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Zusammenfassung

E-Learning übernimmt eine stetig wachsende Bedeutung in heutigen Ausbildungs- und

Schulsystemen. Des Weiteren bringt ein ausgeprägtes, hohes Fachwissen den entscheidenden

Wettbewerbsvorteil in der heutigen Berufswelt. Mit elektronischen Medien im Ausbil-

dungsbereich ist es möglich viele, am Inhalt des Angebotes interessierte Studierende und

Auszubildende zu erreichen. Aus diesen Gründen wurde entschieden im Rahmen des Projektes

”End-to-End Quality of Service over heterogenous networks” (EuQoS) ein E-Learning Kurssys-

tem zu entwickeln und zu Zwecken der internen Ausbildung und der Wissensverbreitung

einzusetzen. Die Hauptziele von EuQoS sind die Erforschung, Integration, Untersuchung und

Veranschaulichung von Quality of Service (QoS) Merkmalen in gängigen Netzwerktechnolo-

gien.

Das E-Learning Kurssystem, welches im Rahmen von EuQoS aufgebaut wurde, besteht

aus verschiedenen Einheiten, die im Internet verteilt jede seine Rolle übernehmen. Einerseits

wird die Infrastruktur zur Authentifizierung und Autorisierung von Kursteilnehmern, the

Authentication and Authorization Infrastructure (AAI), vom Swiss Academic and Research

Network (SWITCH) zur Verfügung gestellt. Andererseits stehen dem Studenten die kom-

merzielle E-Learning Umgebung WebCT für die Ansicht von theoretischen Inhalten und ein

Laborsystem für die praktische Arbeit zur Auswahl bereit.

Die Diplomarbeit beinhaltet zwei grössere Teilbereiche. Einerseits geht es darum im

Rahmen von EuQoS ein Kursmodul zu entwickeln. Andererseits benötigt der praktische Teil

des Kursmoduls eine Software zur Visualisierung und Analyse von Resultaten, welche im

Rahmen von praktischen Übungen erstellt werden.

Im Kursmodul ”Implementing Protocols on Network Simulators” (Entwicklung von Pro-

tokollen in Netzwerksimulatoren) erhalten die Studenten eine Übersicht über das Konzept von

Simulationen im Allgemeinen und Netzwerksimulationen im Besonderen. Netzwerksimulatio-

nen unterstützen die Entwicklung und Modellierung von neuen Netzwerkprotokollen und helfen

bei der Erweiterung und Verbesserung von bereits existierenden Protokollimplementierun-

gen. Es werden mehrere Netwzerksimulatoren verglichen, Vor- und Nachteile erläutert und

gegenübergestellt. Das in der Arbeit erstellte Modul umfasst Theorie zum Netzwerksimulator

”Network Simulator (ns-2)”, einem der allgemein verbreitetsten Simulatoren im Bereich von

Kommunikationsnetzen in Forschung, Entwicklung und Ausbildung. Aufbauend auf diesem

Simulator, wird der Student schrittweise in die Arbeitsweise bei der Protokoll-Entwicklung

eingeführt. Der theoretische Teil des Kurses umfasst alle nötigen Informationen und Grundla-

gen, um den zweiten, praktischen Teil erfolgreich zu bewältigen.

Der praktische Teil umfasst vier verschiedene Aufgaben. Die drei ersten Aufgaben bauen

gemächlich auf dem in der Theorie vermittelten Wissen auf und gewöhnen den Studenten an

die Laborumgebung und die Arbeit mit einem Netzwerksimulator. Die beiden ersten Aufgaben



beinhalten die Implementierung einfacher Netzwerksimulationen mit statischen und mobilen

Netzwerkkomponenten. In der dritten Aufgabe soll der Student zur Einführung ein Protokoll

mit geringem Programmieraufwand in ns-2 integrieren. Die letzte Aufgabe entspricht der

Hauptaufgabe des Kurses und umfasst die Implementierung eines Routing-Protokolles für

mobile ad-hoc Netzwerke (MANet).

Im praktischen Teil benötigt das Modul eine Software, die den Analyseprozess unterstützt und

die Systembedingungen des Kursportals erfüllt. Da keine Applikation existiert, die diesen

Vorgaben und Wünschen entspricht, wurde im Rahmen dieser Arbeit eine Visualisierungs- und

Animations-Applikation entwickelt. Die Software ”Visualization and Animation for Network

Simulations” (VAT4Net) ist erhältlich als Java Applet und unterstützt damit die web-basierte

Kursumgebung. Mit Hilfe der Software können Netzwerksimulationen animiert werden.

Damit können visuelle Problemzonen, wie Engpässe und Blockierungen in Netzwerkstrukturen

festgestellt und lokalisiert werden. Zudem stellt die Applikation statistische Kenndaten von

Simulationen zur Verfügung. Der modulare Aufbau des statistischen Teils ermöglicht es,

die Software je nach Bedürfnissen zu erweitern und weitere Module zu entwickeln. Das

existierende Modul zur Berechnung der ”Ende-zu-Ende Verzögerung” (End-to-End Delay)

dient hier als Muster für weitere Entwicklungen.

Das Kursmodul wurde im Rahmen einer Informatikvorlesung der Universität Bern getestet und

daraufhin angepasst und erweitert. Ein wesentliches Problem, welches sich herauskristallisiert

hat, ist die fehlende Kenntnis des Studenten in der Programmiersprache C++. Ohne gute

Kenntnisse dieser Programmiersprache, ist es sehr schwierig den praktischen Teil erfolgreich

zu absolvieren. Anhand dieser Vorgaben wurde der Theorieteil ausgebaut und die praktischen

Übungen mit erweiterten Vorlagen teilweise vereinfacht.

Die Animation von Simulationen stellt hohe Ansprüche an die Software VAT4Net. Ein grundle-

gendes Problem bei der Implementation der Software war die Grösse der Protokolldateien

von Simulationen. Ab einer gewissen Grösse dieser Dateien war es unmöglich, die benötigten

Daten komplett einzulesen. Die Software wurde mit einem Vorverarbeitungsschritt erweitert,

welcher ressourcenschonendes zeilen-basiertes Einlesen der Daten ermöglicht. Somit lassen

sich wesentlich grössere Protokolldateien verarbeiten.

Der Beitrag dieser Arbeit besteht aus dem Kursmodul und VAT4Net ermöglich die Einführung

von Studenten in die Thematik von Netzwerksimulationen.



Abstract

E-learning in present-days educational systems takes an important position with a growing

influence. In today’s business, increasing the own value goes hand in hand with enhancing

knowledge. E-learning is an easy way to reach diverse groups of people. Therefore, an e-

learning course has been established for internal training and dissemination during the European

project ”End-to-End Quality of Service support over heterogenous networks” (EuQoS). The key

objective of EuQoS is to research, integrate, test, validate and demonstrate end-to-end Quality

of Service (QoS).

The EuQoS e-learning course system is a distributed system with different units. On one

hand, the authentication and authorization is provided by the Authentication and Authorization

Infrastructure (AAI), a infrastructure originated by the Swiss Academic and Research Network

(SWITCH). On the other hand, the course is provided either by the course portal WebCT for

content deployment or the laboratory portal for practical sessions.

This Diploma thesis contains two main parts. The first part is the work on one EuQoS

course module. The second part is the practical part of the module which needs a software to

visualize and analyze network simulations. This is contributed within this work.

In the module ”Implementing Protocols on Network Simulators”, students get a theoreti-

cal overview of network simulation concepts. Network simulation is an important basic strategy

to develop and prototype new communication protocols as well as to improve existing protocols.

The different concepts of network simulations are explained and classified, advantages and

disadvantages are discussed. The most common network simulators and details of implementing

simulations, especially protocols, in Network Simulator (ns-2) are introduced to the student

in the theoretical part. The development of a protocol in ns-2 is described step-by-step. The

knowledge to successfully pass the hands-on exercises is acquired in this theory chapters.

The practical work in the module is divided into four different hands-on sessions. Three

out of four hands-on session are constructive exercises to get familiarized with the network

simulator and the implementation methods presented in the theoretical part. In the first two

exercises the student has to provide a wired and a wireless network simulation. In the third

exercise the implementation of an easy protocol with little complexity is demanded. The

fourth exercise represents the major task in the practical part of the module and includes the

implementation of a routing protocol for Mobile Ad-hoc Networks (MANet).

For the module ”Implementing Protocols on Network Simulators” inside the EuQoS course por-

tal a tool for visualizing and animating simulations is required. The application ”Visualization

and Animation Tool for Network Simulations” (VAT4Net) must fulfil the system requirements

of the EuQoS course.



For the web-based course infrastructure VAT4Net is available as a Java Applet. Thus, the

application is designed to support the analysis step in a network simulation process. While ani-

mating a simulation, some problems and behaviors of the simulated environment are visualized

and could be recognized, such as bottlenecks, packet drops, congestions, network structure,

movement behavior of wireless nodes, etc. A second focus of VAT4Net is the processing of

statistical representation, for example end-to-end delay, packet loss rate and other Quality of

Service characteristics. The implementation of the end-to-end delay serves as an example for

further module development.

The contribution of this work, including the course module and the software VAT4Net,

enables the student to acquire knowledge in the network simulation topic.
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Chapter 1

Introduction

E-learning in present-days educational systems takes an important position with a

growing influence. In today’s business, increasing the own value goes hand in hand

with enhancing knowledge. Therefore, an e-learning course has been established for

internal training and dissemination during the European project ”End-to-End Quality of

Service support over heterogenous networks” (EuQoS). In the context of this e-learning

course this Diploma thesis provides a module on network simulation. During the thesis

theoretical content, hands-on exercises and supporting software tools have been developed.

EuQoS is a project of the 6th Framework Program of the European Union. The Com-

puter Networks and Distributed Systems research group of the University of Bern acts as a

partner in different fields of activity. The Diploma thesis is part of the training and dissemination

activity and covers one e-learning module.

Chapter 2 briefly introduces the general terminology of e-learning and discusses some

characteristics and statistics of e-learning in Europe. Chapter 3 and 4 show an overview of the

whole course system, beginning with the EuQoS e-learning project coverage leading to the

implementation details of the course system.The two main chapters of this thesis, Chapter 5 and

7, focus on the implementation of the supporting tool ”Visualization and Animation Tool for

Network Simulations” (VAT4Net) and the content of the course module. The Chapter 6 covers

the laboratory system.

The animation of a simulation in VAT4Net can help to understand and to discover differ-

ent behaviors of the simulated networks. Further, VAT4Net provides a plugin engine, which

enables to process statistical data. The functionality and implementation of VAT4Net is

described in Chapter 5.

The course module provides basic knowledge on network simulation in research and de-

velopment. Network simulation is an important basic principle to develop and prototype new

communication protocols as well as to improve existing protocols. It is therefore important to

teach students basic knowledge on network simulation. Chapter 7 shows the module content as

well as the practical exercises for the students.
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Chapter 2

E-Learning

e-learning is a recurrent theme within the whole Diploma thesis. All work done for the purpose

of the thesis is in fact a part of an e-learning system. The term e-learning will be briefly defined

and a short statistical analysis will be made.

2.1 Terminology

e-learning (short for electronic learning) is a term used for all electronic media-based education,

which utilizes different resources to acquire and communicate skills and knowledge. Online

education is an extension of the traditional form of e-learning or distance learning. Typically, ”it

involves

• the use of the Internet to access learning materials,

• to interact with the content, instructor, and other learners,

• and to obtain support during the learning process, in order to acquire knowledge, to con-

struct personal meaning, and to grow from the learning experience”, [1].

Basically, e-learning can be divided into two types, synchronous and asynchronous e-learning.

Synchronous e-learning can be described as a virtual classroom, with a simultaneous,

virtual presence of learners and its instructors. Achieved by different collaborative methods

and technologies as video and audio conferences with streaming technologies, application

sharing, real-time chat, Internet-based telephony or instant messaging, it becomes possible to

impart knowledge in terms of lectures and tutorials, hold exercise and practice sessions and take

exams. Besides real-time interaction between experts and their students synchronous e-learning

benefits from location and distance independence, no physical attendance, convenient learning

and teaching in best place for the participants, uniformity, reusability and repeatability of

educational content.
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While synchronous e-learning is only location independent, asynchronous e-learning adds time

independence. It offers the possibility of accessing self-paced courses and enables intermittent

access to studies, discussion groups and exercises. Some main methods of asynchronous

e-learning can be listed as follows: online course material in form of electronic documents,

multimedia material as video, animations, graphics or audio streams, simulations of real-life

circumstances, discussion forums, quizzes, further readings, etc. Unlike synchronous e-learning

where Internet technologies are a fundamental requirement for interacting in real-time, asyn-

chronous e-learning can be based on CD or DVD mediums. Advantages of asynchronous

e-learning are: learning and tutoring at anytime from anywhere, no access time restrictions,

updated course material, enhanced group work, file sharing among students and including

benefits of synchronous e-learning.

Like every other teaching method, e-learning holds disadvantages and risks in its prepa-

ration and use:

• Internet broadband access is a main requirement to attend video and audio conferencing.

• The use of new technologies to publish and broadcast educational content needs new con-

solidated knowledge and high cost investments.

• ”Personnel and operational expenses can hardly be reduced”, [2].

There are also a lot of new requirements the student has to fulfill. The learner has to

• develop a changed self-consciousness in self-governed and self-responsible learning,

• know the own learning pattern, learning behavior and individually appropriate learning

strategy,

• and ”know as many as possible learning media and learning ways and is able to use them”,

[3].

Generally, the risks involved in e-learning are

• growing lack of verbal communication abilities,

• possible lost of real life,

• and identification and authorization problems.

While the Internet is evolving, independent of the risks and disadvantages mentioned above, the

same potential is assigned to e-learning, as earlier to e-commerce or e-business.
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2.2 Research and Studies about E-Learning

Since 2000, the Economist Intelligence Unit, the business arm of The Economist Group,

has published an annual e-readiness ranking of the world’s 60 largest economies. In the year

2003 the Unit has done a complementary ranking: e-learning readiness in the same 60 countries.

Figure 2.1: e-learning readiness in Europe in 2003 - scores and ranking for each state, [4].

The ranking criteria and score calculation can be found in detail in the white paper ”The

2003 e-learning readiness rankings”, [4]. Basically there are four categories of criteria,

the quality and expansion of the Internet (connectivity), the ability to deliver and consume

e-larning (capability), the quality of online learning material (content) and the support of official

committees and government (culture).

There are big regional differences in the score (and ranking) in Europe (see Figure 2.1).

It is remarkable that these regional differences corresponds with historical and political
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Country Score (of 10) Rank(of 60) Country Score (of 10) Rank(of 60)

Canada 8.40 2 Mexico 5.96 31

US 8.37 3 Brazil 5.63 34

South Korea 8.24 5 South Africa 4.96 40

Singapore 8.00 6 Saudi Arabia 4.50 47

Australia 7.71 11 Egypt 3.98 51

Taiwan 7.47 16 Vietnam 3.32 57

Japan 6.53 23 Pakistan 3.22 58

Malaysia 6.48 25 Iran 3.06 59

Chile 6.13 28 Nigeria 2.82 60

Table 2.1: e-learning readiness worldwide in 2003, [4].

circumstances in each country or area. The so-called ”rich” countries are mostly scored higher

than 7. These countries have an economic background which enables a high degree of IT

diffusion, a strong education system and a free market. Thus the score of Germany, France,

UK, Switzerland or Denmark can be explained. What is striking, is the fact, that all Northern

European countries, like Norway, Sweden, Finland and Denmark has a significant higher score

than the others. This circumstance is explained in the paper [4] as follows:

• An unequaled IT infrastructure,

• a citizenship that is eager to integrate the Internet into all facets of daily life,

• a top-notch education system,

• the fact, that government has helped set the stage,

• and a region which is saturated with mobile phones and broadband connections.

On the other hand, Southern Europe is much less enthusiastic in using information technology,

while the backlog demand of Eastern Europe can be explained through its historical and po-

litical background. On the turn of the millennium the whole eastern region was in a state of

massive political change after the collapse of the communist system in 1991. In Table 2.1 some

worldwide countries and its values are listed.
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Chapter 3

EuQoS - End-to-end Quality of Service

Support over Heterogeneous Networks

Within the scope of the Diploma thesis, a module in the e-learning environment of the

End-to-end Quality of Service Support over Heterogeneous Networks (EuQoS project [5])

was developed and implemented. In a second step, the Visualization and Animation Tool

for Network Simulations (VAT4Net), a part of the Internet Remote Network Simulation

Infrastructure (IRNSI), was designed as a tool supporting the practical training in line with the

EuQoS e-learning environment.

The e-learning modules concentrate on conceptual principles of networking in QoS re-

lated areas and describe the main topics with established protocols and applications of today’s

Internet and present the solutions, concepts, architectures and protocols provided by the EuQoS

project. The contents are designed according to certain didactical guidelines (Chapter 4.3.1).

The modules will be offered via an e-learning environment consisting of a set of tools and

(multimedia) applications (EuQoS deliverables, [6]).

A short summary on each module based on the introductory chapters follows:

1. Implementing Protocols on Network Simulators

In this module students get a theoretical overview of network simulation concepts. The different

concepts are explained and classified. Advantages and disadvantages are discussed. The details

of the module will be described in Chapter 7.

2. Applications and QoS

This module gives the students the basic knowledge about QoS. The module first explains the

parameters which characterize a network connection and which different parts of the network

influence them. Then it looks at the different service-level requirements the various applications

require. At the end of the module different packet scheduling algorithms and the today available

QoS architectures are explained.
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3. Network Emulation in General and with a Focus on Satellite and QoS

In this module the student will learn to apply network emulation for research or professional

use. First the module gives an general overview of frequently used emulation systems and their

concepts. It further focuses on the FreeBSD/Dummynet, which is a free and simple network

emulator. Finally an emulation for satellite communications is shown as a case study to harden

the learned skills of FreeBSD/Dummynet.

4. Traffic Engineering

This module describes the technical problems of mapping traffic flows onto an existing physical

topology, following certain policies. It describes MultiProtocol Label Switching (MPLS)

as a solution for traffic engineering. The module focuses on the description of information

distribution, path calculation and the resource reservation in MPLS networks.

5. Signaling (SIP, NSIS, COPS)

This module focuses on the signaling protocols used to establish sessions between several

parties and to provide the required QoS for them. First the Session Initiation Protocol (SIP)

is explained. Then the work of the IETF Next Step In Signalling (NSIS) working group is

explained. Their first use case is to standardizing an IP QoS signalling protocol. At the end

of the module the Common Open Policy Service (COPS) Protocol for exchanging policy and

configuration information between a network policy server and a set of clients is explained.

6. Enhanced Transport Protocols (API and Integration)

This course module allows students to understand that traditional and new generations of

transport protocols have not been specifically designed to offer QoS oriented services, but that

a transport protocol is able to provide a QoS oriented end-to-end service, resulting from the

optimization of the Best-Effort service. Finally the module gives a closer look at the new ETP

(Enhanced Transport Protocol), and the different QoS-aware transport protocol mechanisms

used.

7. Monitoring and measurement Systems in IP-based Networks

The module first provides a brief overview of the role of monitoring and measurement systems

(MMS) in modern IP networks. Then it looks closer to what could be measured and how this

could be actually done. Then it explains where and when this measurements are performed.

Finally the module describes several tools, that are aimed to measuring the most important QoS

metrics.

