shown
in Figure 2.9. In contrast to signal carrier systems such as DSSS, OFDM intro-
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Figure 2.9: OFDM Subcarriers
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Figure 2.10: OFDM Structure

duces frequency diversity to the communication system because data can be simul-
taneously sent over multiple frequencies. OFDM has been widely used in some
modern wireless communication systems, such as LTE cellular network, IEEE
802.11a/g/n/ac network and Digital Video Broadcasting (DVB) [42] systems.

As shown in Figure 2.10, on the OFDM transmitter side, the data [d0, d1, · · · , dN−1]
is first converted from a serial form to a parallel form by S/P (Serial to Parallel
conversion) and modulated (MAP) onto subcarriers in the frequency domain. The
data is further converted from the frequency domain to the time domain via an
IFFT. Upon receiving the signals, a FFT procedure converts the data back to the
frequency domain. The data is demodulated (DeMAP) on each subcarrier and con-
verted to serial by P/S (Parallel to Serial conversion).

Let X = [Xk]
T and Y = [Yk]

T (k = 0, ..., N − 1) respectively denote the
input data of the IFFT block at the transmitter and the output data of FFT block
at the receiver in the frequency domain. Let h = [hn]

T and n = [nn]
T (n =

0, ..., N − 1) denote the sampled channel impulse response and Gaussian noise in
the time domain. Define the input matrix X̄ = diag(X) and the received signal in
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the frequency domain is derived as

Y = X̄ · FFT(h) + FFT(n) = X̄H+N, (2.6)

where H = FFT(h) is the channel state information and N = FFT(n) is the
noise in the frequency domain. The equation demonstrates that an OFDM system
is equivalent to a transmission of data over a set of parallel channels. Channel
estimation is important in an OFDM system to achieve high data rates and reliable
communication. Channel information is classified as CSI in frequency domain
and CIR in time domain. In frequency domain, CSI provides channel information
with amplitude and phase over multiple subchannels. As shown in Figure 2.11,
the constructive and destructive phases of signals from multiple propagation paths
cause frequency-selective fading, i.e., different attenuations in different frequency
subcarriers. H in Equation (2.6) is the CSI information in frequency domain.

In time domain, CIR characterizes amplitude and phase information over mul-
tiple propagation paths. CIR is modelled as a temporal linear filter as

h(τ) =
N�

n=1

ane
−jθnδ(τ − τn), (2.7)

where an, θn and τn are the amplitude, phase and time delay of the nth path. N is
the total number of paths and δ(τ) is the Dirac delta function. h in Equation (2.6)
is the CIR information in time domain. CIR is converted to CSI by FFT and CSI
to CIR by IFFT.

Two basic channel estimation mechanisms are commonly used, i.e., block-type
pilot and comb-type pilot channel estimation [39]. Pilot means training symbols
with known values at the receiver side. As shown in Figure 2.12, block-type pilot
is performed by inserting pilots into all subcarriers of OFDM symbols within a
specific period. The comb-type pilot channel estimation inserts pilot tones into
certain subcarriers of each OFDM symbol, and interpolates to estimate CSI in other
subcarriers. The Least Square (LS) and Minimum Mean Square Error (MMSE)
techniques [39] are two widely used for channel estimation with pilot symbols.

• The LS channel estimation method estimates the channel by minimizing the
following cost function as

ĤLS = argmin
ĤLS

||Y − X̄ĤLS||2, (2.8)
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Figure 2.12: Channel Estimation Mechanisms

where X̄ is the transmitted pilot symbols in diagonal matrix and Y is the
received pilot symbols in vector. The solution for this problem is got by
setting the derivative of the cost function with respect to Ĥ to zero. Finally,
the LS solution is got as

ĤLS = X̄−1Y. (2.9)

The advantage of this LS solution is its simplicity to implement.

• MMSE further improves the LS solution by introducing a weight matrixW.
The MMSE estimation finds the solution as

ĤMMSE = argmin
ĤMMSE

||H− ĤMMSE||2, (2.10)

where ĤMMSE = WĤLS. The MMSE solution (please find more details
in [39]) is as

ĤMMSE = RHĤLS
R−1

ĤLSĤLS
ĤLS, (2.11)

whereRHĤLS
is the cross-correlation matrix between the true channel vec-

tor and LS estimated channel vector. RĤLSĤLS
is the auto-correlation ma-

trix of the LS estimated channel vector. MMSE provides better performance
than LS but it requires some prior channel knowledge, such as the correla-
tion matrix of the channel and Signal to Noise Ratio (SNR), which may not
be available in practice. Additionally, the implementation complexity is also
higher than LS.

Frames in IEEE 802.11n

The IEEE 802.11n standard supports three physical layer models: legacy mode,
mixed mode and green field mode [13]. Legacy mode only supports 20MHz band-
width and supports legacy IEEE 802.11a/g systems. High Throughput (HT) mode
is supported in both green field and mixed modes. Green field can only be used
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where no legacy system exists. These different modes have different frame format
as shown in Figure 2.13. In our work we mainly use the legacy frames, which are
reviewed in the remainder of this subsection.

As shown in Figure 2.13, the preamble in the legacy packets consists of L-STF
(Legacy Short Training Field) and L-LTF (Legacy Long Training Field). L-STF
consists of ten copies of short preambles (also called Short Training Sequences
(STS)) and L-LTF consists 2.5 copies long preambles (also called Long Training
Sequences (LTS)). L-STF is mainly used for timing acquisition and coarse fre-
quency acquisition. L-LTF is used for channel estimation and fine frequency ac-
quisition. A long preamble consists of 53 subcarriers, which are modulated by the
sequence L as

L−26,26 =

{1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 0, 1,
− 1,−1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1}

These two long preambles in L-LTF are used for block-type pilot channel estima-
tion. Additionally, in IEEE 802.11n, four groups of comb-type pilots are inserted
in the subcarriers with the number of -21, -7, 7 and 21.

The preambles are followed by the signal field. This field gives information
about the type of modulation and coding rates used in the data field. The encoding
of the signal field is based on BPSK modulation and uses convolutional coding
at R = 1/2. For the data field, please refer to [13] for more details about the
modulation and channel coding schemes.
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Figure 2.14: ACK Packets in IEEE 802.11n
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Figure 2.15: A General Structure of Software Defined Radio

ACK Packets in IEEE 802.11n

Acknowledgement (ACK) packets from the mobile users are relevant for the pas-
sive positioning system in our work. Therefore, we review ACK packets in IEEE
802.11n. ACK packets are adopted in the IEEE 802.11a/g/n standards to inform a
transmitter of the correct reception by a receiver. In IEEE 802.11n, ACK packets
that are used in IEEE 802.11a/g are referred to as legacy ACKs. Along with legacy
ACKs, IEEE 802.11n introduces block ACKs to acknowledge multiple MAC Pro-
tocol Data Units (MPDU) accumulatively by using a single block ACK frame,
i.e., Aggregate-MPDU frame aggregation mechanism [13]. Figure 2.14 shows the
frame formats of the legacy and block ACKs. In legacy ACKs, the MAC header
only includes the destination (receiver) address information, which is the MAC ad-
dress of the access point if the ACK packets are transmitted from user equipments
to the access point, i.e., uplink. Besides destination address, the MAC header in
block ACKs includes source (transmitter) address, which is the MAC address of
the user equipment in uplink messages.

2.3 Software Defined Radio Systems

Traditional radio devices rely on hardware, which limits cross-functionality and
results in inflexibility in supporting multiple waveform standards. For example,
an IEEE 802.15.4 receiver like the CC2420 chip [1] can not receive IEEE 802.11
signals even if both signals operate on the same frequency (2.4GHz). Software
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Defined Radio (SDR) has been proposed to provide an efficient and inexpensive
solution by defining some or all of the physical layer functions as software [111].
Because of the configurable physical layer implementation, SDR techniques allow
wireless devices to support multi-mode and multi-band radio signals.

Figure 2.15 shows a general structure of software defined radio system, which
normally consists of three components: RF (Radio Frequency) frontend, IF (Inter-
mediate Frequency) processing and baseband signal processing. Take the receiver
as an instance. RF-frontend captures analog signals at certain radio frequency (for
example, IEEE 802.11a at 5GHz and IEEE 802.11g at 2.4GHz) and convert these
radio signals to a lower intermediate frequency. Since this part needs to process
the analog signals, it is implemented in hardware circuit but the central radio fre-
quency can be configured by tuning the oscillator. Then the IF analog signals need
to be sampled by an ADC (Analog-to-Digital Converter) to digital signals centered
at the intermediate frequency. These IF digital signals are converted to baseband
complex signals centered at zero frequency by a Digital Down-Converter (DDC).
Additionally, DDC is also used to decimate the high sampling rate signal from
ADC to a lower sampling rate, which allows the baseband signals to be processed
by lower speed processors. Note that DDC or DUC (Digital Up-Converter, which
is used in the transmitter to interpolate the low sampling rate baseband signals
to the high sampling rate IF signals) [47] are normally implemented in software.
Finally, these baseband signals are processed in software.

2.3.1 Hardware Platforms

Nowadays, numerous platforms have been developed for software defined radio.
Based on the processors for baseband signals, these platforms are classified as Gen-
eral Purpose Processors (GPP) [5], Digital Signal Processors (DSP) [83], Graphics
Processing Units (GPU) [67] and Field-Programmable Gate Array (FPGA) [6].

• GPPs have high flexibility because they are not specialized for particular
applications. However, GPPs for SDR have low capability for mathematical
operations and low energy efficiency.

• DSPs, such as Texas Instruments DSP, are specialized for mathematical op-
erations but they are slow for other applications.

• GPUs are optimized for vector manipulations and have high capability for
signal processing. However, they are difficult to program and have extremely
low energy efficiency.

• FPGAs are reconfigurable logic devices that enable highly parallel imple-
mentations of digital signal processing algorithms. Similar as DSPs, they
are slow for the other applications.

WARP [6] from Rice University and USRP [17, 16] from Ettus Research or Na-
tional Instruments are commonly used SDR platforms. WARP is normally used
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for research and prototype of wireless networks. The hardware of WARP uses FP-
GAs for signal processing. In contrast to WARP, USRP relies on GPP for signal
processing. Since USRP is used in our research, we introduce more details about
these platforms in the reminder of this section.

An USRP device comprises a motherboard and RF daughterboard. The RF
daughterboard is a RF frontend in Figure 2.15. Ettus research provides different
types of daughterboards for different applications and different frequency bands.
For example, theWBX daughterboard [4] supports frequency ranging from 50MHz
to 2.2GHz and SBX [3] from 400MHz to 4GHz. BothWBX and SBX support up to
40MHz bandwidth. The motherboard in USRP is used for IF processing and hence
it comprises ADC/DAC and DDC/DUC in Figure 2.15. The major computing
component on the motherboard is FPGA, which implements DDC and DUC. USRP
hardware is available in different categories: such as Gigabit Ethernet networked
(USRP N210/200), USB bus (USRP B210/200) and Embedded (USRP E110/100)
series. USRP devices are controlled with an open source driver called UHD (USRP
Hardware Driver). It supports Linux, MacOS, and Windows platforms. In our
work, we use USRP N210 [17] and E110 [16].

USRP N210 [17] is a network based device, in which the baseband samples
from the motherboard are sent to a remote PC for signal processing by a Gigabit
Ethernet interface with up to 25MS/s (Mega Samples per Second) of 16-bit sam-
ples and 50MS/s of 8-bit samples. In the motherboard, it contains two 14-bit ADCs
with the sampling rates of 100MS/s and two 16-bit DACs with sampling rates of
400MS/s. FPGA is the key element in the motherboard of USRP N210, which is
Xilinx Spartan XC3SD3400A FPGA [14]. FPGA in USRP N210 is controlled by
a Reference and System Clock Generation modules (RSCGs), which provides a
fixed clock with 100MHz (master clock rate) [17]. RSCG can use its internal clock
(oscillator) or lock to an external clock. For example, Ettus research provides a
GPSDO (GPS-disciplined oscillator) [15] as an external GPS locked reference os-
cillator. At the receiver side, DDC in FPGA can only decimate the income signals
to a low sampling rate with an integer fraction of the master clock (100MHz).

In contrast to USRP N210, USRP E110 [16] integrates a Texas Instrument
embedded processor running a Linux operating system, which does not need to
connect to another host machine, i.e., a PC, for signal processing. Therefore, it
is ideal for standalone operation as a smart, distributed RF sensor. The drawback
of USRP E110 is the limited computation capability because of the low speed
embedded processor.

2.3.2 GNU Radio for Different Signals

GNU Radio [5] is a well known SDR software system based on GPP. GNU Radio
uses a combination of C++ and Python. The processing blocks requiring high
computation are implemented in C++. Python is used to control and coordinate
these blocks. GNU Radio combined with USRP provides a runtime environment
for signal processing.
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Figure 2.16: GNU Radio Flow Graph

A complete systemwith GNURadio is a flow graph [5], which is a combination
of connected GNU Radio blocks as shown in Figure 2.16. A GNU Radio block
implements various data/signal processing functions, such as a filter or a modulator.
Briefly, each GNU Radio block receives one or multiple input sample streams,
processes them, and generates one or multiple output sample streams. Blocks in
a flow graph are connected by buffers [5]. As shown in Figure 2.16, each GNU
Radio block has two buffers: input and output buffers. Output buffer is allocated
to hold samples generated by this block. Input buffer is used to read and store
the input sample stream. The structure of stream-based signal processing in GNU
Radio works well for samples but has drawbacks to pass the control and meta data
from one block to another. In GNU Radio, stream tags [5] have been introduced
to attached the sample stream with meta/control data, like sampling frequency or
timestamps, as an isosynchronous data stream parallel to the main data stream.

In the remainder of this section, we introduce wireless communication encod-
ing or decoding systems based on GNU Radio, which are related to our work,
including GMSK transceiver, IEEE 802.15.4 decoding and IEEE 802.11 decoding.

GMSK Transceiver

As introduced in Section 2.2.1, GMSK modulation and demodulation schemes are
used in GSM systems. In GNU Radio, a GMSK digital communication system
has been provided based on existing GNU Radio blocks [54]. It can transmit and
receive GMSK-modulated packets at different bit rates and center frequency. We
modify this GMSK digital communication system to design our GSM-like testbed
for evaluating positioning algorithms in Chapters 3 and 4.

Figure 2.17 shows the flow graph of the transmitter and receiver. For the trans-
mitter, it uses the same structure as introduced in Section 2.2.1, which consists of
NRZ, Gaussian Filter for pulse shaping and frequency modulation.

On the receiver side, it adopts the one-bit differential detection method as in-
troduced in Section 2.2.1 to decode the GMSK signals. FM demodulation is used
to detect the phase difference between two sequential incoming signals as in Equa-
tion (2.2). As introduced in Section 2.2.1 the GMSK signals are pulse shaped by
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Figure 2.18: Digital Architecture of Time Recovery Loop
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Figure 2.19: IEEE 802.15.4 Decoding
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a Gaussian filter. Therefore, to achieve the maximum SNR, the sampling position
needs to be taken at the peak of pulse shape. However, in a digital communication
system, sampling clock is not synchronized to the incoming signals. Therefore, the
sampling position is normally shifted from the peak of the pulse shape. Time re-
covery [89] is normally used to resample the incoming digital samples to the peak
of the pulse shape to achieve maximum SNR and low bit error rate. In the time re-
covery method whose structure is shown in Figure 2.18, a Timing Error Detection
(TED) module is used to extract a timing error term ek (k is the sample number) be-
tween the actual and optimal sample positions based on the symmetrical property
of the pulse. Different methods have been proposed to calculate this timing error
term, such as early-late gate algorithm, Mueller and Muller algorithm, and Gard-
ner algorithm [89]. In this GMSK receiver, a Mueller and Muller algorithm [95] is
used to calculate the timing error term as ek = (yk ∗ ŷk−1) − (ŷk ∗ yk−1), where
yk is the value before decision and ŷk is the value after decision. The timing error
term ek is passed to a loop filter, which outputs the normalized timing error µ(k)
to decide on the correction of the sampling time in the resampler. Subsequently,
the sampling position is adjusted to be closer to the optimal one. The outputs of
time recovery block are fed into a slicer for symbol decision. After the signals are
demodulated to bits, a correlator is used to find the beginning of the packet and
finally the packet is reconstructed in the frame sink block.

IEEE 802.15.4 Decoding

In 2006, the author of [109] provided a GNU Radio based IEEE 802.15.4 decoding
system for O-QPSK physical layer (2.4GHz). It adopts the demodulation method
introduced in Section 2.2.2, which demodulates the O-QPSK signals by a MSK
one-bit differential detector. Figure 2.19 shows the flow graph, which has simi-
lar structure as GMSK including FM demodulator, time recovery and slicer. In
contrast to GMSK with a Gaussian pulse shape, the pulse shape of O-QPSK is
half-sine, which is used in time recovery to adapt the sampling position. The main
difference between this IEEE 802.15.4 decoding system and GMSK receiver is
in the packet sink block. Based on the frame structure of IEEE 802.15.4 packets
as in Figure 2.6, the packet sink block detects physical layer frame by searching
the synchronization header and then decodes the whole MPDU. Additionally, in
this block, Table 2.2 is used to convert the chips to bits. Once a complete MPDU
is found, it is added to a message queue. In this system, all components in Fig-
ure 2.19 consist of physical layer decoding (FM demo, time recovery and slicer)
and MAC layer decoding (packet sink) are implemented in separated GNU Radio
blocks. In Chapter 4, based on the same physical layer decoding method, we build
up an IEEE 802.15.4 decoding system, which more efficiently passes control data
from the physical layer to the MAC layer with a cross-layer structure.
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IEEE 802.11 Decoding

The authors of [28] developed a system to decode IEEE 802.11a/g/p signals based
on GNU Radio and USRP N210. This system can be configured to support 10MHz
(IEEE 802.11p) and 20MHz (IEEE 802.11a/g and IEEE 802.11n packets with
legacy model). The decoding procedure follows the structure in Figure 2.20. Please
refer to [28] for more details about GNU Radio blocks in this system. This system
is modified to design the WiFi signals sniffers in our passive positioning/tracking
system, which is introduced in Chapter 5 and 6.

(a) STF Correlation (b) LTF Correlation

Figure 2.21: STF and LTF Correlation [28]

In this system, the incoming samples with 20MHz sampling rate first correlate
with the pre-defined short preamble (STF). If there is a frame receiving, a plateau
will be detected as in Figure 2.21(a). Then the samples in the detected frame are
correlated with the long preamble (LTF) to fine align the OFDM symbol for FFT
operation. Additionally, the frequency offset is also corrected by long preamble.
After aligning OFDM symbols, a FFT is applied to convert the signals from time
domain to frequency domain. Then equalization block is adopted to correct phase
offset based on the signals from the 4 pilot subcarriers. The signal field, which
carries information about the modulation and encoding schemes of the following
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symbols, is decoded. Based on the modulation schemes and coding rate informa-
tion obtained from the signal field, the remaining parts of this frame are decoded.

2.4 Range-free Positioning Methods

After briefly introducing some background knowledge about wireless communica-
tion, we review some relative work and background about positioning techniques
based on radio signals. As mentioned in Section 2.1, radio-based indoor position-
ing can be classified as range-based and range-free methods. Because of the severe
multipath propagation indoor, it is nontrivial to achieve accurately ranging. Hence,
range-free indoor positioning has been investigated for decades. In this section, we
review two well-known range-free methods including fingerprinting and centroid
methods.

2.4.1 Fingerprinting Positioning Methods

Fingerprinting positioning methods have been intensively investigated in the past
years and are currently the dominating indoor positioning algorithm because of
its high positioning accuracy. Fingerprinting algorithms can be used in both pas-
sive positioning and active positioning system. A fingerprinting method comprises
two phases including offline training and online positioning. The aim of the of-
fline training phase is to build a fingerprint database, i.e., radio map, which con-
tains different features of radio signals at a set of training locations. In the previ-
ous research, the features used for constructing the radio map focus on RSS and
channel information. To generate this radio map, a mobile device needs to move
through the area of interest at the training locations and record the radio features
in a database. In the online positioning phase, the mobile target measures the radio
features. Then, pattern matching techniques are applied to map the measured radio
features to the training data in the radio map and finally locate the target.

To achieve higher positioning accuracy, the training positions are required to
be very dense and cover the whole area of interest. Therefore, it is very labour
intensive to build a radio map, which covers a large area of interest. Additionally,
fingerprinting methods are typically error prone to layout changes, which make the
radio map out of date. Therefore, the radio map needs to be updated frequently as
soon as the surrounding environments change. Otherwise, the positioning accuracy
will dramatically decrease.

RADAR

AMicrosoft research group presented the first fingerprinting system called RADAR
[24], which uses RSSI from the received WiFi signals. In the offline phase, RSSIs
at multiple ANs are measured to build the RSSI radio map. Assume that at the
ith training location, the measured RSSI vector is RSSIi. In the online phase, af-
ter measuring the RSSI vector s at the current location, the K-Nearest Neighbours
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(KNN) algorithm is adopted to match the position of a target device to the RSSI
map. They select the K nearest neighbours which have smallest Euclidean distance
(D = ||s − RSSIi||) from the measured RSSI vector in the radio map. Then they
calculate the average of these neighbours’ locations as the estimated location of the
target as

(x�, y�) =
1

K

K�

i=1

(xi, yi), (2.12)

where (xi, yi) are the coordinates of the training locations.
To further improve the positioning accuracy, some work [41] introduces weight-

ing techniques to KNN, namely Weighted-KNN (WKNN) , as

(x�, y�) =
K�

i=1

[wi · (xi, yi)]. (2.13)

A most often used way to set the weights wi in Equation (2.13) is as

wi =
1/D

�K
j 1/D

, (2.14)

which is inversely proportional to the Euclidean distance (D = ||s− RSSIi||).

HORUS

HORUS [129] is another well known RSSI-based fingerprinting system for WiFi
systems. It also comprises two phase: offline training and online positioning. In
contrast to RADAR with a KNN method in online positioning phase, HORUS uses
a joint clustering method for positioning, which uses a probabilistic method. This
probabilistic method considers the pattern recognition as a classification problem.
Assuming that there are n training positions L1, L2, · · · , Ln and s is the observed
RSSI vector during the online stage, HORUS calculates the posteriori probabil-
ity of P (Li|s). Using Bayes’ formula and assuming that P (Li) = P (Lj) for
i, j = 1, 2, · · · , n, the likelihood of P (s|Li) is equal to P (Li|s). After obtain-
ing the likelihood P (s|Li), the location is estimated by a weighted average of the
coordinates of all training positions as

(x�, y�) =
n�

i=1

P (Li|s)(xi, yi). (2.15)

FIFS

As introduced in Section 2.2.3, CSI in an OFDM system provides channel informa-
tion with amplitude and phase over multiple subchannels, which is a fine-grained
information compared to RSSI. Compared to RSSI, CSI provides more informa-
tion because of frequency diversity. FIFS [124] is a fingerprinting system for WiFi
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signals, which adopts CSI instead of RSSI to construct the radio map. The system
leverages a commercial WiFi card (IWL5300), which is able to extract CSI from
the received packets. To build the radio map, a laptop equipped with the IWL5300
WiFi card needs to scan the CSI information in different training positions. Then,
they calculate an effective CSI by summing power of CSI over all the independent
subchannels and store this effective CSI information in the database. For online po-
sitioning, they adopt the probabilistic method (Equation (2.15)) to locate the target.
As reported in [124], the positioning accuracy of FIFS by using CSI is impressively
higher than HORUS with RSSI.

CSI-MIMO

CSI-MIMO [33] further considers the frequency diversity and spatial diversity in
the measured CSI information by combining multiple sub-carriers and multiple
transmit and receiver antennas to generate the location fingerprints. To build up
the radio map, first, they average the CSI value of each subchannel over MIMO
and obtain an aggregated CSI vector of dimension 1× 30. Each component in this
vector is an aggregated CSI on one individual subchannel. Second, they extract the
amplitude and phase information in CSI and subtract these information between
sequential subchannels. The resulting amplitude and phase difference values con-
struct the fingerprints in the radio map. For the online positioning phase, they use
both KNN as in RADAR and the probabilistic method as in HORUS and FIFS. Ex-
perimental results show that by considering the amplitude and phase information,
CSI-MIMO outperforms FIFS by 57%.

2.4.2 Centroid Positioning Methods

Centroid positioning algorithms are another category of range-free positioning and
they belong to proximity based positioning methods. They are widely used in
wireless sensor networks to roughly estimate a sensor node’s location because of
its simplicity. The location is estimated by calculating an average value of the
coordinates of K nearest neighbour nodes as

(x�, y�) =
1

K

K�

i=1

(xi, yi), (2.16)

where (xi, yi) are the coordinates of the nearest neighbour nodes. In contrast to
fingerprinting, in which the neighbours are the training positions, the neighbour
nodes in the centroid algorithm are the real deployed nodes, e.g., sensor nodes.
Therefore, to achieve high positioning accuracy, the density of deployed nodes
requires to be high.

Weighted Centroid (WC) methods improve the centroid methods by introduc-
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ing different weights for different neighbour nodes as

(x�, y�) =
K�

i=1

[wi · (xi, yi)], (2.17)

where wi is the weight for the ith neighbour node. The weight can be set based
on RSSI or the estimated distance. For example, the authors of [29] propose a
weighted centroid algorithm for IEEE 802.15.4 signals based on the estimated
propagation distance from RSSI. Each weight is inversely proportional to the esti-
mated propagation distance d as

wi =
1/dgi�K
j=1 1/d

g
j

, (2.18)

where g is a parameter influenced by the surrounding environments and the weights
are normalized. The value of g can be manually determined according to [118]. For
a propagation range of 10m, g = 1 and for 20m, g = 2. Although ranges, i.e., the
propagation distance d in Equation (2.18), are calculated in this weighted centroid
algorithm, the range information is only used as weights instead of directly using
for positioning like trilateration algorithms, which are introduced in Section 2.6.
Therefore, it is less influenced by the ranging accuracy and more robust to ranging
errors compared to some trilateration algorithms like LLS [29].

These centroid algorithms are easy to implement but can only provide low
positioning accuracy. Therefore, it is suitable to use these algorithms in some
applications with low computation capability and low requirements for positioning
accuracy such as in wireless sensor networks.

2.5 Ranging Methods

In contrast to range-free positioning methods, radio parameters in range-based po-
sitioning methods are used to estimate the propagation distances from the target to
different ANs. This procedure is called ranging, which is the first step for range-
based indoor positioning. To achieve ranging, we can use different radio parame-
ters such as time, RSSI or channel information.

2.5.1 Time-based Ranging

Arrival Time of Radio Signals

Accurate measurement of the arrival time of radio signals is a common challenge
in all the time-based ranging methods. The accuracy of the timestamps depends
on several aspects, such as uncertain measurement delays in different receivers
and properties of radio signals including bandwidth and modulation/demodulation
schemes.
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The timestamps for the received signals from a packet source reflect the signal
propagation time as well as the processing time in ANs (receivers). For most of
the commercial devices like WiFi cards and sensor nodes, a timestamp is normally
given at the MAC layer and the accuracy is only on the microseconds level because
of processing delay at physical and MAC layers [52]. Consequently, a timestamp
is best given close to the physical layer to avoid influences from processing time at
the MAC or higher layers at the receiver. To obtain the physical layer timestamps,
special devices are required, which can process the physical layer information to
achieve high accuracy of timestamps.

The accuracy of physical layer timestamps is highly dependent on the proper-
ties of radio signals including bandwidth and demodulation schemes. Many studies
on time-based positioning with radio signals focus on Ultra Wide Band (UWB) sig-
nals [56, 85]. Due to its wide bandwidth (larger than 500MHz), UWB can achieve
nanosecond accuracy for timestamps and resolve the multipath components. In
LOS conditions, positioning systems based on UWB signals can achieve an accu-
racy of ranging on the level of millimeters. NLOS propagation is the main error
source for positioning error by using UWB because the LOS component may not
exist [44, 86]. Additionally, UWB signals require a special radio transceiver and
hence it is normally used for some specific applications, such as positioning in
sensor network [56] and navigation for mobile robot [70].

In our daily life, signals with narrower bandwidth are more often used than
UWB signals, such as GSM with 200KHz, IEEE 802.15.4 with 2MHz, WiFi with
20MHz - 40MHz and LTE with up to 20MHz. It becomes extremely challenging to
accurately measure the arrival time of these radio signals with narrow bandwidth.
Additionally, complex indoor propagation is another aspect limiting the accuracy
of time measurement for signals with narrow bandwidth. The sources of errors
include multipath propagation and shadowing. Benefiting from its wide bandwidth
and correspondingly extremely short pulse interval, UWB can resolve and sepa-
rate the multipath components. However, for a signal with narrower bandwidth
as shown in Figure 1.3, the signals from different paths including the direct path
and multipath from reflection overlap in one symbol duration. It is extremely chal-
lenging to detect the direct path. Furthermore, shadowing attenuates or completely
blocks the direct path, adding another error to the range estimate.

TOA, TDOA and DTDOA

There are different ways to achieve time-based ranging such as TOA (Time of
Arrival) and TDOA (Time Difference of Arrival). TOA is used to calculate the
propagation distances between a target and different ANs by measuring the propa-
gation delay of the radio signals. In contrast to TOA, TDOA-based ranging is used
to calculate the difference of distances between the target and different ANs.

• TOA ranging can be achieved by two methods including one-way ranging
and two-way ranging. For one-way ranging, as shown in Figure 2.22(a),
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Figure 2.23: TDOA and DTDOA

the transmitter needs to measure the transmission time T1 and receiver mea-
sures the time of arrival T2. Then, the Time of Flight (TOF) is calculated as
TOF = T2 − T1. The propagation distance based on the transmitter and re-
ceiver is calculated as d = TOF·c, where c is the speed of radio signal (light).
This one-way ranging requires synchronization between transmitter and re-
ceivers. This one-way ranging method is used in GPS [48]. Round Trip
Time (RTT) method measurements can also be used for TOA estimation. As
shown in Figure 2.22(b), with RTT, the transmission time (T1) of a radio sig-
nal (request signal) is measured at the transmitter side. After receiving the
signal, the receiver needs to send a response signal back to the transmitter,
which measures time arrival time (T2) of this response signal. Then, RTT is
calculated as RTT = T2 − T1. Theoretically, the propagation distance be-
tween the transmitter and receiver can be calculated as d = RTT · c/2. One
of the advantages for RTT is that it does not need to synchronize the devices
including transmitter and receivers. In practice, one of the critical influence
on the ranging accuracy based on RTT is the uncertain processing delay at
the receiver side. The authors of [87] modified a firmware for a commercial
WiFi card to extract timestamps from the received WiFi packets. They used
RTT measurements to calculate the ranges between the target and different
ANs. To compensate the uncertain processing delay at the receiver side in
the RTT measurements, they proposed to offline calibrate the processing de-
lay at the receiver side and then compensate the delay in RTT. Limited by
the bandwidth of WiFi (20MHz), the 80% accuracy of positioning can only
reach 3.7 − 5.8m as reported in [87]. Because both one-way and two-way
ranging TOA methods require the participation of the positioning target for
synchronization or packet exchanges, TOA methods are used in active posi-
tioning systems, e.g., GPS, but not in passive positioning.
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• TDOA does not require two-way packet exchange (request and response)
between the transmitter and receivers as RTT. As shown in Figure 2.23(a),
two receivers measure the arrival time of the same signal from one target (T1

and T2) and calculate the difference (TDOA) between the measured time in
these two receivers as TDOA = T1 − T2. The procedure of converting the
measured TDOA values to the difference between the propagation distances
from the target to the different ANs (receivers) is called TDOA-based rang-
ing, i.e., Δd = TDOA · c. One of the challenges for TDOA measurement
is the imperfect synchronization between ANs. Because of the large prop-
agation speed of radio signals (3 · 108m/s), the synchronization between
ANs is required to be on the level of nanoseconds to achieve high ranging
accuracy. Therefore, a large amount of research has been conducted on how
to improve synchronization accuracy and how to compensate the remain-
ing synchronization offset. The authors of [85] solved the synchronization
problem by wiring all the receivers together to share a single crystal clock.
However, this mechanism can only be used for a small scale deployment
and is infeasible for a large scale deployment. The authors of [133] ana-
lyzed TDOA performance with GSM signals in simulation and provided a
ranging accuracy of 11.4m in LOS situations and 23.3m in NLOS situations
with 200KHz bandwidth. They did not consider, however, practical factors
such as synchronization and sampling rate. TruePosition [116] is a leader
in the deployment of location technologies in support of the E911 mandate.
They provide Uplink-TDOA (U-TDOA) solution for GSM positioning. The
accuracy of positioning is influenced by the mentioned factors, i.e., AN syn-
chronization and multipath propagation, and they declared the positioning
accuracy from 50m to 150m in urban and sub-urban environments in their
report.