8. EuQoS Overview

The module provides an overview on the EuQoS project by presenting the global EuQoS

architecture and its corresponding high-level behavior. It will show how the architecture is able

to handle all main present network technologies and is able to provide a global coherent archi-

tecture, which homogeneously integrates all network layers and their related QoS protocols.
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9. EuQoS Intra-domain Resource Management

This modules describes the problems and the concepts of resource management in heterogenous

networks. The module focuses mainly on the connection admission control (CAC), which is a

key resource management problem. The module describes how CAC works for inter- and intra

domains to provide QoS.

10. EuQoS Multicast Middleware

This module explains the theoretical basics of multicast technologies first. Furthermore, a brief

overview of P2P (Peer-to-Peer) systems is shown. It describes the application layer multicast

paradigm and compares it to the native multicast of the network layer. Finally, a special

implementation of application layer multicast is described, which acts transparently for native

multicast applications.

11. QoS Provisioning Process

This module describes the provisioning process in EuQoS to build end-to-end QoS paths

(EQ-paths) across multiple Autonomous Systems (AS). First, it describes the Traffic En-

gineering and Resource Optimization (TERO) module, which is responsible to build the

EQ-paths in the best possible way. Then, it describes the inter-domain QoS routing proto-

col, named Enhanced QoS Border Gateway Protocol (EQ-BGP) and how TERO interacts with it.

12. EuQoS Signaling

This module provides an overview of the signalling architecture, mechanisms and protocols

used in the scope of the EuQoS system. The module gives overview on how they can be

combined in order to negotiate and to provide the required QoS levels to applications in

inter-domain, heterogeneous scenarios.
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Chapter 4

The E-Learning Course System

4.1 Introduction

The e-learning course system is a distributed system with different entities (see Figure 4.6)

playing important roles in various areas with different assignments. The system is based on

the standard e-learning infrastructure used within different e-learning portals as OSLab [7] or

VITELS [8] which is adapted for the EuQoS course system.

On one hand, the authentication and authorization is provideds by the Authentication and

Authorization Infrastructure (AAI), a infrastructure originated by the Swiss Academic and

Research Network (SWITCH, [9]). The AAI portal is the front end for AAI single sign login

(Figure 4.6, Part 3). On the other hand, the course is provided either by the course portal

WebCT (Figure 4.6, Part 2) for content deployment or the laboratory portal (Figure 4.6, Part

4 and 5) for practical sessions, whereas each module can have its own laboratory portal. The

details on the different entities are described in the next sections. Especially, the laboratory is

explained in Chapter 6, because of its special impact for this Diploma thesis.

4.2 Technology

4.2.1 WebCT - Web Course Tool

The course platform provides the learning content, the quizzes, the logbook for the student’s

notes, and the discussion board of the EuQoS courses. For this purpose, the courses operate on

the commercial course platform WebCT CE and in the future on WebCT Vista.

WebCT works similar to a Content Management System (CMS), which enables storing,

controlling, versioning and publishing content on a web site. As an e-learning course platform

WebCT contains some additional features, like quiz generating, student account management,

tutoring functionality such as chat and discussion application and assessment.
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Figure 4.1: WebCT - (1) EuQoS entry page student’s point of view, (2) Designer’s view with editing

options

4.2.2 AAI - Authentication and Authorization Infrastructure

The authentication and authorization process for the e-learning portal is deployed by SWITCH’s

Authentication and Authorization Infrastructure (AAI). The main objectives of AAI is to

simplify inter-organizational access to web resources. Most of Swiss universities use the AAI

infrastructure to allow simple access to different entities, such as web mail, e-learning, research

databases or student admin pages, with a single sign on. For the EuQoS project a new virtual

home organization was built up in order to include users of the EuQoS e-learning portal into the

SWITCH federation.

The AAI is a framework based on Shibboleth [10], an Internet2 middle-ware. The web-

based AAI Portal (see Fig. 4.6, 3) is the front end implementation of AAI. The learner can

subscribe to the course after login with its AAI identification. After the tutor has granted access

to the selected course, the participant is then able to pass through the AAI portal into the course

system or the laboratory computers (see status column in Figure 4.2). The AAI portal therefore

forwards the user to the course system and further creates and updates the user in the resource

management system by writing to a web service.

4.2.3 The Resource Management Server

The resource management server implemented for the system acts as a booking engine for

time-slots on the available laboratory ”seats” and access is granted by AAI single sign login

for the students. The resource management server is not only used for hands-on sessions in the

IRNSI environment but for all time shared laboratory setups.

In Figure 4.3 a typical view of the resource management server is depicted. The labora-

tory for the module ”Implementing Protocols on Network Simulators” has two seats available

and could be booked 24 hours a day for time-slots of one hour.
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Figure 4.2: AAI portal overview of registered and available courses (Example is taken from the AAI

Portal of the University of Bern)

From administrator’s point of view, there is surely extended managing functionality available

like user, module or lab-portal management.

4.2.4 The Laboratory Portal Server

The laboratory portal server manages the access to the laboratory seats by verifying user’s

authorization and authentication with AAI and checking up on the resource management server,

if a time-slot is reserved by this user. If the reservation is missing, the user is redirected

automatically to the resource management server’s front end.

From the entry page of the laboratory portal server (see Figure 4.4) all required applica-

tions are accessible. In each user’s time-slot the state of the laboratory remains the same until

the user is deleted from the system or he resets the system. The reset function restores the initial

state of the laboratory. All data is lost, but this is a way out of an impasse situation if the user is

totally lost. Further, Figure 4.4 shows the module specific functions. In this example, on the left

side you can find the entry to the network simulator ns-2 and on the right side the ”Visualization

and Animation Tool for Network Simulations” (VAT4Net, see Chapter 5) can be start up as an

applet application. The details on the exact laboratory functions follow in the next section.

13



Figure 4.3: The Resource Management Server - Booking front end where students can book laboratory

seats for preferred time-slots.

4.3 Didactics

4.3.1 The EuQoS Didactics and Design Guide

The Didactics and Design Guide [11] acts as a cookbook-like documentation of the full didactic

and design concept. It is a handbook which affords the various authors of modules within the

e-learning environment of the EuQoS project to develop a module with:

• comparable build and intelligent chain of chapters in each module,

• well formatted and consistent appearance,

• assigned time-frame and expected time spent by students for each module,

• forced knowledge application and exploration in hands-on session,

• adequate grading methods of work performed by students.

To facilitate co-operation within module development, a small utility, the file framework gener-

ator and formatter (ffgf) is provided and described in the next section.

4.3.2 ffgf - Automatic Content Generation for WebCT

The file framework generator and formatter (ffgf) [12], a Perl based tool, simplifies the content

generation and standardizes the look and feel of content supplied by different developers. It

supports the module producer in generating the content according to the Didactics and Design

Guide [11]. It further decouples the module content from a specific e-learning platform.
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Figure 4.4: The Laboratory Portal Server - Entry Page to the Laboratory, example taken from the module

”Implementing Protocols on Network Simulators”.

The module producer starts with a table of contents (see Figure 4.5, step 1). ffgf trans-

lates this text file into a numbered and formatted set of files (see Fig. 4.5, step 2). ffgf offers

a possibility to generate and edit the module’s content (Figure 4.5, step 3) without any hard

knowledge of HTML and layout concerning details of the e-learning platform. All predefined

pages, such as table of contents, welcome pages, schedules or quiz introductions are generated

automatically and filled with predefined content (Figure 4.5, step 2) which is dedicated from

the EuQoS Design Guide and built into ffgf. Each module’s writer has only to insert his own

module specific text in basic HTML format, which can be done with an ”What You See Is What

You Get” (WYSIWYG) editor (Figure 4.5, step 3). In step 4 ffgf generates specific html files

for different e-learning platforms (WebCT CE, WebCT Vista, etc.) out of the user edited source

files from step 3. These files have to be deployed in the course system, in our case WebCT CE

(Figure 4.5, step 5).

4.3.3 Requirements and Handling from the Student’s Point of

View

In Figure 4.6 student activities are shown in cooperation with the course system. In a first step,

the student subscribes to a course on the AAI Portal via a web browser (Figure 4.6, part 1 and

3 are involved). The owner of the course then grants or denies access to the course (Figure

4.6, part 2-4). In case of granted access, the system registers the user to the course platform

and resource management server. The user may now access the course platform or making a
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Figure 4.5: Content generation with ffgf - steps from the table of contents up to the completed content

of the module.

reservation for a laboratory system (Figure 4.6, part 1,2,4).

He can read content, pass quizzes from the course platform or make hands-on sessions.

Whereas the course platform is available 24 hours a day, the laboratory (Figure 4.6, part 5)

system may be a shared resource and the user has to make a reservation first. In order to access

the course content, a web-browser and in some cases a pdf reader is required. When working

on the laboratory there are some further requirements an accessing computer has to fulfill.

Requirements for accessing the complete course content are: web browser, pdf reader, flash

player and support for Java applets(JVM).
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Accessing the e-learning course platform

1. The Client either likes to work on theoretical content of the e-learning course or he likes

to access the laboratory of the module.

2. The Course Portal (WebCT CE) provides several e-learning tools such as content, exer-

cises, forum, etc.

3. The AAI Portal is the front end implementation of AAI, the Authentication and Autho-

rization Infrastructure.

4. The Resource Management Server acts as a booking engine for the laboratory seats.

5. The Laboratory Portal Server manages the access to the laboratory sats and provides

different communication methods.

Figure 4.6: System architecture of the e-learning portal with different entities and its collaboration.
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Chapter 5

VAT4Net - a Visualization and Animation

Tool for Network Simulations

5.1 Introduction

Figure 5.1: VAT4Net System Architecture

The Visualization and Animation Tool for Network Simulations (VAT4Net) has been developed

during this thesis to support the analysis step in a network simulation process. It enables the user

to visualize gathered trace files from network simulations. While animating a simulation, some

problems and behaviors of the simulated environment are visualized and could be recognized,

such as bottlenecks, packet drops, congestions, network structure, movement behavior of

wireless nodes, etc. A second focus of VAT4Net is the processing of statistical (data and its

graphics) representation, e.g. end-to-end delay, packet loss rate and other Quality of Service

characteristics.
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For the module ”Implementing Protocols on Network Simulators” inside the EuQoS course

portal a tool for visualizing and analyzing simulations is required. The tool must fulfil the

system requirements of the EuQoS course. While the Network Animator (NAM) [13] is

platform dependent as ns-2 and is not applicable into the course infrastructure, VAT4Net

is implemented in Java and is available as a Java Applet for the web-based infrastructure.

However, outside of the course portal VAT4Net is available as a stand-alone software. In this

context, VAT4Net combines two different architectures - the client-server (Fig. 5.1 - orange

arrow) and the monolithic (Fig. 5.1 - blue arrow) design.

The basic data of all visualization and animation processes is provided by trace files gen-

erated from a simulation run in ns-2. The current version of VAT4Net only focuses on trace files

in NAM trace format (see Section 7.4.3), but can be extended easily for other simulation trace

file formats.

5.2 Architecture, Data Preparation and Transfer

This chapter describes the architecture, the data preparation and data transfer, while the Chapter

5.3 shows the details on animation and visualization and its implementation from the user

perspective. Certain background processes are necessary in VAT4Net to animate and visualize

the simulated scenario. More details are given in the next sections.

In Section 5.2.1 the different system architectures used by VAT4Net are described. When

analyzing a trace file for the first time the preprocessor (Section 5.2.2) handles the file in the

initializing process. As soon as the preprocessed trace file is available and either submitted

(Section 5.3.1) or loaded (Section 5.2.3), the animation (Section 5.2.4) and analysis and plugin

(Section 5.3.2) control engine is executed.

5.2.1 System Architecture

Applet or Stand-alone Application?

VAT4Net runs in either stand-alone or applet mode. An applet is an application written in

Java that can be hosted on a website. When viewing a page containing an applet, the Java

technology-enabled browser downloads the applet’s bytecode to the client system an executes

it by the browser’s Java Virtual Machine (JVM) [14]. In general, some functions are restricted

as reading and writing files, setup network connections, reading system properties, etc., while

the JVM is running the applet under different security system. With a digital security certificate

it is possible to sign the applet and to enable the necessary functions. When deploying the ap-

plet to the webserver, the codebase of the applet has to be packed by applying a digital certificate.

In stand-alone mode VAT4Net is started up from a single Java Archive (JAR) file [14]

and interprets the compiled source code in the JVM. There are less restrictions when VAT4Net

is started from the local computer than when using it as an applet.
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If the applet is signed and the user has granted additional rights, the difference of a

signed applet and the stand-alone application is small.

Implementation Details

net.sf.vat4net.Main: In order to start the application in applet mode the init method is invoked

and applet parameters are read from the website where VAT4Net is hosted. Otherwise the

application is started over the standard main method.

Server-Client or Monolithic Architecture?

When opening a trace file from a local file system or from a remote server, the appropriate

operation mode is started. If the trace file exists on the local computer and is opened by the

application, VAT4Net is running as a monolithic software. All processes, threads and operations

are performed on the local computer system.

On the other hand, when selecting a trace file from a remote source, the VAT4Net client

first tries to connect to the VAT4Net server component on the remote machine. Then the

preprocessing (see 5.2.2) and statistic calculation tasks are performed on the remote computer

and only the resulting data is submitted to the client over the network (Internet, LAN).

Implementation Details

The different ways of executing VAT4Net are selected when opening a trace file either from

the server or the local file system via the menu command ”Load Trace File...” or ”Open Trace

File...” (see Figure 5.7). The detailed processes are described in the further chapters.

5.2.2 Preprocessing Trace Files

The fact that event-based network simulations trace events step-by-step requires preprocessing

of trace files generated in NAM trace format (see 7.4.3). In consequence of this step-by-step

tracing, events of one packet are not grouped together, but are distributed over the trace file (see

5.2, trace lines 585-587,618 of ns-2 trace file) and are merged with events of other packets. In

Figure 5.2 an extract of the input file of a typical simulation in the NAM trace format is shown.

The unequally distributed events in the example make animation of network simulation difficult.

In order to animate a packet on a link the hop event (see Figure 5.2 - line 587) and the receive

event (see Figure 5.2 - line 618) or even a drop event should be known. Therefore, it is essential

to be aware of line 618 when starting to animate the event in line 587. A pre-parsing of the file is

required and under certain conditions it affects the whole trace file. In this context, a look-ahead

in the trace file instead of preprocessing is proposed by [15]. A look-ahead implementation was

not applicable to VAT4Net as of the implemented streaming interface is limited by the internet
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Figure 5.2: VAT4Net Preprocessor

connection bandwidth and excessive memory consumption of the Java application when holding

big parts of the trace file in the heap. The main idea of preprocessing trace files is to sort

matching events. In case of the example, it would be lines 585,586,587,618.

A new trace file format is introduced at this point:

*.v4n - VAT4Net trace file format - preprocessed and optimized for animation purposes

The VAT4Net trace file format is adapted from the NAM trace file format. Matching

events are combined in one line. Figure 5.2 shows one line of the output file in VAT4Net trace

file format. It marks one node-to-node hop event.

The new VAT4Net trace file format enables streaming of data for animation of network

simulations. For animating packet flows over nodes, queues and links there is no need of

additional lines in succeeding parts of the trace file. At a specified time all necessary data is

available for animation in the newly generated trace file.
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Implementation Details

Either VAT4Net server or the client takes on the preprocessing, depends on the location of the

original trace file. As output the preprocessor generates the new, streaming enabled VAT4Net

trace file usable by VAT4Net itself.

The task of preprocessing is implemented using three classes described below:

net.sf.vat4net.io.Preprocessor[A.21]: The preprocessor gets executed as a separate thread

and implements the main preprocessing algorithm. In a first step the whole basic NAM trace

file is parsed and a new net.sf.vat4net.io.ProcessorQueue is filled (Listing 5.1). As soon

as a trace line is completed (Figure 5.2), it can be dequeued from the ProcessorQueue and

written out into a temporary file. In a second run the not-processed, still available elements

in the ProcessorQueue from the first run are preprocessed (see A.21 for complete file). The

temporary file from the first step and the processed lines from the second step are merged and

compose to the new trace file in the VAT4Net trace file format.

47 p u b l i c vo id p r o c e s s L i n e ( S t r i n g l i n e ) throws IOExcep t ion {
49 p a r s e L i n e ( l i n e , 1 , queue ) ;

50 ( . . . )

51 whi le ( ! queue . i sEmpty ( ) ) {
52 i f ( queue . hasReadyElement ( ) )

53 {
54 q = queue . dequeue ( ) ; / / dequeue an e l e m e n t

55 / / W r i t e a l l E l e m e n t s which are i n s t a t e ” ready ” t o t h e

new f i l e

56 ( . . . )

57 }
58 e l s e

59 {
60 / / There i s a f i r s t e l e m e n t which c an no t be dequeued − i f

queue i s f u l l , manage t h e queue o t h e r w i s e t a k e a n e x t

l i n e from t h e t r a c e f i l e

61 i f ( queue . i s F u l l ( ) )

62 {
63 / / W r i t e e l e m e n t s which are n o t y e t ready and are

b l o c k i n g t h e queue o u t t o a t emporary l i s t . Go on

w i t h e l e m e n t s t h a t are handab le

64 ( . . . )

65 }
66 break ;

67 }
68 }
70 }

Listing 5.1: net.sf.vat4net.io.Preprocessor, Part of A.21
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net.sf.vat4net.io.ProcessorQueue [A.22]: The ProcessorQueue class implements the abstract

data structure queue in the First-In-First-Out principle with the main methods enqueue and

dequeue. The entities to be hold in this queue are the ProcessorQueueElement instances. A

further functionality of this class is the implementation of a search method , which let the

preprocessor find the adequate queue elements to complete them subsequently.

net.sf.vat4net.io.ProcessorQueueElement[A.23]: This class is responsible for each in-

dividual simulation event. Events not related to packet events are treated line-by-line from the

original trace file and are marked as ready ProcessorQueueElement. Events related to packet

events are collected until all information is available for animation purposes and afterwards are

marked as ready ProcessorQueueElements.

5.2.3 Loading Data from a Local Source

When VAT4Net runs as a monolithic system on a local computer, the data required by animation

and visualization operations is loaded in a separate thread from the newly generated or already

existing VAT4Net trace file accessing the local file system with the standard package java.io.*.

The read-in operation is done line by line. This is possible due to the fact that each line marks

one animation event. The read-in operation is used for handling either animation or statistic

data.

Handling Animation Data

Each read-in line is put to a buffer, until the buffer is full. The net.sf.vat4net.io.Buffer is

implemented as a java.util.LinkedList and has put and get methods (Listing A.24) to handle the

animation events.

Once there is content in the buffer, the animation control engine can take up its work

(see Section 5.3.1). As soon as trace events from the buffer are consumed by the engine, further

trace events are read in until the last line of the simulation trace file is available in the buffer.

The size of the buffer is an important part concerning memory consumption and time

complexity relating problems. In Chapter 5.4 this aspect will be discussed in detail.

Implementation Detail

net.sf.vat4net.io.FileBufferLoader: Inherits from the class BufferLoader the new buffer

instance. The newly started thread reads line-per-line into the buffer instance with the help of

the TraceFileReader. When the buffer is full, the thread is waiting until the buffer has more

space left and continues then to fill trace lines into the Buffer instance. This is going on until

the whole file is processed.
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net.sf.vat4net.gui.io.TraceFileReader: Uses standard java.io.BufferedReader to read in the

trace file line-by-line. By providing the method readLine(), the functionality of FileBuffer-

Loader is enabled.

net.sf.vat4net.io.BufferLoader: Runnable superclass which instantiates a new

net.sf.vat4net.io.Buffer.

Handling Statistic and Visualizing Data

Accessing data for statistic purposes works equally as when handling animation data. For statis-

tic data handling the trace file is the basis of all calculation processes. The data is loaded by

accessing the local file system with the standard package java.io.*. It is possible to do statistical

data extractions with the trace file in VAT4Net or NAM format, when the NAM trace file is still

available. The details are explained in Chapter 5.3.2.

5.2.4 Loading Data from a Remote Source

The difficulty in implementing both architectures - stand-alone and client-server - is dividing the

client and the server parts. A further problem is the required amount of data, which is transported

over the network from server to client.

VAT4Net Server

VAT4Net provides the server part which delivers parsed trace files to the client to animate and

visualize them. If necessary the trace file will be preprocessed first on the server and transported

afterwards. Furthermore, the server part is also able to start plugins and delivering precalculated

data to the client. This part is also included in the the server part because of the location of the

trace file and the matter of fact, that all plugins require the trace file as basis for analyzing and

visualizing data.

Implementation Detail

net.sf.vat4net.io.ParsingServer [A.25]: Starting the server with the following command:

java -cp VAT4Net.jar net.sf.vat4net.io.ParsingServer [[host:]port] [directory]

The command starts the server which will listen on the socket defined by host and port

(Listing 5.2). Trace files are searched in the file directory which is assigned. The server is on

standby until a connection request is incoming. The ServerSocketChannel.accept() method is

blocking indefinitely until a new connection is available or an I/O error occurs (Listing 5.3).

Further details follow in the according subsections.
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25 s s c = S e r v e r S o c k e t C h a n n e l . open ( ) ;

26 I n e t S o c k e t A d d r e s s i s a = new I n e t S o c k e t A d d r e s s ( I n e t A d d r e s s .

getByName ( hostname ) , p o r t ) ;

27 s s c . s o c k e t ( ) . b ind ( i s a ) ;

Listing 5.2: net.sf.vat4net.io.ParsingServer, Part of A.25

38 Socke tChanne l sc = s s c . a c c e p t ( ) ;

Listing 5.3: net.sf.vat4net.io.ParsingServer, Part of A.25

VAT4Net Client

The client part of the server-client implementation is responsible for receiving data from the

server and communicate it to the VAT4Net client application, which is showing the resulting

data as animation, visualization and plugin-defined view in the Graphical User Interface (GUI).

The client part is the interface which integrates the server-client architecture into the existing

stand-alone and applet application.

Implementation Detail

net.sf.vat4net.io.ParserStub [A.26]: When the VAT4Net client part tries to load a trace file

from the remote server it registers a SocketChannel and opens a connection to the server (List-

ing 5.4). The connection will be setup via a SSH port forwarding. At this moment the server

and the client are connected together. When the server accepts the connection (Listing 5.3), the

server starts serving the desired data.

3 p u b l i c boolean c o n n e c t ( S t r i n g hos t , i n t p o r t ) {
4 ( . . . )

5 sc = Socke tChanne l . open ( ) ;

6 I n e t S o c k e t A d d r e s s i s a = new I n e t S o c k e t A d d r e s s ( I n e t A d d r e s s .

getByName ( h o s t ) , p o r t ) ;

7 sc . c o n n e c t ( i s a ) ;

8 s u c c e s s f u l = t rue ;

9 ( . . . )

10 re turn s u c c e s s f u l ;

11 }

Listing 5.4: net.sf.vat4net.io.ParserStub, Part of A.26

Connecting the Server with the Client

The connection between the client and the server is achieved by creating a connecting network

socket (see Figure 5.3) as mentioned above. Both the server and the client have a socket bound

to a specific endpoint. An endpoint is a combination of an IP address and a port number. Every
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TCP connection can be uniquely identified by its two endpoints. The server just waits, listening

to the socket for a client to make a connection request.

Figure 5.3: VAT4Net Server-Client Connection on a Network Socket

SSH and Port Forwarding

As already mentioned, the connection is setup using SSH port forwarding. Port forwarding, or

tunneling, is the use of Secure Shell (SSH) to securely and transparently redirect TCP/IP traffic

from a client application to an application server. SSH enables to connect to a server which is

behind a firewall and where authentication and authorization is required.

Implementation Detail

net.sf.vat4net.gui.menu.MnuLoadActionListener [A.27]: When the menu command ”Load

Trace File...” is selected, the MnuLoadActionListener is invoked and prepares the necessary

steps to successfully connect server and client and transport data over this connection. In line

13 of Listing 5.5 the method setupSSHTunnel() (Listing A.27, lines 42-62 ) is called. This

method installs a SSH tunnel from the client to the server. The SSH connection is set up with

the help of an extern library Ganymed SSH-2 [16]. After the SSH connection is set up, a new

instance of the class ParserStub (5.6, line 28) and the connection to the animation and plugin

engine is installed (5.6, lines 29-34).

13 i n t tmpPor t = s e t u p S s h T u n n e l (−1) ;

Listing 5.5: net.sf.vat4net.gui.menu.MnuLoadActionListener, Part of A.27

28 t h i s . p a r s e r = new P a r s e r S t u b ( ) ;

29 f rmRoot . s e t D a t a S o u r c e ( p a r s e r ) ;

30 p a r s e r . c o n n e c t ( addr , p o r t ) ;

31 p a r s e r . s t a r t L o a d i n g D a t a ( t h i s . b u f f e r ) ;

32 V4N Parser V4Nparser = new V4N Parser ( ) ;

33 T i m e C o n t r o l l e r t c = new T i m e C o n t r o l l e r ( t h i s . b u f f e r , V4Nparser

, f rmRoot ) ;

34 t c . s t a r t A n i m a t i o n ( ) ;

Listing 5.6: net.sf.vat4net.gui.menu.MnuLoadActionListener, Part of A.27
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Figure 5.4: VAT4Net Connection setup with SSH Port Forwarding

The example in Figure 5.4 depicts the details of the connection setup from VAT4Net client to a

VAT4Net server process. In a first phase, the client connects via SSH to the SSH Daemon (sshd)

on a remote machine behind the firewall (Listing A.27, lines 51-54), authenticates and authorizes

the client user. In a second step a local port forwarding (Listing A.27, line 56) is installed

from localhost:8001 to 10.1.1.x:8001, on the computer where the VAT4Net Server application

is running (see Figure 5.4-green arrow). In the last step the client socket will be connected to

the start point localhost:8001 of the local port forwarding (Listing A.26, lines 3-11). The server

socket is listening on 10.1.1.x:8001 once the server process has been started. The connection

between client and server is ready now to transfer data. When the client sends out data, it will

be automatically transported via localhost:8001 through the SSH Tunnel to 10.1.1.x:8001 and

vice-versa (see Figure 5.4-orange arrow).

Server-Client/Client-Server Data Transfer

As soon as the client and the server have successfully established a connection, the server can

start to send the required data. Without any further command the server will only deliver trace

lines to the client. But the server is always listening for incoming commands from the client. A

possible request of the client is to get special plugin data objects. The delivery of the trace file

is halted and the plugin data is served. Once the data is received by the client, the delivery of

the trace file data can be resumed.

Implementation Detail

The server is sending data via ObjectOutputStream enclosed in a SocketOutputStream to the

client (Listing 5.7, lines 57, 68-70). The client receives this data on ObjectInputStream enclosed

in a SocketInputStream (Listing 5.8, lines 21,23-41). The trace file data is sent and received as

a String object.
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57 O b j e c t O u t p u t S t r e a m o u t = new O b j e c t O u t p u t S t r e a m ( sc . s o c k e t ( ) .

g e t O u t p u t S t r e a m ( ) ) ;

58 ( . . . )

59 F i l e R e a d e r i n = new F i l e R e a d e r ( f ) ;

60 whi le ( t h i s . p roc != n u l l && ! t h i s . p roc . f i n i s h e d ( ) ) {
61 ( . . . ) / / I n fo r m c l i e n t , t h a t f i l e i s on p r e p r o c e s s i n g

s t a t e

62 }
63 whi le ( ( l i n e = bIn . r e a d L i n e ( ) ) != n u l l ) {
64 commandAvai lable ( sc , o u t ) ;

65 i f ( c o n n e c t i o n C l o s e d B y C l i e n t ) {
66 break ;

67 }
68 o u t . w r i t e O b j e c t ( l i n e ) ;

69 o u t . f l u s h ( ) ;

70 o u t . r e s e t ( ) ;

71 }

Listing 5.7: net.sf.vat4net.io.ParsingServer, Part of A.25

21 O b j e c t I n p u t S t r e a m o i s = new O b j e c t I n p u t S t r e a m ( sc . s o c k e t ( ) .

g e t I n p u t S t r e a m ( ) ) ;

22 O b j e c t s t r e a m O b j e c t ;

23 whi le ( ( s t r e a m O b j e c t = o i s . r e a d O b j e c t ( ) ) != n u l l ) {
24 i f ( s t r e a m O b j e c t i n s t a n c e o f S t r i n g ) {
25 i f ( s t r e a m O b j e c t . e q u a l s ( ”V − t ∗ p r e p r o c e s s i n g ” ) ) {
26 / / p r e p r o c e s s i n g debug message

27 }
28 e l s e i f ( s t r e a m O b j e c t . e q u a l s ( ”NOD” ) ) {
29 / / no o b j e c t debug message

30 }
31 e l s e i f ( s t r e a m O b j e c t . e q u a l s ( ” s t a t s ” ) ) {
32 / / s t a t i s t i c o b j e c t debug message

33 }
34 e l s e i f ( s t r e a m O b j e c t . e q u a l s ( ”EOF” ) ) {
35 ( . . . )

36 b u f f e r . p u t ( ”EOF” ) ;

37 }
38 e l s e {
39 b u f f e r . p u t ( ( S t r i n g ) s t r e a m O b j e c t ) ;

40 }
41 }
42 e l s e i f ( C l a s s . forName ( t h i s . s t a t P l u g i n . g e t R e t u r n T y p e ( ) ) .

i s I n s t a n c e ( s t r e a m O b j e c t ) ) {
43 t h i s . s t a t P l u g i n . s ho w S t a t ( s t r e a m O b j e c t ) ;

44 }
45 s t r e a m O b j e c t = n u l l ;

46 }

Listing 5.8: net.sf.vat4net.io.ParserStub, Part of A.26
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Further hand the server is listening on a SocketInputStream for receiving other commands

(Listing 5.9, line 91) from the client and reacts whenever the command is known by the

server. After receiving the command, the server sends the requested data to the client. This is

important to handle the different plugins. When the client is receiving data other than string

objects, it passes it to the appropriate plugin (Listing 5.8, lines 42-44).

91 i f ( s c . s o c k e t ( ) . g e t I n p u t S t r e a m ( ) . a v a i l a b l e ( ) > 0) {

Listing 5.9: net.sf.vat4net.io.ParsingServer, Part of A.25

5.3 Animation, Visualization and Analysis

Figure 5.5: Overview of the application of GUI VAT4Net

The VAT4Net GUI (Main Frame) is divided into five parts (see Figure 5.5):

• Main Menu: The Main Menu contains all important commands for the whole application

(see Section 5.3.1 for further details).
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• Control Panel: The Control Panel gives access to all animation concerning commands

(see Section 5.3.1 for further details).

• Animation Panel: The animation process takes place in the Animation Panel (see Section

5.3.1).

• Element Info Panel: The Element Info Panel displays properties of nodes and links in a

tree based view. It is usually used to display information about selected items (nodes or

links).

• Statistics and Plugin Panel: All plugin or statistic related views are shown in the Statis-

tics and Plugin Panel (see Section 5.3.2).

The VAT4Net GUI running in stand-alone or applet mode is independent from the application .

The following section describes in detail the functionality and implementation of these parts.

5.3.1 The Animation Engine

Figure 5.6: VAT4Net Animation Engine Workflow

The main feature of VAT4Net is providing animation and visualization of trace files. After a

part of the trace file is available in the buffer either from a local or a remote source, the data will

be consumed and the animation can be initialized and started.

There are four main entities involved into the animation process: the Buffer, the Time

Controller, the VAT4Net Parser and all elements and events (Figure 5.6). The Time Controller

acts as a supervisor over the animation. The VAT4Net Parser converts trace lines holding in the

buffer into elements and events.

The Time Controller

”An animation is defined as a rapid display of pictures in order to create an illusion of

movement” [wikipedia.org]. The rapid display of pictures is measured by the unit Frames per
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Second (FpS), where frames can be exchanged by pictures. The other time unit used in the

animation of simulations is the time step. The time step specifies the amount of time that passes

from one frame to the other frame displayed. As an example, the following calculation will help

to understand the time step and FpS:

When animating with a constant rate of 10 FpS, each 100 ms a picture or frame should be

displayed. Therefore each step including parsing, update and repaint should not have a duration

longer than 100ms. Otherwise, there would be a delay causing the flow of the animation to

halt. To go on with the example, when a time step of 0.01s is selected, resulting in a real time

to animation time ratio of 10:1. That means that the animation plays 10 times slower than the

simulation in real time.

The Time Controller further act as a timer for the animation and invokes at the right

time the necessary methods as parsing new lines from the buffer, updating and drawing

simulation elements and events.

Implementation Details

net.sf.vat4net.logic.TimeController [A.28]: From lines 3-14 of the Listing A.28 the anima-

tion is prepared. Required constants as time step and period are set and the animation thread

is started. The run() (Listing A.28, lines 15-78) method is rather complex and will be de-

scribed step-by-step: In a first part (Listing 5.10) the animation is initialized and repaint after

all required trace lines are parsed by the V4N Parser (parseLine(String line) ,5.10, line 24) to

animated the initial state of the animation at time 0.0s.

20 whi le ( ! n e t w o r k I s I n i t i a l i z e d )

21 {
22 l i n e = ( S t r i n g ) b u f f e r . g e t ( ) ;

23 ( . . . )

24 p a r s e r . p a r s e L i n e ( l i n e ) ;

25 i f ( ! n e t w o r k I s I n i t i a l i z e d && parserTimeStamp>t h i s .

a n i m a t i o n S t a r t T i m e ) {
26 n e t w o r k I s I n i t i a l i z e d = t rue ;

27 n e t P a n e l . s e t R e s e t S t a t u s ( t rue ) ;

28 n e t P a n e l . s e t N e t w o r k ( ne twork ) ;

29 ne twork . u p d a t e ( t h i s . t ime ) ;

30 ne twork . c o n n e c t L i n k s ( ) ;

31 n e t P a n e l . i n i t i a l i s e N e t w o r k P a n e l ( ) ;

32 n e t P a n e l . u p d a t e T i m e D i s p l a y ( ) ;

33 n e t P a n e l . s e t N e t w o r k I n i t S t a t u s ( t rue ) ;

34 n e t P a n e l . r e p a i n t ( ) ;

35 }
36 }

Listing 5.10: net.sf.vat4net.logic.TimeController, Part of A.28
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Once the animation has started playing, the second part of the run() method is invoked until the

animation is finished. In each animation step (equals the chosen time step), first some lines were

parsed from the Buffer, the whole network elements and events are updated (Listing 5.11, line

58) and the network will be repainted (Listing 5.11, line 61). It is decided if the calculation of

one animation frame causes a delay or the animation thread could sleep for some milliseconds

(5.11, lines 62-70).

58 ne twork . u p d a t e ( t h i s . t ime ) ;

59 n e t P a n e l . u p d a t e T i m e D i s p l a y ( ) ;

60 i f ( ! t h i s . j u m p I n S i m u l a t i o n ) {
61 n e t P a n e l . r e p a i n t ( ) ;

62 a f t e r T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;

63 t i m e D i f f = a f t e r T i m e − be fo reT ime ;

64 s l eepT ime = ( p e r i o d − t i m e D i f f ) ;

65 / / l e t t h r e a d s l e e p f o r t h e r e m a i n i n g t i m e ( 1 0 0 0 / f p s n o t

used )

66 i f ( s l eepT ime > 0) {
67 ( . . . ) / / s l e e p

68 }
69 ( . . . )

70 be fo reT ime = System . c u r r e n t T i m e M i l l i s ( ) ;

71 }

Listing 5.11: net.sf.vat4net.logic.TimeController, Part of A.28

net.sf.vat4net.gui.animationpanel.NetworkPanel [A.29]: This class is containing the JPanel

implementation for the animation part of the Main Frame. The required method paintCom-

ponent(Graphics g) (Listing A.29, lines 16-27) is always invoked, when calling the method

NetworkPanel.repaint(). Further the method initialiseNetworkPanel() (Listing A.29, line 3-17)

does its work in the initialization process of the animation (node placing, wireless grid setup).

The VAT4Net Parser

The VAT4Net Parser translates trace lines into elements and events. This elements and events

can be animated - updated and drawn.

Implementation Details

net.sf.vat4net.io.V4N Parser [A.30]: When parsing a line, first there will be a categorizing

selection (Listing A.30, lines 4-22) on each trace line into the different elements and events.

When having categorized the trace line, there is the appropriate setup method chosen. In a setup

method the appropriate element and its event will be generated. As example the nodeSetup()

method generates an element of the type Node (Listing 5.12, lines 26-36) and events of the type

NodeUpdateElement (Listing 5.12, lines 37-44).
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26 Node node ;

27 i n t nodeID = I n t e g e r . p a r s e I n t ( nodeTab le . g e t ( ”−s ” ) . t o S t r i n g ( ) ) ;

28 / / check i f node a l r e a d y e x i s t s , when yes , t r y t o make an up da t e

e l e m e n t

29 i f ( t c . ge tNe twork ( ) . e x i s t N o d e ( nodeID ) ) {
30 node = t c . ge tNe twork ( ) . getNode ( new I n t e g e r ( nodeID ) ) ;

31 }
32 e l s e

33 {
34 node = new Node ( nodeID , n e t P a n e l ) ;

35 t c . ge tNe twork ( ) . addNode ( node ) ;

36 }
37 S t r i n g t ime = nodeTab le . g e t ( ”− t ” ) . t o S t r i n g ( ) ;

38 NodeUpdateElement e l e m e n t = new NodeUpdateElement ( t ime ) ;

39 ( . . . )

40 e l e m e n t . se tXCoord ( new Double ( Double . p a r s e D o u b l e ( nodeTab le . g e t ( ”

−x ” ) . t o S t r i n g ( ) ) ) ) ;

41 e l e m e n t . se tYCoord ( new Double ( Double . p a r s e D o u b l e ( nodeTab le . g e t ( ”

−y ” ) . t o S t r i n g ( ) ) ) ) ;

42 e l e m e n t . s e tMovemen tDura t ion ( new Double ( Double . p a r s e D o u b l e (

nodeTab le . g e t ( ”−T” ) . t o S t r i n g ( ) ) ) ) ;

43 ( . . . )

44 node . addUpdateElement ( e l e m e n t ) ;

Listing 5.12: net.sf.vat4net.io.V4N Parser, Part of A.30

Animation Control

In Figure 5.7 the VAT4Net menu and the main control panel is shown and described. This

control structure enables the access to all required functions provided by VAT4Net.