• DTDOA is a modified version of TDOA to compensate the synchronization
offset between receivers using a Reference Node (RN) as shown in Figure
2.23(b). The main idea is that two receivers need to calculate TDOA val-
ues for the packets from the target (TDOAt = T1 − T2) and RN (TDOAr =
T3−T4) respectively. By calculating the difference between these two values
as DTDOA = TDOAt − TDOAr, the synchronization offset between these
two receivers can be compensated. The authors of [122] have discussed DT-
DOA in WLAN and evaluated their approach in a MATLAB simulation but
no evaluation in real world is done. In practice, the authors of [97] demon-
strated that some limitations are posed on the interval between the packet
transmissions of the RN and the target. Since RN and the target can not
transmit their packets exactly at the same time, which will cause collisions
at the receiver side, synchronization offset between the non-perfectly syn-
chronized receivers accumulates during the transmission interval between
the RN and target. According to [97] the accumulated synchronization off-
set can introduce ranging errors as large as 250m in a practical system. The
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authors proposed to estimate the mean clock offset between two unsynchro-
nized local clocks in an off-line phase and to compensate the accumulated
synchronization offset during the on-line phase. However, they also showed
that the momentary clock offset varies randomly from the mean value, de-
manding very short interval between the packet transmissions of the RN and
the target, e.g., hundreds of microseconds, to meet the strict requirements
of TDOA localization. Therefore, in our work (Chapter 4), we propose to
combine DTDOA with GPS synchronization, which is able to compensate
the momentary clock offset but do not need the offline calibration and do not
require very strict limitations on the interval between the packet transmis-
sions of the RN and the target, compared to [97]. Both TDOA and DTDOA
can be implemented at the network side to passive locate the target. There-
fore, TDOA and DTDOA can be used in both passive and active positioning
systems.

Time Synchronization

As mentioned before, one-way TOA ranging and TDOAmethods require high syn-
chronization accuracy between devices. We introduce the clock terminology used
in this thesis.

Every AN in a time-based positioning system has its own clock. Assuming that
the reference time of the whole system is C(t) = t, ideally, the local time of the
ith AN (ANi) should be Ci(t) = t. However, even if started at exactly the same
time, local clocks will drift away from the reference time because of frequency
deviations of the oscillator.

Generally, the clock function of ANi is modeled as

Ci(t) =

� t

0
Δfi(t) dt+Δθi, (2.19)

where the parameters Δfi(t) and Δθi are the clock skew and initial clock offset at
ANi. In this thesis, we use the nomenclature from [93] to define that ΔCij(t) =
Ci(t) − Cj(t) is the relative clock offset, and Δfij(t) = Δfi(t) − Δfj(t) is the
relative clock skew between ANi and ANj .

There are different mechanisms to synchronize the devices, which intend to
minimize the relative clock offset ΔCij(t). There are numerous ways for device
synchronization such as Network Time Protocol (NTP), Precision Time Protocol
(PTP) (IEEE 1588) and GPS. NTP [90] and PTP [74] are commonly used to syn-
chronize clocks in the Internet computing infrastructure. NTP is often used to syn-
chronize system clocks in general-purpose workstations and servers. PTP is used
most often to synchronize device clocks in special-purpose industrial automation
and measurement networks. These devices are connected to dedicated, high-speed
Ethernet LAN segments interconnected by switches. NTP can only provide an
accuracy on the level of milliseconds and PTP improves the accuracy to microsec-
onds, which is still not accurate enough for positioning.
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GPS synchronization offers an accuracy of sub-microseconds or nanoseconds
by regularly calibrating the local times of GPS receivers to the signals from satel-
lites. There is a Phase Lock Loop (PLL) with an inaccurate local clock inside each
GPS receiver. PLL requires some time to lock to the GPS signals, denoted as an
initialization phase. After PLL has locked, PLL steps into a stable phase. In the
stable phase, PLL needs to be periodically adjusted based on the received GPS sig-
nals. If the GPS receivers can not receive the signals from the satellites, the local
clocks will continuously drift away from each other. Hence, indoor devices should
be synchronized by using GPS receivers with outdoor antennas. Although GPS
synchronization has been reported in some data sheet [15] that it is able to achieve
sub-microseconds synchronization accuracy, it is still not clear that how accurate
the clock offset and skew of the real deployed GPS-synchronized devices can reach
in nanoseconds. This nanosecond accuracy of both clock offset and skew has sig-
nificant impact on time-based positioning and therefore, in our work (Chapter 3),
we propose our methods to investigate the properties of GPS-synchronized clocks
in depth.

2.5.2 RSSI-based Ranging

RSSI is another commonly used radio parameter to calculate the propagation dis-
tance [131, 57]. In contrast to time information, which requires special devices,
RSSI is available for most of the commercial devices for Bluetooth, WiFi and Zig-
bee. However, RSSI is a coarse MAC layer power indicator, which is prone to
multipath and NLOS propagation. In indoor environments, a radio signal propa-
gates to a receiver through multiple propagation paths, in which the signals have
different delay, attenuation and phase shift. Then, RSSI is simply calculated as
the power of the received signal, which combines multiple versions of the original
signal. Therefore, a small change in the multipath propagation may lead to signifi-
cant changes of the relative phases in constructive or destructive signals. This will
cause significant fluctuations in RSSI as shown in Figure 1.2 [126].

To characterizes the variation of received signal strength over distance, a Log
Distance Path Loss (LDPL) is commonly used as [20, 21, 49]

RSS = Pt − (PL(d0) + 10 · ξ · log10(
d

d0
) +Xθ), (2.20)

where RSS is the received signal strength, Pt is the transmission power in dBm,
PL(d0) is the path loss at reference point d0 and ξ is the path loss exponent. Xθ is a
zero-mean normal random variable reflecting shadowing attenuation in dB. LDPL
assumes a linear relation between the path loss and logarithmic distance. Besides
the multipath effects, it is challenging to accurately model the power attenuation
because of obstacles (shadowing) in a complex indoor environment. Therefore,
RSSI-based ranging normally suffers from large ranging errors. To compensate
the attenuation of walls, a path loss model with a Wall Attenuation Factor (WAF)
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[51] has been proposed as

RSS = Pt − (PL(d0) + 10 · ξ · log10(
d

d0
) +WAF+Xθ), (2.21)

where WAF is the factor indicating the power attenuation because of the walls.
However, with this WAF model, a correct count of the number of walls between
the target and receivers, which is difficult to obtain in practice [135].

2.5.3 Ranging based on Channel Information

In contrast to RSSI, CSI is a fine-grained physical layer information, which can
be used to resolve the signals from multiple paths. As mentioned in Section 2.2.3,
CSI characterizes amplitude and phase information over multiple subcarriers in
frequency domain. Note that CSI information is only available in OFDM systems
with multiple carriers but not in single band systems like DSSS. By applying an
IFFT, CSI is converted to CIR in time domain, which characterizes amplitude and
phase information over multiple propagation paths in time domain.

As shown in Figure 2.11, CIR is a digitalized channel information in time do-
main, with a resolution of Δτ = τn − τn−1. The resolution Δτ depends on the
bandwidth of the used signal, i.e., Δτ = 1/B, where B is the bandwidth of the
signal. If the bandwidth B is infinite, CIR will be the same as the analog channel
and it can distinguish all the propagation paths. However, in practice, the band-
width B is limited. Therefore, the measured CIR with a resolution of Δτ = 1/B
can only distinguish several clusters of propagation paths rather than every individ-
ual multipath component. The bandwidth of IEEE 802.11n is 20MHz and hence
the time resolution of an estimated CIR is 1/20MHz = 50ns, i.e., Δτ = 50ns
[123, 126, 132].

FILA is a well-known indoor positioning system for WiFi signals by using
CSI-based ranging. In FILA, CSI information is extracted from an IWL5300 WiFi
card. Then, CSI is converted to CIR by applying an IFFT. FILA takes a threshold-
based method to separate the signal power corresponding to the LOS path. More
specifically, given a measured CIR h(τ), the paths with amplitudes smaller than
50% of the first peak value in h(τ) are filtered out, thus retaining the LOS or the
shortest NLOS paths. The filtered CIR samples are once again converted into the
frequency domain. FILA adopts a weighted summation on the filtered CSIs to
normalize the power to the central frequency within the band as

CSIeff =
1

N

�

n

fn
fc

· an, (2.22)

where CSIeff is the final input for distance estimation. N is the total number
of subcarriers.fc is the central frequency, and an is the amplitude of the filtered
CSI on the nth subcarrier. Experimental results in [123] demonstrate that CSI can
mitigate multipath propagation and significantly improve the positioning accuracy
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AN

(a) Trilateration

AN

(b) Multilateration

Figure 2.24: A Geometric Explanation of Trilateration and Multilateration

compared to RSSI. The authors of [126] proposed a positioning system with no-
madic access points, named NomLoc, which proposed to estimate the power of di-
rect path with the maximum power in the measured CIR samples and consider the
other CIR samples as multipath components from reflection and diffraction. With
this method, it is able to mitigate the influence of multipath propagation. This work
also relies on the IWL5300WiFi card for CSI extraction. This multipath mitigation
method [126] is also used in our work as a part of our ranging methods based on
channel information (in Chapters 5, 6, and 7).

Both [126] and [123] rely on the specific card IWL5300 WiFi card for CSI
extraction. However, there are some limitations on this card for CSI extraction.
First, the firmware [60] only supports CSI extraction from the connections using
an IEEE 802.11n HT (High-Throughput) rate but not legacy mode. Second, it does
not support extracting CSI from overheard packets. Hence, the network cards with
the firmware [60] can not be used for a passive positioning system, in which the
ANs need to obtain CSI from the overheard packets.

2.6 Trilateration and Multilateration Algorithms

After obtaining ranging information based on radio parameters, range-based po-
sitioning algorithms such as trilateration and multilateration are used to estimate
the location of the target. Figures 2.24(a) [36] and 2.24(b) [127] show a geomet-
ric explanation of trilateration and multilateration. For trilateration, the target is
located at the intersecting area of circles, whose centers are the locations of ANs
and radii are the estimated ranges. Trilateration is suitable for TOA, RSSI and
CSI based ranging, which can directly obtain the propagation distances from the
target to different ANs. In contrast to trilateration, multilateration is based on the
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measurement of the differences in distances between different ANs, which is suit-
able for TDOA-based ranging. As shown in Figure 2.24(b), the target is located
in the intersecting area of multiple hyperbolic lines. Geometric explanations as in
Figure 2.24(a) and Figure 2.24(b) provide us a clear view of these two methods
but geometric solutions are difficult to be implemented in practice. In practice, the
location of the target is numerically calculated.

The range-based positioning problem can be formulated as a convex optimiza-
tion problem to find the optimal solution (location of the target), which meets the
range measurements. The commonly used methods like Linear Least Square (LLS)
[114], Weighted Least Square (WLS) [35], Constrained Weighted Least Square
(CWLS) [37] and Nonlinear Least Square (NLS) [125] formulate the positioning
problem as the least square problem.

• Trilateration: Considering a set of ranges rk estimated by RTT, RSSI or CSI
and coordinates of ANs (xk, yk) where k indicates the kth AN, we obtain

rk =
�
(x− xk)2 + (y − yk)2 + nnoise. (2.23)

AssumingN ANs, to get the solution (x�, y�) for this overdetermined nonlin-
ear system of equations, we have to solve the following least square problem,

(x�, y�) = argmin
x,y

N�

k=1

[
�
(x− xk)2 + (y − yk)2 − rk]

2. (2.24)

• Multilateration: Considering a set of range differences Δrk, which indi-
cates the range difference between the kth and the first ANs, we obtain

Δrk =
�
(x− xk)2 + (y − yk)2 −

�
(x− x1)2 + (y − y1)2 + nnoise.

(2.25)
To get the solution (x�, y�) for these overdetermined equations, we have to
solve the following least square problem,

(x�, y�) =

argmin
x,y

N�

k=1

[
�
(x− xk)2 + (y − yk)2 −

�
(x− x1)2 + (y − y1)2 −Δrk]

2.

(2.26)

There are different ways to solve the aforementioned least square problems for
trilateration and multilateration, such as NLS, LLS, WLS and CWLS.

2.6.1 Non-linear Least Square

Consider the unconstrained minimization problem

minimizef(x), (2.27)
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where x ∈ Rn and f : Rn −→ R is continuously differentiable. For two dimen-
sional indoor positioning, n is equal to 2. Numerical methods based on NLS for
nonlinear optimization problems are iterative. Trust region and line search are two
commonly used methods to find the solution for the problem in Equation (2.27).

The line search approach first finds a descent direction along which the objec-
tive function f will be reduced and then computes a step size that determines how
far x should move along that direction. The descent direction can be computed by
various methods, such as gradient descent, Newton’s method and Quasi-Newton
method [98]. The step size can be determined either exactly or inexactly. Take
a quasi-Newton method as an instance. A Quasi-Newton method generates a se-
quence of iterates {xk} and steps {sk} with xk+1 = xk + sk. At xk, a quadratic
model of f(xk + sk) is formed as

Φk(sk) = f(xk) + gTk sk +
1

2
sTkHksk. (2.28)

gk = ∇f(xk) andHk introduce curvature into the model. To minimize the Φk(sk),
sk = −H−1

k gk. A line search strategy considers −H−1
k gk to be a search direction.

The step sk needs to follow −λkH−1
k gk, where λk is for step length and it needs to

be chosen in an appropriate way.
In contrast to line search strategies, trust region techniques do not necessarily

choose the searching direction. In trust region, the step is an approximate solution
of the following trust region subproblem

minimize Φk(sk), subject to ||sk|| ≤ θk, (2.29)

where θk is the trust radius and || · || is the norm of a vector. A merit function is
normally used to test whether the trial step is accepted or the trust region radius
needs to be adjusted. If a trial step is accepted at some iteration then we call the
related iteration an effective iteration, otherwise we call the iteration an ineffective
iteration. Please refer to [94] for more details about the trust region solution for the
unconstrained minimization problem (Equation (2.27)).

Such NLS techniques face high computational complexity and require good
initialization in order to avoid converging to the local minima of the cost function
[55].

2.6.2 Linear Least Square

LLS is an alternative of NLS to solve the problems of Equation (2.24) and (2.26),
which linearizes the nonlinear equations by introducing a constraint. Compared to
NLS, LLS has less computational complexity but is prone to the influence of noise.
Trilateration: Without measurement errors, Equation (2.23) is written as

r2k = (x− xk)
2 + (y − yk)

2

= R2
1 − 2xxk − 2yyk + (x2k + y2k)

=⇒
xkx+ yky − 0.5R2

1 = 0.5(x2k + y2k − r2k)

(2.30)
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where R1 =
�

x2 + y2 is the constraint introduced for linearization. Then, Equa-
tion (2.30) expressed in matrix-vector form is

Gθ = h, (2.31)

where θ = [x, y,R2
1]
T ,

G =




x1 y1 −0.5
...

...
...

xN yN −0.5


 ,

h =
1

2




x21 + y21 − r21
...

x2N + y2N − r2N


 .

To find the solution of (x, y), we minimize the sum of squares of the residuals as

θ̂ = argmin
θ

[(Gθ − h)T (Gθ − h)]

= (GTG)−1GTh,
(2.32)

and θ̂ = [x�, y�, R2
1]
T . After obtaining θ̂, we get the LLS solution (x�, y�) for

trilateration.
Multilateration: With similar procedures, we derive the LLS solution for mul-

tilateration. Without measurement errors, Equation (2.25) is rewritten as

Δrk =
�
(x− xk)2 + (y − yk)2 −

�
(x− x1)2 + (y − y1)2

=⇒
Δrk +

�
(x− x1)2 + (y − y1)2 =

�
(x− xk)2 + (y − yk)2

=⇒

(x− x1)(xk − x1) + (y − y1)(yk − y1) + ΔrkR2 =
1

2
[(xk − x1)

2 + (yk − y1)
2 −Δr2k]

(2.33)

where R2 =
�
(x− x1)2 + (y − y1)2 is the constraint introduced for lineariza-

tion. Then Equations (2.33) expressed in matrix-vector form is

Gθ = h, (2.34)

where θ = [x− x1, y − y1, R2]
T ,

G =




x2 − x1 y2 − y1 Δr2
...

...
...

xN − x1 yN − y1 ΔrN


 ,
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h =
1

2




(x2 − x1)
2 + (y2 − y1)

2 −Δr22
...

(xN − x1)
2 + (yN − y1)

2 −Δr2N


 .

To find the solution of (x, y), we minimize the sum of squares of the residuals as

θ̂ = argmin
θ

[(Gθ − h)T (Gθ − h)]

= (GTG)−1GTh,
(2.35)

and θ̂ = [x�−x1, y
�−y1, R2]

T . After obtaining θ̂, we get the LLS solution (x�, y�)
for multilateration.

2.6.3 Weighted Least Square

In LLS, all the measured ranges are treated equally. However, ranges from dif-
ferent ANs normally face different ranging errors. Therefore, this oversimplicity
introduces large positioning errors. Weighted least square improves LLS by intro-
ducing a weighting technique, which sets different weights to the measured ranges
from different ANs. WLS is an efficient way to mitigate the ranging errors. By
introducing weights in LLS, Equations (2.32) and (2.35) are rewritten as

θ̂ = argmin
θ

[(Gθ − h)TW(Gθ − h)]

= (GTWG)−1GTWh,
(2.36)

whereW is the weighting matrix. Theoretically,W for trilateration is set as

W = diag[
1

σ(r1)
, · · · , 1

σ(rN )
] (2.37)

and for multilateration as

W = diag[
1

σ(Δr2)
, · · · , 1

σ(ΔrN )
], (2.38)

where σ(·) indicates the variance.

2.6.4 Constrained Weighted Least Square

In contrast to WLS, CWLS further considers the constraint of R1 =
�

x2 + y2 for
trilateration and R2 =

�
(x− x1)2 + (y − y1)2 for multilateration. We introduce

the trilateration in this section because it is used in our work (Chapter 5). Please
find a similar procedure for multilateration in [37].

After considering the constraint, the unconstrained problem of Equation (2.36)
becomes a constrained problem as

θ̂ = argmin
θ

(Gθ − h)TW(Gθ − h), (2.39)
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subject to
qTθ + θTPθ = 0,

where P =



1 0 0
0 1 0
0 0 0


, and q =




0
0
−1


.

The constrained optimal problem is equivalent to minimize the Lagrangian
equation,

θ̂ = argmin
θ

L(θ, λ)

= argmin
θ

((Gθ − h)TW(Gθ − h) + λ(qTθ + θTpθ)),
(2.40)

where λ is the Lagrange multiplier. To obtain the final estimation of the target
location, please find more details in [37] to solve the Equation (2.40) and to obtain
the final target location (x�, y�) in θ̂.

2.6.5 Trilateration and Multilateration in Range-based Positioning

Since LLS and NLS do not require weights on each ranging information as in
WLS and CWLS, whose optimal solution requires ground truth information, they
are widely used in practice. The authors of [125] investigated both NLS and LLS
based on RSSI-based ranging using an IEEE 802.11 network and IEEE 802.15.4
network in a real office building environment. The experimental results show that
NLS significantly outperforms LLS. LLS is prone to ranging errors. In FILA [123],
because the CSI information mitigates multipath effects and achieves high ranging
accuracy, the authors only adopt LLS to locate the target and achieve a median
error of 1.2m in a corridor environment. Although a very high accuracy has been
reported [123], they only evaluated their system in a rather simple scenario (only
in a corridor for multi-room environments) with dense deployment of ANs.

To achieve the optimal solution, WLS and CWLS algorithms require ground
truth information or variance of estimated ranges, which are difficult to obtain in
practice. Therefore, large amount of research is conducted to investigate the per-
formance of WLS and CWLS in simulation with some unpractical assumptions,
such as knowing ground truth positions [35, 37, 59].

2.7 Kalman Filters for Tracking

The aforementioned trilateration or multilateration algorithms consider the range-
based positioning as a convex optimization problem but do not consider the addi-
tional information about the relation of movement states between sequential mo-
ments for mobile targets. Therefore, it is more suitable for positioning stationary
targets. To track a mobile target, Bayesian filters, which consider the tracking
problem as a Hidden Markov Model (HMM) as in Figure 2.25, can provide higher
accuracy.
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Zk Zk+1 Zk+2 Zk+3

Xk Xk+1 Xk+2 Xk+3

Figure 2.25: Hidden Markov Model

We consider the problem of tracking the locations of a mobile wireless device
over time and in two-dimensional space, given a stream of noisy range measure-
ments from at least three ANs. Thus, at time k, we have:

• an unknown system state vector xk including the target’s location (or veloc-
ity and accelerated velocity in addition),

• a discrete sequence of noisy measurement vectors z1:k, taken at times 1, . . . , k
including the distances to the different ANs, obtained from the RSS or time
information.

The target moves according to a function:
xk = f(xk−1) + vk, (dynamic equation or system equation)

and the measurement system observes the target according to another function:
zk = h(xk)+uk, (observation equation ormeasurement equation)

where vk and uk are the system and measurement noise, respectively. Therefore,
in HMM, the hidden variable xk depends only on the value of the hidden variable
xk−1. The values at time k − 2 and before have no influence, which is called
Markov property. The value of the observed variable zk only depends on the value
of the hidden variable xk.

From a Bayesian perspective, the goal is to calculate the “degree of belief”
p(xk|z1:k) in the current state of the system xk, based on the available measure-
ments z1:k and an initial Probability Density Function (PDF) p(x0) [23]. This de-
gree of belief is the posterior PDF over the state space of our system. The posterior
PDF is calculated via Bayes’s rule when the measurement zk is available:

p(xk|z1:k) =
p(zk|xk)p(xk|xk−1)

p(xk|z1:k−1)
. (2.41)

p(xk|xk−1) is the transition probability of a Markov process based on the dynamic
equation. The Markov model (Equation (2.41)) indicates that the current state only
depends on the previous state. Based on this concept, prediction is based on the
dynamic equation. p(zk|xk) is the likelihood based on the observation function.
p(zk|z1:k−1) is the normalizing constant, which follows:

p(zk|z1:k−1) =

�
p(zk|xk)p(xk|xk−1)dxk. (2.42)
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The recursive PDF estimation based on Equation (2.41) is a general conceptual
solution, which can not be derived analytically. Based on certain assumptions,
some algorithms still can achieve possible optimal and sub-optimal solutions such
as Linear Kalman Filter (LKF), Extended Kalman Filter (EKF) and Particle Filter
(PF).

2.7.1 Linear Kalman Filter

Linear Kalman Filter was first introduced by Kalman in 1960. It assumes that both
dynamic and observation equations are linear and all the distributions including the
posterior PDF, noise in dynamic and observation equations are Gaussian. Linear
Kalman Filter is the optimal solution to estimate the state under the aforementioned
assumption.

xk = Fxk−1 + vk−1, (2.43)

zk = Hxk + uk. (2.44)

The system (vk−1) and measurement noise (uk) are assumed to be independent
and Gaussian with zero mean as

p(v) ∼ N(0,Q), (2.45)

p(u) ∼ N(0,R). (2.46)

Q andR are the noise covariance matrix.
To get the solution for xk, LKF is based on a two-step procedure.

• The first step is called state prediction and consists of the following two
equations:

x̂k = Fx̂k−1 + vk−1, (2.47)

Pk = FPk−1F
T +Q. (2.48)

Equation (2.47) predicts the current state based on the previous moment and
the dynamic equation. Equation (2.48) projects the covariance estimate for-
ward.

• The second step consists of the following three equations:

Kk = PkH
T (HPkH

T +R)−1 (2.49)

x̂k = x̂k +Kk(zk −Hx̂k) (2.50)

Pk = (I−KkH)Pk (2.51)

Equation (2.49) calculates the Kalman Gain, which controls the discrepancy
between the actual measurement zk and the predicted state based on the
system modelHx̂k. Equation (2.50) actually takes the current measurement
zk, Kalman Gain and the predicted state based on the dynamic equation to
further adjust the estimation of the current state. Equation (2.51) updates the
state error covariance.
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2.7.2 Extended Kalman Filter

Although Linear Kalman Filter is very powerful for the linear systems, its per-
formance gets dramatically deteriorated with nonlinear dynamic and observation
equations, which are very common in real-world tracking. EKF extends LKF to
support nonlinear dynamic and observation equations as

xk = f(xk−1) + vk; (2.52)

zk = h(xk) + uk, (2.53)

where f(·) and h(·) are non-linear functions. In EKF, all the noise and posterior
PDF are still assumed to be Gaussian distributed. For mildly nonlinear and smooth
(differentiable) functions, analytical methods are used to linearize the nonlinear
functions. This linearization makes the LKF structure available for use with non-
linear dynamic and/or observation equations.

The nonlinear dynamic and observation equations are linearized as follows

f(xk−1) ≈ f(x�k−1) + Jf (x
�
k−1)(xk−1 − x�k−1), (2.54)

h(xk) ≈ h(x�k) + Jh(x
�
k)(xk − x�k), (2.55)

where Jf (·) and hf (·) are Jacobian of f(·) and f(·) as

Jf =




∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

...
...

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


 ,

Jh =




∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xn

...
...

...
∂hm
∂x1

∂hm
∂x2

· · · ∂hm
∂xn


 .

Equations (2.54) and (2.55) neglect the cross-terms with higher order than one.
After calculating the Jacobian matrix of Jf and Jh, EKF adopts a similar two-

step procedure as in LKF to estimate the state of the system.

• The first step for state prediction follows the following two equations:

x̂k = f(x̂k−1), (2.56)

Pk = Jf (xk−1)Pk−1Jf
T (xk−1) +Q. (2.57)

Equation (2.56) predicts the current state from the previous moment based on
the dynamic equation and Equation (2.57) projects the covariance estimate
forward.
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• The second step for correction based on the observations consists of the fol-
lowing three equations:

Kk = PkJh
T (x̂k)(Jh(x̂k)PkJh

T (x̂k) +R)−1, (2.58)

x̂k = x̂k +Kk(zk − h(x̂k)), (2.59)

Pk = (I−KkJh(x̂k)Pk. (2.60)

Similar as in LKF, Equation (2.58) calculates the Kalman Gain. Equation
(2.59) further adjusts the estimation of the current state. Equation (2.60)
updates the state error covariance.

2.8 Particle Filter

The aforementioned LKF and EKF analytically find the solution based on the as-
sumption that the posterior PDF is a Gaussian distribution because the first two
moments. i.e., mean and variance, fully represent a Gaussian distributed state. To
deal with a non-Gaussian posterior PDF, particle filters are adopted by using Monte
Carlo simulation to represent the required posterior PDF by a set of random sam-
ples with associated weights. Additionally, the dynamic and observation equations
in a particle filter can be nonlinear and noise in both equations is not necessary to be
Gaussian. The main components of a particle filter consist of sequential important
sampling and resampling.

2.8.1 Monte Carlo Methods

Before introducing sequential important sampling and resampling, we briefly in-
troduce some basic knowledge about Monte Carlo Methods including density ap-
proximation from Monte Carlo samples and importance sampling.

Density Approximation from Monte Carlo Samples

Monte Carlo simulation adopts a set of discrete samples to approximate a proba-
bility distribution. With increasing the number of samples, the distribution/density
estimated by Monte Carlo simulation approaches the original/target distribution.

As described in [63], given a set of samples, a multidimensional histogram
density estimate is defined by

p̂(x) =
vi

Nhnx
, (2.61)

where vi is the number of samples falling into the ith hypervolume bin, N is the
total number of samples, h is the bin width and nx means nx dimensional. With
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Figure 2.26: Histogram and Kernel Densities

Table 2.3: Common Univariate Kernel Functions [63]
Kernel K(u)
Uniform 1

2I(|u| ≤ 1)
Triangle (1− |u|)I(|u| ≤ 1)
Cosine −π

4 cos(
π
2u)I(|u| ≤ 1)

Gaussian 1√
2π

exp(−1
2u

2)

this histogram density estimate, when the size of bin goes to zero, we rewrite the
sample density function as

p̂(x) =
1

N

N�

i=1

δ(x− xi), (2.62)

where δ(·) is the Dirac delta function and xi is the ith sample. Figure 2.26 shows
an one-dimensional histogram for Gaussian distribution. The histogram shown in
Figure 2.26 has discontinuities at each bin boundary [63].

To smooth the histogram density, we convolves p̂(x) with a smoothing scaled
kernel density function, Kh(x) as [63]

pK(x) = (p̂ ∗Kh)(x)

=

�

Rnx

p̂(u)KH(x− u)du

=

�

Rnx

1

N

N�

i=1

δ(u− xi)KH(x− u)du

=
1

N

N�

i=1

KH(x− xi),

(2.63)
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where the components ofH are the bandwidth parameters of the kernel. This den-
sity approximation method is called Kernel Destiny Estimation (KDE). In KDE,
there are multiple kernel functions and Table 2.3 lists some common univariate ker-
nel functions. Among these kernel functions, Gaussian kernel is most commonly
used, and the kernel density (one-dimensional) with Gaussian Kernel is estimated
as

pK(x) =
1

N

N�

i=1

Kh(x− xi)

=

N�

i=1

1

N

1√
2πh

exp[−1

2
(
x− xi

h
)2],

(2.64)

where the bandwidth parameter h is the standard deviation of the Gaussian density.
Figure 2.26 indicates the kernel density of the histogram density. We can find that
the kernel density is more smooth than histogram density.

Importance Sampling

Monte Carlo methods provide a solution to estimate a density or distribution by a
set of samples. One of the important usage for Monte Carlo simulation is density
weighted integration [63]. Take the following integral as an example:

I(x) =

�
f(x)p(x)dx. (2.65)

Consider the density p(x) is Gaussian. We can replace p(x) with a set of discrete
samples (the same as Equation (2.62)) as

p(x) � 1

N

N�

i=1

δ(x− xi)

=

N�

i=1

wiδ(x− xi),

(2.66)

where wi = 1/N . The integral in Equation (2.65) becomes

I(x) �
�
f(x)

N�

i=1

wiδ(x− xi)dx

=

N�

i=1

wif(x
i).