Implementation Details

net.sf.vat4net.gui.menu.*: The package contains all menu relating classes and the according

java.awt.event.ActionListener for each menu point.

net.sf.vat4net.gui.animationpanel.ControlPanel: The ControlPanel implements anima-

tion relating control buttons and its functionality as described in Figure 5.7.

Animated Simulation Elements and Events

The animation engine visualizes and animates the network topology with all its elements and

events occurring in the simulation. Wired nodes, links, queues and wireless network grids are

more or less static elements while wireless nodes and packets are moving objects. Each of those

34



Figure 5.7: VAT4Net Menu and Animation Control

elements are described in detail in the further sections.

Network Element

The Network element is the main element in the animation process. It is aware of all other

elements and events in the animation. All updating and drawing calls are controlled from it.

When animating wired networks the Network element is shape-less, because there is no defined

network area available where the simulation is positioned. It is depicted as a white plane.

Otherwise when animating wireless simulations, the network grid is shown (see Figure 5.8).

Implementation Details

The Network is the main part of the animation element tree. The animation engine basically

communicates over this class.

net.sf.vat4net.logic.Network [A.31]: In a first part the class Network is responsible to

do some initialization actions when loading a simulation into VAT4Net. When loading the

trace file nodes and links are not connected to each other. The method connectLinks() makes

this connections. Further wired nodes has no position information that can be extracted from

the trace file. The method nodePlacing2(int width, int height) uses an algorithm to spread the

nodes over the panel. As a main part the class Network holds all elements and events in Lists.

From the Network instance the update() (line (Listing 5.13, 18-31) and draw() (Listing 5.13,

lines 6-17) methods on all this elements and events are invoked.

net.sf.vat4net.gui.animationpanel.NetworkShape: This class is responsible to animate

the wireless network grid.
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6 /∗Draw t h e Network on to t h e p a n e l ∗ /

7 p u b l i c synchronized void drawNetwork ( Graphics2D g )

8 {
9 / / draw Network e n v i r o n m e n t

10 n e t w o r k s h a p e . draw ( g ) ;

11 / / draw nodes

12 f o r ( I t e r a t o r i t = nodes . v a l u e s ( ) . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {
13 ( ( Node ) i t . n e x t ( ) ) . draw ( g ) ;

14 }
15 / / draw a l l o t h e r ne twork e l e m e n t s

16 ( . . . )

17 }
18 /∗ Updates a l l o b j e c t i n t h e ne twork ∗ /

19 p u b l i c synchronized void u p d a t e ( double t ime )

20 {
21 /∗ ∗ Update Nodes f i r s t ∗ /

22 Node node ;

23 f o r ( I t e r a t o r i t = nodes . v a l u e s ( ) . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {
24 node = ( Node ) i t . n e x t ( ) ;

25 i f ( node . doUpdate ( ) ) {
26 node . u p d a t e ( t ime ) ;

27 }
28 }
29 / / u p d a t i n g a l l o t h e r ne twork e l e m e n t s

30 ( . . . )

31 }

Listing 5.13: net.sf.vat4net.logic.Network, Part of A.31

Wired and Wireless Nodes

The node is a basic structure of ns-2 and stands for entities like routers, terminals, servers or

mobile devices. In the simulation itself, these nodes are not distinguishable from the different

types. In the animation, this fact leads to the point, that each node has the same shape. If

defined in the simulation, its is possible to color these nodes different. Further there will be

differentiated between wireless and wired node. Wired nodes are always connected through

links to each other while wireless nodes are ”connection-less”. Some different node pictures are

arranged in Figure 5.9.

36



Figure 5.8: Wireless Network in VAT4Net

(a) Node linked to a Lan El-

ement

(b) Colored Nodes (c) Wireless Nodes

Figure 5.9: Nodes

Implementation Details

Each node has a class holding data and a referring shape class with position and design

concerning data. If the node changes its appearance or position during animation there are

NodeUpdateElements available. Further a node has a NodeMouseAdapter for moving and

marking actions. Wired nodes are movable while wireless nodes cannot be moved, because of

their own position information and defined movements.

net.sf.vat4net.logic.Node [A.32]: When generating a new node the initial data is set

(Listing 5.14). The method update(double time) is called each time the whole network is

updated. After updating the node the animation engine will call the draw(Graphics2D g)

method, which calls the draw method of the NodeShape class. When setting up a wireless

node, a net.sf.vat4net.logic.Queue instance is generated and linked to this node. Normally

a Queue is connected to a link, but while wireless nodes do not have links, the node has to

takeover this part. Details on the implementation of a Queue are described later on.
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3 p u b l i c Node ( i n t nodeID , NetworkPane l p a n e l ) {
4 ( . . . )

5 t h i s . nodeID = nodeID ;

6 t h i s . u p d a t e E v e n t s = new V ec to r ( ) ;

7 ( . . . )

8 / / Node Shape

9 nodeshape = new NodeShape ( t h i s ) ;

10 / / Even t L i s t e n e r ( Mouse )

11 p a n e l . a d d M o u s e L i s t e n e r ( new NodeMouseAdapter ( nodeshape , pane l ,

mousePo in t ) ) ;

12 p a n e l . addMouseMot ionLi s t ene r ( new NodeMouseMotionAdapter (

nodeshape , pane l , mousePoin t ) ) ;

13 }

Listing 5.14: net.sf.vat4net.logic.Node, Part of A.32

net.sf.vat4net.logic.NodeUpdateElement: Each change to a node is held in a NodeUpda-

teElement, where position information, shape or state change, etc. are stored. As a main

variable in this class a time stamp is set. The time stamp defines when the update takes place.

net.sf.vat4net.logic.NodeShape [A.33]: As already mentioned the NodeShape class is

holding all information needed to draw the node to the animation panel of VAT4Net. In each

repaint process of the whole animation the draw(Graphics2D g) takes place.

Placing the Nodes over the Animation Panel

(a) Algorithm based on NAM (b) Spring Model Algorithm

Figure 5.10: Node Placing Algorithms

Placing wired network nodes over the animation panel is a necessary task in the initialization
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process of the network animation. From almost all wired network simulations in contrary to

wireless networks, there is no location information available in the resulting trace files.

In a first approach, the graph drawing algorithm of NAM was implemented in VAT4Net

by translating the C++ code into Java. The resulting networks drawn by this algorithm were

unstructured and badly distributed over the panel. When displaying more than 10 wired nodes,

the resulting graph has a lot of overlapping nodes and links (see Figure 5.10(a)). While the

algorithm from NAM tries to place the nodes randomly over the animation panel without

evaluating the network structure, the newly chosen algorithm implements the spring model,

where the calculation is based on attractive and repulsive forces of nodes.

The new algorithm, ”a modification of the spring-embedder model of Eades, should:

1. Distribute the vertices evenly in the frame.

2. Minimize edge crossings.

3. Make edge lengths uniform.

4. Reflect inherent symmetry.

5. Conform to the frame.” (Fruchterman and Reingold 1129 [17])

The implemented algorithm does not explicitly strive for all these goals above but for the needs

of VAT4Net, the implementation based on the Pseudocode listing A.34 is almost optimal.

Compared to the old algorithm the new method is much less memory consumptive and

significant faster and gives useful results of node placing (see Figure 5.10(b)).

Implementation Details

The implementation of the node placing algorithm takes its place in the initialization process

of the animation. When each node is generated the method nodePlacing2(int height,int width)

available from the class net.sf.vat4net.logic.Network A.31 is invoked.

Wireless nodes are not affected by the node placing problem. The position information

is available from the trace file. In the next three lines of a VAT4Net trace file, the position is set

by x an y coordinates:

n -t * -s 0 -x 83.364418416244007 -y 239.43800983126101 (...)

n -t * -s 1 -x 257.04629832315698 -y 345.35773177920402 (...)

n -t * -s 2 -x 591.25656009383295 -y 199.37330681680399 (...)

Links and Queues

A link is a base structure in ns-2 simulations and connects wired nodes to each other. In the

animation there is no difference between duplex and simplex links. Each link is designed as

39



a line between two nodes. In Figure 5.11(b) and 5.11(c) two different network topologies are

shown.

Queues represent locations where packets may be held (or dropped) in the ns-2 simula-

tion. Queues are connected to links. If there is no link between nodes in case of a wireless

simulation, the queue is connected to a node. In Figure 5.11(a) the yellow packets are queued.

There is no shape to depict a queue. The queued packets are different in color and are stringed

together vertically to the link.

A further element similar to the Link element, is the LAN Element. It is implemented

according to the Link element. A LAN Element is depicted in Figure 5.11(d).

(a) Link with Queued Pack-

ets

(b) Links - Ring Topology (c) Links - Star Topology (d) LAN Element

Figure 5.11: Links

Implementation Details

While the Link class is very similar to the Node implementation described above, the Queue

class requires further detailed description.

net.sf.vat4net.logic.Link: The Link class is similarly implemented as the Node class.

There is a update(double time) and a draw(Graphics2D g) method available invoked from

the Network instance. When setting up links connected to wired nodes, a Queue instance is

generated and connected to this link. There is also a class LinkUpdateElement available. There

are only changes in the link color possible.

net.sf.vat4net.gui.animationpanel.LinkShape: Parallel to the NodeShape class, this

class is implemented with the details to animate a link in the animation. In Figure 5.12 the

packet flow direction is depicted. While each link is simplex or duplex with the same shape

it is important, that each link has the same packet flow direction. A help class of LinkShape

is net.sf.vat4net.gui.animationpanel.LinkPath. It calculates the adequate position on the link

instance for a packet, which has passed x percent of the way over the link.
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net.sf.vat4net.logic.Queue [A.35]: The class queue has two different constructors; one for

queues connected to links and one for queues connected to wireless nodes. Because a

graphic view of the class Queue is missing, the class QueueShape is only a helper class.

Due to this fact a draw and update method are not implemented. More important are the

methods enqueue(PacketUpdateElement packetElement) (Listing 5.15, lines 12-16) and de-

queue(PacketUpdateElement packetElement) (Listing 5.15, lines 18-22). This two methods

handle the amount of packets queued in the queue instance at certain time. The two methods

are invoked from within the net.sf.vat4net.logic.Packet class.

12 /∗ ∗Enqueue p a c k e t on t h i s queue ∗ /

13 p u b l i c vo id enqueue ( P ac k e t Up d a t e E l e me n t p a c k e t E l e m e n t ) {
14 q u e u e d P a c k e t s . addElement ( p a c k e t E l e m e n t ) ;

15 t h i s . queueshape . addQueueHeight ( p a c k e t E l e m e n t . g e t S h a p e ( ) .

g e t R a d i u s ( ) ∗2) ;

16 }
18 /∗ ∗Dequeue p a c k e t on t h i s queue ∗ /

19 p u b l i c vo id dequeue ( P ac k e t Up d a t e E l e me n t p a c k e t E l e m e n t ) {
20 q u e u e d P a c k e t s . removeElement ( p a c k e t E l e m e n t ) ;

21 t h i s . queueshape . minusQueueHeight ( p a c k e t E l e m e n t . g e t S h a p e ( ) .

g e t R a d i u s ( ) ∗2) ;

22 }

Listing 5.15: net.sf.vat4net.logic.Queue, Part of A.35

Figure 5.12: Packet flow direction of links in the VAT4Net animation

Packets

Packets are the most important elements of a simulation. Also for the animation packets are the

most interesting and the most significant part. There are different looks a packet can have in the

animation process (see Figure 5.13). The different packet types are:

• yellow: queued packets, Figure 5.13(a)

• green: packets on a link, Figure 5.13(a) and Figure 5.13(b)

• orange: packets on a LAN Element, Figure 5.13(a)
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• red: dropped packets, Figure 5.13(b)

• circle lined: packets on air, Figure 5.13(c)

• combined: packets on a link depicted in reduced animation complexity, Figure 5.13(d)

(a) 3 Different Packet Types (b) Packet Hop and Drop (c) Packets on Air (d) Reduced Animation

Complexity

Figure 5.13: Packets

The packet movements can be extracted out of the VAT4Net trace file. One line equals one

hop from a node to another node. It further includes data from enqueue a packet on a queue

to receive a packet at a node or the drop event. The VAT4Net trace file also delivers the very

last action of a packet. This is important concerning memory consumption and time complexity

problems. After a packet has done its last action it can be removed from the animation and

needs no space in the heap anymore. It shows the chain of a packet. As example we look at

(a) Enqueue, t0 (b) Dequeue/Hop, t1=t2 (c) Receive, t3

Figure 5.14: Packet Movement - Packet with Packetid=3

a normal hop from one node to another (see Figure 5.14). First a packet is enqueued (in the

queue) at a time t0. That can be the first action of a packet or the first action of another hop

action. At a time t1 the packet will be dequeued from the queue. At this time t1 the packet

”enters” the link. This hop event takes place at time t2. More or less it is t1=t2. The packet

will be on this link until it is received from the destination node at time t3. While on the link

between the time t2 and t3 the packet is assumed to be on the same speed at every moment.

So it is possible to calculate the position of the packet for every time when it is on a link.
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Implementation Details

Different from the other update elements (from nodes, links etc.) the update event class

PacketUpdateElement has more importance. It implements the update(double time) method

itself. Further there are two different ways to show an animated packet, either as a circle

(PacketShape) or combined with other packets in reduced complexity mode (PacketsShape).

net.sf.vat4net.logic.Packet [A.36]: Both, the draw (Listing below 5.16, line 10-14) and

update method are dedicated in the same way to the PacketUpdateElement as it is possible that

one Packet instance is seen more than one time on the animation panel at the same time. This

behavior occurs for example when doing multicast or broadcast requests.

10 p u b l i c vo id draw ( Graphics2D g ) {
11 f o r ( i n t i = 0 ; i<u p d a t e E v e n t s . s i z e ( ) ; i ++){
12 ( ( Pa c ke tU p da t eE l em en t ) u p d a t e E v e n t s . g e t ( i ) ) . draw ( g ) ;

13 }
14 }

Listing 5.16: net.sf.vat4net.logic.Packet, Part of A.36

net.sf.vat4net.logic.PacketUpdateElement [A.37]: When invoking the update(double time)

method of a PacketUpdateElement, depending on the actual time there are different ways to

handle the packet. For example when the enqueue action is in time, the method handleEn-

queue(double time) is invoked (see Listing 5.17, lines 24-30 and 5.18, lines 69-71). In this

handle methods, the packet state is changed according to the action invoked at a defined time.

24 / / ENQUEUE

25 i f ( t ime >= t h i s . s t a r t T i m e ) {
26 i f ( ! t h i s . enqueued ) {
27 hand leEnqueue ( t ime ) ;

28 }
30 }

Listing 5.17: net.sf.vat4net.logic.PacketUpdateElement, Part of A.37

69 p r i v a t e void hand leEnqueue ( double t ime ) {
70 ( . . . ) / / do t h e han d l e a c t i o n s on a p a c k e t s t a t e

71 }

Listing 5.18: net.sf.vat4net.logic.PacketUpdateElement, Part of A.37

net.sf.vat4net.gui.animationpanel.PacketShape: This class implements the draw method

which defines the different looks of packet. This class is implemented similarly to the other

shapes occurring in the animation.

net.sf.vat4net.gui.animationpanel.PacketsShape: The PacketsShape class is connected

to a link. Each link has a instance of this class. When the animation is in reduced animation

complexity mode, each packet will be added to the appropriate instance. The PacketsShape

instance looks as shown in Figure 5.13(d). The more packets are on a link the wider is the grey

”packet”-bar.
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5.3.2 The Add-on Engine

This component of VAT4Net is responsible for all actions and functions in addition to the

animation of network simulations. Primarily this part is able to process statistical data, e.g.

end-to-end delay, packet loss rate and other Quality of Service characteristics. It is also possible

to add further functionality, e.g. a file downloader for remote trace files, a file uploader, a trace

file generator, etc., supporting the practical work on the laboratory.

For example when generating trace files on a remote computer there is no way to down-

load this trace file or a part of it with the Mindterm Java applet from the laboratory computer.

This could be a nice add-on beside of the statistical plugins.

The Plugin Architecture

Figure 5.15: VAT4Net Plugin Architecture - workflow of the plugin engine.

The analysis and add-on engine is implemented to support modular implementation of various

plugins. The plugins are implemented as modular packages with predefined interfaces to the

VAT4Net application.

The workflow of the plugin-based functionality is shown in Figure 5.15. In a first step

the user has to select a plugin from the ”Plugin” menu (Figure 5.7). The plugin and the

corresponding plugin menu are activated (Figure 5.15, step 1). As soon as the plugin is
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activated, the user has to apply settings required by the plugin and to select the preferred

action the plugin provides (Figure 5.15, step 2). As soon as all user required inputs are

successfully done, the plugin starts calculation and preparation and delivers the data to

the user. If the application runs as a monolithic system the plugin’s process is executed

on the local computer. Otherwise, if VAT4Net is running in server-client mode the plugin

calculation process is executed on the server. For statistical plugins the VAT4Net trace file

is in most cases the data source for calculating and preparing the output (Figure 5.15, step

3). The details on this process are described by an example plugin following later in this chapter.

As soon as the calculation and preparation process is completed, the plugin delivers the

results to the VAT4Net application (Figure 5.15, step 4). The data is visualized in the ”Statistic

and Plugin Panel” (see Figure 5.5) or the action can be completed by the user (e.g. saving the

trace file on the local computer). This last step (step 5) is shown in Figure 5.15.

Implementation Details

When the VAT4Net Application is started, the plugin list is loaded and shown in the plugin

menu. When a plugin is selected from the menu the appropriate ActionListener implemented

in the plugin itself is invoked (Listing 5.19, line 30-35). The example listings are taken from

the Delay Plugin which is described below. All further implementation details are listed in the

paragraph ”An Example Plugin”.

26 p u b l i c JMenu getAct ionMenu ( ) {
27 S t r i n g name = D e l a y P l u g i n . c l a s s . getName ( ) ;

28 JMenu menAction = new JMenu ( name . s u b s t r i n g ( ( name . indexOf ( ’ . ’ ) >

0) ? name . indexOf ( ’ . ’ ) : 0 ) ) ;

30 endToEndDelayItem = new JMenuItem ( ”End−to−end d e l a y ” ) ;

31 endToEndDelayItem . a d d A c t i o n L i s t e n e r ( new A c t i o n L i s t e n e r ( ) {
32 p u b l i c vo id a c t i o n P e r f o r m e d ( A c t i o n E v e n t e ) {
33 c a l c D e l a y (END TO END) ;

34 }
35 } ) ;

36 menAction . add ( endToEndDelayItem ) ;

37 ( . . . )

38 re turn menAction ;

39 }

Listing 5.19: net.sf.vat4net.plugin.DelayPlugin, Part of A.38

net.sf.vat4net.io.PluginLoader [A.39]: The method getPluginList() (Listing 5.20) is in-

voked at the startup of VAT4Net. It loads all plugins listed in the plugins.properties file (e.g.

net.sf.vat4net.plugin.DelayPlugin).
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9 p u b l i c A r r a y L i s t g e t P l u g i n L i s t ( ) {
10 URL l i s tURL = F i l e L o a d e r U t i l . createURL ( ” p l u g i n s . p r o p e r t i e s ” ) ;

11 ( . . . )

12 P r o p e r t i e s p l u g i n s F i l e = new P r o p e r t i e s ( ) ;

13 p l u g i n s F i l e . l o a d ( l i s tURL . openSt ream ( ) ) ;

15 f o r ( Enumera t ion keyEnum = p l u g i n s F i l e . keys ( ) ; keyEnum .

hasMoreElements ( ) ; ) {
16 S t r i n g key = ( S t r i n g ) keyEnum . n e x t E l e m e n t ( ) ;

17 C l a s s p l u g i n C l a s s = t h i s . g e t C l a s s ( ) . g e t C l a s s L o a d e r ( ) .

l o a d C l a s s ( key ) ;

18 p l u g i n s . add ( p l u g i n C l a s s . n e w I n s t a n c e ( ) ) ;

19 }
20 ( . . . )

21 re turn p l u g i n s ;

22 }

Listing 5.20: net.sf.vat4net.io.PluginLoader, Part of A.39

An Example Plugin

The implemented Delay plugin which calculates the end-to-end delay between two selected

nodes is described in detail. After loading a trace file into the animation engine, this trace file

is also available for the Delay plugin. The user selects two nodes in the ”Animation Panel”

on which he prefers to calculate the end-to-end delay. The calculation of the end-to-end delay

is derived as described in the Section 7.4.3. The plugin calculates the statistical values and

delivers it to the ”Statistic and Plugin Panel” (Figure 5.16). The data is then shown in a chart

with the simulation time as x-coordinate and the delay as y-coordinate. The chart is drawn with

the help of the additional framework JFreeChart [18]. The framework is distributed under the

terms of the GNU Lesser General Public Licence (LGPL). The framework is available for all

other plugins too. It is included in the VAT4Net application.