(2.67)

f(x) can represent any moment generating function [63]. For example, the mean
(ḡ(x)) of a function g(x) is calculated if f(x) = g(x) leading to I(x) = ḡ(x).
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If we wish to compute the covariance of g(x), then we let f(x) = [g(x) −
ḡ(x)][g(x)− ḡ(x)]T [63].

wi does not represent the probability of xi but represents its importance to
the weighted sum approximation to the moment integral in Equation (2.67) [63].
Since in Equations (2.66) and (2.67), samples are directly from a known Gaussian
density, all the samples are equally important to the sample mean and therefore
they are with equal values 1

N .
We can easily get samples from a known density as in Equation (2.66). How-

ever, if p(x) is an unknown density or one that is difficult to sample, it becomes
difficult to draw samples directly from p(x). Importance Sampling is a key method
in Monte Carlo methods to draw samples from an unknown density. Assume that
p(x) is an unknown density and q(x) is a known density, e.g., a Gaussian density.
Now we define a weighting factor [63] as

w(x) =
p(x)

q(x)
. (2.68)

There p(x) is represented as a scaled version of q(x) with different scaling factor
at each x. Now, Assuming that q(x) is a Gaussian density, which is represented as
Equation (2.66), p(x) is written as

p(x) �
N�

i=1

wiδ(x− xi). (2.69)

However, wi in Equation (2.69) are no longer uniformly equal to 1
N . Figure 2.27

indicates the density and weights, which clearly indicates that weights w(x) are
different from the density p(x).

2.8.2 Sequential Important Sampling

Now, we consider the goal for HMM, which is mentioned at the beginning of Sec-
tion 2.7, to calculate the ”degree of belief” p(xk|z1:k) (posterior PDF). Sequential
importance sampling (SIS) is the most basic Monte Carlo method used for dynamic
systems (HMM) [63]. The idea of the SIS algorithm is to approximate the posterior
PDF p(xk−1|z1:k−1) at time k-1 with a weighted set of samples {xik−1, w

i
k−1}Ns

i=1,
where xik−1 is the ith particle (sample), wik−1 is the associated weight and Ns is
the total number of samples. These particles together with the associated weights
are recursively updated to obtain an approximation of the posterior distribution at
the next time, i.e., {xik, wik}Ns

i=1.
Since p(xk|z1:k) is an unknown PDF, we adopt the important sampling as men-

tioned in Section 2.8.1 to represent this unknown PDF as

p(xk|z1:k) = w(xk)q(xk|z1:k), (2.70)
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where q(xk|z1:k) is the easily sampled importance density and the weighted func-
tion w(xk) is defined by

w(xk) =
p(xk|z1:k)
q(xk|z1:k)

. (2.71)

Using Baye’s rule, we obtain that

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|p(z1:k−1))
, (2.72)

where p(zk|p(z1:k−1)) is just a normalization term as mentioned in Section 2.7.
The weights are written as

w(xk) ∝
p(zk|xk)p(xk|z1:k−1)

q(xk|z1:k)
. (2.73)

Using the Chapman-Kolmogorov theorem [63] and considering p(xk|xk−1, zk−1) =
p(xk|xk−1) and q(xk|xk−1, z1:k) = q(xk|xk−1, zk) in a first order HMM, we fur-
ther rewrite the weights as follows

w(xk) ∝
p(zk|xk)

�
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1�

q(xk|xk−1, zk)q(xk−1|z1:k−1)dxk−1
. (2.74)

Assume that we have a set of samples xik−1 from q(xk−1|z1:k−1). Equation (2.74)
is written as

w(xk) =

Ns�

i=1

p(zk|xk)p(xk|xik−1)p(x
i
k−1|z1:k−1)

q(xk|xik−1, zk)q(x
i
k−1|z1:k−1)

=

Ns�

i=1

win−1

p(zk|xk)p(xk|xik−1)

q(xik−1|z1:k−1)
,

(2.75)

where

win−1 =
p(xik−1|z1:k−1)

q(xk|xik−1, zk)
. (2.76)

Considering Equation (2.70) and generating samples xin from q(xk|xik−1, zk), we
finally obtain that (please refer to [63] for more details)

p(xk|z1:k) =
N�

i=1

wikδ(xk − xik), (2.77)

where the weights are recursively updated as

wik ∝ wik−1 ·
p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
. (2.78)
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To get the mean of xk with respect to p(xk|z1:k), we use Equation (2.67) as

x̄k =
N�

i=1

wikx
i
k. (2.79)

One of the problems in the SIS particle filter is how to analytically define the
likelihood function p(zk|xk), the transition density p(xk|xk−1), and the impor-
tance density q(xk|xk−1, zk). There are several versions of particle filters proposed
based on different kinds of importance density. One of the most widely used and
efficiently implementable particle filter is Bootstrap Particle Filter (BPF) [63], in
which the importance density is chosen to be equal to the transition density as

q(xk|xk−1, zk) = p(xk|xk−1). (2.80)

Hence, the associated weights are calculated as

wik ∝ wik−1 · p(zk|xik) , (2.81)

in which the associated weights are only determined by the likelihood function of
p(zk|xik). An efficient and accurate derivation of the likelihood function p(zk|xik)
is important for accurate tracking by BPF. Our tracking algorithms proposed in
Chapters 6 and 7 are based on BPF, in which we work on improving the likelihood
function p(zk|xik) to more accurately update the associated weights in Equation
(2.81).

2.8.3 Resampling

In particle filters, the particles are propagated based on Equation (2.77) and (2.78)
over and over again, with noise added at each iteration. This causes the estimated
discrete posterior density based on the spread of the particles diverging from the
true posterior density. The weights (importance) are reduced to zero for of all
but a few central particles, which is called degeneracy problem [63]. Therefore,
fewer and fewer particles have large enough weights (importance) to contribute the
estimation of moments, e.g., mean, and correspondingly the variances of the mo-
ment estimates increase. A suitable measure of degeneracy is the effective sample
size Neff = 1/

�Ns
i=1(w

i
k)

2, where a smaller Neff means a larger variance for the
weights and correspondingly more degeneracy.

To deal with the sample degeneracy problem, resampling is used [63]. With
resampling, the particles with large weights are replicated and the ones with negli-
gible weights are removed. Then, equal weights are reassigned to the new particle
set, which is wik = 1

Ns
. More formally, before resampling, the posterior PDF

and associated weights are as in Equation (2.77) and (2.78). After resampling, the
posterior PDF becomes

p̂(xk|z1:k) =
Ns�

j=1

1

Ns
δ(xk − xj∗k ) =

Ns�

i=1

ni
Ns

δ(xk − xik), (2.82)
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where ni is the number of copies of particle xik in the new set of particles xj∗k .
Weights are uniformly equal to 1

Ns
.

There are different ways for resampling, such as systematic resampling, resid-
ual resampling, and multinomial resampling, in which the systematic resampling
algorithm introduced in [63] is the most widely-used algorithm in the literature as it
is easy to implement and outperforms other resampling schemes in most scenarios.
Please refer to [63] for more details about resampling.

2.8.4 Dynamic Equations for Indoor Tracking

The dynamic equation, xk = f(xk−1) + vk, in Bayesian estimation is used to
update the first two moments of a Gaussian distribution in Kalman Filters or the
particles in particle filter.

The Constant Velocity Model

A Constant Velocity (CV) model is commonly used as the dynamic equation for
target tracking. In this model, the state vector is defined as

x = [x, y, x̂, ŷ]T , (2.83)

where (x, y) are the Cartesian coordinates of the target and (x̂, ŷ) is a two-dimensional
moving speed vector. Under the CV model, the prediction function is written as

xk = F · xk−1 + ηw, (2.84)

where

ηCV =




ΔT 2/2 0
0 ΔT 2/2

ΔT 0
0 ΔT


 ,FCV =




1 0 ΔT 0
0 1 0 ΔT
0 0 1 0
0 0 0 1


 .

ΔT is the time interval between two subsequent estimations of the target location
andw is a 2×1 independent and identically distributed (i.i.d.) process noise vector.

The Coordinated Turn Model

The aforementioned CV model does not consider the relation between the two
components (x̂, ŷ) and has low tracking accuracy especially when there is a sud-
den change in the moving direction of the target. The authors of [88] first pro-
posed to adopt a multi-model including a CV model and two coordinated turn
models in range-based bootstrap particle filter for positioning, which is referred
to as MM-BPF (Multi-Model BPF). Multi-model has been widely investigated in
aircraft tracking [22]. In MM-BPF, an integer parameter r(t) (also called regime)
is used to switch between different models. Since there are three models in MM-
BPF, r(t) is chosen from [1, 2, 3] and modelled as a Markov chain with transitional
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probability matrix with πmn = Prob{r(t) = m|r(t − 1) = n}. With different
r(t), F is no longer a determined matrix but varies with time. If r(t) = 1, the CV
model is used (F1 = FCV). If r(t) = 2, the coordinated turn model is used to model
turning in the anticlockwise direction as

F2 =




1 0 sin(ΔTω)/ω (cos(ΔTω)− 1)/ω
0 1 (1− cos(ΔTω))/ω sin(ΔTω)/ω
0 0 cos(ΔTω) −sin(ΔTω)
0 0 sin(ΔTω) cos(ΔTω)


 . (2.85)

For r(t) = 3, the coordinated turn model is used to model turning in the clockwise
direction as

F3 =




1 0 sin(ΔTω)/ω (1− cos(ΔTω))/ω
0 1 (cos(ΔTω)− 1)/ω sin(ΔTω)/ω
0 0 cos(ΔTω) sin(ΔTω)
0 0 −sin(ΔTω) cos(ΔTω)


 . (2.86)

ω is the turning rate in rad/s, which is considered to be constant and needed to be
predefined. In MM-BPF, before updating the particles for x, the regime r(t) needs
to be estimated to determine the model F. Therefore, another set of particles are
sampled according to the transitional probability matrix πmn and used to estimate
the regime r(t).

2.8.5 Application of Bayesian Filters in Radio-based Tracking

Bayesian filters have been investigated in both fingerprinting algorithms [117, 69]
and range-based positioning algorithms to track users [108, 110].

• The fingerprinting methods introduced in Section 2.4, including KNN in
RADAR and the probabilistic method in HORUS, FIFS and CSI-MIMO,
are designed for stationary target and do not consider the movement of tar-
get. The authors of [117] adopt particle filters to smooth the output of KNN
for outdoor tracking in cellular networks. They compared their proposed
KNN/PF method (combining KNN and PF) to KNN and KNN/LKF (com-
bining KNN and LKF). The experimental results show that after smoothing
the tracking path, KNN/PF outperforms KNN/LKF and KNN.

• The authors of [108] experimentally evaluated multiple versions of Kalman
filters using RSSI-based ranging in a wireless sensor network. Their exper-
iment results showed that Kalman filters allow for sufficiently accurate lo-
calization results and are robust against inaccurate range measurements. We
found few works to investigate particle filters exclusively using power-based
ranging for indoor positioning. The authors of [110] investigated particle
filters using RSSI-based ranging in an outdoor environment but their results
showed an accuracy of 4m to 6m, which is not accurate enough for indoor
tracking.
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Figure 2.28: Accelerometer in 3 Dimensions

2.9 Inertial Sensor based Tracking

Besides radio-based indoor positioning methods, inertial sensors have attracted
much research [66, 104, 64] in indoor tracking due to the fast development of
smart phones. In this section, we review some indoor tracking work based on iner-
tial sensors.

2.9.1 Inertial Sensors

Nowadays, various inertial sensors consisting of accelerometers, magnetometers,
and gyroscopes have been integrated into modern smart phones.

Accelerometer

Accelerometers in a smart phone are used to measure the acceleration applied to
the device. The acceleration (A�

d) are measured by the forces on the sensor (F) as

A�
d = −

� F

m
, (2.87)

where m is the mass of the sensor. Note that the force of gravity is always applied
on the device and therefore the measured acceleration needs to be corrected as

Ad = −g −
� F

m
, (2.88)

where g is the gravity acceleration. The acceleration is a vector value in 3 dimen-
sions as shown in Figure 2.28. When the device is lying on a table, the accelerom-
eter reports |Ad| = |g| = 9.81m/s2. Similarly, when the device is in free fall, the
accelerometer reports |Ad| = 0m/s2. Therefore, to measure the real acceleration
of the device, the contribution of the force of gravity must be removed from the
accelerometer data.
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Magnetometer

A magnetometer is used to measure the strength of the magnetic field with a unit
of Tesla in the surrounding area of the device. For example, the Earth’s magnetic
field on the equator is 31µT and a typical fridge magnet is 5mT . When the device
is lying on a table, its pointing head direction can be estimated by using magne-
tometer. The computed direction is indicated in degrees like 0 North, 90 East, 180
South and 270West. The problem by magnetometer measuring is mainly the errors
caused by iron materials in the environment [53].

Gyroscope

Generally, a gyroscope is a sensor for measuring the rotation rate of the device’s
orientation. This rate of rotation can be measured along any of the three axes
expressed in rad/s. The rotation around the x, y and z-axis is also referred to as
roll, pitch and yaw. For example, when the device is lying on a table, its axes
indicate an angular velocity of zero.

2.9.2 Pedestrian Dead Reckoning

Pedestrian dead reckoning is a radio-free positioning method, which determines the
positions of people based on inertial sensors such as accelerometers, gyroscopes
and magnetometers. The principle of PDR is to update the positions of the subject
after a step has been taken. The update is performed recursively using the last
known position. A PDR algorithm normally consists of two components: moved
distance estimation and heading orientation estimation.

Moved Distance Estimation

Moved distance is the displacement of a person between sequential sampling time
intervals. It can be estimated based on two procedures: step detection and step
length estimation.

• Step detection using inertial sensors has been investigated for years. Steps
are often detected by analyzing the outputs of accelerometers [31, 65, 84].
Considering a walking person who flat holds a smart phone, every step
generates one peak and dip in the measured vertical acceleration from the
accelerometer, which form the basis of the peak detection method of step
counting. The peak detection method analyzes a window (or buffer) of sen-
sor values and determines a step based on the detection of a peak. This
determination is usually based on threshold values. Peak detection [68, 105]
and zero-crossing counting [26, 58] are two commonly used methods to find
specific steps based on low-pass filtered accelerometer signals. Additionally,
the cycle nature of walking leads to periodicity in the sensor data. Therefore,
autocorrelation [25] and spectral analysis [104] methods are used to detect
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this periodicity respectively in time domain and frequency domain for step
detection.

• Step length are estimated to determine the distance travelled in a detected
step. One coarse way for step length is to map the averaged step length to
height and gender of a person. However, step lengths normally vary over
people and an average step length will inevitably introduce errors accumu-
lating over a number of estimates. Another approach to estimate step length
is based on accelerometers. Different step lengths generate different vari-
ance between the peak and dip values in the measured acceleration values.
The authors of [121] proposed the following equation to estimate the step
length

l = K(âv,max − âv,min)
1/4, (2.89)

where l is stride length, âv,max and âv,min are the peak and dip values of âv
on each step respectively, and K is a coefficient calibrated for individuals.
This method has been widely used in PDR systems and also used in our work
(Chapter 7) to estimate the step length.

Heading Orientation Estimation

Most of the approaches to estimate heading orientation is based on magnetome-
ters. If the smart phone remains flat, heading orientation can be computed from
the arctangent of the ratio of the two horizontal magnetic field components. Since,
in general, the smart phone has an arbitrary orientation, accelerometer values are
normally investigated to compensate this tilt. In modern smart phones, electronic
compasses are normally integrated, which adopts 3-axis accelerometer and mag-
netometer sensors. The heading orientation is a function of all three accelerometer
readings and all three magnetometer readings. Please find more details about the
electronic compass in [99]. Heading orientation estimation based on magnetome-
ters is normally influenced by structural elements of the building and electronic
devices. Gyroscope is another sensor, which can estimate the heading orientation
but it is prone to accumulative errors. Some approaches have been proposed to
fuse both gyroscope and compass values, which can compensate the noise from
the magnetometers and accumulative errors from gyroscopes [68].

2.10 Hybrid Approaches of Inertial Sensors and Radio-
based Indoor Positioning

Instead of using standalone radio signals or inertial sensors for indoor positioning,
numerous hybrid methods have been proposed to take advantage of both radio sig-
nals and inertial sensors for high positioning accuracy. The main advantages for
these hybrid approaches are 1) mitigating accumulative errors in PDR, 2) facilitat-
ing training in radio based positioning, and 3) improving tracking accuracy.
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Wap is a system [64], which uses a particle filter to fuse inertial sensor infor-
mation and RSSI of WiFi signals for tracking. Wap relies on PDR algorithms to
update the particles in the particle filter. As mentioned before, PDR is prone to
accumulated errors. Therefore, the relative changes of RSSI is used to discover the
direction changes and improve room distinguishing algorithms, which are used to
resample the particles and mitigate the accumulative errors.

Zee is a SLAM (Simultaneous Localization And Mapping) system [104] with
WiFi signals. The system adopts inertial sensors with the constraints imposed by
the map to filter out infeasible locations over time and converging on the true loca-
tion. Concurrently with estimating location with PDR, Zee also scans and records
RSSI information of WiFi signals. As soon as the location information is avail-
able, the system builds up the radio map with the recorded WiFi RSSI training set.
Therefore, Zee achieves a calibration free WiFi-based positioning system.

Inertial sensors and RSSI fingerprinting are fused by a particle filter in [50].
In this work, the authors adopted PDR to estimate the relative locations between
sequential time intervals and used these information to update the particles in the
particle filter. Furthermore, the RSSI measurements are further used to construct
the observation vector to correct the particles based on a pre-calibrated radio map.

2.11 Conclusions

In this chapter, we review the background and relative work of indoor position-
ing. In Section 2.2, we introduce three wireless communication systems including
GSM, IEEE 802.15.4 and IEEE 802.11, especially targeted at the physical layer
signal processing. In Section 2.3, software defined radio techniques and the decod-
ing methods in SDR for the aforementioned three wireless communication systems
are introduced. In Section 2.4, we introduce the range-free algorithms including
fingerprinting and centroid algorithms. In Section 2.5, we review ranging meth-
ods based on three radio parameters including RSSI, time information and channel
information. In Section 2.6, the range-based positioning methods for stationary tar-
gets including trilateration and multilateration are reviewed including NLS, LLS,
WLS and CWLS. In Section 2.7, we review Kalman filters for tracking mobile tar-
gets including LKF and EKF. In Section 2.8, we introduce some key techniques in
particle filters including Monte Carlos methods, sequential importance sampling
and resampling. In Section 2.9, we introduce the methods and related work for in-
door positioning based inertial sensors. In Section 2.10, we introduce some hybrid
approaches to combine the radio-based positioning and PDR.
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Part I

Time-based Indoor Positioning

Nowadays, radio-based indoor positioning has become an emerging research area
because of the increasing commercial demands for location-based services. Al-
though LTE and WiFi techniques with wide bandwidth have become the most
emerging techniques for data communication, narrow-band signals are still widely
used in many applications. For example, GSM signals with a bandwidth of
200KHz is still widely adopted by end users in cellular networks, especially in
less developed countries. IEEE 802.15.4, e.g., ZigBee, is a wireless standard with
narrow bandwidth (2MHz) for short-range communication. It is widely used in
home automation, wireless sensor network and industry applications. It has at-
tracted interests of researchers as an alternative to WiFi positioning. Therefore, in
Part I (Chapter 3 and 4), we investigate how to locate a narrow-band signal emitter
by time information. In Chapter 3, we investigate two key problems in time-based
indoor positioning: designing timestamps and evaluating synchronization between
ANs. We provide our enhanced mechanisms to improve the resolution of times-
tamps by extracting physical layer information, which is so called timing error in
time recovery. We further investigate and evaluate the performance of GPS syn-
chronization in depth by using the timing error information in time recovery. The
timestamps and findings for GPS synchronization in Chapter 3 form the basis of
the time-based positioning algorithms designed in Chapter 4. In Chapter 4, we pro-
pose to combine DTDOA together with GPS synchronization to completely elimi-
nate the momentary synchronization offset. Then, we propose both multilateration
and fingerprinting algorithms based on DTDOA. In this part, our algorithms are
evaluated in both indoor and outdoor environments on two positioning testbeds for
GSM and IEEE 802.15.4 signals.
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Chapter 3

Timestamps and Synchronization
for Narrow-band Signals

3.1 Introduction

To achieve time-based positioning for narrow-band signals, the first challenge is the
accuracy of timestamps, which is influenced by two factors namely bandwidth of
signals and multipath propagation. At physical layer, narrower bandwidth leads to
longer duration of a signal’s symbol. As mentioned in Section 2.5.1, a timestamp is
given on the time when a reference symbol in a packet is received. Due to the long
symbol duration for narrow-band signals, an accurate timestamp needs to correctly
estimate the arrival time of a signal within one symbol duration. For example, the
bandwidth of a GSM signal is 200KHz and the symbol duration is 5µs. Therefore,
an accurate timestamp is required to estimate the arrival time of a GSM signal
within 5µs. Additionally, replicas of the original signal from different propagation
paths arrive at the receiver with different delays. Due to the long symbol duration,
the waveforms of original signal from the direct path and replicas from reflection
paths overlap with each other within one symbol duration. Therefore, it is very
challenging to generate the timestamp on the signal from the direct path because
of the multipath effects (as introduced in Section 2.5.1).

Furthermore, we are interested in passive positioning systems, which can pro-
duce user location information for third-party providers of positioning services and
monitor multiple users’ locations simultaneously. To achieve these passive posi-
tioning systems, synchronization between anchor nodes is a critical challenge for
time-based positioning. Because the target does not participate in the position-
ing process in a passive positioning system, RTT can not be utilized, which re-
quires two-way packet exchanges between the target and ANs. TDOA is one of
the promising time-based positioning algorithms for passive positioning systems.
In reality, the process is challenged by imperfect time synchronization among ANs
due to the high propagation speed of radio signals. For passive indoor position-
ing systems, ANs need to be distributed in the area of interest. In a large test-
ing area where ANs can not be synchronized by a shared cable, GPS offers the
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most promising synchronization solution as introduced in Section 2.5.1. Indoor
deployed ANs can be synchronized with outdoor antennas. Before utilizing the
GPS synchronization for TDOA, we quantify the achieved degree of synchroniza-
tion. To quantify the synchronization accuracy between two ANs, the easiest way is
to compare their timestamps for the same receiving message emitted by an equidis-
tant reference node. However, because of the limited accuracy of timestamps, it is
still challenging to accurately evaluate the degree of synchronization between GPS
synchronized ANs.

In this chapter, we address two challenges in a TDOA positioning system for
narrow-band signals.

• First, we investigate how to design a high-resolution timestamp to accu-
rately estimate the arrival time of a signal within one symbol duration. The
method is based on a normalized timing error information in the signal pro-
cessing procedure (time recovery) for narrow-band signals, e.g., GSM and
IEEE 802.15.4. With this method, we are able to achieve timestamps with
nanosecond resolution.

• Second, we further exploit this normalized timing error information to quan-
tify the clock offsets and skews among GPS synchronized receivers. Addi-
tionally, the measurements of clock offsets are typically noisy in practice.
It is challenging to calculate its derivation, i.e., clock skew. We propose a
mechanism with two steps to accurately calculate the clock skews from noisy
measurements of clock offsets. First, we adopt Savitzky-Golay (S-G) filter
[107] to smooth the noisy measured clock offsets. Second, we calculate the
derivation of the filtered clock offsets as the clock skews.

We have conducted a set of comprehensive experiments to evaluate our de-
signed timestamps and GPS synchronization accuracy. Through our experiments,
we find that our proposed timestamps achieve nanosecond resolution but it is still
prone to multipath propagation because of the narrow-band property of GSM sig-
nals. For synchronization, we find that two GPS synchronized devices have up to
171ns synchronization offsets, which set a limit on positioning accuracy to tens of
meters for TDOA. However, we find that clock skews between the two GPS syn-
chronized devices are negligible. All the achievements and findings in this chapter
form the basis to achieve time-based positioning for narrow-band signals, which is
introduced in Chapter 4.

In the remainder of this chapter, Section 3.2 introduces the method for times-
tamp design by using a time recovery method. The method to exploit the time re-
covery method for synchronization evaluation is described in Section 3.3. A SDR
testbed to mimic the physical layer of GSM signals is introduced in Section 3.4, in
which the timing error information is extracted for timestamps and synchronization
evaluation. The evaluation results for synchronization are presented in Section 3.5.
Section 3.6 concludes this chapter.
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Figure 3.1: Resolution vs Accuracy

3.2 Nanosecond Timestamps via Time Recovery

Accurate timestamps are the prerequisite to achieve high positioning accuracy
based on time information. Before introducing timestamps, we clarify two defi-
nitions, accuracy and resolution of timestamps. As shown in Figure 3.1, accuracy
of a timestamp is defined as how long the estimated arrival time shifts from the
real arrival time of a signal. In practice, an arrival signal is timestamped based
on discrete clock samples. The resolution of a timestamp is defined as the time
interval between successive time values (blue samples in Figure 3.1), which the
clock can give. For example, for a clock with frequency of 2MHz, the time interval
between two successive clock samples (time values) is 0.5µs and hence the reso-
lution of the timestamp relying on this clock is 0.5µs. Therefore, a high resolution
is a prerequisite for high accuracy of a timestamp.

3.2.1 Sample-based Timestamps

The timestamp of a received packet is defined as the time of receiving one refer-
ence symbol in the packet. In a fully digital communication system, an Analog-to-
Digital Converter (ADC) is used to convert the analog signal to digital samples at
the receiver side. Considering the case of one sample per symbol for digitalization
at the receiver side, the sample-based timestamp for the received packet is defined
as the time for the sample, which represents the reference symbol. In a digital re-
ceiver, the output samples from ADC are constantly aligned with a sample interval
of Ts. Therefore, the resolution of this sample-based timestamp is Ts.

To better introduce the influence of sampling frequency on the time estimation
and synchronization evaluation, we take the scenarios in Figure 3.2 as an example.
The transmitter in Figure 3.2(a) sends a packet to receivers 1, 2, and 3. Receivers
1 and 3 are co-located with each other, which are closer to the transmitter than
receiver 2. Figure 3.2(b) shows the digital samples inside each receiver. In Figure
3.2(b), we find that receivers 1 and 2 are perfectly synchronized with each other
but receivers 1 and 3 have a synchronization offset. Considering receivers 1 and
2, because the signal propagation distances from the transmitter to receivers 1 and
2 are different, the reference symbol arrives at receiver 1 at t1 and at receiver 2
at t2. However, because t2 − t1 < Ts meaning that the difference between the
time delays from the target to the two receivers is smaller than the resolution, the

71



3.2. NANOSECOND TIMESTAMPS VIA TIME RECOVERY

Tx R1/R3 R2
(a) Transmitter and Receivers Setup

R1

R2

R3

0 Ts 2Ts 3Ts 4Ts 5Ts 6Ts

0 Ts 2Ts 3Ts 4Ts 5Ts 6Ts

0 Ts 2Ts 3Ts 4Ts 5Ts 6Ts

t1 t2

(b) Digital Samples
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Figure 3.3: Sub-sample Timestamps via Time Recovery
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sample-based timestamps generated at these two receivers can not distinguish such
small time difference and issue Ts as their sample-based timestamps for this packet.
Furthermore, considering receivers 1 and 3, which are co-located with each other,
the reference symbol arrives at these two receivers at the same time. Because there
is a synchronization offset between receivers 1 and 3, these two receivers should
issue two different timestamps for this reference symbol and the synchronization
offset can be calculated by subtracting these two timestamps. However, because
the synchronization offset is smaller than Ts, the low resolution of sample-based
timestamps can not distinguish such small time difference and both two receivers
give the same timestamp Ts to this packet. Therefore, it is not able to calculate the
synchronization offset based on this sample-based timestamp.

3.2.2 Sub-sample Timestamps

If a timestamp is given on the peak of the reference symbol’s pulse shape (t1 and
t2 in Figure 3.2(b)) instead of each digital sample (red arrows in Figure 3.2(b)), the
different time delays from the transmitter to receiver 1 and 2 can be distinguished.
Because this timestamp achieves sub-sample resolution, we refer to this timestamp
as sub-sample timestamp. To achieve sub-sample timestamps, we calculate the
fractional time delay from the digital sample to the peak of the pulse shape (optimal
sampling position).

As shown in Figure 3.3, the digital samples are often before or after the peak,
displaced at µ(k). µ(k) is the normalized timing error given by

µ(k) =
ΔT (k)

Ts
, (3.1)

where k is the sample number, ΔT (k) is the offset between actual and optimal
sampling position, i.e., peak of the pulse shape. Estimation of µ(k) is required to
calculate the sub-sample timestamps.

As mentioned in Section 2.3.2, a method called time recovery in digital com-
munication systems can be adopted to estimate the normalized timing error µ(k).
Time recovery [89] as shown in Figure 2.18 is often used in receivers to correct
the shift in the sampling position during signal recovery. The method synchro-
nizes the sampler with the pulses of the received analog waveform. The shapes
of the pulses depend on the signals and the corresponding demodulation methods.
For example, for GSM signals with a GMSK modulation scheme, the pulse has
a Gaussian shape. For IEEE 802.15.4 signals, a MSK receiver is used to decode
the signals and the pulse is with a sine shape. Both shapes are symmetric. In the
time recovery method, a Timing Error Detection (TED) module is used to extract
a timing error term ek (k is the sample number) between the actual and optimal
sample positions based on the symmetric property of the pulse. Different meth-
ods have been proposed to calculate this timing error term, such as the early-late
gate algorithm, Mueller and Muller algorithm, and Gardner algorithm [89]. We
work on the Mueller and Muller algorithm to calculate the timing error term as
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ek = (yk ∗ ŷk−1)− (ŷk ∗ yk−1), where yk is the value before the decision and ŷk is
the value after the decision in Figure 2.18. The timing error term ek is passed to a
loop filter, which outputs the normalized timing error µ(k) to decide on the correc-
tion of the sampling time in the re-sampler. Subsequently, the sampling position is
adjusted to be closer to the optimal one.

The normalized timing error µ(k) of sample k is adopted to design a sub-
sample timestamp. Once the receiver starts to receive packets and generates sam-
ples, we count the generated samples and obtain the sample-based timestamp T �(k)
for the kth sample as follows:

T �(k) = T �(1) + Ts ∗ (k − 1). (3.2)

T �(1) is the sample-based timestamp for the first sample. In Equation (3.2) the
resolution of the sample-based timestamp is limited by Ts. With µ(k) obtained by
the time recovery, we improve the timestamps as

T (k) = T �(k) + µ(k) · Ts, (3.3)

where T (k) is the sub-sample timestamp. Now, assuming that the kth sample in
the sample stream is the sample representing the reference symbol of the received
packet, T (k) is the sub-sample timestamp for this packet.

3.2.3 Influence of Multipath Propagation on Sub-sample Timestamps

To calculate sub-sample timestamps, one important assumption is that the pulse
shape of the received symbol is symmetric. As mentioned in Section 2.2.1, both
the Gaussian shape in GMSK and the half-sine shape in MSK are symmetric. In an
indoor environment, multiple replicas of the original signal arrive at the receiver
with very short delays after the signal from the direct path as shown in Figure
1.3. All these signals from refection paths, whose delays from the direct path
are shorter than the symbol duration, overlap with the signal from the direct path
and this results in the distortion of the received pulse shape. The received pulse
shape is not symmetric (Figure 1.3) and this introduces an error to the estimated
timestamps.

3.3 Quantify GPS Synchronization via Time recovery

In Section 3.2, we have introduced how to use the timing error information from
time recovery to improve timestamps. In this section, we exploit time recovery
to achieve highly accurate calculation of the synchronization misalignment among
GPS synchronized nodes. We derive the relation between the normalized timing
error µ(k), the clock offset and skew.
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3.3.1 Relative Clock Offset without Long Term Clock Drift

It is commonly known that GPS-synchronized clocks can prevent long-term clock
drift by periodically calibrating to the signals from satellites. Considering that
GPS synchronization offsets are typically on the level of sub-microseconds and the
sampling interval Ts is in the range of microseconds, the clock offsets between two
GPS-synchronized receivers are always smaller than the sampling interval Ts at
any moment. In such case, we derive the relation between the relative clock offset
and the relative normalized timing error. Based on Equation (3.3) and the definition
of relative clock offset (introduced in Section 2.5.1), we obtain the relative clock
offset between the ith and jth receivers as

ΔCij(k) = Ti(k)− Tj(k)

= (T �
i (k) + µi(k) · Ts)− (T �

j(k) + µj(k) · Ts).
(3.4)

Consider the aforementioned case that the relative clock offsets of the GPS
synchronized devices are always smaller than the sampling interval Ts. As the
example introduced in Section 3.2.1, when the clock offset is smaller than the
resolution of the sample-based timestamps, two receivers give the same sample-
based timestamps to the received packet and hence we get that T �

i (k) = T �
j(k) for

the same sample number k. Therefore, we further simplify Equation (3.4) as

ΔCij(k) = µi(k) · Ts − µj(k) · Ts
= Δµij(k) · Ts,

(3.5)

where Δµij(k) = µi(k) − µj(k). In the above equation, Ts is constant and, thus,
the relative clock offset is determined by Δµij(k).

Furthermore, considering Equation (2.19) and t = k · Ts, we calculate

ΔCij(t) = Ts ·Δµij(t)

=

� t

0
Δfij(t)dt+Δθij ,

(3.6)

where Δθij , the relative initial clock offset between ANi and ANj , is constant.
Therefore, we can analyze the short-term (momentary) clock offsets through the
relative normalized timing error Δµij(t). If there is no short-term clock offset,
Δµij(t) is constant. Otherwise, Δµij(t) fluctuates. We use this to identify the
presence of short-term clock offsets by monitoring the behaviour of Δµij(t).

3.3.2 Relative Clock Skew via Savitzky-Golay Filter

Here we derive how to obtain the relative clock skew between two ANs. Based on
Equation (3.6), we obtain the relative clock skew in an ideal case as

Δfij(t) =
d

dt

�
ΔCij(t)

�
= Ts ·

d

dt

�
Δµij(t)

�
. (3.7)
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The relative clock skew is calculated by the derivative of ΔCij(t) or Δµij(t).
However, in practice, the measurement of Δµij(t) is noisy and it is hard to

accurately measure its derivative. Therefore, in our work, we propose to estimate
the relative clock skew in two steps.

At the first step, a S-G filter [71] is applied to smooth the measuredΔµij(t) and
suppress the influence of noise. The S-G filter applies a moving window smoothing
technique based on least squares polynomial fitting. We take the group of 2M + 1
samples ofΔµij(t) centered at n, which is moving from 0 to the end of the samples.
We obtain the coefficients of a polynomial,

Δµ�
ij(n) =

N�

j=0

ajn
j , (3.8)

which minimizes the mean-squared approximation error,

εN =

M�

n=−M
(Δµ�

ij(n)−Δµij(n))
2

=

M�

n=−M
(

N�

j=0

ajn
j −Δµij(n))

2,

(3.9)

where N is the order of polynomial and 2M +1 is the size of the moving window.
The coefficients [a0, a1, ..., aN ] are adaptive in each window to find the optimal
polynomial to fit the samples in the window. Δµ�

ij(n) is the output of the filter and
sampled Δµ�

ij(t) with sampling space of Ts.
At the second step, the derivative of the filtered value Δµ�

ij(t) or ΔC �
ij(t) is

calculated to obtain the relative clock skew as follows,

Δfij(t) =
d

dt

�
ΔC �

ij(t)
�
= Ts ·

d

dt

�
Δµ�

ij(t)
�
. (3.10)

3.4 A SDR-based Testbed for GSM-like Signals

To quantify the clock offset and skew between GPS synchronized receivers based
on the timing error information and investigate the time-based positioning algo-
rithms for GSM signals, we have set up a testbed based on Software Defined Radio
(SDR) devices, in which we construct our own transmitter to continuously gener-
ate GMSK-modulated signals with 250KHz symbol rate. At the receiver side, the
sampling rate is 500KHz (two samples per symbol) resulting in a sample interval
of 2µs. The signal is with the same modulation scheme as GSM but operated in
the ISM band (433MHz). In the remainder of this thesis, we refer to this testbed as
the GSM-like testbed.

76



3.4. A SDR-BASED TESTBED FOR GSM-LIKE SIGNALS

3.4.1 Hardware

We use the embedded USRP E110 model [16] as the signal transmitter. USRP
E110 integrates an ARM (Advanced RISC Machine) processor running a Linux
operating system, which does not need to connect to another host machine, i.e.,
a PC, for signal processing. We choose USRP E110 as the transmitter because
of its mobile convenience. The drawback of USRP E110 is limited computation
capability because of the ARM processor. However, the signal processing effort
in the transmitter is not high and USRP E110 is powerful enough. The receivers
require much higher computation capability than the transmitter. Therefore, we
use the networked USRP N210 models [17] for receivers, which are connected to
a PC by Gigabit Ethernet. The signal processing is implemented in a desktop or
laptop PC.

The operations of USRP N210 as ANs are controlled by Reference and System
Clock Generation modules (RSCGs) as shown in Figure 3.4(a). Ettus Research
provides a GPS Disciplined Oscillator (GPSDO) kit [15] with an Oven-Controlled
Crystal Oscillator (OCXO), allowing the device to synchronize to GPS signals.

3.4.2 Software Realization

We use the components in GNU radio software to construct the transmitter, which
continuously generates GMSK-modulated signals as introduced in Section 2.3.2.
The structure is shown as in Figure 2.17. For the receiver, we also mainly rely on
the components in GNU radio software to construct the GMSK receiver. Figure
3.4(b) illustrates the components of the SDR system in detail and please find the
functionality of each component in Section 2.3.2.

The main task in this testbed is to extract the normalized timing error informa-
tion from the time recovery components to design the sub-sample timestamps and
evaluate the degree of synchronization. As mentioned in Section 3.3.1, to design
the sub-sample timestamps, we require three values: 1) the timestamp for the first
sample in the sample stream, 2) sample number of the reference symbol and 3)
the normalized timing error µ(t) for each sample. The sample-based timestamps
are calculated based on the first two values. Then, the sub-sample timestamps are
further calculated based on the normalized timing error µ(t) for each sample. For
this reason, we need to ensure that the normalized timing error µ(t) is associated
to each sample to calculate the sub-sample timestamps. Therefore, some modifica-
tions of the GMSK receiver in GNU Radio are needed and the modified blocks are
indicated in gray in Figure 3.4(b). We make use of stream tags in GNU Radio to
attach tags with control information to samples of the data stream.

• First, a time tag, which indicates the starting time of the stream, is attached to
the first sample of the stream in the USRP Hardware Driver (UHD) receiver.
All following samples are numbered relative to the first sample.
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Figure 3.4: Hardware and Software Realization

• Second, we modify the time recovery block to allow forwarding the normal-
ized timing error µ(k) for each output sample.

• Third, a SYN tag indicating the first sample (as the reference symbol) in the
packet is passed to the frame sink.

• Finally, in the frame sink component, we first store the timestamp for the
first sample in the sample stream. Second, based on the SYN tag, we get
the sample number for this reference symbol in the received packet. Then
we calculate the sample-based timestamp for this received packet. Finally,
the normalized timing error µ(k) are used to calculate the sub-sample times-
tamps according to Equation (3.3).

3.5 Time Synchronization Evaluation

Based on the GSM-like testbed, we evaluate the synchronization accuracy of GPS
synchronized receivers by using the normalized timing error information in differ-
ent scenarios. Additionally, we investigate the influence of synchronization offset
on the accuracy of TDOA algorithm in an outdoor environment.

3.5.1 Indoor Measurements

Several experiments in indoor environments are conducted to evaluate the syn-
chronization accuracy and the influence of multipath propagation on the estimated
timestamps.
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Measurement Setup

To investigate the performance of GPS synchronization, the setup in Figure 3.5(a)
is adopted in indoor environments. Assuming the same delays in hardware two
factors can cause time offset between two receivers, namely, multipath propagation
and synchronization offset. In order to isolate only the effect of the synchronization
component on our measurement, we co-locate the two receivers. This setup ensures
as much as possible the same propagation path of the signals. The setup of Figure
3.5(b) is used to investigate the effect of multipath propagation.

GPS Synchronization Evaluation

Taking the setup of Figure 3.5(a), we first try to calculate the GPS synchronization
offset between the two receivers based on the sample-based timestamps (Equation
(3.2)). The measurements based on these sample-based timestamps do not show a
long-term clock offset, at least not larger than the sampling interval (2µs). This ob-
servation demonstrates the assumption in Section 3.3.1 that clock offsets between
two GPS synchronized ANs are not larger than the sampling interval Ts at any mo-
ment. However, due to the limited resolution, we are not able to determine whether
there is a short-term (momentary) clock offset between the receivers based on the
sample-based timestamps.

To analyze the performance of GPS synchronization in depth, we adopt the
proposed method (in Section 3.3) that uses the normalized timing error µ, which
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is calculated by averaging the normalized timing error µ(k) over all the samples
in each received packet. This averaged value is able to mitigate the influence of
random noise in the measurement. In particular, we investigate the duration of
initialization phase, clock offset, and clock skew.
Initialization Phase. It is important to measure the length of the initialization

phase, during which applications with high requirements of accurate synchroniza-
tion, e.g., localization, should be avoided. The first measurement denoted as M1
is conducted to measure the required length of the initialization phase. With our
proposed method, we start to record the clock offset as soon as the two GPS re-
ceivers are powered on. Figure 3.6(a) indicates the changes of the relative clock
offset between two GPS receivers over 40 minutes. We find that the GPS receivers
need around 4.5 minutes to synchronize with each other. There are two reasons
for this initialization duration. First, the stability of the oscillator inside each GPS
is affected by the temperature. After USRPs powering up, the temperature inside
increases and gets stable after a while. After the temperature getting stable, the
oscillator gets stable. Second, as shown in Figure 3.4(a), it requires two steps to
synchronize an USRP’s clock to the satellite including GPS receiver synchronized
to the signals from satellite and USRP synchronized to the signals from the GPS
receiver. The phase lock loops inside both the GPS receiver and USRP need some
time to lock to the incoming signals. After the initialization phase, the clock offset
between two GPS receivers becomes stable.
Clock Offset. We take a second measurement with duration of 18 hours to

analyze the GPS clock offset in the stable phase. The measurement is denoted
as M2. In the measurement, the Δµ12(t) values are collected 5 minutes after the
devices have been powered on to avoid the initialization phase in the GPS receivers.

Figure 3.6(b) indicates the measurement results of the first 100 minutes, where
the left Y-axis indicates the relative clock offset and the right Y-axis is the value of
Δµ12(t). The relative clock offset between two GPS receivers is calculated based
on Equation (3.5) where the sampling interval Ts is 2µs. From this figure, first, we
observe that the initial relative clock offset (at the time of 0s) is smaller than 100ns
and there is no initialization phase as in M1 (Figure 3.6(a)). Second, fluctuations
in the Δµ12(t) value corresponding to the variation in the relative clock offset is
well visible.

Figure 3.7 summarizes the Cumulative Distribution Function (CDF) of the ab-
solute value of the relative clock offset (|ΔCi,j |). The first row in Table 3.1 sum-
marizes the relative clock offset between two GPS receivers in the measurement.
Mean and Standard Deviation (SD) are calculated for the value of ΔCi,j , while
the maximum and 90% accuracy are for the absolute value (|ΔCi,j |). Our findings
show that the maximum measured clock offset between the two receivers is 171ns,
resulting in more than 51m time-based ranging error. The 90% synchronization
accuracy is 66ns, corresponding to 19.8m time-based ranging error. Furthermore,
Figure 3.8 indicates the histogram (density) of the clock offsets in the entire du-
ration of the experiments M2 and M3. Figure 3.9 indicates the histogram of the
clock offsets in experiment M2 for 2 minutes. In Figure 3.8, the distribution of
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clock offsets in a long measurement period (18 hours) fits better to a Gaussian
distribution with a symmetric shape. The median/mean value is around 0 (7ns in
Table 3.1). Therefore, for TDOA ranging, we can take a long measurement (over
several hours) and average the data to mitigate the influence of synchronization.
However, it is unrealistic to take a measurement for hours in practice. For a short
measurement period (2 minutes) as in Figure 3.9, the distribution of clock offsets
is in an uncertain shape and difficult to find a model to fit. The mean/median error
is not around 0. Therefore, the large clock offset between two GPS synchronized
receivers introduces large error to time-based positioning, i.e., TDOA, and for a
reasonable measurement duration this error is challenging to be eliminated by a
predefined model. Hence GPS synchronization is not good enough for TDOA to
achieve accurate positioning.

Table 3.1: Relative Clock Offset (ΔCi,j) between Two GPS Receivers

Measurement Mean ΔCi,j SD ΔCi,j
Maximum
|ΔCi,j |

90% Accuracy
|ΔCi,j |

M2 7ns 37.1ns 171ns 66ns
M3 -69.4ns 65.4ns 228ns 150ns

Clock Skew. Figure 3.10(a) shows part of the results from measurement M2.
As it can be seen in the figure, measurements introduce noise to the data. As
introduced in Section 3.3.2, noisy data prevents us from accurately calculating the
relative clock skew. Therefore, we first apply the S-G filter to smooth the data
and get the filtered data as the red line in Figure 3.10(a). The filtered data follows
the trend of clock offset between two GPS synchronized ANs. We calculate the
relative clock skew from the differentiation of the filtered clock offset. Figure
3.10(b) shows CDF of the clock skews. 90% of the measured relative clock skews
are smaller than 2.18 · 10−10 and the maximum is 1.37 · 10−9. It means that during
short intervals the change of the relative clock offset can be ignored. For example,
during 10 seconds, 90% of the relative clock offsets vary within 2.18ns.

Influence of Multipath Propagation

To demonstrate that multipath propagation may affect the observed synchroniza-
tion accuracy, we have taken a third measurement (M3) for 18 hours where the
two receivers with line of sight connection to the transmitter were separated by
eight meters in an indoor environment as shown in Figure 3.5(b). The measure-
ment results are summarized in the second row of Table 3.1. We observe that
there is a short-term clock offset between the receivers with deviation of 65.4ns.
More importantly, the mean value of the synchronization offset is -69.4ns, which
is shifted at a 76.4ns offset compared to the mean value of 7ns in the measurement
M2. Figure 3.8 clearly shows that there is a shift between the maximum density
in the distributions of clock offsets between M2 and M3. This shift is caused by
multipath propagation. Signals from different propagation paths overlap with each
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other, which introduces a distortion in the shape of the received signal. This dis-
tortion influences the time recovery method on the accuracy of searching the pulse
shape peak and calculating the normalized timing error information. Because the
two receivers are located in different positions in an indoor environment, these two
receivers face different effects of multipath propagation, which introduce different
distortions on the shapes of the received pulses. These different distortions lead to
different errors to estimate the normalized timing error information µ̄ and therefore
the mean values of clock offsets are shifted. In contrast to M3, the two receivers
are co-located in M2. Although the multipath propagation introduces distortions
on the pulse, the two co-located receivers face the same multipath propagation ef-
fect and hence the error to estimate the normalized timing error information µ̄ is
same. Therefore, the difference, Δµ12(t), can eliminate this error and is not in-
fluenced by multipath propagation. Correspondingly, the measured relative clock
offset based on Δµ12(t) should have a mean value of 0ns and the real measured
mean value is 7ns.

3.5.2 Outdoor Measurements

We further conducted experiments to test TDOA accuracy with GPS synchroniza-
tion. The measurements were conducted in an open space football field to minimize
the influence of multipath propagation as in Figure 3.11.

Measurement Setup

The layout of the measurement is given in Figure 3.12. The signal emitter (target)
was an USRP E310, which transmits GMSK signals. Three ANs were deployed as
a triangle with equal distances (30m). Each USRP N210 (as an AN) was connected
to a laptop for signal processing and powered by a battery. Sub-sample timestamps
based on Equation (3.3) are used to obtain high resolution timestamps of nanosec-
onds. A Reference Node (RN) was set in the center of the triangle and periodically
transmitted packets to allow the receivers to check their synchronization offset. Af-
ter collecting the timestamps in each AN, we offline calculate the TDOA values at
the two different positions of the object.

TDOA Measurements with GPS Synchronization

Table 3.2 summarizes the TDOA ranging errors, i.e., the absolute values of the
offset between the estimated distance and the ground truth distance. The rows of
SYN offset indicate the average synchronization offset between two receivers. For
example, for experiment 1, the synchronization offset of -38ns between receiver 1
and 2 means that the clock of receiver 1 is 38ns later than receiver 2. The maximum
TDOA ranging error with GPS synchronization reaches 39m. Such large ranging
errors are caused by imperfect synchronization between ANs and the remaining
multipath propagation (even outdoor with open space, reflections from the ground
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Figure 3.11: Experiment Environment
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Figure 3.12: Experiment Layout

are still remaining). Furthermore, based on the packets from RN, we find that
the maximum synchronization offset between the receivers is 161ns, which is the
main reason for TDOA ranging errors in this open space environment. Therefore,
calculating and compensating for the remaining GPS synchronization offset is very
important for accurate positioning.

Table 3.2: Ranging Error in Open Space Environment
EXP No. Algorithms Rx1 and 2 Rx2 and 3 Rx1 and 3
EXP1 TDOA 5.6m 22.6m 23.1m

SYN offset -38ns -50ns -77ns
EXP2 TDOA 5.5m 39m 33.5m

SYN offset -58ns 161ns 105ns

3.6 Conclusions

In this chapter, we designed high resolution timestamps (sub-sample timestamps)
based on the time recovery for GMSK-modulated signals (GSM). Our designed
sub-sample timestamps are able to improve the resolution of sample-based times-
tamps with 2µs to nanoseconds. This nanosecond resolution is a prerequisite for
accurate time-based positioning. According to our indoor evaluation, this sub-
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sample timestamps are still error prone to multipath propagation due to the distor-
tion of pulse shapes.

The main findings for synchronization are that (1) the maximum clock offset
is up to 171ns but (2) the maximum clock skew is 1.37 · 10−9 for GPS synchro-
nized receivers. Therefore, we can conclude that GPS synchronization introduces a
large error for TDOAmeasurements, which has been verified in our outdoor exper-
iments. However, the measured clock skews among GPS synchronized receivers
are very small, which forms the basis for our synchronization offset compensation
methods in Chapter 4.
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Chapter 4

Time-based Indoor Positioning for
Narrow-band Signals

4.1 Introduction

As discussed in Chapter 3, the accuracy of time-based indoor positioning with
TDOA for narrow-band signals is limited because of imperfect synchronization
and multipath propagation. In this chapter, we propose our solutions to elimi-
nate the synchronization offset and locate the target based on time information for
narrow-band signals. We mainly work on IEEE 802.15.4 signals with a bandwidth
of 2 MHz, which is one of the most frequently used narrow-band signal in indoor
environments. We provide a passive positioning system, which locate the IEEE
802.15.4 signal emitter by adopting the time information from the physical layer.
Additionally, based on the GSM-like testbed described in Chapter 3, we also in-
vestigate our proposed methods for GSM signals with extremely narrow bandwidth
(200 KHz) in an outdoor environment with weak multipath effects. We summarize
our contributions in this chapter as follows.

• As introduced in Chapter 3, although the relative clock offsets between two
GPS synchronized ANs are too large to achieve accurate TDOA-based rang-
ing, the relative clock skews are very small. Based on this observation, we
propose to eliminate the negative influence of imperfect synchronization be-
tween ANs by combining DTDOA and GPS synchronization.

• We propose two novel positioning algorithms based on DTDOA for narrow-
band signals. Our first contribution adds to range-based algorithms and em-
ploys a Linear Least Square (LLS) algorithm to convert the DTDOA-based
ranges to the location of the target by introducing a new intermediate pa-
rameter. Our second contribution (a DTDOA-based fingerprinting) adds to
range-free positioning. To our knowledge, we are the first to propose and
demonstrate the feasibility of DTDOA-based fingerprinting in indoor envi-
ronments.
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DTDOA and two positioning algorithms (LLS and fingerprinting based on DT-
DOA) are supported by theoretical analysis and experiments in a real-world IEEE
802.15.4 testbed. The high reliability of our findings is backed-up by a method to
minimize the influence of outliers. The testbed is designed and implemented us-
ing software defined radio to overhear IEEE 802.15.4 signals and extract physical
layer fine-grained information used for positioning. Through a set of comprehen-
sive measurements, we find that DTDOA-based LLS significantly improves the
accuracy compared to TDOA-based LLS. However, the accuracy is still limited
in indoor environments because of severe multipath influence on the timestamps
for narrow-band signals. TDOA-based fingerprinting achieves much better accu-
racy than LLS and is suitable to locate the target in indoor environments. Fur-
thermore, we compare the performance of DTDOA-based and RSS-based finger-
printing in different scenarios. The measurement results show that DTDOA-based
fingerprinting achieves quite similar performance as power-based fingerprinting.
However, in Non-Line Of Sight (NLOS) conditions, DTDOA-based fingerprinting
performs better than RSS. Additionally, we also adopt DTDOA methods to im-
prove the ranging accuracy on the GSM-like testbed, which is proposed in Chapter
3. We evaluate the performance of DTDOA-based ranging on the GSM-like testbed
in an outdoor environment with open space. The DTDOA-based ranging accuracy
is significantly improved compared to TDOA-based ranging.

In the remainder of this chapter, Section 4.2 theoretically analyzes the differ-
ence between TDOA and DTDOA and introduces how to eliminate the synchro-
nization offset by adopting DTDOA and GPS synchronization. Based on the pro-
posed DTDOA methods, two positioning algorithms, i.e., LLS and fingerprinting,
are introduced in Section 4.3. Section 4.4 introduces our proposed SDR-based pas-
sive positioning system for IEEE 802.15.4 signals based on time information. The
evaluation results are presented in Section 4.5. Section 4.6 concludes this chapter.

4.2 Differential Time Difference Of Arrival

In this section, first, we theoretically investigate the factors influencing the perfor-
mance of TDOA. Second, based on the quantification of GPS synchronization in
Chapter 3, we propose to combine the DTDOAmechanism with GPS synchroniza-
tion to efficiently eliminate the influence of synchronization offset.

4.2.1 TDOA Model

TDOA is defined as the difference of arriving times between ANs for the same
packet from a target. Assume all ANs are synchronized by GPS signals, which
have large synchronization offsets as introduced in Chapter 3. Given the factors
influencing the accuracy of TDOA, we propose to decompose TDOA into four
components as

TTDOA = Td + Tsh + Tsy + n, (4.1)
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Target RN

TTDOA,t TTDOA,r

TDTDOA = TTDOA,t-TTDOA,r

AN 1 AN 2
Figure 4.1: DTDOA Operation

where TTDOA is the overall TDOA value, Td is the TDOA component related to
the geometric distance, Tsh is the shadowing and multipath component, Tsy is the
synchronization offset component and n is Gaussian noise.

The components, Td and Tsh, are determined by the location of the target and
remain constant in a static environment. However, with GPS synchronization, the
component Tsy is unpredictably variable over time as introduced in Chapter 3.
Therefore, the overall TTDOA in Equation (4.1) is unpredictably variable as well,
even if the target stays at the same location. Hence, TTDOA is not only determined
by the location of the target but also influenced by synchronization. Therefore,
TTDOA is not a good measure for ranging and fingerprinting. Different from rang-
ing in RTT, which converts the signal propagation time to the propagation distance
between the target and an AN, TDOA-based ranging is defined as the multiplica-
tion of the measured TDOA value and speed of radio signal c, i.e., TTDOA ·c, which
is actually the difference between the two propagation distances from the target to
two ANs.

4.2.2 DTDOA Model with GPS Synchronization

DTDOA is defined as the difference of TDOA values for the target and a Reference
Node (RN) between the same pair of ANs as introduced in Section 2.5.1. Figure
4.1 illustrates the calculation of DTDOA. Compared to a TDOA system, a RN is
added to compensate for imperfect synchronization. RN transmits a control packet
after overhearing the target’s transmission.

Based on the TDOA model in Equation (4.1), the TTDOA values for the target
and RN between the same pair of ANs are respectively defined as

TTDOA,t = Td,t + Tsh,t + Tsy,t + n, (4.2)

TTDOA,r = Td,r + Tsh,r + Tsy,r + n, (4.3)

where Td,t, Tsh,t and Tsy,t are the components for the target, and Td,r, Tsh,r and Tsy,r
are for RN. DTDOA (TDTDOA) for the target and RN between the same pair of ANs
is calculated as

TDTDOA = TTDOA,t − TTDOA,r

= (Td,t − Td,r) + (Tsh,t − Tsh,r) + (Tsy,t − Tsy,r) + n.
(4.4)
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To eliminate the influence of synchronization effects on DTDOA, the following
condition are required that Tsy,t − Tsy,r = 0, i.e., Tsy,t = Tsy,r. This means that
the synchronization offset between two ANs remains constant in the transmission
interval between the two packets from the target and RN respectively. Let TTR
denote this duration and Δf denote the relative clock skew between two ANs. We
obtain that

Tsy,t − Tsy,r = Δf · TTR. (4.5)

As measured in Chapter 3, the maximum clock skew between two GPS syn-
chronized receivers is 1.37 ·10−9, i.e.,Δf = 1.37 ·10−9. Therefore, if we set TTR
to few seconds, the accumulated synchronization offset (Tsy,t − Tsy,r = Δf · TTR)
can be ignored. For example, with TTR = 1s, the accumulated GPS synchro-
nization offset (Tsy,t − Tsy,r) is smaller than 1.37ns, which allows us to assume
Tsy,t − Tsy,r = 0.

Therefore, TDTDOA is rewritten as

TDTDOA = (Td,t − Td,r) + (Tsh,t − Tsh,r) + n. (4.6)

In Equation (4.6), besides the Gaussian noise, there are only components that are
determined by the location of the target. Therefore, the distribution of the TDTDOA
is expected to be Gaussian with mean value of (Td,t−Td,r)+(Tsh,t−Tsh,r), which is
only determined by the locations of the target and RN. In consequence, TDTDOA is a
better candidate for ranging and fingerprinting. Additionally, compared to [97], our
proposed DTDOA combining with GPS synchronization is able to compensate the
momentary clock offset but do not need the offline calibration and do not require
very strict limitations on TTR (described in Section 2.5.1). Similar as TDOA-based
ranging, DTDOA-based ranging is defined as TDTDOA · c.

4.3 DTDOA-based Positioning

After measuring DTDOAs between different ANs, we design and apply positioning
algorithms to locate the target. In our work, we investigate two kinds of positioning
algorithms, i.e., multilateration and fingerprinting, based on the measured DTDOA.
Before describing the positioning algorithms, we first present a kernel based data
aggregation method to mitigate the influence of outliers. Then, we derive a new
LLS algorithm for DTDOA-based multilateration with a RN. Finally, we propose a
new fingerprinting method, in which the fingerprints are built based on the DTDOA
values in different locations.

4.3.1 KDE-based Data Aggregation

Outliers that are caused by measurement errors can obviously deteriorate the per-
formance of positioning algorithms. We propose to apply Kernel Density Esti-
mation (KDE) (introduced in Section 2.8.1) to aggregate the TDTDOA values from
different packets to mitigate the influence of outliers. The benefit of KDE is that it
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can estimate the density directly from the data without assuming a particular form
for the underlying distribution.

Assuming n independent observations of TDTDOA, X = [x1, x2, . . . , xn], the
kernel density estimator �fh(x) of the density value f(x) at point x is defined as

�fh(x) =
1

nh

n�

i=1

K

�
xi − x

h

�
, (4.7)

where K(u) denotes the kernel function, and h denotes the bandwidth. In our
work, we adopt a Gaussian kernel, K(u) = 1√

2π
exp

�
−1

2u
2
�
.

Because of its Gaussian distribution with symmetric shape, DTDOA is esti-
mated by finding the DTDOA value with maximum density in KDE. Therefore,
we propose to first adopt the KDE method to calculate �fh(x) as in Equation (4.7).
The DTDOA is then estimated as

T̂DTDOA = argmax
TDTDOA

�fh(TDTDOA). (4.8)

T̂DTDOA is the aggregated DTDOA value.

4.3.2 DTDOA-based Multilateration

For range-based algorithms, T̂DTDOA is first converted into distance as rDTDOA,k =
T̂DTDOA,k · c, where T̂DTDOA,k is T̂DTDOA between the kth and the first ANs. After
ranging, the estimated position (x�, y�) of the target is found by the LLS algorithm,
given the position (xk, yk) of the kth AN and position (xR, yR) of RN.

Without considering noise, we obtain that

rDTDOA,k =

[
�
(x− xk)2 + (y − yk)2 −

�
(x− x1)2 + (y − y1)2]−

[
�
(xR − xk)2 + (yR − yk)2 −

�
(xR − x1)2 + (yR − y1)2],

(4.9)

where (x, y) is the ground truth location of the target. Two intermediate parame-
ters, Rk and d1 are introduced. Rk is defined as the difference between the dis-
tances from the RN node to the kth AN and the first AN:

Rk =
�
(xR − xk)2 + (yR − yk)2 −

�
(xR − x1)2 + (yR − y1)2.

d1 is defined as the distance from the location of the target to the first AN as
d1 =

�
(x− x1)2 + (y − y1)2. Equation (4.9) is rewritten as the following lin-

ear equation,

(x− x1)(xk − x1) + (y − y1)(yk − y1) + (rDTDOA,k +Rk)d1

=
1

2
[(xk − x1)

2 + (yk − y1)
2 − (rDTDOA,k +Rk)

2].
(4.10)
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Writing Equation (4.10) in matrix form gives

Gθ = h, (4.11)

G =




x2 − x1 y2 − y1 rTDOA,2 +R2
...

...
...

xM − x1 yM − y1 rTDOA,M +RM


 ,

h =
1

2




(x2 − x1)
2 + (y2 − y1)

2 − (rTDOA,2 +R2)
2

...
(xM − x1)

2 + (yM − y1)
2 − (rTDOA,M +RM )2


 ,

where θ = [x− x1, y − y1, d1]
T and M is the number of ANs.

To find the solution of (x, y), we minimize the sum of squares of the residuals,

θ̂ = argmin
θ

[(Gθ − h)T (Gθ − h)]

= (GTG)−1GTh,
(4.12)

and θ̂ = [x� − x1, y
� − y1, R]

T . After obtaining θ̂, we get the LLS solution (x�, y�)
based on the DTDOA measurements.

4.3.3 DTDOA-based Fingerprinting

The accuracy of multilateration highly depends on the ranging accuracy. However,
as our preliminary experiments introduced in Chapter 3, timestamps for narrow-
band signals are error prone to multipath propagation. Therefore, it is still chal-
lenging to obtain high ranging accuracy. Therefore, we propose a time-based fin-
gerprinting method to achieve high accuracy of indoor positioning with time infor-
mation.