Implementation Details

The implementation of all other plugins is similar to the implementation of the Delay Plugin.

The process is described as follows:

net.sf.vat4net.plugin.DelayPlugin [A.38]: The class DelayPlugin is the main class of

the Delay Plugin. As soon as the plugin is started from the menu, the method calcDelay(int

type) is invoked. A command is send out to start the calculation thread on the server (Listing

5.22, line 53). Otherwise the calculation thread is started immediately (Listing 5.22, line 59).

The calculateEndToEnd(...) method prepares all data required for the method show-

Stat(Object statsData) (Listing 5.21, lines 64-82). The required object for this method is either

received from the server or already available from the application.
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64 p u b l i c vo id s h o w St a t ( O b j e c t s t a t s D a t a ) {
65 i f ( s t a t s D a t a i n s t a n c e o f L i s t ) {
66 X Y S e r i e s C o l l e c t i o n d a t a s e t = new X Y S e r i e s C o l l e c t i o n ( ) ;

67 XYSeries s e r i e s 1 = new XYSeries ( ” F i r s t ” ) ;

68 double d a t a [ ] [ ] =( double [ ] [ ] ) ( ( L i s t ) s t a t s D a t a ) . t o A r r a y ( new

double [ 2 ] [ ( ( L i s t ) s t a t s D a t a ) . s i z e ( ) ] ) ;

69 f o r ( i n t i = 0 ; i< d a t a [ 0 ] . l e n g t h ; i ++){
70 s e r i e s 1 . add ( d a t a [ 0 ] [ i ] , d a t a [ 1 ] [ i ] ) ;

71 }
72 d a t a s e t . a d d S e r i e s ( s e r i e s 1 ) ;

73 J F r e e C h a r t c h a r t = C h a r t F a c t o r y . c r e a t e S c a t t e r P l o t (

74 / / c h a r t s e t t i n g s

75 ( . . . )

76 d a t a s e t ,

77 ) ;

78 c h a r t P a n e l = new C h a r t P a n e l ( c h a r t , f a l s e ) ;

79 t h i s . r e f r e s h C o m p o n e n t ( c h a r t P a n e l ) ;

80 t h i s . c a l c u l a t e S t a t i s t i c T h r e a d = n u l l ;

81 }
82 }

Listing 5.21: net.sf.vat4net.plugin.DelayPlugin, Part of A.38

46 i f ( mainFrame . g e t D a t a S o u r c e ( ) i n s t a n c e o f P a r s e r S t u b ) {
47 i f ( t y p e == END TO END) {
48 t h i s . t i t l e = ”End t o End Delay ” ;

49 L i s t . c l a s s . c a s t ( t h i s . r e t u r n T y p e ) ;

50 }
51 ( . . . )

53 ( ( P a r s e r S t u b ) mainFrame . g e t D a t a S o u r c e ( ) ) . s e n d S t a t i s t i c R e q u e s t

( t h i s , S t r i n g . va lueOf ( t y p e ) , ( ( Node ) s e l e c t e d N o d e s . g e t ( 0 ) ) .

getNodeID ( ) +” , ” + ( ( Node ) s e l e c t e d N o d e s . g e t ( 1 ) ) . getNodeID ( )

) ;

54 }
55 / / The c a l c u l a t i o n i s done one t h e l o c a l computer

56 e l s e {
57 i f ( t y p e == END TO END) {
58 t h i s . t i t l e = ”End t o End Delay ” ;

59 t h i s . c a l c u l a t e ( ( F i l e ) mainFrame . g e t D a t a S o u r c e ( ) , type , ( (

Node ) s e l e c t e d N o d e s . g e t ( 0 ) ) . getNodeID ( ) +” , ” + ( ( Node )

s e l e c t e d N o d e s . g e t ( 1 ) ) . getNodeID ( ) ) ;

60 }
61 ( . . . )

62 }

Listing 5.22: net.sf.vat4net.plugin.DelayPlugin, Part of A.38

In the last step the ”Statistic and Plugin” panel is refreshed (Listing 5.21, lines 78-79) and the

user receives the resulting plugin output.
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Figure 5.16: VAT4Net Delay Plugin Example - End-to-End Delay

5.4 Performance Evaluation

The first prototype version of VAT4Net suffered from high memory consumption. The first

problem was the loading process of a whole simulation. Loading a trace file completely requires

a lot of memory depending on the duration and level of detail of the chosen simulation. Trace

files bigger than 64MB could not be animated in VAT4Net. In a new development phase the

process of loading was changed from loading all at once into a streaming like process with

buffering required and releasing old data. This reduces the memory consumption and solves the

problem.

Test Scenario - Changing the Buffer Size

In order to test the effects of the buffer size on the whole animation process the sum of delays to

calculate one time step were measured. In detail the test has been executed as follows:

• Test computer: Intel Pentium M 1.6 GHz, 512 MB RAM, Windows XP

• Test file: ∼69MB, 172’018 lines, VAT4Net trace file format, simulation with 16 wired

nodes

• Frames per Second (FpS): constant, 10 FpS

• Time Steps: variable; 0.1,0.5,1.0 seconds

• buffer size: variable; 1’000, 15’000, 20’000, 37’500, 50’000, 75000

• Delay (of animation steps): If the time used to calculate and to repaint one animation

step is greater than the specified period of time (1000/FpS), the step is counted as delayed.
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Figure 5.17: VAT4Net - Delay in subject to the buffer size

• Delays: Amount of delays (of animation steps) occurring at an animation of a simulation

The resulting delays of each test are shown in Figure 5.17. When starting the animation with

the buffer size of 75’000 there was a java.lang.OutOfMemoryError in the Java heap space

(when a OutOfMemoryError occurred in the test case, the amount of delays was set to 100).

Further the test scenario with a time step of 1 second (green line) shows, that big time steps

cause a high amount of delays. When doing big time steps there is a lot of simulated data to

calculate between two steps, independent of the size of the buffer. Big time steps require more

computational time than smaller steps.

Otherwise when doing small animation steps (0.1 second - blue line), the buffer size

plays an important role when talking about the animation flow. The less delays an animation

process has, the better the animation flow is. Therefore, a buffer size of 37’000 would be the

best matching for the test scenario.
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Chapter 6

Virtual Network Simulation

6.1 IRNSI - Internet Remote Network Simulator Infrastructure

The laboratory part of the e-learning infrastructure provided by EuQoS consists of three main

components, the laboratory computers itself (see Figure 6.2) with ns-2 and VAT4Net as the

main applications, the resource management server and the laboratory portal server. Generally

it is not dictated by the e-learning system how this three parts have to look like. In the scope

of the project, the Computer Networks and Distributed Systems research group (RVS) from the

University of Bern has proposed a possible solution in the form of the Internet Remote Network

Simulator Infrastructure (IRNSI) [6].

IRNSI provides a fully web accessible laboratory for network simulations including reservation

system, laboratory portal server and laboratory computers. It offers a way to implement and

integrate hands-on sessions based on network simulations into an existing e-learning course

platform. There are several EuQoS modules using IRNSI for the hands-on sessions. There is

nearly no constriction in extending IRNSI with other laboratory setups. It would be easy to

substitute the Network Simulator (ns-2) with another network simulation software.

6.2 ns-2 Platform

The actual laboratory resides on a system (Fig. 6.2, Part 3), where multiple instances of

an operating system can be run under User-Mode Linux (Fig. 6.2, Part 4). Each of this

instances acts as a laboratory seat used by one user, who has a time-slot reservation. This

setup facilitates a completely separated, stand-alone working environment for each user with

the possibility to resume work in a later time-slot or after all to reset the laboratory to initial state.

User-Mode Linux (UML) allows multiple sand-boxed virtual instances of Linux to run as

a stand-alone application on the Linux host system. When accessing the hands-on session for

the first time, a standard predefined image of a User-Mode Linux instance is loaded and the

client gets a blank and clean laboratory seat.
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For the module ”Implementing Protocols on Network Simulators”, the standard Linux image

contains the following parts:

• Standard Linux software (vi)

• Pre-compiled ns-2 Version 2.29 inclusive examples and source code delivered with ns-2

• C++ Compiler (gcc version 3.3.5)

• Template files for hands-on sessions

With some basic Unix/Linux and enhanced C++ knowledge and the theory part of the module,

the learner should successfully pass the hands-on session of the module.

To allow a resuming of the work done on the laboratory during earlier sessions, a so-

called Copy-On-Write (COW) file is stored for each user. The COW file contains all changes

done by the user, such as newly generated files, system setting and changes to software, for

example a recompiled ns-2 instance as it is needed in the module. The COW file in association

with the write protected predefined UML image forms the current state of one user’s laboratory

work. Each user can reset his own laboratory seat into its initial state, but he is not able to step

back or choose a mid session’s state.

Interaction with the ns-2 Platform

IRNSI offers different accessing and communication methods (see Fig. 6.1) to interact with

the laboratory. Each of these methods allows the user to interact with the laboratory without

any special software requirements. In Table 6.1 the requirements of the main communication

methods used in the module ”Implementing Protocols on Network Simulators” are described.

The requirements have to fulfill the requirements defined in the Design and Didactics Guide

[11].

Application Connection Technology Requirements

Laboratory Portal(Figure

6.1, Part 1)

Authentication and Authorization via

AAI Secure Sockets Layer (SSL)

Web Browser with Java

Plugin

Mindterm Java Applet

(Figure 6.1, Part 2)

SSH Java Virtual Machine

(JVM)

VAT4Net Java Applet

(Figure 6.1, Part 3)

SSH (Remote Port Forwarding, SSH

Tunnel)

JVM

Table 6.1: IRNSI Communication Methods - Connection Technology and Requirements

The Mindterm Java applet [19] is a widely used client that implements the SSH1 and

SSH2 protocols written in pure Java. The SSH applet is used to connect the user with the

laboratory ”seat”, that means in fact to the command line of the UML instance the user is

assigned to. In detail, the user logs to the Laboratory Portal Server with the SSH applet, where
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Figure 6.1: ns-2 Platform - showing the different interaction possibilities with the Platform.

he is automatically forwarded to the command line of the assigned UML instance and logged

in there as root by automatic SSH key exchange. The login process onto the Laboratory Portal

is accomplished by the applet parameters of the Mindterm applet and the fact that the whole

system works with AAI single sign login. There is no login action required from the student.

The application VAT4Net and its connection possibilities with the ns-2 Platform are de-

scribed in detail in Chapter 5, while the details on the Laboratory Portal implementation will be

published in another Diploma thesis.
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Accessing the ns-2 Platform Step-by-Step

1. Different Clients (Students, Learners) want to work on their hands-on sessions.

2. After Clients have the access rights to the Lab Portal Server, they are able to start with

their work on the laboratory.

3. On the Testbed computer the laboratory is running. Imagine it as a classic laboratory

with several seats.

4. The UML Instances as the client’s own laboratory seat is playing the role of a stand-

alone computer.

Figure 6.2: ns-2 Platform - System Architecture of the platform with different entities (multi-user access)

and its collaboration.
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Chapter 7

Module - Implementing Protocols on

Network Simulators

7.1 Introduction

In the module ”Implementing Protocols on Network Simulators”, students get a theoretical

overview of network simulation concepts. The different concepts are explained and classified.

Advantages and disadvantages are discussed. The most common network simulators and details

Figure 7.1: Module Logo

of implementing simulations (especially protocols) in Network Simulator (ns-2) are introduced

to the student in the theoretical part. The development of a protocol in ns-2 is described

step-by-step. In the theory chapters knowledge to successfully pass the hands-on exercises is

acquired.

In order to successfully pass the module some basic knowledge is required:

• Basic knowledge of the script language ”Tool command language” (Tcl) (knowledge of

variable use, arrays and control structures, handle classes and objects).

• Basic knowledge of C++ (object-oriented concept knowledge, awareness of data types,

pointers, structures, functions and control structures).

• Basic knowledge of Linux/Unix environments for the hands-on exercises (handle simple

text editor, e.g., vi Editor, main shell usage and basic Makefile editing).
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7.2 Structure of the Module

The module is divided into four main parts beginning with the introduction, going on with the

theory part, the practical part and at the end the examination part. The chapters are composed as

follows:

1 I n t r o d u c t i o n

1 . 1 Welcome

1 . 2 The Goals and how t o Reach Them

1 . 3 Module V i c i n i t y

1 . 4 My Goals

1 . 5 T ips

1 . 6 FAQ

2 Theory

2 . 1 T h e o r e t i c a l B a s i c s

2 . 2 Read ings

2 . 3 P e r s o n a l S y n t h e s i s

2 . 4 S e l f T e s t

2 . 5 Quiz

3 Knowledge A p p l i c a t i o n / E x p l o r a t i o n

3 . 1 I n t r o d u c t i o n

3 . 2 Hands−on S e s s i o n

4 Prove Your Knowledge and S k i l l s

4 . 1 P e r s o n a l S y n t h e s i s

4 . 2 F i n a l Quiz

4 . 3 Survey

Listing 7.1: Module Chapter Overview

The content and design of each module chapter is defined in the ”EuQoS Didactics and Design

Guide”, [11].

7.3 Module Chapter - Introduction

7.3.1 Structure

The Introduction chapter introduces the topic of the module and provides some useful stuff

as the Frequently Asked Questions (FAQ) section, tips and tricks, the contact address of the

tutor, position of the module within the other modules and a first survey about the learner’s

expectations (see Listing 7.1).

7.3.2 Content

Motivation

”Implementing and setting up proper network simulation environments eliminates the need of

speculation in network planning and developing”, [20].
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Rapidly growing networks, for example the Internet, have a great demand on newly de-

veloped technologies and on the enhancement of the older ones, but the implementation of new

protocols and algorithms without accurate testing scenarios is potentially dangerous and not

recommended. Real-world test beds for large topologies are cost-intensive. Therefore network

simulations become the preferred tool for system administrators and scientists.

Goals

The section ”Goals” describe the learning goals for the student. They are part of the didactics

framework of the EuQoS course. After working through the module ”Implementing Protocols

on Network Simulators”, each participant

• can provide a short explanation of the benefit of using simulators in the network research

area,

• will be able to set up a network simulation environment to fulfil the particular needs in

research activities,

• will know the basics of the most common open source and commercial network simulators

and their different concepts and will be able to differentiate between the advantages and

disadvantages of a network simulator and choose the right option for different issues,

• will know how to set up an ns-2 simulation scenario and how to run a simulation,

• is able to implement a routing protocol in ns-2,

• and will be competent in analyzing the simulation results and will be able to make of the

resulting conclusions.

7.4 Module Chapter - Theory

7.4.1 Structure

The theory part corresponds to Section 2 of the module and is divided into 5 subsections: The-

oretical Basics, Readings, Personal Synthesis, Self Test and Quiz. The structure and content of

subsection 2.1 - 2.5 (see Listing 7.1) are implemented according to the EuQoS Didactics and

Design Guide ([11], page 64 ff.). After working through the theory part each student should be

able to pass the practical exercises in Section 3 and 4.

7.4.2 Structure of the Section ”Theoretical Basics”

”Everything that is essential for the laboratory must be mentioned in this section. It can be

assumed, that the participants have a strong knowledge in computer science or have a similar

technical background”, [11].
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Figure 7.2: Module Content Overview

The theory chapter (Section 2.1 in the module) is divided into seven subsections:

2 . 1 T h e o r e t i c a l B a s i c s

2 . 1 . 1 Main S i m u l a t i o n Terms and Concep t s

2 . 1 . 2 Network S i m u l a t i o n

2 . 1 . 3 Use of Network S i m u l a t i o n i n R e s e a r c h

2 . 1 . 4 Common Network S i m u l a t o r S o f t w a r e

2 . 1 . 5 ns−2

2 . 1 . 6 Implemen t ing P r o t o c o l s w i th ns−2

2 . 1 . 7 A n a l y s i n g and V i s u a l i s i n g ns−2 Network S i m u l a t i o n s

Listing 7.2: Module Chapter Overview

7.4.3 Content of the Section ”Theoretical Basics”

Main Simulation Terms and Concepts

Computer simulation is an approach to design a model of an actual or theoretical system by

substituting real objects, executing the model on a computer and analyzing its output. The most

important aspect is the possibility to modify and run a simulation in different ways, keeping

the costs low. This newly gained experience about model behavior can help in deploying new
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technologies and improving existing ones. Simulation is used in various research departments

such as Economics, Social Science, Engineering and Computer Science, in areas ranging from

flight simulators to earthquake analysis and weather forecasting.

The Simulation Process

The hardest part in simulation is to model real-world systems into an understandable state for

the simulator. Good simulation models are difficult to design and maintain. Therefore, it is

important to have various simulation tools.

Validation is the process of assuring that a model simulation generates meaningful an-

swers to the questions being investigated. Models are often approximations or abstractions

from reality. Validation is the method to show that these approximations and abstractions are

justified. Before validating the required simulation, it is necessary to point out the ”ground

truth”: Small-model simulations can be compared with real-world implementations in its detail,

whilst large ones can simulate well known expected phenomena in general. The memory

consumption and simulation run time of large scale simulations limits the level of detail.

Types of Simulation

Figure 7.3: Types of Simulation, [21]

Computer simulations are divided into two main categories: discrete-events and continuous

simulations (see Figure 7.3). In continuous simulations the quantities are represented by contin-

uous variables, whereas in discrete simulation systems quantities of interest are represented by

discrete-valued variables.

The dynamics of a discrete simulation can be considered as a sequence of events at dis-

crete time points. As a third type of simulation, the Monte Carlo simulation is related to

discrete-event simulation, which is commonly used to model stochastic systems. ”Monte Carlo
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methods are a widely used class of computational algorithms for simulating the behavior of

various physical and mathematical systems, and for other computations”, [22]. Monte Carlo

simulators usually make use of random numbers to model non-deterministic parts in order

to simulate the system. Continuous simulations are implemented numerically by differential

equations. The simulation program solves all the equations periodically.

For large-scaled simulations hybrid approaches have emerged as viable solutions, where

parts are implemented as discrete simulations and other less important parts as continuous

simulations. With hybrid simulation strategies it is possible to save a significant amount of

computational performance in contrast to discrete-event strategies, especially for simulations

with heavy traffic [23].

This simulation types can be executed either in parallel or serially. Parallel simulations

have the advantage of faster simulation and shorter execution time, but are more difficult to

implement.

Network Simulation

The rapid changes and growth of computer networks has spurred a lot of new development

in new protocols and algorithms. New requirements in security, mobile networking, policy

management and QoS support issues have become necessary. The main strengths of simulations

lie in the ability to imitate complex real world problems and to analyze the behavior of a system.

Simulation in a general network simulation is a hard topic and not easy to handle. A

main problem is the fact that a computer network is composed of many nodes such as routers,

switches and hosts, making the modeling part of the simulation process a non-trivial task. There

are certain decisions to make at the beginning or the simulation process:

1. What are the facts the simulation should show or prove?

2. Which are the important parts that should be investigated?

3. Which simulator provides the best possibilities to model the system?

4. Is the simulation accurate enough in order to use the results for research?

There are a lot of different methods to simulate computer networks, such as the parallel/dis-

tributed and the serial execution of simulation, or the tracking method of packets in fluid, packet

and hybrid simulation models.

Parallel/distributed versus serial simulations

Parallel or distributed simulation refers to the execution of simulation programs on multiproces-

sor systems or networks of workstations. The primary goal of parallel/distributed simulations is

to obtain higher performance.
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The following further goals can be achieved through parallel/distributed simulations:

1. Reduced execution time. By subdividing a large simulation into small simulation parts,

the execution time can reduced by a factor equal to the number of processors.

2. Geographical distribution. With the geographical distribution it is possible to simulate

travel expenses from one node to another.

3. Fault tolerance, reliability. Use of multiple processors as backup systems.

Packet-, Fluid-Based and Hybrid Model Simulation

Discrete-event simulations are used extensively for protocol design and evaluation. Discrete-

event simulations representing a system by a collection of states and a set of events that describe

state changes. In this method of modeling networks, the simulator has information about each

packet generated and is aware of the path that the packet has to cover. Each packet is tracked

individually on each link, in each queue and at each data source and sink. Packet losses are

computed deterministically. In the fluid model approach for network’s data or packets, flows are

Simulation Model Advantage and Disadvantages

Packet-Based + finite changes of state

+ trivial mathematical models

+ exact analysis for event

+ exact modeling of circumstances

- limitation of size of the simulation

- high memory and processor consumption

Fluid-Based + computational efficiency

- reduced accuracy

- high loss of information

- lot of estimated or average values

- Ripple Effect

Table 7.1: Comparison of Packet- and Fluid-Based Simulation Model

modeled as fluid flowing through pipes rather than discrete packet instances. A fluid simulator

keeps track of the fluid rate changes at traffic sources and network queues. The flows are

characterized by a set of mathematical models (often differential equations). Since a large

number of packets are abstracted as a single flow, the computational overhead is expected to be

relevant. The fluid approach is often used to show bottlenecks in networks when doing flow

analysis. A known problem in fluid models is the ripple effect. The ripple effect describes

the situation where the propagation of rate changes leads to rate changes in other flows which

then need to be propagated [24] which limits scalability [25]. Further problems of packet and

fluid-based simulations are listed in the Table 7.1.
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Hybrid Models try to connect the positive parts of the two preceding models, the packet

and the fluid model. A hybrid model has better computational efficiency than the packet-based

model and is more accurate than the fluid based model.

Different Ways to speed up Simulation

A main issue in network simulation research is to find more efficient simulation techniques to

speed up simulation processes (see Figure 7.4). Simulation can be speed up by using com-

Figure 7.4: Speed up Simulation, [26]

puters with more computational power (faster CPU, multiprocessor system). New simulation

algorithms can enhance simulations. A third approach is to reduce the complexity of network

simulation by modeling in a more abstract way.

Use of Network Simulation in Research

In the past few years, networks have become too large to do easily real-world experiments and

too complicated to analyze them with mathematical methods. Even if analytical methods are

available, network simulation is often used to validate the analysis. Furthermore, requirements

in network research such as security, mobile networking and quality-of-service have been

changing a lot. Simulation has turned out to be an increasingly need and is now used for

miscellaneous problems in network research.

Simulations provide methods to investigate newly developed protocols and their behavior,

performance, interaction with other protocols, validation, feasibility and to remove points

of uncertainty. It is easy and cost saving to evaluate design alternatives in different system

configurations. Network simulators are often used when real-world systems are not available
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for testing. This fact emerges when network systems are busy or in security mode, which does

not allow to test the scenarios.

A further method to use simulations is to combine real systems and virtual simulated

systems together. In most cases the real systems are substituted with emulated parts which

are cheaper more often than not. Network emulation allows integrating real behavior into the

synthetic simulation environment [27].

In Table 7.2 a short comparison of simulation and real world testing of network concern-

ing issues is shown.

Simulation Reality

Reproducibility + easy - difficult

Network Traffic - simulated + real

Simplification - high abstraction + no abstraction

Scenario creation + easy - complex

Scalability + high - minor

Costs + cheap - costly

Duration - computational time + realtime

Table 7.2: Comparison of Reality and Simulation

Simulation for Education Purposes

Network simulation has obvious advantages over a real network for education purposes. Ed-

ucational tasks can potentially cause quite a few problems in a live network, but a simulated

environment is not endangered by inexperienced operators. In such an environment one has the

freedom to experiment, knowing that any problems that mistakes or experiments might cause

do not matter. With a simulator, training can be more thoroughly prepared and requires less

supervision by the educators.

Common Network Simulator Software

Multi-Protocol network simulators provide substantial benefits such as:

• improved validation of existing protocols

• an infrastructure for developing new protocols

• easier comparison of results

In the module the focus is on the ns-2 network simulator, but nevertheless a few other network

simulators are described in a more abstract way in the next few lines.
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GloMoSim and Qualnet

GloMoSim [28] is a scalable, discrete event simulation library that support studies of large-

scale network models, up to millions of nodes, using parallel and distributed execution.

The primary use of GloMoSim is the simulation of wireless and wired networks systems.

GloMoSim is a library for the C-based parallel discrete-event simulation language PARSEC.

GloMoSim is implemented depending on the OSI layered approach. The standard API specifies

parameter exchanges and services between neighboring layers. A number of protocols are avail-

able at each layer, and models of these protocols or layers can be used at different levels of detail.

GloMoSim is freely available for education, research or non-profit organizations, whereas

QualNet [29] is the commercial version of GloMoSim. QualNet provides a wider range of

models and protocols for both wired and wireless networks (local, ad hoc, satellite and cellular)

and has a better support for mixed (wired and wireless) network simulations. QualNet is

delivered with a very good analysis and visualization tool. It provides trace and statistic file

output. A further advantage is the possibility of rapid GUI-based model design.

JiST/SWANS

JiST is a high-performance discrete event simulation engine that runs over a standard Java

virtual machine. The JiST system architecture consists of four distinct components: a compiler,

a byte code rewriter, a simulation kernel and a virtual machine. One writes JiST simulation

programs in plain, unmodified Java and compiles them to byte code using a regular Java

language compiler. These compiled classes are then modified, via a byte code-level rewriter, to

run over a simulation kernel and to support simulation time semantics. The entire simulation

can be run within a standard Java virtual machine (JVM).

SWANS [30] is a scalable wireless network simulator built atop the JiST platform. SWANS

is composed of independent software components that form complete wireless network of

sensor network configurations following the OSI model. Its capabilities are similar to ns-2

and GloMoSim. Further performance comparisons show that SWANS is able to simulate even

larger networks.

Scalable Simulation Framework (SSF) and SSFNet

The quality of a network simulator depends strongly on its scalability. SSF (Scalable Simulation

Framework) offers a plurality of different simulation technologies which are enclosed in

the simulation kernel and provides an easy programmable interface, the SSF Application

Programming Interface (SSF API) for different module development. For module configuration

SSF uses its own language, the Domain Modeling Language (DML).

SSFNet [31] is available for network simulation. SSFNet is an enhancement of Raceway,

the Java based SSF implementation.
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OMNeT++

OMNeT++ [32](Objective Modular Network Testbed in C++) is an object-oriented modular

discrete event simulator built on C++ foundations. It offers C++ simulation class library and

GUI support (editing and animation). OMNeT++ provides component architecture for models.

Components (modules) are programmed in C++ and then assembled into larger components

and models using a high-level NEtwork Description language (NED).

The INET Framework on top of OMNeT++ contains implementations IPv4, TCP, UDP

protocol implementations and some application models. The list of protocols implemented by

INET is growing.

Network Simulator ns-2

ns-2 (ns-2) [33] is an object-oriented discrete-event simulator and includes a large number of

applications, protocols, different network types, network elements and traffic models. The

development is part of the Virtual InterNetwork Testbed (VINT) project [34]. The project aims

in building a network simulator that offers innovative methods and tools. The main idea of ns-2

is to unify the effort of network simulation research.

ns-2 is well-suited for packet switched networks and is used mostly for small scale simu-

lations of queuing algorithms and transport protocol congestion control. It provides support for

various implementations of TCP, routing, multicast protocols, link layer and MAC.

The Language Concept

Rather than use a single programming language that defines a monolithic simulation, ns-2

works with different programming models.

There are two class hierarchies used. On the one hand, tasks such as low-level event

processing or packet forwarding through a router, requiring high performance and efficiency.

These tasks are best served by an implementation in a compile language as C++, called the

compiled hierarchy. C++ is fast to run but slow to modify. On the other hand, the interpreted

scripting language Tcl (OTcl), called the interpreted hierarchy, provides a flexible and interac-

tive ways to define particular network topologies, dynamic configuration of protocol objects

and the specification and placement of traffic sources and also the output form of the simulated

model.

In a nutshell C++ implements the simulation kernel, the core parts of high-performance

primitives and Tcl scripting language expresses the definition, configuration and control of the

simulation.
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The Hierarchical Structure

The simulation is configured, controlled and operated through the interface provided by Tcl’s

class ”Simulator”. This main class provides methods for creating and managing the topology,

initializing the traffic and choosing the scheduling method.

Figure 7.5: Packet Cycle on Node and Link in ns-2

Topology elements are created with the simple primitives ”node” and ”link”. The function of

a node is to receive a packet and map it to the relevant outgoing interface (see Figure 7.5).

This is done by classifier objects. A unicast node (default node) has an address classifier that

does unicast routing and a port classifier. A multicast node has a classifier that differs multicast

packets from unicast ones and a multicast classifier that performs multicast routing. Agents are

endpoint components of a node where network-layer packets are constructed or consumed.

A link is another major component in ns-2 and is characterized via delay and bandwidth.

Links are built as connector objects. The data structure represents a link by a queue connector

objects. Such connectors receive packets, perform a function and either send the packet to the

next connector or drop the packet.

66



ns-2 Preliminaries

To execute a simulation, a Tcl script is needed. There are a few basic commands, which will

be needed in every simulation. This first script does not execute any simulation process but

provides a basic template for further use (see Listing A.1 for the complete file).

A ns-2 simulation Tcl script always starts with a first command, which sets a new in-

stance of the Simulator class of ns-2 (7.3, line 1). Afterwards, the format and output direction

of trace files is set by declaring the output file names (7.3, lines 4, 8) and the simulator is set to

trace all events into the two different formats (7.3, lines 5, 9).

To set the simulation run time, the simulator instance is assigned to execute the ”finish”

procedure after a certain amount of seconds (7.4, line 11). The finish procedure (7.4, lines

13-20) first clears the trace buffer, closes the trace files, executes the Network Animator (nam)

and exits the ns application.

1 s e t ns [ new S i m u l a t o r ]

3 # Open Trace F i l e

4 s e t t r a c e f i l e [ open o u t . t r w]

5 $ns t r a c e −a l l $ t r a c e f i l e

7 #Open t h e NAM Trace F i l e

8 s e t n a m f i l e [ open o u t . nam w]

9 $ns namtrace−a l l $ n a m f i l e

Listing 7.3: ns-2 Preliminaries, Part of A.1

11 $ns a t 125 .0 ” f i n i s h ”

13 p roc f i n i s h {} {
14 g l o b a l ns t r a c e f i l e n a m f i l e

15 $ns f l u s h − t r a c e

16 c l o s e $ t r a c e f i l e

17 c l o s e $ n a m f i l e

18 exec nam o u t . nam &

19 e x i t 0

20 }
22 $ns run

Listing 7.4: ns-2 Preliminaries, Part of A.1

When the simulation model is defined completely, the simulator can be run (7.4, line 22).

Nodes,Links and Traffic

The next few steps generates a network topology understandable for the simulator ns-2. The

topology will contain four nodes on which one node is the router and two nodes send data to the

fourth node through the routing node (see Listing A.2 for the complete file).
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Nodes: Lines 22-26 in 7.5 create four instances of the class Node.

22 # C r e a t e f o u r nodes

23 s e t n0 [ $ns node ]

24 s e t n1 [ $ns node ]

25 s e t n2 [ $ns node ]

26 s e t n3 [ $ns node ]

Listing 7.5: ns-2 Nodes Links and Traffic, Part of A.2

Links: Lines 28-31 in Listing 7.6 create three instances of class duplex-link connecting the

nodes with 10 ms propagation delay and a capacity of 10 Mb/sec for each direction. To define a

unidirectional link instead of a bi-directional link, simplex-link should be used instead of duplex-

link. In ns-2 an output queue of a node is defined in the link. The output queue of node n0 is

defined as DropTail Queue. Other queue objects derived from the base class Queue are Fair

Queuing(FQ), Stochastic Fairness Queuing (SFQ), Deficit Round-Robin (DRR), Random Early

Detection (RED) and Class Based Queueing (CBQ) (see Chapter 7.3 in the ns manual [35])

queue objects.

28 # C r e a t e l i n k s between t h e nodes

29 $ns duplex−l i n k $n0 $n2 1Mb 10ms D r o p T a i l

30 $ns duplex−l i n k $n1 $n2 1Mb 10ms D r o p T a i l

31 $ns duplex−l i n k $n3 $n2 1Mb 10ms D r o p T a i l

Listing 7.6: ns-2 Nodes Links and Traffic, Part of A.2

Traffic: There are different traffic sources:

TCP is a connection-oriented protocol. It uses acknowledgements created by the destination to

know whether packets are received or not. The TCP connection is defined in line 34 in 7.7 and

is connected to node n0 in line 35 in 7.7. TCP’s parameters with fixed default values can be

changed as an example in line 37 in 7.7 where the standard packet size of 1000 bytes is changed

to 552 bytes.

34 s e t t c p 0 [ new Agent / TCP]

35 $ns a t t a c h −a g e n t $n0 $ t c p 0

36 $ t c p 0 s e t f i d 1

37 $ t c p 0 s e t p a c k e t S i z e 552

Listing 7.7: ns-2 Nodes Links and Traffic, Part of A.2

Once the TCP connection is defined, the FTP application is connected to the TCP connection

(7.8, lines 39-41).The next lines (7.8, lines 43-47) define the behavior of the destination node

of the TCP connection. The TCPSink agent has an active role in the protocol. It generates

acknowledgements packets. In line 47 of Listing 7.8 the two agents are connected each other.

Similar to the TCP setup, the next lines 49-64 in 7.8 create a UDP connection between

node n1 and node n3. Since UDP is a connection-less protocol it is enough to generate a null

agent in line 62 in 7.8. As the application a Constant Bit Rate (CBR) with the parameters set to
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a packet size of 1000 bytes and 200 packets per second is selected. The random option in line

59 is a flag indicating whether or not to introduce random noise additionally to the scheduled

transmission.

39 # Se tup a FTP ove r TCP c o n n e c t i o n

40 s e t f t p 0 [ new A p p l i c a t i o n / FTP ]

41 $ f t p 0 a t t a c h −a g e n t $ t c p 0

43 # Se tup

44 s e t s i n k 0 [ new Agent / TCPSink ]

45 $ns a t t a c h −a g e n t $n3 $ s i n k 0

47 $ns c o n n e c t $ t c p 0 $ s i n k 0

49 # Se tup a UDP c o n n e c t i o n

50 s e t udp1 [ new Agent /UDP]

51 $ns a t t a c h −a g e n t $n1 $udp1

52 $udp1 s e t f i d 2

54 # Se tup a CBR ove r UDP c o n n e c t i o n

55 s e t cb r1 [ new A p p l i c a t i o n / T r a f f i c /CBR]

56 $cbr1 a t t a c h −a g e n t $udp1

57 $cbr1 s e t p a c k e t S i z e 1000

58 $cbr1 s e t i n t e r v a l 0 .005

59 $cbr1 s e t random f a l s e

61 # Se tup a Nu l l Agent

62 s e t n u l l 1 [ new Agent / Nu l l ]

63 $ns a t t a c h −a g e n t $n3 $ n u l l 1

64 $ns c o n n e c t $udp1 $ n u l l 1

Listing 7.8: ns-2 Nodes Links and Traffic, Part of A.2

By scheduling the start and end of FTP and CBR application in lines 66-69 in 7.9, the simulator

instance is ready to run a simulation on the defined topology by using preliminary setup from

Listing A.1.

66 $ns a t 1 . 0 ” $ f t p 0 s t a r t ”

67 $ns a t 4 . 0 ” $ f t p 0 s t o p ”

68 $ns a t 0 . 5 ” $cbr1 s t a r t ”

69 $ns a t 4 . 5 ” $cbr1 s t o p ”

Listing 7.9: ns-2 Nodes Links and Traffic, Part of A.2

Wireless Network Simulation in ns-2

The wireless model consists of MobileNodes (see Figure 7.6). Thus, a MobileNode is the basic

Node object with added functionalities of a wireless and mobile node that for example can move

in a given topology or has the ability to receive and transmit signals to and from a wireless chan-

nel. A major difference between MobileNode and Node is that a MobileNode is not connected

by links to other mobile nodes.
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Figure 7.6: MobileNode Architecture

ns-2 has further various modules added to simulate node mobility and wireless networking:

• Ad-hoc Routing (Dynamic Source Routing (DSR), Destination-Sequenced Distance-

Vector Routing (DSDV), Ad-hoc On-demand Distance Vector (AODV))

• MAC 802.11, commonly known by the brand Wi-Fi, denotes a set of Wireless LAN stan-

dards.

• Radio Propagation Model is an empirical mathematical formulation for the characteri-

zation of radio wave propagation.

• Channel

A Wireless Simulation Scenario

A wireless simulation scenario is far as similar as a wired scenario, but there must be applied

some changes in the setup and additional definitions to the Tcl model file (see Listing A.3 for
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the complete file). As a first change the area parameter should be set (see lines 24 and 25 in

7.10) as an instance of the class Topography.

24 s e t t opo [ new Topography ]

25 $ topo l o a d f l a t g r i d 670 670

Listing 7.10: ns-2 Wireless Scenario, Part of A.3

The setup of a MobileNode instance requires much more information than a normal wired node

(Lines 39-52 in 7.11). A MobileNode is generated with all the given values of adhoc-routing

protocol, network stack, channel, topography, propagation model, with wired routing turned on

or off (required for wired-cum-wireless scenarios) and tracing turned on or off at different levels

(router, MAC, agent). As a new object in wireless network simulations, it requires to handle the

General Operations Director (GOD) element. GOD stores the smallest number of hops from one

node to another and is automatically generated by the scenario file (Lines 36-37 in 7.11).