The proposed fingerprinting method relies on two phases including an offline
phase and an online phase. In the offline phase, a mobile signal emitter moves
through the area of interest in different training positions and ANs record the radio
parameters at each training location to form a radio map (database). In our work,
DTDOA vectors (DTDOAw) are stored in the radio map. DTDOAw comprises
TDTDOA values between different ANs as

DTDOAw = [TwDTDOA(1,2), T
w
DTDOA(1,3), · · · , TwDTDOA(M−1,M)] (4.13)

where TwDTDOA(i,j) with i < j is the TDTDOA value between the ith and jth ANs at
the wth training position.

Once the offline training phase is complete, the location of the target is es-
timated by performing a radio scan and the measured DTDOA vector is then
passed to a fingerprinting algorithm. Weighted KNN (WKNN) (introduced in Sec-
tion 2.4.1) is a simple fingerprinting algorithm, which selects the K most nearest
neighbours based on the Euclidean distance and then returns the weighted average
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of these K locations as an estimate of the current location of the target. For this
WKNN method, first, the Euclidean distances ew betweenDTDOA values at the
current location and all the training locations are calculated as

ew = �DTDOA−DTDOAw�. (4.14)

�·� indicates the norm value of a vector. Smaller Euclidean distance ew means that
the measured DTDOA at the current location better matches to DTDOAw at
the wth training location. Second, we set K = 3, which means that three loca-
tions in the radio map with the minimum ew are selected. Finally, based on these
three selected locations, we calculate a weighted average of their coordinates as
the estimation of the target’s location (x�, y�) as

(x�, y�) =
3�

i=1

Li�3
j=1 Lj

(xi, yi), (4.15)

where (xi, yi) are the coordinates of the ith training position. Since smaller Eu-
clidean distance ei means better matching to the ith training position, each weight
Li is inversely proportional to the Euclidean distance ei, i.e., Li = 1

ei
.

4.4 Implementation of Positioning Algorithms in a Posi-
tioning System for IEEE 802.15.4 Signals

We have implemented our proposed time-based positioning algorithms for narrow-
band signals in two systems. The first system is introduced in Chapter 3 (Section
3.4), which uses USRP devices to mimic the GSM signals. In this section, we focus
on the implementation of the second system, which is a passive system based on
software defined radio techniques to overhear IEEE 802.15.4 signals and accurately
timestamp the captured messages.

4.4.1 System Overview

Figure 4.2 shows an overview of the passive positioning system for IEEE 802.15.4
signals. A TelosB node [102] as a signal emitter, which includes a CC2420 radio
transceiver [1], is the target for positioning. To implement the DTDOA method,
another TelosB node as a RN is deployed at a known location, which overhears
the packet from the target and then retransmits the packet. Both TelosB nodes run
Contiki system [46] to send packets.

At the receiver side, the system comprises three main components, i.e., USRP
for signal capturing, GNU Radio for signal processing, and MATLAB for the po-
sitioning algorithms as shown in Figure 4.3. USRP with model N210 is used as
signal capturing hardware. All USRPs in our work are synchronized by GPS re-
ceivers. All USRPs are connected to a desktop PC with i5 CPU (3.3GHz) as a
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Figure 4.2: An Overview of Passive Positioning System for IEEE 802.15.4 Signals

server, which decodes the packets and runs positioning algorithms. Signal pro-
cessing is implemented in GNU Radio [5], which is utilized for demodulation and
packet reconstruction. The physical layer parameters for positioning, e.g., RSS
and timestamp, are extracted in GNU Radio and passed to MATLAB processing.
We adopt the advanced method to achieve sub-sample timestamps, which estimate
the sub-sample time delay between two output samples from one USRP by us-
ing symbol timing recovery from the signal processing chain (as in Section 3.2.2).
KDE-based data aggregation, DTDOA-based LLS and fingerprinting as introduced
in Section 4.3 are implemented in MATLAB as positioning algorithms. In the sys-
tem, multiple targets are separated by their node IDs. Additionally, a graphical user
interface designed by MATLAB runs in the server to indicate the location of the
target on the floor plan in real time.

4.4.2 Packet Decoding and Physical Layer Information Extraction

In this subsection, we introduce the methods in our work for signal processing
implemented in GNU Radio. As introduced in Section 2.3.2, the authors of [40]
provided an IEEE 802.15.4 decoding system, in which physical and MAC layers
(packet sink in Figure 2.19) are separated into different GNU Radio blocks. Since
the packet is detected and reconstructed on MAC layer, which is after demodu-
lation, the physical layer information (RSS and sub-sample timestamps) for each
packet is only available before or during the demodulation of the digital samples.
Therefore, such physical layer information needs to be attached to each sample,
passed to the MAC layer, and aggregated when the packet is detected. To pass the
physical layer information through different GNU Radio blocks, the stream tags
as introduced in the GSM-like testbed (Section 3.4) could be adopted. However,
this method significantly increases the processing load and results in overflows in
the server (a desktop PC with i5 CPU (3.3GHz)) because of the high sampling rate
(4MHz) (in contrast to 500KHz in the GSM-like testbed). Because of overflows,
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Figure 4.3: The Structure of Passive Positioning System for IEEE 802.15.4 Signals
(Receiver Side)

many samples are lost and hence the packet decoding rate is reduced dramatically.
In our work, we implement a cross-layer structure integrating physical and

MAC layers into one GNU Radio block, which more efficiently passes the param-
eters from physical layer to MAC layer and solves the overflow problem. At the
physical layer, we implement similar decoding methods for IEEE 802.15.4 signals
as in [40]. Figure 4.3 indicates the structure, where a MSK demodulation method
is implemented to decode IEEE 802.15.4 signals. The power for each sample is
obtained before FM (Frequency Modulation) demodulation and sub-sample times-
tamps are obtained in the time recovery part after extracting the normalized tim-
ing error information. The power and sub-sample timestamp for each sample are
stored in two FIFO (First Input First Output) buffers. As soon as the preamble in
each IEEE 802.15.4 packet is detected, we search in the two FIFO buffers for the
RSS values and sub-sample timestamps corresponding to the first sample in the
preamble. In order to mitigate the influence of measurement noise, the power and
sub-sample timestamp are obtained by averaging all the samples in a packet.

4.5 Evaluation of Time-based Positioning Algorithms

We have conducted a set of experiments to evaluate the proposed time-based posi-
tioning algorithms for narrow-band signals. First, we conducted some preliminary
experiments based on the GSM-like testbed in an outdoor environment to investi-
gate the performance of DTDOA with GSM-like signals. Then, we mainly focus
on the experiments in indoor environments based on the passive indoor positioning
system for IEEE 802.15.4 signals. In these experiments, we first evaluate our pro-
posed IEEE 802.15.4 decoding system for CPU usage and packet decoding rate.
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Second, we analyze the distribution and variance of DTDOA values in indoor en-
vironments and investigate the Euclidean distance of the DTDOA vector among
neighbours. Third, we evaluate the performance of the DTDOA-based LLS. Fi-
nally, we evaluate the performance of DTDOA-based fingerprinting and compare
it to RSS-based fingerprinting.

4.5.1 Outdoor Experiments for GSM-like Signals

In Section 3.5.2, we have conducted some experiments in an outdoor environment
with three ANs, a RN and a target using the GSM-like testbed. The measurement
setup is shown in Figure 3.12, where 3 ANs are separated by 30m. As introduced
in Section 3.5.2, TDOA faces large ranging errors because of the synchronization
offset between GPS-synchronized ANs. With the same measurement setup (Figure
3.12), we adopt the DTDOA algorithm to compensate the synchronization offset
and Table 4.1 summarizes the ranging errors between different ANs at the two test
locations.

From Table 4.1, we find that the ranging errors based on DTDOA are signif-
icantly smaller than TDOA because the synchronization offsets between ANs are
eliminated. For example, the maximum ranging error based on TDOA is 39m. In
contrast, the maximum ranging error based on DTDOA is reduced to 12.5m and
most of the ranging errors are smaller than 10m. The ranging errors are caused by
the remaining weak multipath effects, e.g., multipath from the ground. Addition-
ally, noise in the estimation of the normalized timing error from time recovery also
introduces errors to the timestamps.

Table 4.1: Ranging Error in Open Space Environment (TDOA and DTDOA)
EXP No. Algorithms Rx1 and 2 Rx2 and 3 Rx1 and 3
EXP1 TDOA 5.6m 22.6m 23.1m

DTDOA 5.2m 6.4m 1.2m
EXP2 TDOA 5.5m 39m 33.5m

DTDOA 12.5m 12m 2m

4.5.2 Indoor Experiments for IEEE 802.15.4 Signals

The experiments in Section 4.5.1 have demonstrated that our proposed DTDOA
methods efficiently improve ranging accuracy by eliminating the synchronization
offset in an open space environment with weak multipath propagation. IEEE
802.15.4 signals at 2.4GHz are designed for short range communication and of-
ten used in indoor environments. Therefore, in the remainder of this section, we
focus on the evaluation of DTDOA algorithms based on the passive positioning
system for IEEE 802.15.4 signals in indoor environments.
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Figure 4.4: Measurement Setup

Evaluation of Packet Decoding

Before conducting the experiments for indoor positioning, we first evaluate the
performance of our implemented IEEE 802.15.4 decoding system with cross-layer
design. First, with this cross-layer design, we are able to reduce CPU usage by
more than half and avoid overflows. Second, we test our decoding methods with
a TelosB node as a signal emitter. We configured the CC2420 radio transceiver
to the maximum transmission power level (level 31). To test the performance of
the receiver, the distance between the USRP receiver and TelosB emitter with LOS
connection was changed from 0.5m to 11.5m at 1m steps. For each distance 600
packets of the target are analyzed and we are able to decode more than 99.4% of
the transmitted packets. A small fraction of packets can not be decoded because
bit errors happen in the preamble decoding, which causes the receiver can not be
synchronized to the incoming packets.

Measurement Setup for Indoor Positioning

Indoor experiments were conducted at two test scenarios, i.e., the second and third
floor of the INF building at University of Bern. These two scenarios have dif-
ferent layouts as shown in Figure 4.4(d) and Figure 4.4(b). The second floor is
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our working area and people are moving during working hours. The third floor is
mainly occupied by less frequently used seminar rooms and laboratories. Hence,
the environment on the third floor is more stable.

Four ANs are deployed to capture IEEE 802.15.4 signals from TelosB nodes. A
RN (TelosB node) is placed in the system and used to calculate TDTDOA values. The
target TelosB node periodically broadcasts packets. As soon as RN has received
one packet from the target, it retransmits the packet. ANs overhear packets from
both the target and RN to calculate the corresponding TDTDOA. The target was
configured to transmit five packets per second. The data collection time at each
test position was 1 minute.

• First, as a proof of concept, several preliminary measurements were con-
ducted on the third floor of the INF building to analyze DTDOA and TDOA
regarding the following three aspects: distribution, variation over space, and
Euclidean distance among neighbours.

• Second, 53 locations (Figure 4.4(a)) on the third floor were tested to analyze
the performance of DTDOA-based ranging and LLS. Moreover, we compare
the performance of DTDOA-based LLS to TDOA-based LLS.

• Third, the proposed DTDOA-based fingerprinting was tested on both the
second and third floor. Before testing, two radio maps have been created in
these two scenarios during weekend when there was no change of the layouts
and no people movement. Figure 4.4(a) shows the radio map (including
the blue and red points) on the third floor, in which training positions are
separated by approximately 2m and Figure 4.4(c) shows the radio map on
the second floor.

• Fourth, for online tests of the fingerprinting algorithm, the first measure-
ments in both scenarios were taken one day after the creation of radio map
at the same weekend. The second measurements were conducted five days
later during working hours. 18 test locations were randomly selected on the
second floor as shown in Figure 4.4(d). Among them, 9 locations were lo-
cated in areas, where the target has LOS connection to one of ANs, and are
thus referred to LOS areas. 9 locations were in areas, where the target has
no LOS connection to any AN, and are referred toNLOS areas. 27 locations
on the third floor were tested as shown in Figure 4.4(b). Among them, 14
locations were in the LOS areas and 13 locations were in the NLOS areas.

Preliminary DTDOA Analysis based on Measurements

• Distribution: We analyze the distribution of TTDOA and TDTDOA values for
a single location. Figure 4.5(a) and 4.5(b) show the normalized histogram
and estimated Probability Density Function (PDF) of TTDOA and TDTDOA
values respectively. As measured in Chapter 3, the distribution (PDF) of
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clock offsets between two GPS synchronized ANs during short periods e.g.,
1 minute, does not follow a certain model, e.g., Gaussian. Therefore, PDF of
TTDOA, which is influenced by imperfect synchronization, has an uncertain
shape as shown in Figure 4.5(a). The distribution of TDTDOA fits better to
a Gaussian distribution than TTDOA because it eliminates the influence of
imperfect synchronization. This finding supports our claim in Section 4.2.2.

• Variation over space: Figure 4.6 shows a DTDOA measurement between
two ANs for thirty minutes with the target moving from one location to an-
other and then back but remaining stationary for ten minutes at each lo-
cation. As shown in the figure, the mean DTDOA value does not change
significantly for a single location but visibly differs from one location to the
next. This finding further supports our analysis from Section 4.2.2 that the
DTDOA values are only influenced by the location of the target.

• Euclidean Distance among Neighbours: In order to apply fingerprinting
(WKNN), the DTDOA vectors (DTDOAw in Section 4.3.3) among the
neighbours should have lower Euclidean distance than the DTDOA vectors
at the locations in far away areas. Therefore, we analyze DTDOA vectors
at six different locations (p1 to p6 in Figure 4.4(a)). Figure 4.7 shows the
DTDOA vectors at the six locations, where y-axis is the TDTDOA values and
x-axis indicates the ANs from which the TDTDOA is obtained. For example,
AN(1,2) means that the TDTDOA value is calculated between the first AN and
the second AN. Each single vector comprises six TDTDOA values between
different ANs. As shown in Figure 4.7, the DTDOA vectors at nearby loca-
tions have smaller gaps among each other, which means shorter Euclidean
distance.

Based on these preliminary evaluations, TDTDOA is only determined by the lo-
cation of the target but not influenced by synchronization. Furthermore, DTDOA
vectors at nearby locations have shorter Euclidean distance between each other.
Both findings support the feasibility of DTDOA fingerprinting.
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Table 4.2: Measurement Notation
Notation Floor No. Time Environment

M1 Second 1 day later Static
M2 Second 5 days later Dynamic
M3 Third 1 day later Static
M4 Third 5 days later Static

Table 4.3: Localization Errors Statistics
RSS-based WKNN DTDOA-based WKNN

Measurements Mean SD Mean SD
M1 2.13m 1.35m 1.92m 1.15m
M2 2.59m 2m 2.65m 1.47m
M3 2.72m 1.72m 2.89m 1.65m
M4 2.8m 1.6m 3m 1.4m

Measurement Results for DTDOA-based LLS

Figure 4.8 shows a CDF of ranging errors based on the DTDOA and TDOA meth-
ods. As discussed in Section 4.3, DTDOA eliminates the influence of synchroniza-
tion offsets, which can introduce up to 50m ranging error for TDOA. As shown
in Figure 4.8(a), DTDOA significantly improves the ranging error compared to
TDOA. For example, DTDOA improves the median ranging error by 50% (from
22m to 11m) compared to TDOA-based ranging. This finding is consistent with
the results in the outdoor measurement based on the GSM-like testbed.

Figure 4.8(b) indicates the CDF of positioning errors for DTDOA and TDOA-
based LLS. As shown in Figure 4.8(b), the DTDOA-based LLS significantly out-
performs TDOA-based LLS because DTDOA achieves higher ranging accuracy.
The improvement of median error by DTDOA-based LLS is around 57% (from
30m to 13m) compared to TDOA-based LLS.

We show that DTDOA achieves higher accuracy than TDOA by eliminating the
influence of imperfect synchronization. However, multipath and NLOS propaga-
tion still introduce a large error to DTDOA-based ranging for narrow-band signals.
DTDOA-based LLS is sensitive to ranging errors and hence it is still challenging
to achieve accurate positioning in complex indoor environments.

Measurement Results for DTDOA-based Fingerprinting

To achieve accurate indoor positioning with time-based information, i.e., DTDOA,
we further evaluate our proposed DTDOA-based fingerprinting algorithm and com-
pare the performance to RSS-based fingerprinting. The measurement notations in
Table 4.2 are used in the following. To evaluate the performance of DTDOA-based
fingerprinting, we mainly consider two aspects: accuracy and stability.
Accuracy: Table 4.3 summarizes the mean positioning errors and Standard

Deviations (SD) of the four measurements. For DTDOA-based fingerprinting, the
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mean errors in the four measurements are smaller than 3m. Compared to range-
based positioning (DTDOA-based LLS), DTDOA-based fingerprinting achieves
much better accuracy and is thus better suited for indoor positioning. DTDOA-
based and RSS-based fingerprinting algorithms achieve quite similar performance
in terms of mean error in all four measurements. Figures 4.9(a) and 4.10(a) summa-
rize CDFs of positioning errors. Similar as the observations based on mean error,
CDFs indicate that DTDOA-based and RSS-based fingerprinting achieve similar
performance in all four measurements.

We further investigate the performance of DTDOA-based and RSS-based fin-
gerprinting in LOS and NLOS areas. Figure 4.9(b) shows the mean errors for
DTDOA-based and RSS-based fingerprinting in LOS and NLOS areas on the sec-
ond floor. Figure 4.10(b) is for the third floor. As shown in Figures 4.9(b) and
4.10(b), DTDOA-based and RSS-based fingerprinting achieve different perfor-
mance in LOS and NLOS areas. In LOS areas, RSS-based fingerprinting achieves
higher accuracy than DTDOA-based fingerprinting. It’s because in the RSS vector
there is a strong RSS component from the AN with LOS connection to the target,
and therefore RSS-based fingerprinting can more accurately select the neighbours.
However, in NLOS areas, there is no strong RSS component in the RSS vector
and DTDOA-based fingerprinting achieves better performance in all four measure-
ments. Take measurement M1 as an example. In LOS areas, RSS-based finger-
printing with mean error of 1.39m outperforms DTDOA-based fingerprinting with
mean error of 1.86m. In NLOS areas, DTDOA-based fingerprinting achieves mean
error of 1.98m, which is 0.89m better than RSS-based fingerprinting.
Stability: We analyze the stability of fingerprinting algorithms in the same sce-

nario but at different measurement time. For M1 and M2 on the second floor, the
environment is dynamic during working hours. Measurement M1 was conducted
one day after creating the radio map but M2 was five days later. As shown in Fig-
ure 4.9(a), both DTDOA-based and RSS-based fingerprinting in measurement M2
achieve 90% positioning error below 4.6m, which significantly deteriorates com-
pared to the measurement M1 (3.2m for DTDOA-based fingerprinting and 3.6m
for RSS-based fingerprinting). The reason is that during working hours people
move in offices and the layout of the surrounding environment also changes, e.g.,
doors become open and closed. These factors influence the accuracy for matching
algorithms, i.e., WKNN, to find the correct neighbours based on the original finger-
printing database (radio map). Different from the measurements M1 and M2, the
performance of DTDOA-based and RSS-based fingerprinting does not significantly
deteriorate in the measurement M4 compared to M3 (Figure 4.10(a)), because the
environment on the third floor is quite stable and the floor layout does not change.

4.6 Conclusions

In this chapter, we proposed some novel algorithms for time-based indoor posi-
tioning using narrow-band signals. Based on the findings for GPS synchronization
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in Chapter 3, we proposed to combine DTDOA with GPS synchronization to elim-
inate the influence of imperfect synchronization. According to a set of evaluations,
we find that by combining DTDOA with GPS synchronization we are able to elim-
inate the momentary clock offsets and do not need offline calibration and strict
limitation on the transmission interval between the packets from the target and
reference node. With this method, our ranging accuracy gets improved compared
to TDOA. This has been verified by the experiments in both outdoor and indoor
with GSM and IEEE 802.15.4 signals. Correspondingly, our proposed DTDOA-
based LLS significantly improves positioning accuracy, compared to TDOA-based
LLS. However, in a complex indoor environment, NLOS propagation still intro-
duces large errors. We further evaluated our proposed DTDOA-based fingerprint-
ing and demonstrated that with narrow-band signals DTDOA-based fingerprinting
significantly outperforms LLS and is able to locate the target in an indoor environ-
ment with a mean error of 3m. DTDOA-based and RSS-based fingerprinting algo-
rithms achieve different performance in different areas. RSS-based fingerprinting
achieves higher accuracy when there is one AN with LOS connection to the target.
However, DTDOA-based fingerprinting outperforms RSS-based fingerprinting in
the area, where there is no any AN with LOS connection to the target.
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Part II

Indoor Positioning and Tracking
using Fine-Grained Power

Part I (Chapter 3 and 4) presents our solutions for indoor positioning with narrow-
band signals, e.g., IEEE 802.15.4 signals, which are commonly used in some spe-
cific applications such as logistics and industrial applications. In our daily life,
WiFi (IEEE 802.11) is the most commonly used short-range communication tech-
nology, which is ubiquitous indoor. Compared to IEEE 802.15.4 signals, IEEE
802.11 signals have wider bandwidth and more advanced physical-layer schemes,
i.e., OFDM and MIMO. In the remainder of this thesis, i.e., part II, we introduce
our indoor positioning and tracking solutions for WiFi signals. We propose a pas-
sive positioning/tracking system based on software defined radio techniques and an
active network-based tracking system with commercial WiFi cards. In this work,
we aim to provide solutions, which can achieve high positioning accuracy and
meanwhile reduce the calibration efforts (deployment efforts). Therefore, we
work on range-based solutions instead of fingerprinting algorithms, which are very
labour intensive and error prone to the changes of surrounding environments as
observed in Chapter 4. In Chapter 5, we introduce our passive positioning system
for WiFi signals based on software defined radio techniques, which is mainly de-
signed for locating stationary targets. We introduce our ranging methods based on
the channel information and an enhanced trilateration algorithm. In Chapter 6, we
further extend the passive positioning system to support tracking mobile targets by
designing an enhanced particle filter. In Chapter 7, we introduce an active tracking
system for WiFi targets based on commercial WiFi cards. This system is able to
extract channel information and inertial sensor information, and fuse them by a
particle filter to achieve accurate tracking.
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Chapter 5

A Passive WiFi Positioning System
using Trilateration based on
Channel Information

5.1 Introduction

In this chapter, we introduce a passive positioning system for WiFi targets, which
extracts Channel Impulse Response (CIR) from overheard packets to design en-
hanced methods for ranging and positioning. Special merit of the system is its abil-
ity to operate independently of the tracked device and WiFi infrastructure, which is
achieved by implementation using software defined radio (SDR) techniques. The
SDR-based ANs are able to passively sniff the packets from the WiFi target device
and transfer the collected physical layer information of the received packets, i.e.,
CIR, to a central server, which runs some enhanced positioning algorithms and
indicates the location of the target.

In the system, we have proposed some enhanced range-based positioning algo-
rithms as follows.

• First, instead of relying on RSSI, which is the most commonly used radio pa-
rameter for WiFi positioning, we work on CIR, which is a fine-grained power
information. We use CIR to extract the power from the direct propagation
path and mitigate the influence of multipath propagation. The key accuracy
enabler in our system is signal recovery at the physical layer, which allows us
to obtain fine-grained information such as Channel State Information (CSI)
and CIR.

• Second, as mentioned in Section 2.5.2, LDPL (Log-Distance Path Loss model)
is not accurate for indoor positioning because of multipath propagation and
NLOS effects. To achieve high ranging accuracy, we propose a novel Non-
linear Regression (NLR) method to map the measured power information to
propagation distance. With this ranging method, we achieve high positioning
accuracy with much less calibration efforts compared to fingerprinting.
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• Third, after obtaining range information, we propose an enhanced trilatera-
tion algorithm, which is robust to remaining ranging errors. This new tri-
lateration approach combines the Weighted Centroid (WC) and Constrained
Weighted Least Square (CWLS) algorithms to mitigate the impact of ranging
errors.

We evaluate our system by conducting a comprehensive set of measurements
including stationary and mobile targets under complex indoor propagation condi-
tions. Experimental results demonstrate that our proposed NLR model achieves
higher ranging accuracy than the LDPL model. Furthermore, compared to the LLS
and WC algorithms, the WC-CWLS positioning algorithm achieves higher accu-
racy and is more robust to ranging errors. By combining the NLR model for rang-
ing and the WC-CWLS algorithm for trilateration, the mean positioning accuracy
of the system achieves 2.4m. We further investigate the distribution of positioning
accuracy with different positioning algorithms over the testing area. Note that in
this chapter, we mainly focus on trilateration for stationary targets. Although we
conduct some preliminary experiments to evaluate the proposed algorithms for a
mobile target in this chapter, more comprehensive experiments for tracking a mo-
bile target are given in Chapter 6.

In Section 5.2, the positioning algorithms including multipath mitigation via
CIR, the NLR model for ranging and the WC-CWLS trilateration algorithm are
introduced. Section 5.3 introduces the implementation of our proposed passive
positioning system for WiFi targets. The evaluation results of our system in a
complex indoor environment including stationary and mobile target experiments
are introduced in Section 5.4. Finally, Section 5.5 concludes this chapter.

5.2 Positioning Algorithms with CIR Information

One of the main contributions in this work is a set of novel positioning algorithms
by adopting CIR information, including ranging and trilateration. Figure 5.1 indi-
cates positioning procedures in our work, which comprises three steps: multipath
mitigation via CIR, ranging and trilateration.

Figure 5.1: Overall Structure of Positioning Algorithms

5.2.1 Multipath Mitigation via CIR

As introduced in Section 2.5.3, CSI reveals a set of channel measurements depict-
ing the amplitudes and phases of every subcarrier in the frequency domain. CIR
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characterizes the individual paths of the communication channel in the time domain
as a set of temporal linear filters. CSI in the frequency domain can be converted
into CIR in the time domain via IFFT. In the time domain, CIR can be modeled as
a temporal linear filter as

h(τ) =

N�

n=1

ane
−jθnδ(τ − τn) (5.1)

where an, θn and τn are the amplitude, phase and time delay of the nth path. N is
the total number of paths and δ(τ) is the Dirac delta function. CIR is a digitalized
channel information in time domain, with a resolution of Δτ = τn − τn−1. The
resolutionΔτ depends on the bandwidth of the used signal, i.e.,Δτ = 1/B, where
B is the bandwidth of the signal. If the bandwidth B is infinite, CIR would be the
same as the analog channel and it can distinguish all the propagation paths. How-
ever, in practice, the bandwidth B is limited. Therefore, the measured CIR with a
resolution ofΔτ = 1/B can only distinguish several clusters of propagation paths
rather than every individual multipath component. The bandwidth of IEEE 802.11n
is 20MHz and hence the time resolution of an estimated CIR is 1/20MHz = 50ns,
i.e., Δτ = 50ns. [123, 126].
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Figure 5.2: Channel Impulse Response

Figure 5.2 indicates the measured CIR with LOS connection between a target
and a receiver. In the figure, Y-axis indicates the amplitude of CIR, i.e., an in
Equation (5.1) and X-axis indicates the sample numbers, i.e., n in Equation (5.1).
The time delay between two samples isΔτ = 50ns. As shown in Figure 5.2, there
is a path with strongest power (amplitude) in the CIR samples and the power in the
other channels are much weaker. It is commonly known that the signal from the
direct path is stronger than the other signals from multipath propagation. Hence, to
mitigate the influence of multipath propagation, the path with the strongest power
is selected as the direct path and the power in this path is chosen as the estimated
power. The final estimated power is

RSS = 10 · log10[max(|h(τ)|)2]. (5.2)
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|h(τ)| indicates the amplitudes of CIR over 64 samples. In case that no direct
path exists (i.e., NLOS condition), this method still selects the strongest power in
CIR as the estimated RSS, which is normally from the shortest propagation path.
Therefore, with Equation (5.2), we are able to extract the shortest propagation path
and mitigate the influence of other propagation paths. However, the power from
the shortest propagation path is still influenced by the attenuation of obstacles, e.g.,
NLOS. Therefore, RSS with Equation (5.2) is less reliable and faces larger ranging
errors in NLOS conditions than in LOS conditions.

Theoretically, in the measured CIR, the first sample should be the direct path
because it has the shortest time delay. However, as shown in Figure 5.2, the sample
in CIR with strongest power (direct path) is not consistent with the first sample
in CIR. There is an uncertain delay between the direct path sample and the first
sample in CIR. The main reason for this uncertain delay is that because of the
unstable clock in the receiver, the receiver can not perfectly synchronize with the
long preambles in the incoming packets, which generates an uncertain delay in the
estimation of CIR based on the long preambles. Therefore, instead of relying on the
first sample in CIR as the direct path, we consider the sample with the maximum
power in CIR as the direct path.

5.2.2 Ranging

After extracting the fine-grained power, i.e., RSS in Equation (5.2), a model is re-
quired to convert the measured RSS into propagation distances (ranging) for range-
based positioning. The LDPL model in Equation (2.20) is a generic model to pre-
dict the path loss for a wide range of environments. However, the LDPL model
has been demonstrated to be inaccurate for indoor environments. A typical method
to obtain the LDPL model is based on linear regression [21, 49], which models
the relationship between the RSS values and logarithmic propagation distances
(log10(d)) as a linear function as shown in Figure 5.3(a).
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Figure 5.3: The LDPL and NLR Models

In our work, we propose to model the relationship between RSS values and
propagation distances as a nonlinear curve fitting problem. Hence, we provide a
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nonlinear regression (NLR) model as

di = αi · eβi·RSSi , (5.3)

where di is the distance between the target and ith AN, RSSi is the RSS values
obtained at the ith AN, αi and βj are two unknown parameters in the model that
need to be obtained from some initial measurements. Depending on the layout of
the test environment and locations of ANs, different ANs face different propagation
channels. Therefore, we adapt different (α, β) pairs for different ANs to match
different propagation channels.

In order to obtain (α, β) pairs, which can be adapted to fit different testing
environments, we need to conduct training tests. Given K training locations in the
initial measurements, (dij ,RSSij) are collected at the jth training location from the
ith AN. We apply the nonlinear least square criterion, in which the sum of squared
residuals is minimized as

argmin
(αi,βi)

K�

j=1

(αi · eβi·RSSij − dij)
2. (5.4)

To find the solution of this unconstrained optimization problem, the trust region
algorithm [32] (introduced in Section 2.6.1) is applied in our work, because it is
robust and has strong global convergence properties. The red solid curve in Figure
5.3(b) indicates the NLR model to fit the RSS measurements and the ground truth
ranges. Since the training experiments are only used to obtain the two parameters
(α, β) instead of building a radio map, which needs to cover the whole testing en-
vironments, the training efforts for ranging are much lower than for fingerprinting.

5.2.3 Two-Stage Trilateration

After the ranging step, the propagation distance information is fed into a trilater-
ation algorithm. A well designed trilateration algorithm should be robust to rang-
ing errors. As introduced in Section 5.2.1, extracting power from direct path via
CIR can mitigate the influence of multipath propagation in LOS condition but in
NLOS condition the obtained RSS is less reliable and has larger ranging errors.
Correspondingly, the ranging accuracy in NLOS condition is worse than in LOS
conditions. To locate a target, a trilateration algorithm requires at least three rang-
ing values and in a complex indoor environment these ranging values are normally
mixed by ranges with and without LOS connections. The trilateration algorithm
using LLS, which just simply treats all the ranging values equally, is prone to
ranging errors. Weighting techniques can be adopted to mitigate the influence
of ranging errors by assigning larger weights to more reliable ranges and smaller
weights to less reliable ranges. WLS and CWLS (introduced in Section 2.6) are
two commonly used trilateration algorithms by using weighting techniques. How-
ever, as introduced in Section 2.6, to achieve the optimal solution, the information
of the ground truth ranges and the variances of each measurement is needed to set
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weights, which is unrealistic in real applications. In our work, we propose a new
two-stage trilateration algorithm combining the WC (Weighted Centroid in Sec-
tion 2.4.2) and CWLS (Section 2.6.4) algorithms to mitigate the remaining ranging
errors, which does not require the ground truth ranges. In the remainder of this
thesis, we refer to this two-stage trilateration algorithm as WC-CWLS.

In our proposed WC-CWLS, we first estimate an initial location based on a
WC algorithm because of its simplicity and robustness to inaccurate ranging. For
the WC algorithm, the location of the target is estimated as a weighted average of
the coordinates of ANs as

(x�, y�) =
M�

i=1

[wi · (xi, yi)], (5.5)

whereM is the number of ANs and (xi, yi) are the coordinates of the ith AN. Each
weight wi is inversely proportional to the range as

wi =
1
di�M
j=1

1
dj

. (5.6)

Based on the initial location (x�, y�), we calculate the distance between the ith AN
and the initial location as,

ri =
�
(x� − xi)2 + (y� − yi)2. (5.7)

At the second step, a CWLS is adopted to fine tune the estimated location.
For the CWLS algorithm, the location of the target is estimated by solving a con-
strained optimization problem,

θ̂ = argmin
θ

(Gθ − h)TW(Gθ − h), (5.8)

subject to
qTθ + θTPθ = 0,

where θ = [x, y, R]T , R =
�

x2 + y2,

h = 1
2




x21 + y21 − d21
...

x2M + y2M − d2M


,G =




x1 y1 −0.5
...

...
...

xM yM −0.5


,

P =



1 0 0
0 1 0
0 0 0


, and q =




0
0
−1


.

Before solving the optimization problem in Equation (5.8), the weight matrix
W needs to be properly set. The optimal solution as introduced in [37] requires
ground truth range information and variances, which are unrealistic in a practical
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application. Therefore, in our work, we propose a suboptimal solution to set the
weight matrix W based on the initial location estimated by WC on the first step.
We set the weight matrix based on the error between the squared ranging outputs
di and ri in Equation (5.7) as

εi = r2i − d2i , i = 1, 2, ...,M. (5.9)

The covariance matrix of the disturbance is calculated as

Ψ = diag([ε21, ε
2
2, ..., ε

2
M ]), (5.10)

and the weighted matrix is obtained as

W = Ψ−1. (5.11)

After setting the weight matrix, the constrained optimal problem in Equation (5.8)
is equivalent to minimize the Lagrangian equation,

θ̂ = argmin
θ

L(θ, λ)

= argmin
θ

((Gθ − h)TW(Gθ − h) + λ(qTθ + θTpθ)),
(5.12)

where λ is the Lagrange multiplier. To obtain the final estimation of the target
location, we use the proposed method in [37] to solve the Equation (5.12) and to
obtain the final target location (x, y) in θ̂.

5.3 System Implementation

Our proposed positioning algorithms have been implemented in a software defined
radio based passive positioning system for WiFi devices, which is another contri-
bution in this work. Figure 5.4 indicates an overview of this passive positioning
system. In this system, users just use their WiFi devices as usual, e.g., a laptop,
which exchanges packets with a WiFi router (Access Point (AP)). The deployed
WiFi sniffers are used to passively sniff the packets from WiFi users and a central
server is used to locate the users. Figure 5.5 indicates the structure of this system.
Basically, the system are divided into three main components: receiving hardware
for WiFi signals, WiFi packet decoding, and positioning algorithms.

5.3.1 Receiving Hardware for WiFi Signals

Asmentioned in Section 2.5.3, off-the-shelf network cards (IWL5300) with firmware
[60] can not be adopted for a passive positioning system to extract the channel state
information in ANs. Hence, to decode IEEE 802.11n uplink messages and extract
channel state information, we adopt SDR techniques for ANs. In our work, the
sniffing component is based on USRP N210 receivers [17].
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Figure 5.5: The Structure of Passive Positioning System for IEEE 802.11n
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5.3.2 WiFi Packet Decoding

Each USRP device is connected to one individual desktop, in which GNU Radio
software [5] is adopted for signal processing. WiFi packet decoding is mainly
realized by the framework [28] for IEEE 802.11a/g/p decoding in GNU Radio (gr-
ieee 802.11 block in Figure 5.5). We extract the long preambles from the decoded
WiFi packets and design a channel estimation block based onMATLAB to estimate
CSI in frequency domain. To meet our requirements of channel estimation and
positioning, we modify the framework (gr-ieee 802.11) as follows.

First, in order to mitigate estimation errors of CSI, the distortion of the filters
(DDC filters in FPGA as introduced in Section 2.3) in the USRP receivers need to
be minimized in the frequency domain. To achieve this goal, instead of 20MHz
sampling rate in the framework [28], we use a 25MHz sampling rate to keep the
amplitude of the frequency response of the DDC filters in the USRP receivers con-
stant in the target bandwidth. We work on the IEEE 802.11n standard with 20MHz
bandwidth and therefore the amplitude of the frequency response of DDC filters
in the baseband is required to be constant within 10MHz. In the mother-board of
USRP, a Cascaded Integrator Comb (CIC) filter is implemented for DDC to convert
the sampling rate from 100MHz to the required rate. In the CIC filter, the down-
sampling rate is required to be integer multiplications of 4 to avoid the serious
frequency roll-off (the steepness of the amplitude of frequency response). Figures
5.6(a) and 5.6(b) show the simulated baseband frequency response of the CIC filter
used in the mother-board of USRP N210 with 20MHz and 25MHz sampling rates
respectively. With a sampling rate of 20MHz, the filter has about 18dB attenuation
at 10MHz compared to 0MHz. This will cause the distortion of incoming signals
(e.g., pilot signals for channel estimation) in the frequency domain. With a sam-
pling rate of 25MHz, the amplitude of frequency response of CIC filter is constant
from 0MHz to 10MHz. Therefore, we use the sampling rate of 25MHz as the out-
put from USRP and a resampler is adopted at the beginning of signal processing to
convert the sampling rate from 25MHz to 20MHz.
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Figure 5.6: Baseband Frequency Response of CIC Filter with Different Sampling Rates

Second, we use Long Preambles (LP) in the decoded WiFi packets for chan-
nel estimation, which are normally used for packet synchronization and channel
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estimation in WiFi receivers [13]. In the framework [28], the long preambles are
detected before demodulation and the packets are reconstructed after demodula-
tion. Therefore, to map the long preambles to their corresponding packets, we
pass the long preambles to the packet reconstruction module through the whole de-
coding procedure. To achieve this, we adopt the stream tags mechanism [5] from
GNU Radio. In addition, for passive positioning, the server running positioning
algorithms need to aggregate the RSS values of the packets from different ANs in
the same time interval. Hence, the clock time in ANs are synchronized by GPS
receivers with an accuracy of sub-microseconds. GPS timestamps that indicate
the detection time of the packets are also attached by stream tags in GNU Radio.
Consequently, the server aligns the packets from different ANs with GPS time and
aggregate the RSS values in the same time interval from different ANs.

Third, long preambles are attached to packets and passed to MATLAB for
channel estimation. We adopt block-type pilot channel estimation based on long
preambles to estimate CSIs in 64 subcarriers. We adopt the Least Square (LS)
estimator to estimate CSI in the frequency domain. CSI is estimated as,

Ĥ = argmin
H

(Y − X̄H)H(Y − X̄H), (5.13)

where (·)H indicates the conjugate transpose operation, and X̄ and Y are the pre-
defined and received long preambles in the frequency domain respectively. As
derived in [112], the solution of the LS estimator is given as,

Ĥ = X̄−1Y. (5.14)

5.3.3 Positioning Algorithms

The CSI information measured at each AN is passed to a central server to locate
the target based on our proposed positioning algorithms in Section 5.2. All the
positioning algorithms are implemented in MATLAB. As shown in Figure 5.5, the
estimated CSI should be first converted to CIR and then extract the power from
direct path as RSS. Then, RSS is converted to the propagation distance based on
our proposed NLR ranging model. Finally, our proposed WC-CWLS is adopted to
locate the target.

Because the system is passive, positioning algorithms are adopted based on the
packets, which are sent from the terminal, e.g., a smart phone or laptop. Assume
that the target person is holding a terminal e.g., a laptop, to watch online video or
browse website. After some control messages exchanging between the terminal
and WiFi router, e.g., RTS/CTS (Request To Send/ Clear To Send), the WiFi router
sends data packets to the terminal. After receiving data packets from the WiFi
router, the terminal sends back ACK packets. ANs in our system are deployed to
capture these ACK packets for positioning. As mentioned in Section 2.2.3, ACKs
in IEEE 802.11n consist of block ACK and legacy ACK. According to our experi-
ments, legacy ACKs sent from the WiFi devices are much more than block ACKs
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in IEEE 802.11n. However, the head of a legacy ACK only contains the destina-
tion MAC address (the WiFi router) but no source MAC address (the terminal).
Therefore, in our current system, legacy ACK can only be used in the condition
that a single user (target terminal) connects to one WiFi router, where the destina-
tion MAC address (the WiFi router) is used to distinguish the target terminal from
the other terminals connected to the other WiFi routers. To identify multiple users,
our system stores the block ACKs and identifies the multiple users with the source
MAC address in the block ACKs. However, depending on the configurations of
the WiFi routers, the packet rates for block ACKs are very different. In the worst
case that aggregate-MPDU frame aggregation mechanism is disabled, block ACK
packets are not used. In addition, ANs can also capture the data packets from the
WiFi access point, in which the MAC address of the user is included in the MAC
header. Hence, in future work, each legacy ACK can be further matched to its
corresponding data packet and consequently different users connected to the same
access point can be distinguished by the legacy ACKs.

Since in this thesis we mainly focus on the accuracy and deployment efforts of
the positioning algorithms, the positioning and tracking accuracy of this system is
tested with legacy ACKs for a single user. Extension of the system to better support
multi-user positioning and tracking is considered as one of the future work, which
is discussed in Section 8.2.

5.4 Performance Evaluation

To evaluate the positioning accuracy of our proposed system, we have conducted
a set of comprehensive experiments in a complex indoor environment. The system
is deployed on the second floor of the INF building at University of Bern.

5.4.1 Measurement Setup

As shown in Figure 5.7, four USRP receivers have been deployed in our working
area as ANs to monitor the packets from a laptop. In our experiments, the target
for positioning is a Thinkpad T430 laptop with an Intel N6300AGN wireless card.
The laptop was configured to continuously refresh a website to generate enough
data traffic. In the following experiments, 10 legacy ACK packets are received in
one second on average.

• First, some initial experiments for training were conducted as shown in Fig-
ure 5.7(a) to define the unknown parameters (α, β) in the NLR model. 15
training positions that are spread over the whole interesting area were se-
lected to acquire the exponential factor in the LDPL model and (α, β) in
the NLR model. These initial experiments were conducted during weekend
when there are no moving people in the testing environment.

• Second, to evaluate the accuracy of our proposed positioning algorithms, a
set of experiments have been conducted as shown in Figure 5.7(b). In these
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Figure 5.7: Measurement Setup
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Table 5.1: Parameters for the NLR Model
AN1 AN2 AN3 AN4

α 2.583 1.926 3.024 3.034
β -0.044 -0.046 -0.037 -0.031
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Figure 5.8: Ranging Errors

experiments, the laptop was stationary at 46 positions, which cover the aisles
in the whole target area. At each position, the data collection duration was
30s and hence around 300 packets were collected for positioning. 4 ANs
were deployed at the same locations as in the initial experiments. The exper-
iments were conducted during working hours when people were moving in
the offices.

• Third, additional experiments have been conducted to analyze the perfor-
mance of the system for a mobile target, in which the laptop was held by a
person and moved as the indicated trace in Figure 5.7(c). The speed of move-
ment was around 0.86m/s. The positioning algorithms run every second to
estimate the position of the moving target and hence around 10 packets were
collected for each location estimation along the moving trace.

5.4.2 Experiments with a Stationary Target

Ranging Accuracy

Accurate ranging is a preliminary step for accurate range-based positioning. Based
on the trust region algorithm for the NLR model and the initial experiments, we
obtain α and β for different ANs as shown in Table 5.1. Because ANs at different
locations face different propagation channels, α and β in Table 5.1 are different
for different ANs. In addition, we also obtain the LDPL model based on these

123



5.4. PERFORMANCE EVALUATION

Table 5.2: Positioning Errors for Stationary Target
LDPL Model NLR Model

Algorithms Mean SD Max. Mean SD Max.
WC-CWLS 2.6m 1.2m 5.7m 2.4m 1.3m 6.1m

LLS 3.8m 2.6m 11.3m 2.5m 1.6m 6.8m
WC 2.9m 1.6m 6.6m 3.1m 1.5m 6.8m

measurements for comparison.
We calculate the ranging errors to each AN at the 46 test positions based on the

NLR and LDPL models. Figure 5.8 indicates CDFs of the ranging errors for both
models. The NLR model improves the median ranging error by 27% (from 1.5m
to 1.1m) compared to the LDPL model. In addition, the overall improvement of
the maximum ranging error based on the NLR model is about 36% (from 9.2m to
5.9m). Therefore, we can conclude that the NLR model significantly outperforms
the LDPL model for the ranging step.

The training stage for path loss model is still required when the system is de-
ployed in a new scenario or when the surrounding environments change. However,
compared to fingerprinting methods, which need large amount of training positions
to cover the whole testing environment, the training efforts (15 training positions)
for path loss model is much less and correspondingly the time consumed in the
deployment of the system is much less.

Positioning Accuracy

After evaluating the ranging accuracy, we investigate the performance of our pro-
posed WC-CWLS algorithm with both the LDPL and NLR models. LLS and WC,
whose weights are the same as in Equation (5.6), are also evaluated for comparison.
LDPL Model: The performance of the WC-CWLS algorithm is first analyzed

based on the LDPL model and compared to LLS and WC algorithms. Figure 5.9
presents CDFs of positioning errors based on the WC-CWLS, LLS and WC algo-
rithms. Table 5.2 summarizes the mean, Standard Deviation (SD) and maximum
values of the positioning errors.

Recall that the accuracy of ranging is low with the LDPL model. Under this
condition, the LLS algorithm is sensitive to the ranging errors and thus has the
worst performance with a mean error of 3.8m. The WC and WC-CWLS algo-
rithms are more robust against ranging errors. As introduced in Section 2.4.2, WC
is more robust to ranging errors than LLS and hence achieves higher position-
ing accuracy. For WC-CWLS, the introduced weighting technique as in Equation
(5.11) efficiently mitigates the influence of ranging errors on trilateration. There-
fore, in these experiments with LDPLmodel for ranging, theWC-CWLS algorithm
achieves the best performance. The mean error of WC-CWLS is 2.6m, which is
0.3m lower than the WC algorithm and 1.2m lower than the LLS algorithm. More-
over, the maximum positioning error of the WC-CWLS algorithm is 5.7m, which
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Figure 5.9: Positioning Errors with LDPL Model (Stationary)

is 0.9m lower than the WC algorithm and 5.6m lower than the LLS algorithm.
CDFs of the errors in Figure 5.9 present a complete view on the performance of
the three algorithms. We find that the WC-CWLS algorithm generally outperforms
both the WC and LLS algorithms.

In addition, the standard deviation of the positioning errors based on the WC-
CWLS algorithm is the lowest among these three algorithms (1.2m compared to
2.6m for the LLS algorithm and 1.6m for the WC algorithm), which indicates that
the performance of the WC-CWLS algorithm is more stable.
NLR Model: Figure 5.10 shows CDFs of the positioning errors for the three

positioning algorithms with the proposed NLR model. The mean, standard devia-
tion and maximum values of the positioning errors are summarized in Table 5.2.

Compared to the LDPL model, the NLR model improves the performance of
trilateration algorithms, i.e., the WC-CWLS and LLS algorithms, due to higher
ranging accuracy. The NLR model improves the mean error of WC-CWLS from
2.6m to 2.4m and LLS from 3.8m to 2.5m. However, the performance of the WC
algorithm becomes worse because it is a proximity algorithm and its performance
does not highly depend on the ranging accuracy.

With the NLRmodel, theWC-CWLS algorithm achieves a mean error of 2.4m,
which outperforms both the LLS (2.5m) andWC (3.1m) algorithms. With a higher
ranging accuracy, the performance of the LLS algorithm gets significantly im-
proved and is comparable to the WC-CWLS algorithm. Based on the CDF curves
in Figure 5.10, the LLS algorithm achieves quite similar performance as the WC-
CWLS algorithm for small errors (lower than 3m). However, the WC-CWLS algo-
rithm is generally better than the LLS algorithm for errors larger than 3m because
the WC-CWLS algorithm is more robust to ranging errors. For instance, the maxi-
mum error of the WC-CWLS algorithm is 6.1m, which is 0.7m lower than the LLS
algorithm. With a high ranging accuracy, the WC-CWLS algorithm significantly
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Figure 5.10: Positioning Errors with NLR Model (Stationary)

outperforms the WC algorithm.
In addition, we analyze the distribution of positioning errors in different areas

for all the three algorithms. As shown in Figure 5.11, we refer to the area in the
center of the target area, i.e., the polygon with ANs as vertexes, as center area and
the rest as surrounding areas. Figure 5.11 shows the distribution of positioning
errors with the NLR model, in which the color gets lighter for larger positioning
errors. First, we can find that the positioning errors of all the three algorithms in the
center area are lower than the surrounding areas, especially for theWC algorithm in
Figure 5.11(a). Second, for trilateration algorithms, i.e., the LLS and WC-CWLS
algorithms, the error distributions are much more uniform than the WC algorithm
in the whole area. Hence, trilateration algorithms with the NLR model achieve
higher accuracy than the WC algorithm, especially for the surrounding areas.

Table 5.3: Positioning Errors for Mobile Target
LDPL Model NLR Model

Algorithms Mean SD Max. Mean SD Max.
WC-CWLS 2.0m 0.9m 3.7m 1.7m 0.8m 3m

LLS 2.4m 1.1m 4.7m 2.1m 1.6m 5.8m
WC 2.2m 1.1m 4.5m 1.8m 1.1m 4.5m

5.4.3 Experiments with a Mobile Target

Figures 5.12 and 5.13 present CDFs of the positioning errors with the LDPL model
and NLR model for a mobile target respectively. Table 5.3 summarizes the mean,
standard deviation and maximum values of the positioning errors. The positioning
accuracy with a mobile target is a superset of the positioning accuracy at each point
of the trajectory. Thus, depending on the trajectory, the accuracy can be worse or
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Figure 5.11: Positioning Error Distribution with NLR Model
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Figure 5.13: Positioning Errors with NLR Model (Moving)

better compared to the stationary target measurements. In our case, the positioning
errors in the experiments with the mobile target are lower than in the experiments
with the stationary target because most parts of the trajectory are located in or
around the center area, where the positioning errors of all the test algorithms are
low.

Based on these results, we find some similar observations as in the experiments
with the stationary target. First, trilateration algorithms with the NLR model, i.e.,
the LLS and WC-CWLS algorithms, perform better than with the LDPL model.
For example, the mean error of WC-CWLS with the NLR model is 1.7m that is
0.3m lower than the LDPL model. Second, WC-CWLS generally outperforms the
WC and LLS algorithms with both the LDPL and NLR models. Compared to the
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experiments with the stationary target, the improvement is smaller because most
parts of our testing trace as indicated in Figure 5.7(c) are located in or around the
center area, where the other two algorithms achieves higher accuracy than in the
surrounding areas. For example, with the NLR model, the mean error of the WC-
CWLS algorithm is 1.7m that is 0.4m lower than the LLS algorithm and 0.1m
lower than the WC algorithm. Finally, the WC-CWLS algorithm achieves 3.7m
and 3m of the maximum errors with the LDPL and NLR models respectively,
which outperforms both the WC (4.5m with both the LDPL and NLR models)
and LLS algorithms (4.7m with the LDPL model and 5.8m with the NLR model).

5.5 Conclusions

In this work, we designed and implemented a software defined radio based passive
positioning system for WiFi signals. In the system, software defined radio tech-
niques are adopted to overhear the packets from the target devices and allow us
to extract physical-layer channel information for positioning. We adopted channel
impulse response to mitigate the influence of multipath propagation on the received
signal strength. The new model based on nonlinear regression (the NLR model)
proposed in this work to relate the measured RSS to propagation distance achieves
significant higher accuracy than the commonly used LDPL and requires much less
calibration efforts than fingerprinting. This accurate ranging method forms the ba-
sis for the positioning with high accuracy. Furthermore, our proposed WC-CWLS
combining the Weight Centroid (WC) algorithm and Constrained Weighted Least
Square (CWLS) algorithm is able to further mitigate the influence of remaining
range errors on the positioning accuracy. Comprehensive experiments for a single
user show that our proposed WC-CWLS algorithm is more robust to ranging er-
rors than the LLS algorithm and achieves better positioning accuracy than the WC
and LLS algorithms with both the NLR model and LDPL model. By combining
NLR for ranging and WC-CWLS for positioning, we are able to achieve a mean
accuracy of 2.4m for a stationary target.
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Chapter 6

Passive Tracking of WiFi Devices
with an Enhanced Particle Filter
based on Channel Information

6.1 Introduction

In Chapter 5 we have introduced a passive positioning system with an enhanced tri-
lateration algorithm (WC-CWLS). The enhanced trilateration algorithm achieves
better performance compared to LLS. Although we have evaluated its performance
with a mobile target in Chapter 5, WC-CWLS as a trilateration algorithm consid-
ers the positioning problem as a convex optimization problem and independently
estimates location of the target at each time interval.

In this chapter, we extend the passive positioning system for WiFi signals (in
Chapter 5) to support tracking a mobile target by designing an enhanced particle
filter. To design passive positioning systems for mobile targets, one of the critical
challenges is the limited information for positioning. Since ANs only overhear
signals, the ranging schemes only rely on simple radio signal parameters measured
at ANs, such as timing and power information. Converting this basic information
into the dynamic locations of a mobile target involves a sequence of steps, each of
which introduces errors.

In our work, we aim to provide a passive tracking system for WiFi users. The
foremost goal of our work is to minimize the aforementioned errors in each step
as much as possible to achieve high tracking accuracy. In addition to high tracking
accuracy, we also aim to reduce the calibration efforts compared to fingerprinting,
which is the dominating power-based positioning method. Additionally, we also
consider the computation efforts of the positioning system.

To achieve the aforementioned goals, we design an enhanced particle filter
exclusively relying on fine-grained power-based ranging, in which the initial cali-
bration efforts are significantly less than fingerprinting. Our main scientific contri-
butions are summarized as follows.

• First, we propose an enhanced particle filter for indoor tracking. In the pro-
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posed enhanced particle filter, we have three main scientific contributions.
First, we propose to use a single coordinated turn model, which considers
the angle variation of the moving direction in the movement state. The par-
ticle filter with the single coordinated turn model provides higher tracking
accuracy than a commonly used constant velocity model. Additionally, it
requires much less computation efforts than the multi-model particle filter.
Second, we investigate the impact of ranging errors on the likelihood in the
particle filter. By weighting the likelihoods for different ANs based on their
ranging outputs, our particle filter mitigates the influence of ranging errors.
Third, in a passive positioning system, speed information is normally un-
available for the tracking process because the system can not get the inertial
sensor information from the target. In our system, we consider the mov-
ing speed limitation on the likelihood by filtering out the uncommonly large
moving speed for people in indoor environments.

• Second, we use a similar method as in Chapter 5 to achieve high ranging ac-
curacy by using CIR to obtain power from the direct path and a NLR model
to calculate the ranges. In this work, considering the movement of the tar-
get, we smooth the sequentially measured fine-grained power by a Savitzky-
Golay (S-G) filter [71], which considers the trend of power variation in the
moving window, to further mitigate the multipath effects.

• Third, besides our proposed tracking mechanism, we also implement a col-
lection of commonly used positioning mechanisms, i.e., Bootstrap Particle
Filter (BPF), MM-BPF, Extended Kalman Filter (EKF), Trilateration with
Maximum Likelihood (ML same as NLS in Section 2.6.1), Linear Least
Square (LLS), and WC-CWLS. We provide an experimental evaluation and
comparison of those positioning mechanisms along different moving paths
in complex indoor environments.

In the remainder of the chapter, a general form of the range-based particle filter
is introduced in Section 6.2. In this section, the problems in a passive tracking
system are particularly stated. Our main contributions are introduced in Section
6.3, in which the proposed enhanced particle filter is described. The ranging mech-
anisms are presented in Section 6.4. Section 6.5 presents the implementation of
the proposed algorithms in a passive SDR-based positioning system for WiFi sig-
nals. Section 6.6 presents the evaluation results in complex indoor environments.
Finally, Section 6.7 concludes this chapter.

6.2 Range-only Particle Filter and Problem Statement

Based on the concepts of particle filters introduced in Section 2.8, we discuss a
general form of particle filter exclusively relying on range information, i.e., range-
only particle filter in this section. Then, we state the problems in this range-only
particle filter.
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6.2.1 Range-only Particle Filter

As introduced in Section 2.8, one of the most widely used and efficiently imple-
mentable particle filter is the bootstrap particle filter (BPF) [63], in which the im-
portance density is chosen to be equal to the transition density as

q(xk|xk−1, zk) = p(xk|xk−1). (6.1)

Hence, the associated weights are calculated as

wik ∝ wik−1 · p(zk|xik), (6.2)

in which the associated weights are only determined by the likelihood function of
p(zk|xik).

An efficient and accurate derivation of the likelihood function p(zk|xik) is im-
portant for accurate tracking by BPF. For range-based tracking, zk comprises range
information from different ANs, i.e., zk = [d1, d2, · · · , dN ], where dj is the range
between the target and the jth AN. Assuming that the range information from dif-
ferent ANs are independent from each other, a traditional likelihood is defined as

p(zk|xik) = ΠNj=1p(dj |xik). (6.3)

In order to distinguish two likelihoods, we refer to p(zk|xik) as the whole likelihood
and p(dj |xik) as the individual likelihood in the remainder of this chapter.

In the remainder of this chapter, the bootstrap particle filter with the CV model
as introduced in Section 2.8.4 and the likelihood as Equation (6.3) is referred to as
the traditional BPF. BPF with multi-model as introduced in Section 2.8.4 is referred
to as MM-BPF.

6.2.2 Problem Statement for Range-only Particle Filter

To achieve high tracking accuracy exclusively relying on power-based ranging, we
will address the following three problems in BPF and MM-BPF particularly for
passive indoor tracking. The details about these two filters (BPF and MM-BPF)
have been introduced in Section 2.8.4. Recall that the state vector in both two
filters are: x = [x, y, x̂, ŷ]T where (x, y) are the coordinates of the target and
(x̂, ŷ) are the velocity components on the x and y axes. In the dynamic equations
of MM-BPF, a turning rate ω is introduced to model the a turn of the target.

• First, the velocity components (x̂, ŷ) on the x and y axes are updated and
treated independently in the CV model, which does not consider the relation
between the two components. Actually, the two velocity components on the
x and y axes can be related by the angle variation of the target’s moving
direction, especially when the target changes its moving direction. In MM-
BPF, the velocity components (x̂, ŷ) are related by the turning rate ω. How-
ever, MM-BPF requires accurate prediction of the regime r(t) to correctly
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use the transition matrix F. This can be achieved based on accurate ranging,
such as time-based ranging in an outdoor environment [88]. However, in
indoor environments, the ranging accuracy based on power is still limited.
Therefore, it is very challenging to accurately predict the regime r(t) and
the tracking accuracy is correspondingly low. Additionally, the transitional
probability matrix with πmn and the turning rate ω need to be predefined,
which are normally difficult to know. Finally, in MM-BPF, in addition to
the particles for the system states, another set of particles for estimating the
regime r(t) are required, which increases the computation efforts.

• Second, different from time-based positioning with specific signals, which
benefits from high ranging accuracy, power-based positioning suffers from
large ranging errors. Because of the large ranging errors, zk is normally
shifted from the real value, z�k, which makes the whole likelihood p(zk|xik)
shifted from the real whole likelihood, p(z�k|xik). Correspondingly, the asso-
ciated weights are inaccurately updated, which results in inaccurate location
estimation.

• Third, in BPF, only ranging information is considered in the likelihood esti-
mation but velocity information is normally neglected due to lack of veloc-
ity information. However, due to the inaccurate ranging information and the
lack of velocity observation information in the observation model to correct
the predicted velocity from the system model, the predicted velocity in the
state xk can get very large, which is unusual for people moving in indoor
environments and introduces large tracking errors.

6.3 An Enhanced Range-only Particle Filter

As introduced in Section 6.2, the accuracy of indoor tracking based on particle filter
is deteriorated due to inaccurate likelihood and system models. In this section, we
propose an enhanced particle filter to address the three problems in a traditional
BPF and MM-BPF as mentioned in Section 6.2.2.

6.3.1 A Single Coordinated Turn Model

In MM-BPF, if we consider ω as positive for turning in anticlockwise direction
and negative for turning in clockwise direction, then F2 = F3. Additionally, if ω
approaches to 0, we get that

lim
ω→0

F2 = F3 = F1 = FCV. (6.4)

In this work, we propose to use a Single Coordinated Turn (SCT) model for
range-only tracking based on power information, in which instead of estimating
the moving models F(r(t)) in MM-BPF, the turning rate ω is augmented in the
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system state, and the regime as in [88] is not required to switch between different
models. The state vector is augmented with ω as

x� = [x, y, x̂, ŷ, ω]T . (6.5)

Considering the relation between the two-dimensional moving speed vector
(x̂, ŷ) and ω, the SCT model and η in Equation (2.84) are defined as

FSCT =




1 0 sin(ΔTω)/ω (cos(ΔTω)− 1)/ω 0
0 1 (1− cos(ΔTω))/ω sin(ΔTω)/ω 0
0 0 cos(ΔTω) −sin(ΔTω) 0
0 0 sin(ΔTω) cos(ΔTω) 0
0 0 0 0 1




, (6.6)

ηSCT =




ΔT 2/2 0 0
0 ΔT 2/2 0

ΔT 0 0
0 ΔT 0
0 0 1




. (6.7)

The noise vectorw is a 3×1 i.i.d process noise vector [nx, ny, nω], in which nx and
ny are the acceleration speeds on x and y axes, and nω is the noise of the turning
rate. This augmented state method has been investigated for radar-based aircraft
tracking [130] but indoor tracking faces different challenges, such as multipath
and NLOS effects. To our knowledge, we are the first to investigate this method in
indoor tracking with radio signals.

First, by introducing ω, the particle filter more smoothly tracks the targets com-
pared to CV model, especially when the target suddenly changes its moving direc-
tion. Second, with the SCT model, we do not need to estimate the regime r(t),
which is challenging to be accurately estimated and correspondingly deteriorates
the tracking accuracy. Third, with the SCT model, only particles for the state x� are
used and therefore the computation efforts are expected to be lower than MM-BPF,
which requires another set of particles to estimate the regime r(t). In the remainder
of this chapter, BPF with the single coordinated Turn (SCT) model is referred to as
T-BPF.