36 # c r e a t e god

37 s e t god [ c r e a t e −god 3]

39 # Mobile Node c o n f i g u r a t i o n

40 $ n s node−c o n f i g −adhocRou t ing $op t ( adhocRou t ing ) \
41 −l l T y p e $op t ( l l ) \
42 −macType $op t ( mac ) \
43 −i f q T y p e $op t ( i f q ) \
44 −i f q L e n $op t ( i f q l e n ) \
45 −an tType $op t ( a n t ) \
46 −propType P r o p a g a t i o n / TwoRayGround \
47 −phyType $op t ( n e t i f ) \
48 −channe lType Channel / W i r e l e s s C h a n n e l \
49 − t o p o I n s t a n c e $ topo \
50 −a g e n t T r a c e ON \
51 − r o u t e r T r a c e OFF \
52 −macTrace ON

Listing 7.11: ns-2 Wireless Scenario, Part of A.3

Further, to define movement and position information of each node ns-2 provides the Mobile

Movement Generator. Detailed instructions can be found in the ns-2 manual ([35],Chapter 16).

As an example of output of the Mobile Movement Generator see Listing A.4. The next step is

to set up the traffic for the simulation. The easiest way to do this is with the Traffic Generator

(see Listing A.5 for example), a supporting tool of ns-2.

Implementing Protocols with ns-2

In the section ”Implementing Protocols with ns-2” the student will learn how to implement a

routing protocol for the ns-2 network simulator. The section is very important for the hands-on

session that each student has to pass in the practical part of this module.
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The section is organized as follows:

• Introduction of routing protocol

• Physical structure of files in ns-2

• Define the packet header

• Implementing the agent

• Run the simulation

The first step is to study the routing protocol which should be implemented. After that it is a

good way to think about the packets to add, and the main step will be to implement the routing

mechanism into the agent. To introduce protocol implementing, the document ”Implementing

a new MANet Unicast Routing Protocol in NS2”, [36] is a required reading for this e-learning

module section. In the next few paragraphs, the development of a routing protocol is described

in detail.

Location-Aided Routing (LAR)

Location-aided Routing protocol LAR [37] is a advancement of easy flooding protocols for

route discovery in a Mobile Ad-hoc Network (MANet). LAR makes use of location information

of each node provided by the Global Positioning System (GPS), the currently only fully

functional Global Navigation Satellite System (GNSS).

The easiest way to find a route is to flood the network with a route request. Consider a

node S that needs to find a route to node D. Node S sends a route request to all its neighbors. A

receiving neighbor checks, if it is the destination node or not. When it is not, the node sends the

route request to all its neighbors. Each route request includes information about the path. When

the destination node D receives the route request message it sends a route reply message to the

sender S through the path stored in the route request message. To avoid an increasing number

of route request messages, each message owns a sequence number for each node and is able to

detect if it has already received the message or not. If the message was already received, there

is no more delivery to a neighboring node and the message is discarded.

Figure 7.7 depicts how the flooding algorithm works. The most important aspect is the

fact that when a route request message from B to C is faster than a route request message from F

to C, the route request message from F to C is discarded and the message from node C with path

S-A-B-C is reaching D first. So, the route reply message has the path information S-A-B-C-D

and this is the routing information for S.

In addition to the flooding algorithm, LAR uses the location information of Global Posi-

tioning System (GPS) to reduce routing overhead. For the protocol it is assumed that at each

time the current location of each node is known and the nodes are moving in a 2-dimensional

plane.
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Figure 7.7: LAR Flooding Algorithm

First of all the Expected Zone has to be defined for the routing mechanism. Consider

node S the sending node and node D the destination. The expected zone of a node D is the area

where the node D is expected from the viewpoint of node S. Assume that node S knows the

position L of node D at time t0 and the average speed v then node S can determine the position

of node D at time t1. The Expected Zone is a circular region centered at location L with radius

(see Figure 7.8 (a) ): r = v(t0 − t0)

The Expected Zone is estimated by node S and determines a region that potentially con-

tains D at time t1. If node S does not know a previous location of node D the Expected Zone is

enlarged to the area of the entire Ad Hoc network. In this case the LAR algorithm is reduced to

the basic flooding algorithm.
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Figure 7.8: LAR (a) Expected Zone, (b) Request Zone

The Request Zone is defined by the sender node S, a rectangular area containing node S and

including the Expected Zone (see Figure 7.8 (b) ). The size of the Request Zone has to be

adapted for two reasons:

• If node S does not belong to the expected zone, the path from host S to host D has hosts

along the route outside the expected zone. The request zone has to be larger.

• After a time period without discovering a successful route, it is possible to expand the

Request Zone.

This shows that the LAR algorithm is essentially identical to the flooding algorithm with the

modification that a node that is not in the Request Zone does not forward a route request to its

neighbors.

In LAR Scheme 1 the Request Zone is the smallest rectangle that includes the current

location of node S and the Expected Zone around D as described above. The sides of the

rectangle are parallel to the X and Y axes.

Figure 7.9: LAR Scheme 1

In Figure 7.9 node S requests a route to node D. With stored coordinates (Xd, Yd) of
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node D and the radius calculated as above the Request Zone can be discovered. After node S

sends a route request message to its neighbors, each neighbor determines if it is in the Request

Zone or not. In Figure 3 node I is in the Request Zone and forwards the route request to its

neighbors. Node J is not in the Request Zone and discards the message.

In LAR scheme 1 the Request Zone is specified by the position of node S and the esti-

mated position of node D and this Request Zone is stored in the route request message. In LAR

scheme 2 node S includes 2 different values in the route request (see Figure 7.10):

• The distance DISTs from S to D where the location of D is the position of D at time t0.

• The coordinates of D at time t0.

When a node I receives the route request it calculates the distance DIST(i) from node I to node

D.

• For DIST(s) => DIST(i) the node I forwards the request to its neighbors and includes

DIST(i) instead of DIST(s) in the route request

• Otherwise, if DIST(s) < DIST(i) the node I discards the route request.

This is repeated until the route request reaches node D. When no route is found it is possible to

change the conditions to a * DIST(x) + b => DIST(y) where a and b are parameters.

When node N and node I receive the route request message from node S, both nodes forward

the route request to their neighbors, because N and I are closer (means that DISTn < DISTs

and DISTi < DISTs) to D than S. When node K receives the message from node I, K discards

the message because DISTi < DISTk.

Scheme 2 of LAR will be the base for the protocol implementation.

Figure 7.10: LAR Scheme 2

Preparations

In order to start the implementation of a new MANet protocol for ns-2, in the demo case the

LAR protocol, it needs some general preliminary steps are required. In the most simply case a
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protocol implementation consists of a basic C++ class and a new packet header.

For the LAR example, there will be the following three files to be compiled into ns-2:

• lar.h This is the header file where all necessary timers and routing agent are defined

• lar.cc In this file you implement timers, the routing agent and Tcl hooks

• lar pkt.h All LAR protocol packets are declared in this file

If continuing with the logical structure of the implementation, it should be implemented an agent

by inheriting one from the Agent class of the ns-2 basic implementation. In the ns-2 manual

it is stated that: ”Agents represent endpoints where network-layer packets are constructed or

consumed, and are used in the implementation of protocols at various layers”, [35]. The Agent

class provides the link to the Tcl interface, so you can control your agent through simulation

scripts written in Tcl. A good additional source to the module content would be the manual

”Implementing a new MANet unicast routing protocol in NS2”, [36].

Furthermore, the LAR protocol uses a new packet type defined in lar pkt.h, which repre-

sent the format of the packet generated through the routing agent. If the protocol has to send

packets periodically or after a certain time period it is useful to implement timers inherited from

the Timer class of the ns-2 implementation.

Implementing the Packet Types

All data structures, constants and macros related to the new packets are implemented in the

packet type definition. The full source code is available in Listing A.6. The new packet header

definition enhances the standard class Packet of ns-2.

The attributes of the new packet type are implemented inside the struct element (exam-

ples in 7.12, lines 13-17 ) with the associated member functions for the attributes (examples in

7.13, lines 36-39). To define attributes there are special data types defined in ns-2 which can be

used, such as nsaddr t for network addresses.

13 n s a d d r t p k t s r c ; / / Node which o r i g i n a t e d t h i s p a c k e t

14 u i n t 1 6 t p k t l e n ; / / Pa ck e t l e n g t h ( i n b y t e s )

15 u i n t 8 t p k t s e q n u m ; / / Pa ck e t s e q u e n c e number

16 char fo rwardCode ; / / F=f l o o d , S=Scheme 2 , U=u n s e t ,

17 char l a r C o d e ; / / D=data , R=r o u t i n g , A= r o u t e r e p l y

Listing 7.12: LAR Packet Type, Part of A.6
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36 i n l i n e n s a d d r t& p k t s r c ( ) { re turn p k t s r c ; }
37 i n l i n e u i n t 1 6 t& p k t l e n ( ) { re turn p k t l e n ; }
38 i n l i n e u i n t 8 t& pk t seq num ( ) { re turn p k t s e q n u m ; }
39 i n l i n e char& forwardCode ( ) { re turn fo rwardCode ; }

Listing 7.13: LAR Packet Type, Part of A.6

The standard packet header from ns-2 packet.h is included which defines the Packet class of

ns-2. The goal is to add the new LAR packet header structure hdr lar pkt to a packet for

information exchange between the objects in the simulation. To do this, two methods are

provided to utilize to access the new header in any packet: offset() and access() in on lines

59-62 in Listing 7.14. When binding the new packet type to the Tcl interface, the new packet

header is usable in simulations.

59 i n l i n e s t a t i c i n t& o f f s e t ( ) { re turn o f f s e t ; }
60 i n l i n e s t a t i c h d r l a r p k t ∗ a c c e s s ( c o n s t P a c k e t ∗ p ) {
61 re turn ( h d r l a r p k t ∗ ) p−>a c c e s s ( o f f s e t ) ;

62 }

Listing 7.14: LAR Packet Type, Part of A.6

The Routing Agent - Header File

Once the packet header used by the routing protocol is defined, we define the header file for our

routing agent. The lines 4-13 in Listing 7.15 (see Listing A.7 for complete file) include some

required files.

4 # i n c l u d e ” l a r p k t . h ”

5 # i n c l u d e ” t r a c e . h ”

6 # i n c l u d e ” o b j e c t . h ”

7 # i n c l u d e ” a g e n t . h ”

8 # i n c l u d e ” p a c k e t . h ”

9 # i n c l u d e ” i p . h ”

10 # i n c l u d e ” mobi lenode . h ”

11 # i n c l u d e ” t i m e r−h a n d l e r . h ”

12 # i n c l u d e ” random . h ”

13 # i n c l u d e ” c l a s s i f i e r −p o r t . h ”

Listing 7.15: LAR Header File, Part of A.7
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Some of them are described below:

• lar/lar pkt.h definition of new packet(s) used by the routing agent.

• common/agent.h base Agent class, our routing agent inherits from it.

• common/timer-handler.h TimerHandler base class, required for custom timers.

• trace/trace.h possibility to write custom simulation results to a trace file.

• tools/random.h pseudo random numbers.

• classifier/classifier-port.h definition of the PortClassifier which is used to pass packets to

upper layers (e.g. UDP).

• common/ip.h access the ip header.

Each routing agent maintains its own routing table and state. This may be implemented by

encapsulating all this information in a separate class or by storing it in the routing agent itself.

In the LAR example this information is stored in the agent itself. Thus we define a structure and

a associative container of these structures, which represents our routing table (7.16, lines 27-37

and 7.18, line 56). We maintain a counter for sequence number to identify packets (7.19, line

72). We also store the address of the node the routing agent is attached to (7.19, line 73).

27 t y p e d e f s t r u c t

28 {
29 double x ;

30 double y ;

31 char method ; / / f l o o d or scheme 2

32 n s a d d r t r o u t e [ maxRouteLength ] ;

33 i n t hops ;

34 double t i m e O f L a s t R e q u e s t ;

35 boo l r e q u e s t P e n d i n g ;

36 boo l noRoute ;

37 } l a r D e s t T y p e ;

Listing 7.16: LAR Header File, Part of A.7

A PortClassifier object is declared to handle packets destined for the node itself (7.18, line

60). The PortClassifier gives the packets to the corresponding agents in the upper layer. For

getting position and other information of the node, especially used by the location-aided routing

protocol, the agent also stores a reference to its node (7.18, line 57). If the routing agent needs a

timer, for instance to check periodically for neighbors, a simple example timer is declared (7.17,

lines 40-48). This timer stores a reference to the routing agent, and inherits a method expire()

from TimerHandler, which must be overloaded.
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40 c l a s s LAR PktTimer : p u b l i c TimerHand le r {
41 p u b l i c :

42 LAR PktTimer (LAR∗ a g e n t ) : T imerHand le r ( ) {
43 a g e n t = a g e n t ;

44 }
45 p r o t e c t e d :

46 LAR ∗ a g e n t ;

47 v i r t u a l void e x p i r e ( Event ∗ e ) ;

48 } ;

Listing 7.17: LAR Header File, Part of A.7

56 map<n s a d d r t , l a r D e s t T y p e , l e s s <i n t > > r o u t e T a b l e ;

57 MobileNode ∗node ;

59 p r o t e c t e d :

60 P o r t C l a s s i f i e r ∗ dmux ;

Listing 7.18: LAR Header File, Part of A.7

The routing agent also inherits two methods, recv() and command() (7.19, lines 75-76), from

the Agent base class, which must be overwritten. The recv() method is called whenever the

agent receives a packet, while the command() function is the place where the Tcl commands

are linked to our compiled implementation. The constructor of LAR class is declared and it

receives an identifier used as the routing agent’s address as the argument (7.19, line 74).

72 u i n t 8 t seq num ;

73 n s a d d r t r a a d d r ;

74 LAR( n s a d d r t ) ;

75 void r e c v ( P a c k e t ∗ , Hand le r ∗ ) ;

76 i n t command ( i n t , c o n s t char∗ c o n s t ∗ ) ;

Listing 7.19: LAR Header File, Part of A.7

The Routing Agent - Source File

Now we can implement the routing agent. First we must bind our new routing agent class to Tcl,

so we can use it in the simulations. This is done similar like the binding of the new packet type.

The class constructor and the implementation of the function create(), are shown in Listing 7.20

(lines 22-26) , which returns a LAR agent instance (see Listing A.8 for complete source).

In order to have a valid timer we have to implement the expire method. An new event is

generated (Listing 7.20, lines 29-35) and is registered to the scheduler. A new event will occur

five seconds later when the expire method is invoked from the scheduler.
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20 s t a t i c c l a s s LARClass : p u b l i c T c l C l a s s {
21 p u b l i c :

22 LARClass ( ) : T c l C l a s s ( ” Agent /LAR” ) {}
23 T c l O b j e c t ∗ c r e a t e ( i n t argc , c o n s t char∗ c o n s t ∗ a rgv ) {
24 a s s e r t ( a r g c ==5) ;

25 re turn ( new LAR ( ( n s a d d r t ) Address : : i n s t a n c e ( ) . s t r 2 a d d r ( a rgv

[ 4 ] ) ) ) ;

26 }
27 } c l a s s r t P r o t o L A R ;

29 void LAR PktTimer : : e x p i r e ( Event ∗ e ) {
30 a g e n t −> r e s e t l a r p k t t i m e r ( ) ;

31 }
33 void LAR : : r e s e t l a r p k t t i m e r ( ) {
34 p k t t i m e r . r e s c h e d ( ( double ) 5 . 0 ) ;

35 }

Listing 7.20: LAR Source File, Part of A.8

The next part is the constructor implementation with PT LAR as the argument to the base class

constructor. In the same line 37 (Listing 7.21) we create the LAR PktTimer object and initializing

the dmux pointer with 0. To access variables via Tcl, they must be bound in the constructor.

This is exemplarily done in line 40 (Listing 7.21) but not required by the LAR implementation.

Bound variables like accessible var have to be declared in the header file as well. In order

to access those variables from Tcl space you use Agent/LAR set accessible var true in your

simulation Tcl script.

37 LAR : : LAR( n s a d d r t i d ) : Agent ( PT LAR ) , dmux ( 0 ) , p k t t i m e r ( t h i s ) {
38 r a a d d r = i d ;

39 node = NULL;

40 / / b i n d b o o l (” a c c e s s i b l e v a r ” , &a c c e s s i b l e v a r ) ;

41 }

Listing 7.21: LAR Source File, Part of A.8

The command() method is inherited from the Agent class and contains the commands used in

the Tcl scripts. The variable argc contains the numbers of arguments for the Tcl instruction

and argv contains the arguments as an array. The first argument contains cmd and the second

contains the requested operation. All additional arguments are the arguments used by that

command. Every processed command has to be terminated by returning TCL OK, if all goes

fine, or TCL ERROR, in case of an error.

For routing agents the commands start, port-demux and tracetarget have to be imple-

mented. The command start sets up all necessary actions to start the routing agents operation,

e.g., the timer can be started when required (Listing 7.22, line 46). The PortClassifier object

can be set by invoking the port-demux instruction in Tcl ((Listing 7.22, lines 50-57). The last

mandatory command is tracetarget which sets the Trace object (Listing 7.22, lines 58,63). The

Trace object can be used for custom trace file output.
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Own commands may be implemented in the command() method if required. As example

the lines 64-67 (Listing 7.22) shows the node command, which sets the MobileNode the routing

agent is placed. If the command is unknown by the command() implementation of the subclass,

it must be delegated to the super class (Listing 7.22, line 69).

43 i n t LAR : : command ( i n t argc , c o n s t char∗ c o n s t ∗ a rgv ) {
44 i f ( a r g c == 2) {
45 i f ( s t r c a s e c m p ( a rgv [ 1 ] , ” s t a r t ” ) == 0) {
46 p k t t i m e r . r e s c h e d ( 0 . 0 ) ;

47 re turn TCL OK ;

48 }
49 } e l s e i f ( a r g c == 3) {
50 i f ( s t r c mp ( a rgv [ 1 ] , ” p o r t−dmux” ) == 0 ) {
51 dmux = ( P o r t C l a s s i f i e r ∗ ) T c l O b j e c t : : lookup ( a rgv [ 2 ] ) ;

52 i f ( dmux == 0) {
53 f p r i n t f ( s t d e r r , ”%s : %s lookup of %s f a i l e d \n ” , F ILE

,

54 a rgv [ 1 ] , a rgv [ 2 ] ) ;

55 re turn TCL ERROR ;

56 }
57 re turn TCL OK ;

58 } e l s e i f ( s t r c mp ( a rgv [ 1 ] , ” t r a c e t a r g e t ” ) == 0 ) {
59 l o g t a r g e t = ( Trace ∗ ) T c l O b j e c t : : lookup ( a rgv [ 2 ] ) ;

60 i f ( l o g t a r g e t == 0) {
61 re turn TCL ERROR ;

62 }
63 re turn TCL OK ;

64 } e l s e i f ( s t r c a s e c m p ( a rgv [ 1 ] , ” node ” ) == 0) {
65 node = ( MobileNode ∗ ) T c l O b j e c t : : lookup ( a rgv [ 2 ] ) ;

66 re turn TCL OK ;

67 }
68 }
69 re turn ( Agent : : command ( argc , a rgv ) ) ;

70 }

Listing 7.22: LAR Source File, Part of A.8

As mentioned above the recv() method is the next method to be implemented. It is inherited

from the agent base class. It receives not only incoming data or routing packets, but also data

packets generated by upper layer agents on this node. In the LAR example it has to be checked

first if the type of the packet is LAR, then the packet is passed to the recv lar pkt(pkt,h) method.