6.3.2 Weighted Likelihood based on Ranging Information

As observed in Chapter 5, although the ranging accuracy has been improved by
using some enhanced ranging methods with fine-grained power (channel infor-
mation), there are still remaining ranging errors with a median error of 1.1m and
maximum error of 5.9m. These remaining ranging errors result in inaccurate track-
ing by adopting the traditional BPF. Therefore, we propose a modified BPF, whose
performance is robust to the remaining ranging errors.

As mentioned in Section 6.2, range estimation is often biased and correspond-
ingly the individual likelihoods p(dj |xik) from different ANs are often shifted from
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the real individual likelihoods p(d�j |xik), where d�j is the ground truth propagation
distance. Furthermore, depending on the locations of ANs, the ranges estimated
by different ANs normally face different ranging errors. Especially in a complex
indoor environment with mixed LOS and NLOS conditions, LOS and NLOS rang-
ing are often substantially different. However, a traditional BPF just simply treats
all the individual likelihoods from different ANs equally as in Equation (6.3). This
oversimplification introduces large estimation errors, because in a multiplication
form of the individual likelihoods as in Equation (6.3), the inaccurate individual
likelihoods p(dj |xik) from certain ANs with large ranging errors will significantly
influence the accuracy of the whole likelihood estimation p(zk|xik).

Therefore, to mitigate the influence of large ranging errors on the estimation
of the whole likelihood p(zk|xik), we propose to adopt a weighting technique on
the whole likelihood p(zk|xik) estimation by suppressing the emphasis on the indi-
vidual likelihoods p(dj |xik) with larger ranging errors and magnifying the contri-
butions of the individual likelihoods with smaller ranging errors. To achieve this,
we provide a Weighted-likelihood BPF (W-BPF) with exponential weights on each
individual likelihood from different ANs as

p(zk|xik) = ΠNj=1p(dj |xik)
mj , (6.8)

where mj is the exponential weight for the individual likelihood of the jth AN. To
reduce the contribution of the individual likelihoods with large ranging errors, a
direct way is to set weights mj to indicate the error of each range. However, we
can not measure the real ranging errors in practice, because it requires the ground
truth location of the target.

Estimated Range in Meters

0 5 10 15 20

R
a
n
g
in

g
 E

rr
o
r 

in
 M

e
te

rs

0

1

2

3

4

5

6
LOS
NLOS

Figure 6.1: Ranging Error vs. Estimated Range

Therefore, we need to find another way to set a proper value for each expo-
nential weight. Figure 6.1 indicates the relation between the ranging outputs and
their corresponding ranging errors based on a set of preliminary measurements in
our institute building, which provides a complex indoor environment under mixed
LOS and NLOS conditions. Note that the ranging method is based on the channel
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information and NLR model. In general, we can find that the range errors increase
with the estimated range values. Therefore, instead of relying on the ranging errors,
we use the estimated ranging outputs to infer their corresponding errors and set the
exponential weights to be inversely proportional to the estimated range outputs as

mj =
1/dj�N
n=1 1/dn

, (6.9)

which are normalized by
�N
j=1 mj = 1. With the proposed W-BPF method, we

expect to mitigate the influence of ranging errors, especially for NLOS propaga-
tion, whose ranging errors are normally larger than for LOS conditions.

6.3.3 Moving Velocity Limitation on Likelihood

Since the state of the system, xk, includes the moving velocity of the target, we
propose to further introduce a velocity related parameter γik to the whole likelihood
estimation. The whole likelihood as in Equation (6.8) is defined as

p(zk|xik) = γik ·ΠNj=1p(dj |xik)
mj . (6.10)

As mentioned before, in an active positioning system, the velocity related pa-
rameter γik can be determined by the output of inertial sensors. For example, ac-
celerometer sensors are used to estimate the absolute value of moving velocity. In
passive positioning systems, this information is unavailable to the tracking system
and hence the likelihood of velocity is typically ignored. Furthermore, because
of inaccurate ranging, the location estimation between two sequential sampling
intervals can be far away from each other, which results in large estimated mov-
ing velocity. However, this fast moving velocity is typically impossible in indoor
environments, e.g., offices and shopping malls.

Therefore, in our work, instead of estimating the moving speed by some iner-
tial sensors, we consider the limitation on the moving speed of people in an indoor
environment, where walking is normally considered as the usual case. Some stud-
ies have been done to investigate the walking speed of people. As reported in [30],
the maximum walking speed is limited to around 2.5m/s. Therefore, we configure
the velocity related parameter γik as,





γik = 1, 0 < |vik| < 3m/s;
γik = 4− |vik|, 3m/s < |vik| < 4m/s;
γik = 0, 4m/s < |vik|,

(6.11)

|vik| =
�

x̂i2k + ŷi2k is the absolute value of the estimated velocity in each particle,

where (x̂ik, ŷ
i
k) are the velocity components of the ith particle on x and y axes.

In an office environment, people may sit at their working place or walk between
offices. Therefore, we set the velocity related parameter γik as 1 when the moving
velocity is smaller than 3m/s, which is 0.5m/s larger than the maximum walking
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speed in [30]. If the velocity is larger than 3m/s but smaller than 4m/s, γik linearly
decreases from 1 to 0. If the velocity is larger than 4m/s that does not frequently
happen in an office environment, γik is set to 0.

Based on this velocity related parameter γik, the particles with uncommon mov-
ing velocity are filtered out and hence the estimated moving trace is smoothed. BPF
only considering the velocity limited on the likelihood is referred to as V-BPF in
the remainder of the chapter. BPF equipped with the SCT model (Equation (6.6))
and adopting the modified likelihood (Equation (6.10) including γik and exponen-
tial weights) is referred to as WVT-BPF.

6.4 Ranging

More accurate estimation of ranges is a prerequisite to improve the radio-based
tracking accuracy. To achieve high ranging accuracy, we adopt the similar ranging
method as introduced in Section 5.2, which uses CIR to extract the power from the
direct path. Figure 6.2 shows the procedure of this ranging method, which com-
prises three steps. First, after converting CSI to CIR, RSS is obtained by extracting
the strongest power in CIR. Second, RSS is smoothed by a S-G filter to further
mitigate the influence of multipath propagation. Finally, the NLR (Non-Linear
Regression) model is adopted to calculate the range information.

In contrast to locating a stationary target, the mobile target faces different mul-
tipath effects in different locations along his moving path, which results in large
variation in the measured power. Typically, we can adopt a smoothing filter to
smooth the measured power and mitigate the multipath effect. In this work, we
propose to adopt a S-G filter to smooth the measured power. The S-G filter ap-
plies a moving window smoothing technique based on least squares polynomial
fitting [32], which has the advantage of preserving the original shape and features
of the signal, e.g., the trend of RSS changes in the moving window. We take the
group of 2M + 1 RSS samples centred at n, which is moving from 0 to the end of
the samples. The RSS values are estimated as a polynomial with the coefficients
[a0, a1, ..., aNp ],

RSS�
SG(n) =

Np�

i=0

ain
i. (6.12)
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To obtain the coefficients, we minimize the mean-squared approximation error as

argmin
[a0,a1,...,aNp ]

n+M�

j=n−M
(

Np�

i=0

aij
i −RSS(j))2, (6.13)

where Np is the order of polynomial. RSS�
SG(n) is a smoothed version of the raw

RSS values by the S-G filter.

6.5 System Implementation

We have extended our passive positioning system in Chapter 5 to support tracking
the mobile WiFi target device by using our proposed particle filter. Figure 6.3
indicates the structure of this system. Basically, the system is divided into three
main components: receiving hardware for WiFi signals, WiFi packet decoding,
and positioning algorithms. The first two components, receiving hardware for WiFi
signals and WiFi packets decoding, are the same as the passive positioning system
in Chapter 5.

In this section, we mainly introduce the implementation of positioning algo-
rithms in this passive tracking system for WiFi signals. As shown in Figure 6.3,
positioning algorithms are designed in a central server, which runs MATLAB to
analyze the moving path of the WiFi target. The positioning related algorithms are
designed in four steps. First, CSI needs to be converted to CIR in time domain
by IFFT, and the power (RSS) from the direct path is estimated based on Equation
(5.2). Second, the RSS values are smoothed by the S-G filter, in which the win-
dow size is set to 5 and the order of the polynomial is 3. Third, the outputs of the
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S-G filter are fed into the non-linear regression (NLR) model to calculate the range
information from different ANs. Finally, the range information is the input to the
WVT-BPF algorithm (Algorithm 1) to track the target.

Algorithm 1:WVT-BPF

1 Initialize filter
(I) Initial particles: xi0 = q(x0), i = 1, . . . , Ns;
(II) Initial weights: wi0 =

1
Ns

;
2 Update particles: xik = FSCT · xik−1 + ηSCTw;

3 Calculate exponential weights: mj =
1/dj�N

n=1 1/dn
;

4 Calculate the individual likelihood:

p(dj |xik) =
1

σj
√
2π

e
−

[dj−
√

(xi−xj)
2+(yi−yj)

2]2

2σ2
j ;

5 Update unnormalized weights:

ŵik = γik ·ΠNj=1p(dj |xik)mj ;

6 Normalize weights: wik = ŵik/
�Ns
n=1 ŵ

i
n;

7 Calculate Neff: Neff =
1�Ns

i=1(w
i
k)

2
;

8 if Neff < 0.5 ∗Ns then
9 Resample particles based on systematic resampling method;

10 Compute the estimated state: xk =
�Ns
i=1 w

i
kx
i
k;

11 Go back to step 2 for the next iteration.

Dynamic Equation: To passively track WiFi users, the proposed SCT model
in Section 6.3.1 is adopted in WVT-BPF. Recall that the state vector in WVT-BPF
includes the Cartesian coordinates of the target (x, y), the two-dimensional moving
speed vector (x̂, ŷ), and the turning rate of ω, i.e., x� = [x, y, x̂, ŷ, ω]T . For each
iteration, the particles are updated based on xik = FSCT · xik−1 + ηSCTw.
Observation Equation: The measurement vector includes ranging informa-

tion from different ANs as zk = [d1, d2, · · · , dN ]. For each AN, the observation
function is defined as:

dj =
�
(x− xj)2 + (y − yj)2 + uj , (6.14)

where (xj , yj) are the coordinates of the jth AN and uj is the Gaussian noise of
the jth AN with a variance of σj .
Weight Update and Location Estimation: Based on Equation (6.14), the
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individual likelihood for the jth AN is written as

p(dj |xik) =
1

σj
√
2π

e
−

[dj−
√

(xi−xj)
2+(yi−yj)

2]2

2σ2
j , (6.15)

and the whole likelihood p(zk|xik) is calculated based on Equation (6.10), which
considers the exponential weights mj and the velocity related parameter γik. Fi-
nally, the associated weights are updated based on Equation (6.2) and the location
of the target is estimated by calculating the weighted average of the particles as

xk =

Ns�

i=1

wikx
i
k. (6.16)

Resampling: With this weighted multiplication likelihood and speed limita-
tion, the particle filter is prone to the sample degeneracy problem, which results
in serious performance degradation. To deal with the sample degeneracy problem,
resampling is typically adopted [63]. A suitable measure of degeneracy is the ef-
fective sample size Neff = 1/

�Ns
i=1(w

i
k)

2. As soon as Neff is smaller than 0.5Ns,
the degeneracy is considered to be serious and a suitable resampling method should
be adopted. In our work, a systematic resampling method [63] is adopted in our
work, because of its high accuracy and efficient implementation.

Algorithm 1 summarizes the procedure of WVT-BPF. Additionally, some com-
monly used positioning algorithms are also implemented in our system: a tradi-
tional BPF, a MM-BPF, extended Kalman filter (EKF), trilateration algorithms in-
cluding ML, LLS and WC-CWLS, which is proposed in Chapter 5. Note that the
traditional BPF and EKF [72] adopt the CV model.

6.6 Performance Evaluation

To evaluate the tracking accuracy of our proposed algorithms, we have conducted
a set of comprehensive measurements in complex indoor environments.

6.6.1 Measurement Setup

Our proposed tracking system has been deployed in two scenarios including the
third floor (referred to as scenario 1) and the second floor (referred to as scenario
2) in the INF building at the University of Bern. Five USRP receivers have been
deployed as ANs to monitor the packets from a laptop as shown in Figure 6.4. A
central server equipped with a 4-core i5 CPU (3.3GHz) is adopted to collect data
from the five ANs and offline runs positioning algorithms for accuracy evaluation.
In our measurements, the positioning target is a Thinkpad T430 laptop with an
Intel N6300AGN wireless card. The laptop is configured to continuously refresh a
website to generate enough data traffic.
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Figure 6.4: Tracking in Different Paths
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AN1 AN2 AN3 AN4 AN5
α 7.448 10.326 5.514 5.878 4.466
β -0.03088 -0.0507 -0.04365 -0.05519 -0.05269

Table 6.1: (α, β) in NLR

We first conducted our experiments in scenario 1. Note that the evaluation re-
sults in Sections from 6.6.2 to 6.6.5 are obtained in scenario 1. In this scenario,
11 training positions (Figure 6.4(a)) that spread over the whole area of interest are
selected to acquire (α, β) in the NLR model as shown in Table 6.1. The tracking
experiments along four different moving paths (Figures 6.4(a)-6.4(d)) have been
conducted to analyze the performance of the system for a mobile target (laptop),
which is held by a moving person with a speed of 0.88m/s. Along the mov-
ing traces, positioning algorithms run every second to estimate the location of the
moving target, during which 10 packets in average are received in each AN and
aggregated by averaging to report one RSS. The tracking accuracy is finally evalu-
ated at 132 points along the four moving paths (blue circle points in Figures 6.4(a)-
6.4(d)). To effectively measure the ground truth locations, the moving paths are
predefined, in which the coordinates of all the turning points are measured. Then,
the ground truth coordinates of the other locations along the paths are obtained by
interpolation. We also need to know the time when the moving person passes each
ground truth location to aggregate RSS of the received packets in the correspond-
ing time interval. To achieve that, we firstly record the starting and end time of
the movement and secondly keep the moving speed constant for the whole moving
path. As mentioned in Section 5.3.2, all the received packets are timestamped and
all the ANs are synchronized. Then, we map the received packets to each ground
truth location based on the time when the person passes. To keep the constant
moving speed, first, we divide the moving paths into individual constant segments
with markers, whose length is the same as one step length. The moving person
follows the markers to keep the constant step length. Then, the moving person
follows tick sounds with a constant frequency from a sound tuner to keep constant
step frequency.

Additionally, to test our system in different scenarios, we conducted another
set of experiments in scenario 2 (Figures 6.4(e)-6.4(f)), with a different layout from
scenario 1. The results are presented in Section 6.6.6.

6.6.2 Ranging Errors

Similar as the evaluation in Section 5.4 for positioning of a stationary target, we
evaluate the ranging accuracy for a mobile target. We calculate the ranging errors
to each AN for the 132 test positions along four moving paths in scenario 1 based
on the NLR and LDPL models. Figure 6.5 indicates CDF of the ranging errors for
both models. 90% of ranging errors with NLR are smaller than 3m, which gets
improved by 40% compared to LDPL (red dashed curve), in which the exponential

143



6.6. PERFORMANCE EVALUATION

Ranging Errors

0 1m 2m 3m 4m 5m 6m 7m 8m

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LDPL

NLR

LDPL (ξ = 2.6)

Figure 6.5: Ranging Errors

factor is also calculated for different ANs based on the 11 training positions. Ad-
ditionally, both NLR and LDPL trained for different ANs significantly outperform
a LDPL with a predefined value of 2.6, which is commonly used in indoor envi-
ronments. Therefore, we get the same findings as in Section 5.4 that with small
training effort (only 11 training positions) the NLR model achieves high ranging
accuracy, which is a prerequisite for accurate positioning, and significantly outper-
forms the LDPL model for the ranging stage.

6.6.3 Design Parameters

Number of Particles

The number of particles is a critical influencing factor on the performance of parti-
cle filters. Theoretically, more particles improve the tracking accuracy but increase
the computation efforts. To investigate the performance of our proposedWVT-BPF
with different numbers of particles, we adapt the numbers of particles from 100 to
1500 at steps of 100. For each number of particles, we run WVT-BPF on the four
paths 100 times and at each time we calculate the mean value of the positioning
errors over the 132 positions (along four paths). Figure 6.6(a) indicates the mean
values and standard deviations of positioning errors for each number of particles.
In general, the mean and standard deviation of errors with WVT-BPF get smaller
with the number of particles. However, the improvement gets very marginal when
the particle numbers are larger than 1000. Figure 6.6(b) indicates the execution
time of the particle filters in the central server. The execution time linearly in-
creases with larger numbers of particles. In our work, in order to achieve high
tracking accuracy and limit the computation effort, we set the particle number to
1000.
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Sampling Interval

Sampling interval is another influencing factor on the performance of particle fil-
ters. Figure 6.7 indicates the mean and standard deviations of WVT-BPF with
different sampling intervals. Generally, with larger sampling intervals, the stan-
dard deviations obviously increase, which means the performance of tracking is
less stable. In the following evaluations, we set the sampling interval to 1s.

Number of ANs

The accuracy of range-based positioning algorithms depends a lot on the number
of ANs. We run the WVT-BPF 100 times on each moving path and calculate the
mean positioning error on each testing position. Then, CDF is calculated over the
mean positioning errors at 132 testing positions along the 4 moving paths. This
procedure is also adopted to calculate CDF of positioning errors for all the particle
filters in the remainder of this thesis. Figure 6.8 indicates CDF of positioning errors
with different numbers of ANs. It is clearly shown that the tracking accuracy gets
improved if the number of ANs increases. Therefore, in the following analysis, we
use all the five ANs in our deployment.

Initial Position

For tracking with Bayesian estimation, the initial position influences the tracking
accuracy and convergence time. We adjust the initial position with distances to the
starting point at 3m, 9m and 15m in path 1. Figure 6.9 indicates the positioning
errors over time. After around 7s (7 iterations), the accuracy has converged.

6.6.4 Performance Comparison with the NLR Model

Because ranging accuracy gets impressively improved under the NLR model, in
this subsection, we analyze the performance of our proposed enhanced particle
filter with the NLR model.

First, we compare the performance of T-BPF with the SCT model to MM-BPF
and BPF with the CV model. As shown in Figure 6.11(a), both MM-BPF and
T-BPF achieve higher positioning accuracy than BPF. Additionally, according to
Figure 6.7, T-BPF achieves better positioning accuracy than BPF with different
sampling intervals. We take path 1 as an example to better investigate the per-
formance between T-BPF and BPF. Figure 6.10 indicates the positioning errors
over time for T-BPF and BPF in path 1. Generally, after smoothing by introducing
turning rate ω, the accuracy of T-BPF is higher than BPF, especially after 20s when
there is a turn in the moving path. The performance of MM-BPF and T-BPF is quite
similar because the regime in MM-BPF is still difficult to be correctly estimated
under large ranging errors. However, as shown in Figure 6.6(b), considering the
computation efforts, MM-BPF requires much longer execution time than T-BPF
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Path 1 Path 2 Path 3 Path 4

WVT-BPF
Mean 1.66m 1.68m 1.18m 1.45m
STD 0.56m 0.39m 0.61m 0.58m

BPF
Mean 1.69m 1.77m 1.6m 2.01m
STD 0.75m 0.69m 0.83m 1.35m

Table 6.2: Positioning Errors in Different Paths (STD: standard deviation)

(almost the same execution time as WVT-BPF) because MM-BPF needs another
set of particles for regime estimation.

Second, as indicated in Figure 6.11(b), after introducing the exponential weights
to different individual likelihoods, W-BPF mitigates the influence of ranging errors
and correspondingly improves the positioning accuracy compared to the traditional
BPF. Then, by filtering out the unreasonable particles with very large moving ve-
locity in V-BPF, the estimated moving traces are smoothed and the positioning
accuracy gets improved compared to BPF. Our proposed WVT-BPF combines T-
BPF, V-BPF and W-BPF, which improve the tracking accuracy in three different
aspects, so the tracking accuracy gets significantly higher than BPF. For example,
90% of tracking errors with WVT-BPF are lower than 2.3m, which is 38% more
accurate than traditional BPF (3.7m). Table 6.2 lists the mean and standard devi-
ation of positioning errors in the 4 paths for BPF and WVT-BPF. We find that in
all the 4 paths, the mean tracking accuracy of WVT-BPF is higher than BPF and
the performance is more stable according to the lower standard deviation. Figure
6.12 shows an example of the estimated paths respectively by a traditional BPF and
WVT-BPF for the fourth moving path. It is obvious that our proposed WVT-BPF
tracks the moving target with a much higher accuracy and the estimated moving
path is more smooth.

Third, we compare the tracking accuracy of WVT-BPF to some other posi-
tioning algorithms i.e. EKF and trilateration algorithms in Figure 6.13(a). Gener-
ally, our proposed WVT-BPF significantly outperforms the other positioning algo-
rithms. BPF, EKF and ML-based trilateration achieve very similar performance,
which are slightly better than WC-CWLS. The performance of LLS is the worst.

6.6.5 Positioning Accuracy with the LDPL Model

We further evaluate the performance of our proposed enhanced particle filter under
large ranging errors (with the LDPL model) and compare it to the other algorithms.
As shown in Figure 6.13(b), the performance of WVT-BPF with the LDPL model
deteriorates by 61% for the 90% positioning accuracy (from 2.3m to 3.7m) com-
pared to the NLR model. However, WVT-BPF still significantly outperforms the
other positioning algorithms. Similar to the evaluation results in Section 5.4, WC-
CWLS, whose performance does not get significantly worse than with NLR model,
is robust to ranging errors and outperforms EKF, BPF and ML-based trilateration.
However, our proposed WVT-BPF still outperforms WC-CWLS. For example, the
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Figure 6.13: CDF of Positioning Errors for Different Positioning Algorithms (Scenario 1)
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median error of our proposed WVT-BPF achieves 1.9m, which is 0.2m better than
WC-CWLS. In addition, by introducing the enhanced mechanisms in the particle
filter, our proposed WVT-BPF is much better than BPF in the case of large rang-
ing errors. The 90% positioning accuracy is around 1.1m better than BPF (4.8m).
With the LDPL model, LLS is significantly worse than the other positioning algo-
rithms because it is very sensitive to ranging errors.

6.6.6 Positioning Accuracy in Different Environments

To further investigate our proposed system in different environments, we conduct
our experiments in scenario 2. Figure 6.14 indicates CDF of tracking errors for
different positioning algorithms with the NLR model. We find that the evaluation
results for different positioning algorithms are consistent with the evaluation in
scenario 1. Our proposed WVT-BPF outperforms the other commonly used posi-
tioning algorithms.

6.7 Conclusions

In this chapter, we extended the passive positioning system for WiFi signals, which
is introduced in Chapter 5, to support tracking mobile users with a high accu-
racy. In this system, an enhanced particle filter (WVT-BPF) exclusively relying
on power-based ranging with low calibration effort is proposed to achieve high
tracking accuracy. Our proposed WVT-BPF integrates three improvements includ-
ing weighted likelihood, velocity limitation on likelihood and a single coordinated
turn model. Each of the individual improvement improves the tracking accuracy
compared to the traditional BPF. Additionally, T-BPF and WVT-BPF with the SCT
model requires much less computation efforts than MM-BPF. By integrating all
these improvements, our proposed WVT-BPF outperforms the traditional BPF,
EKF, and trilateration algorithms. By combining WVT-BPF with the enhanced
ranging methods proposed in Chapter 5, our system can passively track the WiFi
target with high accuracy in complex indoor environments.
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Chapter 7

Indoor Tracking by Fusing Inertial
Sensor and Channel Information

7.1 Introduction

In Chapter 6, we have introduced our solutions for a passive indoor tracking system
for WiFi users. Because of the lack of inertial sensor information, we can only in-
troduce a speed limitation factor to prevent unusual moving speeds. In this chapter,
we investigate an active indoor tracking systems to combine radio parameters, i.e.,
CSI from the received WiFi packets, and inertial sensor information.

With the development of smart phones, PDR (Pedestrian Dead Reckoning) sys-
tems can leverage inertial sensors, e.g., accelerometer, magnetometer, and gyro-
scope, to estimate the relative movement of the target by detecting steps, estimat-
ing stride length and heading orientation. By integrating the estimated relative
locations at sequential time intervals, PDR systems can track the target. Because
of integration, small positioning errors resulting from the noise in low cost IMUs
(Inertial Measurement Unit) can be magnified [64].

In contrast to PDR, radio-based positioning relies on the measured radio pa-
rameters, e.g., power and time, to estimate the absolute locations of targets in a
coordinate system instead of integrating the relative locations. As mentioned in
Chapters 5 and 6, range-based positioning is less labour intensive than fingerprint-
ing and achieves high positioning accuracy by adopting some enhanced ranging
methods. Therefore, in this chapter, we continue on range-based positioning meth-
ods.

PDR and range-based methods are complementary because PDR can provide
information about the relative movement between sequential time intervals, i.e.,
velocity, which is missing in range-based methods. Additionally, the absolute lo-
cation information provided by range-based methods can also be used to mitigate
the accumulative errors in PDR.

In this work, we investigate how to accurately track a WiFi target using an en-
hanced particle filter to fuse the velocity information estimated by inertial sensors
and highly accurate range information by some enhanced ranging methods. Our
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7.2. AN ENHANCED PARTICLE FILTER WITH DATA FUSION AND
WEIGHTED LIKELIHOOD (FW-PF)

main scientific contributions are summarized as follows.

• We propose an enhanced particle filter to fuse the CIR-based ranging and ve-
locity information. The two observation parameters, i.e., ranges and veloc-
ity, are fused in the observation likelihood function. To achieve high ranging
accuracy, some enhanced CIR-based ranging methods, which are proposed
in Chapter 5, are adopted in our proposed particle filter. Additionally, we
adopt the spatial diversity between different antennas to mitigate the multi-
path effect in the ranging step of this work. To mitigate the influence of the
ranging errors, the aforementioned weighted likelihood method proposed in
Section 6.3.2 is adopted. Furthermore, we propose an efficient method to
estimate the velocity of the mobile target using the timestamped values from
the accelerometer and compass sensors in a smart phone.

• We implement a network-based positioning system, which runs our proposed
tracking algorithms in a central server. Compared to terminal-based posi-
tioning system, a network-based positioning system is able to run algorithms
with high complexity, e.g., particle filters. In our system, all ANs are imple-
mented on cheap commercial devices and able to collect inertial sensor and
CSI information from the received WiFi packets.

• We evaluate our system in a complex indoor environment along three differ-
ent moving paths. Our proposed tracking method can achieve 1.3m for mean
accuracy and 2.2m for 90% accuracy, which is more accurate and stable than
PDR and range-based positioning methods.

In the remainder of this chapter, our main contributions are introduced in Section
7.2, in which the proposed enhanced particle filter is described. The ranging and
velocity estimation mechanisms are presented in Section 7.3. Section 7.4 presents
the implementation of the proposed algorithms in a network-based indoor tracking
system. Section 7.5 presents the evaluation results in a complex indoor environ-
ment. Finally, Section 7.6 concludes this chapter.

7.2 An Enhanced Particle Filter with Data Fusion and
Weighted Likelihood (FW-PF)

As introduced in Section 7.1, tracking methods by using power-based ranging and
PDR are complementary. Hence, we propose an enhanced particle filter to fuse
velocity and range information to provide a tracking method with high accuracy
and stability in this section.

In this work, a Constant Velocity (CV) model as introduced in Section 2.8.4 is
used. Recall that the state vector is defined as

x = [x, y, x̂, ŷ]T , (7.1)
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where (x, y) are the Cartesian coordinates of the target and (x̂, ŷ) is a two-dimensional
moving speed vector. Under the CV model, the dynamic equation is written as

xk = FCV · xk−1 + ηCV ·w, (7.2)

where FCV and ηCV are introduced in Section 2.8.4.

Velocity
Estimation

Ranging

Particle Filter

Inertial 
Sensors

CSI

Velocity

Ranges

Location

Figure 7.1: Data Fusion via a Particle Filter

7.2.1 Observation Model for Data Fusion

After updating particles based on dynamic equation as Equation (7.2), the associ-
ated weight wik is updated from the weight at the previous moment wik−1 based on
the likelihood of the observations conditioned on each particle p(zk|xik) (Equation
(6.2)). In this work, the observation vector obtained at each time interval contains
an estimation of ranges to different ANs and velocity of the mobile target. Sub-
sequently, the measurement vector is given as zk = [dk,vk], where dk includes
ranges to N different ANs and vk is the velocity information from the inertial
sensors.

To fuse the range information dk and velocity information vk, we can rea-
sonably assume that the velocity information vk is independent from ranges be-
cause the range information depends on the location of target but velocity does
not. Hence, the likelihood p(zk|xik) is written as

p(zk|xik) = p(dk|xik) · p(vk|xik). (7.3)

In order to distinguish different likelihoods, we refer to p(zk|xik) as the overall
likelihood, p(dk|xik) as the ranging likelihood, and p(vk|xik) as the velocity likeli-
hood.

With the likelihood in Equation (7.3), the associated weight wik is updated by
considering both range and velocity observations. On one hand, the particles at the
absolute positions (xi, yi), which have low probabilities to observe the measured
ranges dk, are assigned small associated weights to suppress their contributions
to the state estimation. On the other hand, the particles with velocities (x̂i, ŷi),
which have low probabilities to observe the measured velocity vk, are also assigned
small associated weights, especially for some particles with unusual large moving
speeds in indoor environments. This allows smoothing the estimated moving paths.
Because ranges based on CIR achieve high accuracy according to our analysis
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in Chapters 5 and 6, range-only methods can achieve high positioning accuracy.
Therefore, with this method, the positioning accuracy is more relying on the ranges
estimated by CIR and the estimated velocity is only used to limit the weights of the
particles, which is different from a typical method to update the particles based
on the estimated movement state from the inertial sensor in the dynamic equation
[64].

Velocity Likelihood

As we work on a two-dimensional tracking system, the measured velocity informa-
tion vk is a vector with two components x̂ and ŷ, which are measured from inertial
sensors. Assuming that these two components are independent from each other,
the velocity likelihood p(vk|xik) can be written as

p(vk|xik) = p(x̂k|xik) · p(ŷk|xik). (7.4)

Additionally, these two velocity components are independent from the coor-
dinate components (x, y) in each particle. Hence we obtain that p(x̂k|xik) =
p(x̂k|x̂ik) and p(ŷk|yik) = p(ŷk|ŷik). The estimation of each velocity component
is assumed to follow a Gaussian distribution. Equation (7.4) is rewritten as

p(vk|xik) = p(x̂k|x̂ik) · p(ŷk|ŷik)

=
1

σv
√
2π

exp[−(x̂k − x̂ik)
2 + (ŷk − ŷik)

2

2σ2
v

],
(7.5)

where σv is the variance of velocity estimation.

Ranging Likelihood

Besides velocity information, range information is another observation input. In
this work, we use the weighted likelihood method, which is proposed in Section
6.3.2, because it can mitigate the influence of ranging errors. The ranging likeli-
hood is written as

p(dk|xik) = ΠNj=1p(dj |xik)
mj , (7.6)

where dj is the estimated range to the ith AN at the kth moment and p(dj |xik) is
the individual likelihood. For the exponential weights, we still use the weights as
in Section 6.3.2:

mj =
1/dj�N
n=1 1/dn

. (7.7)

Because the range information exclusively depends on the location of the tar-
get, the observation function for range is defined as:

dj =
�
(x− xj)2 + (y − yj)2 + uj , (7.8)
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where (xj , yj) are the coordinates of the jth AN and uj is a Gaussian noise with a
variance of σj . Each individual likelihood is written as

p(dj |xik) =
1

σj
√
2π

e
−

[dj−
√

(xi−xj)
2+(yi−yj)

2]2

2σ2
j . (7.9)

7.3 Range and Velocity Estimation

This section introduces how to estimate the two observation parameters (ranges
and velocity) in our proposed particle filter.

7.3.1 Range Estimation using CIR

More accurate estimation of ranges is a prerequisite to improve the radio-based
tracking accuracy. To achieve high ranging accuracy, we adopt the same method as
in Chapter 5, which uses channel information to extract the power from the direct
path. As shown in Figure 7.2, first, CSI in frequency domain is converted to CIR in
time domain by IFFT and the power from the direct path is obtained by extracting
the strongest power in CIR. Second, the proposed NLR (Non-Linear Regression)
model in Chapter 5 is adopted to calculate the range information from the measured
power.

Additionally, most recent WiFi standards (IEEE 802.11n/ac standards) support
MIMO (Multiple Input and Multiple Output), which introduces spatial diversity.
Multiple antennas separated by certain distances normally face different multipath
effects. Therefore, we exploit multiple antennas to smooth and mitigate the multi-
path effects as shown in Figure 7.2. In our work, we estimate the range information
based on the aforementioned procedures on each antenna and then calculate the av-
erage range from all the antennas in one AN as one input range information to the
particle filter.

7.3.2 Velocity Estimation using Inertial Sensors

Velocity is another observation input in our proposed particle filter. In our work, the
velocity of the mobile target is estimated by analyzing the timestamped values of
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inertial measurement units in a smart phone. To estimate the two-dimensional ve-
locity, which is a vector value with two components on x and y axes in a Cartesian
coordinate system, the heading orientation θ and speed |v|, which is the absolute
value of velocity, are estimated based on compass and accelerometer respectively.

Speed Estimation

As shown in Figure 7.3, first, the raw values from the accelerometer are smoothed
through a low pass filter using Equation (7.10) to mitigate the influence of noise
and dynamic pushes.

âv,i = (1− β)av,i + β(âv,i−1), (7.10)

where av,i is the raw vertical acceleration and β is a constant value ranging from 0
to 1 (0.9 in our work).

Second, during walking, every step generates one peak and dip in the measured
vertical acceleration âv,i as shown in Figure 7.4. Therefore, we detect the dips and
peaks from âv,i as steps.

Third, Equation (7.11) is used to estimate stride length [66].

l = K(âv,max − âv,min)
1/4, (7.11)

where l is stride length, âv,max and âv,min are the peak and dip values of âv on
each stride respectively, and K is a coefficient calibrated for individuals.
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Fourth, because all the accelerometer values are timestamped in the smart
phone, we calculate the time interval for each stride ΔT and the speed is calcu-
lated as

|v| = l

ΔT
. (7.12)

Orientation Estimation

To estimate the heading orientation, we adopt the compass [99] in smart phones,
which derives its data from the accelerometer and magnetometer. As shown in
Figure 7.5, the compass reports a value called azimuth α, which is the clockwise
angle from the north. α is an angle in the global coordinate system and we should
map this angle to the local coordinate system. Normally, there is an angle rotation
between the global coordinate system and the local coordination system. As shown
in Figure 7.5, the counter-clockwise angle from +x in the local coordinate system
to the east in the global coordinate system is ϕ. After obtaining α, we calibrate α
to the counter-clockwise angle from +x in our local coordinate system as

θ = (90◦ − α) + ϕ, (7.13)

where (90◦−α) is to rotate the azimuth α to the counter-clockwise angle from the
east.

Velocity Estimation

After estimating the speed and heading orientation of the mobile target, we get the
velocity as

v = [|v|cos(θ), |v|sin(θ)], (7.14)

where |v|cos(θ) and |v|sin(θ) are the x and y components of moving velocity
respectively.
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Figure 7.6: Network-based Tracking System

7.4 Implementation of Tracking Algorithms in a Network-
based System

We have implemented a network-based indoor tracking system, in which our pro-
posed tracking algorithms are running in a central server. Different from the passive
systems, which have been introduced in Chapter 5 and 6, this system requires the
target to actively participate in the positioning system by sending the information
of inertial sensors and therefore it is an active positioning system. Figure 7.6(a)
presents the overview of this system, which comprises three main components:
target, ANs, and server. Figure 7.6(b) shows the implementation details of each
component. The main idea behind this system is that by integrating the inertial
sensor information (IMUs in Figure 7.6(b)) in the payload of WiFi packets broad-
cast from the target, the server can read these IMU information from the received
packets, extract the CSI information from commercial WiFi cards (IWL5300) in
ANs, and finally track the target with these two types of information.
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7.4.1 Mobile Target

The mobile target needs to 1) inject the timestamped IMU information from the
smart phone into the payload of the WiFi packets and 2) broadcast these packets
using monitoring mode with an IEEE 802.11n High Throughput (HT) rate, which
is required by IWL5300 at the receivers (ANs) to extract the CSI information [60].

Because most of the WiFi chips in smart phones (including vendors like Ap-
ple, Samsung, Nokia, and HTC) do not support monitoring mode, it is impossible
to extract CSI information at ANs directly from the received packets transmitted
by a smart phone. Therefore, in our system, a smart phone has to transfer the
timestamped IMU values to a laptop (via USB), which then transmits the WiFi
packets using its on-board IWL5300 WiFi card and with hardcoded MAC address
of 00 : 16 : ea : 12 : 34 : 56 (required for the IWL5300 card [60]). In the smart
phone, the sampling rate of the compass and accelerometer is 100Hz. As soon
as the smart phone reads a pair of values from compass and accelerometer, it for-
wards these values together with their timestamps to the laptop over a USB cable by
a Java application. The laptop prepares the WiFi packet, whose payload includes
the values of compass, accelerometer and their timestamps, and then broadcasts it
over the IWL5300 WiFi card using monitoring mode. The WiFi packet rate is also
100Hz.

7.4.2 Anchor Nodes

Anchor nodes are distributed over the area of interest to capture the packets from
the target. To reduce the cost, we adopt ASUS EeeBox PCs (ePC) as ANs (Figure
7.7(a)). Each ePC only costs around 100$. First, we replace the original WiFi card
in each ePC by an IWL5300 card (Figure 7.7(b)), which is configured in monitor-
ing mode. Second, after receiving a WiFi packet, each ePC reads the timestamp
and IMU information from the payload and extract CSI information. Because the
IWL5300 card supports three antennas, we read CSI from all the three antennas.
Finally, all these information from all ANs are forwarded to the central server over
Ethernet by TCP sockets.

7.4.3 Server

A desktop PC equipped with a 4-core 3.30GHz i5 CPU is used as the server to
collect the information from ANs and run offline tracking algorithms to analyze the
moving trace of the target based on MATLAB. For the tracking algorithms, we first
estimate the range and velocity information based on the algorithms introduced in
subsections 7.3.1 and 7.3.2 respectively. Since we can get CSI from three antennas
in one AN, we calculate the mean value of the estimated ranges from these three
antennas as the input range to the particle filter from this AN. Finally, the range
and velocity information is fused in our proposed particle filter (FW-PF) to track
the target. Algorithm 2 indicates the procedures of FW-PF. Besides our proposed
FW-PF, we implement the traditional range-only particle filter (R-PF is the same
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(a) ASUS ePC (b) Replace WiFi Card by IWL5300

Figure 7.7: ePC as Anchor Nodes

Algorithm 2: FW-PF

1 Initialize filter
(I) Initial particles: xi0 = q(x0), i = 1, . . . , Ns;
(II) Initial weights: wi0 =

1
Ns

;
2 Update particles: xik = FCV · xik−1 + ηCVw;

3 Calculate exponential weights: mj =
1/dj�N

n=1 1/dn
;

4 Calculate the individual likelihood:

p(dj |xik) =
1

σj
√
2π

e
−

[dj−
√

(xi−xj)
2+(yi−yj)

2]2

2σ2
j ;

5 Calculate the velocity likelihood:

p(vk|xik) =
1

σv
√
2π

exp[−(x̂k − x̂ik)
2 + (ŷk − ŷik)

2

2σ2
v

].

6 Update unnormalized weights:

ŵik = p(vk|xik) ·ΠNj=1p(dj |xik)mj ;

7 Normalize weights: wik = ŵik/
�Ns
n=1 ŵ

i
n;

8 Calculate Neff: Neff =
1�Ns

i=1(w
i
k)

2
;

9 if Neff < 0.5Ns then
10 Resample particles based on systematic resampling method;

11 Compute the estimated state: xk =
�Ns
i=1 w

i
kx
i
k;

12 Go back to step 2 for the next iteration.
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as the traditional BPF in Chapter 6) and PDR algorithms in the central server for
comparison.

7.5 Performance Evaluation

To evaluate the tracking accuracy of our proposed system, we have conducted a set
of comprehensive measurements in a complex indoor environment.

7.5.1 Measurement Setup

We have evaluated our system in two scenarios on the third floor of the INF build-
ing at University of Bern. Four ANs were deployed in the first scenario (green and
diamond points) and five ANs in the second scenario (red and rectangular points) as
shown in Figure 7.8. In each scenario, the target (laptop and smartphone) was held
by a person moving along three different paths (Figure 7.8) and experiments along
each path were repeated five times. The moving speed was around 0.9m/s for sce-
nario 1 and 0.6m/s for scenario 2. Along these moving paths, the point accuracy,
which is the error from the estimated position to the ground truth position, is calcu-
lated every second. Three algorithms are evaluated along these moving paths, i.e.,
PDR (Pedestrian Dead Reckoning), R-PF (Ranging-only Particle Filter), FW-PF
(our proposed Particle Filter with data Fusion and Weighted likelihood).

7.5.2 Experiment Results

Figure 7.9 shows CDF of positioning errors for the three algorithms in scenario
1 (4 ANs) and scenario 2 (5 ANs). Since the performance of PDR is not related
to the number of ANs, the CDF curve of PDR positioning errors summarizes all
the experiments in both scenarios. Table 7.1 summarizes the mean error, standard
deviation and 90% accuracy. Based on these results, we find the following obser-
vations.

Table 7.1: Mean Errors and Standard Deviation
Tracking Methods Mean Error Standard Deviation 90% Accuracy
FW-PF (5ANs) 1.3m 0.7m 2.2m
FW-PF (4ANs) 1.6m 0.9m 2.8m
R-PF (5ANs) 1.7m 1.5m 3m
R-PF (4ANs) 1.8m 1.0m 3m

PDR 1.6m 2.5m 4m

First, our proposed FW-PF achieves higher accuracy and more stable perfor-
mance compared to PDR. It is commonly known that PDR is prone to accumulated
errors because it estimates the location of the target by integrating the relative lo-
cations of the previous moments. Because of the accumulative errors, it is very
accurate at the beginning of the moving paths by using PDR but the positioning
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Figure 7.9: CDF of Positioning Errors

error increases along the moving paths. Therefore, for 50% accuracy, PDR can
achieve around 0.5m but the accuracy severely deteriorates to around 4m consid-
ering 90% accuracy. In our proposed FW-PF, besides the moving velocity, which
provides the relative moving information between two sequential time intervals,
the range information is considered in the likelihood function, which provides ad-
ditional information to calculate the absolute position in the local coordinate sys-
tem. By considering the range information, our proposed FW-PF is more robust to
accumulative errors and it achieves around 2.2m for 90% accuracy, which outper-
forms PDR by 45%. The mean accuracy is 1.3m, which is 19% higher than PDR.
Additionally, FW-PF is more stable than PDR because the standard deviation of
FW-PF is 0.7m, which is 72% smaller than PDR.

Second, our proposed FW-PF outperforms R-PF considering accuracy and sta-
bility. For ranging only particle filter (R-PF), the velocity information is not con-
sidered in the likelihood function and the corresponding associated weight update.
Therefore, some particles with unusual large moving speeds could be assigned
large values of associated weights. For our proposed FW-PF, the estimated veloc-
ity based on inertial sensors is considered in the likelihood function. The particles
with large shift velocity components from the estimated velocity are assigned small
values of associated weights. Hence, their contributions to the final estimation are
suppressed. By considering the exponential weights on the ranges from different
ANs, the influence of ranging errors on the likelihood function is further mitigated.
Therefore, our proposed FW-PF outperforms R-PF by around 0.8m for the 90%
accuracy with 5 ANs and 0.2m with 4 ANs. Furthermore, the standard deviation
of FW-PF is smaller than of R-PF in both scenarios, which means that the per-
formance of FW-PF is more stable and estimated moving paths are more smooth
compared to R-PF.

Finally, by increasing the number of ANs, FW-PF can integrate more range
values in the likelihood function and has larger opportunity to have line-of-sight
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connection to one certain AN, which has higher ranging accuracy than NLOS.
Therefore, the performance of FW-PF gets improved by increasing the number of
ANs. FW-PF with 5 ANs outperforms 4 ANs by 21% for the 90% accuracy and
19% for the mean accuracy.

7.6 Conclusions

In this work, we proposed a network-based indoor tracking system, which fuses
the range and velocity information by an enhanced particle filter. The proposed
particle filter fuses the range information and velocity information in the likelihood
function of the observation parameters. First, by considering range information in
the likelihood, it is able to filter out the particles with low probability to observe the
estimated ranges from the channel information. Second, by considering velocity
information, the particles with low probability to observe the estimated velocity
from inertial sensors are further filtered out. This allows us to track a mobile target
with higher accuracy and stability than PDR and range-only particle filter. This is
verified in our evaluation in a complex indoor environment. Additionally, to further
mitigate multipath propagation, we exploit MIMO techniques on the previously
proposed ranging method based on CSI (Chapter 5). Finally, our evaluation results
show that the mean tracking accuracy achieves 1.3m and 90% accuracy is 2.2m.
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Chapter 8

Conclusions and Outlook

We first summarize the contributions of this thesis in the order of their occurrence
in the thesis in Section 8.1. Our first contribution is time-based indoor positioning
for narrow-band signals (GSM and IEEE 802.15.4 signals). The second contri-
bution is a passive indoor positioning system mainly for stationary WiFi targets
using fine-grained power information (channel information). The third contribu-
tion is to extend this passive indoor positioning system to support tracking mobile
WiFi targets using an enhanced particle filter. The fourth contribution is an active
(network-based) indoor tracking system for mobile WiFi targets by fusing the in-
ertial sensor and channel information with an enhanced particle filter. Afterwards,
we briefly discuss some possible future work in the field of indoor positioning in
Section 8.2.

8.1 Main Contributions

In this thesis, we mainly work on radio-based indoor positioning systems and algo-
rithms with fine-grained physical-layer information including physical-layer times-
tamps and channel information. For time-based indoor positioning, we provided
solutions to compensate imperfect synchronization and design high-resolution times-
tamps for narrow-band signals including GSM and IEEE 802.15.4 signals, which
were introduced in Part I (Chapters 3 and 4). In Part II (Chapters 5, 6, and 7), we
mainly introduced our positioning and tracking methods relying on fine-grained
power (channel information). In this part, we contributed to enhanced solutions for
ranging, locating stationary targets and tracking mobile targets with IEEE 802.11
signals. Additionally, we also contributed to hybrid positioning systems by fus-
ing the inertial sensor information and channel information for accurate track-
ing. The aforementioned contributions are supported by theoretical analysis and
experiments in real-world deployments. Parts of our proposed algorithms have
been transferred to our Swiss industry partner (DFRC AG) in the Eurostar project
(In3DGuide). They adopt our proposed physical-layer timestamps in their proto-
type system to analyze the activities of GSM users.

Our contributions on time-based positioning are described in Chapter 3 and
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4. In Chapter 3, we investigated two challenges of time-based positioning: times-
tamps and synchronization. First, we proposed to adopt timing error information
from time recovery methods to improve the resolution of timestamps, which is a
prerequisite for time-based indoor positioning. By analyzing the extracted timing
error information from the physical layer, we are able to improve the resolution
of timestamps (sub-sample timestamps) for GSM signals from microseconds to
nanoseconds. We further adopted this timing error information to evaluate the
clock offset and skew between GPS synchronized ANs. We derived the relation
between the normalized timing error information and clock offset. Then, we pro-
posed a two-step method including 1) smoothing noisy clock offsets by a S-G filter
and 2) differentiation of the filtered clock offsets to calculate the clock skew. We
evaluated our proposed methods in a GSM-like testbed based on SDR techniques.
The main findings for synchronization are that (1) the maximum clock offset is up
to 171ns but (2) the clock skews are smaller than 1.37 · 10−9 for GPS synchro-
nized receivers. Therefore, we conclude that GPS synchronization introduces a
large error for TDOA measurements, which needs to be compensated to achieve
high positioning accuracy.

In Chapter 4, we proposed to combine DTDOA with GPS synchronization to
eliminate the influence of imperfect synchronization, based on the findings for GPS
synchronization in Chapter 3. We theoretically investigated the influence factors
on the DTDOA measurements and compared DTDOA to TDOA. Then, based on
the measured DTDOA values, we proposed DTDOA-based LLS and fingerprinting
algorithms to locate target devices. Our algorithms were implemented in the GSM-
like testbed and a passive positioning system for IEEE 802.15.4 signals, which
adopts SDR-based ANs to passively decode IEEE 802.15.4 packets and extract
sub-sample timestamps. Based on these two systems, we evaluated our proposed
time-based positioning methods for narrow-band signals in indoor and outdoor
environments. Through experiments, we demonstrated that DTDOA-based rang-
ing and LLS significantly improve ranging and positioning accuracy, compared to
TDOA-based ranging and LLS. In outdoor environments, DTDOA-based ranging
achieves around 10m accuracy for a GSM-like signal with only 250KHz band-
width. However, in a complex indoor environment, multipath and NLOS propaga-
tion still introduce large errors for the estimated timestamps with IEEE 802.15.4
signals. We further evaluated the DTDOA-based fingerprinting and demonstrated
that in the narrow-band system DTDOA-based fingerprinting significantly outper-
forms LLS and is able to locate the target in an indoor environment with a mean
error of 3m. DTDOA-based and RSS-based fingerprinting algorithms achieve dif-
ferent performance in different areas. RSS-based fingerprinting achieves higher
accuracy when there is one AN with LOS connection to the target. However,
DTDOA-based fingerprinting outperforms RSS-based fingerprinting in the area,
where there is no AN with LOS connection to the target.

Our contributions on positioning with channel information are described in
Chapter 5, 6, and 7. In Chapter 5, we designed and implemented a SDR-based pas-
sive positioning system for WiFi signals and proposed a set of novel algorithms
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to locate stationary targets by using channel information. SDR techniques are
adopted to overhear the packets from the target devices and allow us to extract
physical-layer channel information for positioning. We adopted channel impulse
response to mitigate multipath propagation and get the fine-grained power (RSS).
Then, we provided a new model based on nonlinear regression (the NLR model) to
estimate the propagation distance from the measured RSS. A new trilateration algo-
rithm combining the Weight Centroid (WC) algorithm and Constrained Weighted
Least Square (CWLS) algorithm, i.e., the WC-CWLS algorithm, was designed and
implemented in the system to mitigate the influence of ranging errors. Compre-
hensive experiments for a single user show that the proposed NLR model for rang-
ing significantly outperforms the LDPL model and hence trilateration algorithms
based on the NLR model achieve better accuracy. The proposed WC-CWLS algo-
rithm is more robust to ranging errors than the LLS algorithm and achieves better
positioning accuracy than the WC and LLS algorithms with both the NLR and
LDPL model. By combining NLR for ranging and WC-CWLS for positioning, we
achieve a mean accuracy of 2.4m.

In Chapter 6, we extended the passive positioning system for WiFi targets in
Chapter 5 to better support tracking mobile users by designing an enhanced parti-
cle filter. In this system, the enhanced ranging methods, i.e., channel information
and nonlinear regression for the ranging model (proposed in Chapter 5), are uti-
lized to achieve highly accurate ranging. An enhanced particle filter (WVT-BPF)
exclusively relying on power-based ranging with low calibration efforts is further
proposed to achieve high tracking accuracy. WVT-BPF integrates three main novel
contributions including weighted likelihood, velocity limitation on likelihood and
a single coordinated turn model. Each of the individual contributions improves
the tracking accuracy compared to the traditional BPF. By integrating all these
improvements, WVT-BPF outperforms the traditional BPF, EKF, and trilateration
algorithms. Additionally, the computation efforts of WVT-BPF are much lower
than MM-BPF. By combining WVT-BPF with the enhanced ranging methods, our
system passively tracks the WiFi target with an accuracy of 1.5m for 50% and
2.3m for 90%.

In Chapter 7, we proposed an active (network-based) indoor tracking system
for WiFi targets, which fuses the range and velocity information by an enhanced
particle filter. Velocity information is estimated by an efficient method based on
the timestamped values from accelerometer and compass. The range information is
basically estimated based on the enhanced ranging method relying on channel in-
formation as proposed in Chapter 5 but we extend this ranging method by utilizing
MIMO techniques in IEEE 802.11n to further mitigate the influence of multipath.
The enhanced particle filter (FW-PF) is adopted to fuse these two types of infor-
mation in the likelihood function and is equipped with the weighting technique as
proposed in Chapter 6 to mitigate the influence of ranging errors. The system was
implemented by using some cheap commercial devices for ANs, which are able
to extract inertial sensor and CSI information from the received WiFi packets. We
evaluated our system in a complex indoor environment. Evaluation results indicate
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that our proposed FW-PF is more accurate and stable than pedestrian dead reck-
oning and range-only particle filters. The mean accuracy achieves 1.3m and 90%
accuracy is 2.2m.

8.2 Outlook

In this thesis, we contributed to multiple positioning techniques including time-
based indoor positioning, fine-grained power (channel information) based indoor
positioning and tracking, and hybrid approach by fusing inertial sensor and chan-
nel information. All these positioning methods rely on physical-layer information
of radio signals. Hence, physical-layer properties of radio signals, e.g., modulation
schemes, bandwidth, and operating frequency, play an important role on the posi-
tioning accuracy. Some of these physical-layer information including timestamps
and channel information for positioning is limited by the current wireless stan-
dards. With the development of new wireless communication systems, we believe
that the accuracy of positioning with these fine-grained physical-layer information
can be further improved.

For time-based indoor positioning, we worked on narrow-band signals includ-
ing GSM and IEEE 802.15.4 signals. Due to limited bandwidth, their timestamps
are vulnerable to multipath effects. The latest standard for WiFi signals, IEEE
802.11ac [18], supports up to 160 MHz bandwidth. Therefore, thanks to this wide
bandwith, accurate timestamps, which are more robust to multipath propagation,
can be designed. Similar as time-based positioning, one of the limitations for mul-
tipath mitigation using channel information is the limited bandwidth of signals.
The extracted CIR from IEEE 802.11n signals with 20 MHz can only distinguish
a cluster of propagation paths with a resolution of 50ns other than individual mul-
tipath channels. Therefore, the latest standard IEEE 802.11ac would be able to
provide a more fine-grained CIR information to better mitigate multipath effects,
which would allow distinguishing a cluster of channels with a resolution of 6.25ns.
To achieve accurate timestamps and channel estimation, the current commercial
WiFi cards for IEEE 802.11ac do not support physical layer signal processing and
hence SDR techniques would be interesting for decoding the signals and extracting
the physical-layer information including timestamps and channel information.

Additionally, intensive research is currently conducted in the area of the 5th
generation (5G) cellular networks [19], especially for the air interfaces. Although
up to now there is still no standard for the bandwidth of 5G, it is clear that the
bandwidth would be significantly higher than the current 4G network with 20MHz
to support the expected maximum data rate of 10 Gbps. Therefore, these physical
layer information including timestamps and channel information would be also
interesting for positioning in 5G networks, which consider locations of users as
an important information for handover, beamforming, and location based services.
Therefore, our positioning methods with fine-grained physical-layer information
are also very interesting to be adopted in future 5G networks.
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Inertial sensors in modern smart phones play an important role in indoor track-
ing. In our work, we provided a hybrid approach to combine inertial sensors with
radio signals. To improve tracking accuracy, additional information in the track-
ing environment can be used to constrain the moving path. For example the floor
plan can be used to constrain the movement of the particles in the particle filter to
further filter out some particles with low observation likelihood. SLAM (simul-
taneous localization and mapping) techniques [45], which are commonly used in
robot navigation, are interesting to be investigated in the area of indoor tracking
for smart phones. A robot adopts SLAM techniques to construct or update a map
of an unknown environment while it simultaneously keeps tracking of its location
within the map. In indoor tracking for smart phones, the map can be a radio map
of RSS or channel information from some access points with unknown locations.
By using inertial sensors, the smart phone can track its moving trajectories and si-
multaneously record the radio informations and construct the radio map. The radio
map can be used for the target to improve the tracking accuracy when it comes
back to the same locations and can also be used for other users when they come to
the same locations.

Furthermore, our proposed positioning or tracking systems focus on two di-
mensional scenarios and are evaluated in indoor testing areas with a size of 18m×
16m. First, it would be very valuable to extend our systems to support three di-
mensional tracking and positioning. This would require our systems to distinguish
users on different floors. We believe that inertial sensors are a powerful tool for
identifying different floors. For example, we can track the users on different floors
by some activity recognition algorithms to identify different activities of users,
such as climbing up or down stairs. Second, it would be very interesting to test the
algorithms and systems in a larger area with larger number of deployed ANs. In
our passive positioning and tracking system for WiFi signals (in Chapter 5 and 6),
the user is always connected to one WiFi router. In a large scale deployment, one
of the problems is that the user may roam among different WiFi routers. In such
case, we need to find a solution to identify the user roaming among different WiFi
routers. One of the solutions is that the source MAC address in the block ACKs
can be used to identify the user roaming among different WiFi routers, because the
source MAC address will not change when the user roams among different WiFi
routers. Then, the problem to use block ACKs is that the packet rate depends on the
configurations of the WiFi routers, which are unavailable to change for a passive
positioning system. As mentioned in Section 5.3.3, one future work to identify
different users is to map each legacy ACK to its corresponding data packet and
consequently distinguish different users by the legacy ACKs. Same as the block
ACKs, the MAC address of the user in the data packets does not change when
the user roams among different WiFi routers. Therefore, the user can be identi-
fied when he roams among different WiFi routers. Compared to the solution with
block ACKs, the packet rate of legacy ACKs is much higher, which can improve
the positioning accuracy.

Finally, although our IEEE 802.15.4 and WiFi positioning systems are able to
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distinguish multiple users by their node IDs or MAC addresses, our work focuses
on improving the positioning accuracy and reducing calibration efforts of our po-
sitioning algorithms with a single user. For positioning and tracking multiple users
especially for real-time positioning, response time and scalability are important is-
sues. Large amount of users will definitely increase the computation efforts and
response time at the server side. If the computation capability in the server is not
powerful enough, we can only decrease the computation efforts for a single user
to support more users in real time. As mentioned in Chapter 6, we can reduce
the number of particles to reduce the computation efforts and execution time for
tracking a single user and hence increase the number of supported users. However,
this will reduce the tracking accuracy. With fast development of cloud techniques,
cloud servers provide a higher computation capability and more flexible way to
allocate resources. Therefore, we can move our proposed positioning algorithms
to a cloud infrastructure, which can manage the cloud resources in an on-demand
fashion to better support multi-user positioning with short response time and high
accuracy.
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Chapter 9

List of Acronyms

ADC Analog-to-Digital Converter

AN Anchor Node

AP Access Point

ARM Advanced RISC Machine

BPF Bootstrap Particle Filter

BPSK Binary Phase Shift Keying

CDF Cumulative Distribution Function

CIC Cascaded Integrator Comb

CIR Channel Impulse Response

CSI Channel State Information

CV Constant Velocity

CWLS Constrained Weighted Least Square

DC Direct Current

DDC Digital Down-Converter

DSSS Direct Sequence Spread Spectrum

DSP Digital Signal Processor

DTDOA Differential Time Difference Of Arrival

DUC Digital Up-Converter

DVB Digital Video Broadcasting
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EKF Extended Kalman Filter

FCF Frame Control Field

FCS Frame Check Sequence

FFT Fast Fourier Transform

FIFO First Input First Output

FM Frequency Modulation

FPGA Field-Programmable Gate Array

FW-PF Particle Filter with data Fusion and Weighted likelihood

GI Guard Interval

GMSK Gaussian Minimum Shift Keying

GPP General Purpose Processor

GPS Global Positioning System

GPSDO GPS-Disciplined Oscillator

GPU Graphics Processing Unit

GSM Global System for Mobile Communication

HMM Hidden Markov Model

HT High Throughput

IF Intermediate Frequency

IFFT Inverse Fast Fourier Transform

IMU Inertial Measurement Units

KDE Kernel Destiny Estimation

KNN K Nearest Neighbours

LDPL Log-Distance Path Loss

LKF Linear Kalman Filter

LLS Linear Least Square

LOS Line Of Sight

LS Least Square
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LTE Long Term Evolution

LTS Long Training Sequence

MAC Media Access Control

SCT Single Coordinated Turn Model

MIMO Multiple Input and Multiple Output

ML Maximum Likelihood

MM-BPF Multi-Model BPF

MMSE Minimum Mean Square Error

MPDU MAC Protocol Data Unit

MSK Minimum Shift Keying

NLOS Non-Line Of Sight

NLR Non-Linear Regression

NRZ Non-Return to Zero

NLS Non-linear Least Square

NTP Network Time Protocol

OCXO Oven-Controlled Crystal Oscillator

OFDM Orthogonal Frequency Division Multiplexing

O-QPSK Offset-Quadrature Phase Shift Keying

PDF Probability Density Function

PDR Pedestrian Dead Reckoning

PF Particle Filter

PHY Physical Layer

PLL Phase Lock Loop

PPDU Physical Protocol Data Unit

P/S Parallel to Serial

PTP Precision Time Protocol

RF Radio Frequency

175



RN Reference Node

R-PF Range-only Particle Filter

RSCG Reference and System Clock Generation

RSSI Received Signal Strength Indicator

SD Standard Deviation

SDR Software Defined Radio

SFD Start of Frame Delimiter

SLAM Simultaneous Localization And Mapping

SIS Sequential Importance Sampling

SNR Signal to Noise Ratio

STS Short Training Sequence

S-G Filter Savitzky-Golay Filter

S/P Serial to Parallel

T-BPF BPF with modified Coordinated Turn

TDOA Time Difference Of Arrival

TED Timing Error Detection

TOA Time Of Arrival

TOF Time Of Flight

U-TDOA Uplink Time Difference Of Arrival

UHD USRP Hardware Driver

UMTS Universal Mobile Telecommunication System

UWB Ultra Wide Band

V-BPF BPF with Velocity limitation

WAF Wall Attenuation Factor

W-BPF BPF with Weighted likelihood

WC Weighted Centroid

WLAN Wireless Local Area Network
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WLS Weighted Least Square

WKNN Weighted K Nearest Neighbours

WVT-BPF BPF with Weighted likelihood, Velocity limitation and modified
coordinated Turn

3GPP 3rd Generation Partnership Project
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