For all other packets it has to be checked first if they are self-sent (7.23, line 82). If the number

of forwards is not equal to zero, the packet made a loop and the packet should be dropped. If the

packet has been generated within the node, we should add the headers and tails of the network

layer (7.23, line 88) to the packet’s length. It is assumed that LAR works over IP. If the packet’s

address is not IP BROADCAST a route to the destination node should be found (7.23, line 96).

The method route resolve(pkt, h) simply looks for a valid route in the routing table and if it
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finds one, it forwards the data according to that route. If not, the routing agent starts the route

discovery process by sending a route request. After gaining a valid route the node forwards the

data. In the case of the packet’s destination address being IP BROADCAST the data has only to

be forwarded (7.23, line 98).

82 i f ( ih−>s a d d r ( ) == r a a d d r ( ) ) {
83 / / t h e r e e x i s t s a loop −> drop t h e p a c k e t

84 i f ( ch−>num forwards ( ) > 0) {
85 drop ( pkt , DROP RTR ROUTE LOOP) ;

86 re turn ;

87 } e l s e i f ( ch−>num forwards ( ) == 0) {
88 ch−>s i z e ( ) += IP HDR LEN ;

89 }
90 } e l s e i f (−−( ih−> t t l ) == 0) {
91 drop ( pkt , DROP RTR TTL ) ;

92 re turn ;

93 }
95 i f ( ( u i n t 3 2 t ) ih−>daddr ( ) != IP BROADCAST ) {
96 r o u t e r e s o l v e ( pkt , h ) ;

97 } e l s e {
98 f o r w a r d d a t a ( pkt , h , ( l a r D e s t T y p e ∗ ) 0 ) ;

99 }

Listing 7.23: LAR Source File, Part of A.8

The next method recv lar pkt handles the LAR routing packets received by recv(). Its imple-

mentation heavily depends on the concrete routing protocol. But the following scheme may be

used as a general template. Lines 103-105 (Listing 7.24) get the common header, IP header

and LAR header as usual. Afterwards we verify that the source and destination ports are set

to RT PORT (7.24, lines 107-108). This port is attached to 255 for routing agents. Lines

113-116 (7.24) check if the same packet has been received or sent before, and dismiss the

packet when true. Finally the resource is released (7.24, line 120). In the LAR example this

method also generates route replies if it is the destination node or already knows a valid route

to the destination. It forwards the routing packets to the next neighbors if the node is inside the

forwarding region. It also updates its routing table if a route reply was received and the node

was the origin of the route request, or simply forward a route reply back to the source.

103 s t r u c t hdr cmn∗ ch = hdr cmn : : a c c e s s ( p k t ) ;

104 s t r u c t h d r i p ∗ i h = h d r i p : : a c c e s s ( p k t ) ;

105 s t r u c t h d r l a r p k t ∗ l a r h d r = h d r l a r p k t : : a c c e s s ( p k t ) ;

107 a s s e r t ( ih−>s p o r t ( ) == RT PORT ) ;

108 a s s e r t ( ih−>d p o r t ( ) == RT PORT ) ;

110 node−>u p d a t e p o s i t i o n ( ) ;

111 l a r h d r −>newPkt ( ) = f a l s e ;
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113 i f ( t h i s −>d u p l i c a t e R c v d P a c k e t ( ch−>u i d ) | | t h i s −>

d u p l i c a t e S e n t P a c k e t ( ch−>u i d ) ) {
114 P a c k e t : : f r e e ( p k t ) ;

115 re turn ;

116 }
118 /∗ p r o c e s s i n g o f LAR r o u t i n g p a c k e t s ∗ /

120 P a c k e t : : f r e e ( p k t ) ;

Listing 7.24: LAR Source File, Part of A.8

The forward data method forwards the data packets received by the routing agent. If the ttl

variable equals zero the packet is dropped (7.25, lines 128-131). If the packet is an incoming

one and the destination address is set to the node itself or broadcast, then the node’s dmux is

needed to accept the incoming packet (7.25, lines 133-136) and passes it to the corresponding

agent. Otherwise, the packet has to be send out after setting its header fields (7.25, line 138 ff.).

128 i f ( i p h d r−> t t l == 0) {
129 drop ( p , DROP RTR TTL ) ;

130 re turn ;

131 }
133 i f ( cmnhdr−>p t y p e ( ) != PT LAR && cmnhdr−>d i r e c t i o n ( ) == hdr cmn : : UP

&& ( ( u i n t 3 2 t ) i p h d r−>daddr ( ) == IP BROADCAST | | i p h d r−>daddr

( ) == r a a d d r ( ) ) ) {
134 dmux −>r e c v ( p , h ) ;

135 re turn ;

136 }
138 i f ( r t ) {
139 cmnhdr−>d i r e c t i o n ( ) = hdr cmn : :DOWN;

140 cmnhdr−>a d d r t y p e ( ) = NS AF INET ;

141 cmnhdr−>n e x t h o p = r t −>r o u t e [ 1 ] ;

142 } e l s e {
143 / / B r o a d c s t message

144 cmnhdr−>d i r e c t i o n ( ) = hdr cmn : :DOWN;

145 cmnhdr−>a d d r t y p e ( ) = NS AF NONE ;

146 }

Listing 7.25: LAR Source File, Part of A.8

Needed Changes in ns-2

If the implementation is finished, it has to be integrated into ns-2. In order to do this, there are

some files which have to be changed.

In the LAR routing agent a new packet type PT LAR is introduced. It has to be de-

fined in the file <nsrootdirectory>/common/packet.h. The packet type has to be added into the

structure enum packet t as it is done in Listing 7.26 in line 6. In the same file in line 17 (Listing

7.27), the string definition for trace files for this packet type will be set.
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1 enum p a c k e t t {
2 PT TCP ,

3 PT UDP ,

4 PT CBR ,

5 ( . . . )

6 PT LAR ,

7 PT NTYPE / / T h i s MUST be t h e LAST one

8 } ;

Listing 7.26: Required changes in ns-2 packet.h, Part of A.9

12 p i n f o ( ) {
13 name [ PT TCP ]= ” t c p ” ;

14 name [ PT UDP]= ” udp ” ;

15 name [ PT CBR]= ” c b r ” ;

16 ( . . . )

17 name [ PT LAR]= ”LAR” ;

18 name [ PT NTYPE]= ” u n d e f i n e d ” ;

19 }

Listing 7.27: Required changes in ns-2 packet.h, Part of A.9

In a next step some Tcl files have to be adapted. First the new packet type is added, gets the

default values for bound variables and the functions for creating wireless nodes with LAR as

routing agent are provided.

For proper working of the new routing protocol, there are also some changes needed in

the Tcl scripts. Because simulations are invoked and controlled through Tcl, the interpreter

hierarchy has to know how to use the new functionalities written in C++ as it is done in Listing

7.28 in line 5.

1 f o r e a c h p r o t {
2 AODV

3 ARP

4 ( . . . )

5 LAR

6 NV

7 }

Listing 7.28: Required changes in ns-2 ns-packet.tcl, Part of A.10

First, all bound variables must have a default value. This is done by defining them in tcl/lib/ns-

default.tcl.

1 Agent /LAR s e t a c c e s s i b l e v a r t rue

Then in the file tcl/lib/ns-packet.tcl the new packet header has to be added to the common ns-2

packet so it can be used.
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As a further step some changes have to be done in the tcl/lib/ns-lib.tcl script, that the

wireless nodes can use the newly added routing protocol. This is done by adding a new method

which creates the new routing agents and adds them to the nodes. And in the already existing

method to create wireless nodes, there must be done one small change to make the new routing

agent known by this method as it is shown in Listing 7.29 in lines 12-14 and in Listing 7.30 in

lines 26-32.

12 LAR {
13 s e t r a g e n t [ $ s e l f c r e a t e −l a r −a g e n t $node ]

14 }

Listing 7.29: Required changes in ns-2 ns-lib.tcl, Part of A.12

26 S i m u l a t o r i n s t p r o c c r e a t e −l a r −a g e n t { node } {
27 # C r e a t e Lar r o u t i n g a g e n t

28 s e t r a g e n t [ new Agent /LAR [ $node node−a dd r ] ]

29 $ s e l f a t 0 . 0 ” $ r a g e n t node $node ”

30 $node s e t r a g e n t $ r a g e n t

31 re turn $ r a g e n t

32 }

Listing 7.30: Required changes in ns-2 ns-lib.tcl, Part of A.12

The last step of protocol implementation is binding the new agent into the ns-2 implementation.

First, the Makefile of ns-2 should be adapted as it is shown in Listing 7.31 in line 5.

1 OBJ CC = \
2 t o o l s / random . o t o o l s / rng . o t o o l s / r a n v a r . o

3 common / misc . o common / t i m e r−h a n d l e r . o \
4 ( . . . )

5 l a r / l a r . o l a r / l a r p k t . o \
6 ( . . . )

7 $ ( OBJ STL )

Listing 7.31: Required changes in ns-2 Makefile, Part of A.11

After adapting the Makefile the source code has to be compiled into ns-2 with the following

commands:

1 [ ns −2]$ make c l e a n

2 [ ns −2]$ make depend

3 [ ns −2]$ make

4 [ ns −2]$ make i n s t a l l

Now the LAR routing agent is usable in wireless simulation scenarios
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Analyzing and Visualizing ns-2 Network Simulations

In this section, methods for analyzing and visualizing ns-2 network simulations are described.

The are various trace formats used by the ns-2 network simulator. The mostly used are:

• Normal trace format

• Wireless trace format ( New Wireless Trace and Old Wireless Trace.)

• NAM trace format

Normal Trace Format

The first field describes the type of event taking place at the node and can be one of the five

following types:

Event Type

receive r packet receive event at the destination node of a link

drop d packet drop (packet delivered to drop-target)

error e simulation error

enqueue + simulation error

dequeue - a packet departure (usually at a queue)

The additional fields are described in Table 7.3, while a example of an extract of a trace

file can be viewed in Listing A.13.

Event Abbreviation Type Value

Normal Event

%g %d %d %s %d %s %d %d. %d %d. %d %d %d

double Time

int Source Node

int Destination Node

r: Receive string Packet Name

d: Drop int Packet Size

e: Error string Flags

+: Enqueue int Flow ID

-: Dequeue int Source Address

int Destination Address

int Sequence Number

int Unique Packet ID

Table 7.3: Normal Trace Format - Field Definitions
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New and Old Wireless Trace Format

The first field of the New Wireless trace format describes the type of event taking place at the

node and can be one out of the four types:

Event Type

Send s a packet departure

Receive r packet receive event at the destination node of a link

Drop d packet drop (packet delivered to drop-target)

Forward f packet forward

The first letter of the following tags designate the type of the flag:

• N: Node

• I: IP Level Packet

• H: Next Hop

• M: MAC Level Packet

• P: Packet specific

Depending on the packet type, there are many additional flags used by the New Wireless trace

format (see [35]). The additional fields are described in Table 7.4, while a example of an extract

of a trace file can be viewed in Listing A.14.

The Old Wireless trace format is described in detail in ”The ns manual”, [35].

Additional trace formats for wireless simulations are:

• AODV routing protocol trace formats

• DSDV routing protocol trace formats

• DSR routing protocol trace formats

• TORA routing protocol trace formats

• Mobile node movement and energy trace formats
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Event Abbreviation Flag Type Value

Wireless Event

-t double Time (* For Global Setting)

-Ni int Node ID

-Nx double Node X Coordinate

-Ny double Node Y Coordinate

-Nz double Node Z Coordinate

-Ne double Node Energy Level

s: send -Nl string Network trace Level

r: receive -Nw string Drop Reason

d: drop -Hs int Hop source node ID

f: forward -Hd int Hop destination Node ID, -1, -2

-Ma hexadecimal Duration

-Ms hexadecimal Source Ethernet Address

-Md hexadecimal Destination Ethernet Address

-Mt hexadecimal Ethernet Type

-P string Packet Type (arp, dsr, imep, tora, etc.)

-Pn string Packet Type (cbr, tcp)

Table 7.4: New Wireless Trace Format - Field Definitions

NAM Trace Format

In Network Animator (NAM) trace format there are more events traced as in the other formats.

The NAM trace format is very extensive and is used for the Network Animator (NAM). Detailed

information can be found in ”The ns manual” [35] or can be generated with the command ”nam

-p” if NAM is installed. As an example the details of the event Link is listed in Table 7.6 and an

extract of a NAM Trace File can be found in Listing A.15.

Event Type

Dummy Event T

Node n

Link l

Packet h: Hop, r: Receive, d: Drop, +: Enqueue, -: Dequeue

Session E: Enqueue, D: Dequeue, P: Drop

Agent a

Table 7.5: NAM Trace Format - Events
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Event Abbreviation Flag Type Value

Link

-t time Time

-s int Source ID

-d int Destination ID

-r double Transmission Rate

-D double Delay

-h double Length

-O orientation Orientation

-b string Label

-c color Color

-o color Previous Color

-S string State (UP, DOWN)

-l string Label

-L string Previous Label

-e color Label Color

Table 7.6: NAM Trace Format - Field Definitions

Analyzing Methods

For each analysis of a ns-2 network simulation, the trace file is the basic input of data. This

simple text file can be processed by various programming languages which are able to read text

files, like AWK, Perl or Java. For this paragraph Perl is selected as the processing language due

to the fact, Perl is strong in performing string handling and on the other hand Java is used to

parse trace files within the application VAT4Net.

As an example of analysis, a very simple case is chosen. The simulation topology looks

as follows:

• four nodes, while two nodes act as sending nodes, one node is the receiving node and one

node acts as router

• the agent on the two sending nodes is UDP and the traffic source is CBR (Constant Bit

Rate)

The output files of this simulation are generated once in Normal trace format and otherwise in

the NAM trace format.

There are many characteristics a network simulation can show such as routing overhead,

throughput or packet loss rate. The example will show the calculation of packet end-

to-end delay in the simulated network. The end-to-end delay is defined as time between the

point in time, the source want to send a packet and the moment the packet reaches its destination.

For processing this calculation on the trace file, a Perl script is implemented (see Listing

A.16 for complete file). For the end-to-end Delay calculation of each packet, the time stamp
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is required when the source wants to send the packet and the time stamp when the destination

receives the packet. The difference between these two time stamps is the end-to-end Delay for

the packet. The time stamp when the packet is send is the time stamp of the first appearance

of the packet in the trace file (Listing 7.32, lines 40-44). The time stamp is stored in a hash

with key as packet id and value as time stamp. Dropped packets are cleared from the hash sets

(Listing 7.32, line 35-38). When a packet is received by a node the time stamp is stored in a

second hash set with the same key as the first hash set. After running through the trace file

line-per-line the end-to-end delay is calculated (Listing: 7.32, lines 47-50).

29 i f ( e x i s t s $packe tSend {$word [ 1 1 ] } ) {
30 i f ( $word [ 0 ] eq ” r ” )

31 {
32 $ p a c k e t R e c e i v e d {$word [11 ]}= $word [ 1 ] ;

33 $ d e s t i n a t i o n {$word [11 ]}= $word [ 3 ] ;

34 }
35 i f ( $word [ 0 ] eq ” d ” ) {
36 d e l e t e $ p a c k e t R e c e i v e d {$word [ 1 1 ] } ;

37 d e l e t e $packe tSend {$word [ 1 1 ] } ;

38 }
39 }
40 e l s e

41 {
42 $packe tSend {$word [11 ]}= $word [ 1 ] ;

43 $ s o u r c e {$word [11 ]}= $word [ 2 ] ;

44 }
45 }
47 # c a l c u l a t e end t o end d e l a y

48 foreach my $key1 ( keys %p a c k e t S e n d ) {
49 $endToEndDelay{$key1}= $ p a c k e t R e c e i v e d {$key1}−$packe tSend {$key1 } ;

50 }

Listing 7.32: Perl Script for end-to-end Calculation, Part of A.16

The last step is to prepare the data for further processing. In the next paragraph it is shown how

to visualize the data with gnuplot. So it is eligible to store the data in a file in two columns, first

column with the value of the time step when the packet is sent and in the second column the

end-to-end delay. The output is generated (7.33, lines 55-62).

55 sub p r i n t T o F i l e ( ) {
56 open ( FILE , ”>endToEnd v2 . d a t ” ) ;

57 f l o c k ( FILE , 2 ) ;

58 foreach my $key1 ( s o r t { $packe tSend {$a} cmp $packe tSend {$b} } keys %

p a c k e t S e n d ) {
59 p r i n t FILE ” $packe tSend {$key1} $endToEndDelay{$key1 }\n ” ;

60 }
61 c l o s e FILE ;

62 }

Listing 7.33: Perl Script for end-to-end Calculation, Part of A.16
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Visualizing Methods

To visualize network dynamics on the basis of ns-2 trace files, there are several tools available.

NAM (Figure 7.11(a)) is a Tcl/TK based animation tool for viewing network simulation

traces and real world packet traces. It supports topology layout, packet level animation and

various data inspection tools. Additional information about NAM is available in the ns-manual

[35]. An x-window system is required to install and run NAM.

VAT4Net(Figure 7.11(b)) is a Java implementation which runs either in Applet or stand-

alone mode. It has been developed during this thesis. Details on VAT4Net can be found in

Chapter 5.

(a) NAM (b) VAT4Net

Figure 7.11: Visualizing Tools for ns-2 Network Simulations

After looking at the visualization and its network dynamics it would be interesting to ex-

tract various statistical data out of the example simulation. In the example gnuplot is chosen.

gnuplot is a command-line program that can generate two- and three-dimensional plots of

functions and data. In Listing A.17 the end-to-end Delay calculated above in the ”Analyzing

Methods” paragraph is plotted with gnuplot [38] (see Figure 7.12(a)). In Figure 7.12(b) different

network simulation with different parameters are analyzed and compared to each other.
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(a) End-to-End Statistic Example (b) End-to-End Statistics on various Simulations

Figure 7.12: Statistical Plot generated with gnuplot [38].

7.4.4 Content of the Additional Sections in the Theory Chapter

Readings

As a first additional theory chapter the ”Readings” chapter takes place in the theory part of the

module. Required readings are articles which essentially should be read by the participant

of the course. Each of this reading will be checked in the quiz section or will be used in the

practical part as necessary knowledge. Recommended readings are interesting and fit the

theory but are not a must. Recommended readings should be a good enhancement for further

information and knowledge.

As required readings for the module the following two papers are chosen:

• ”Advances in Network Simulation”, [39] - This is the standard paper of the ns-2 develop-

ment project VINT. It includes basic information about the ns-2 project and its importance.

• ”Hybrid Packet/Fluid Flow Network Simulation”,[24] - The paper discusses a possible

approach to implement hybrid network simulations. The paper should enhance the theory

section regarding this theme.

In the recommended readings section more or less all quotation of references from the theory

part are placed to give the learner a start point to read through further resources and deepen his

knowledge.
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Personal Synthesis, Self Test and Quiz

The structure and content of these additional sections is specified by the Didactics and Design

Guide [11].

The first of two personal syntheses should advice the student to think about the learned material

and to organize the new acquired knowledge. These synthesis is a didactic way to consolidate

the knowledge by expressing it in own words. The personal syntheses will be rated by the tutor

and has influence of passing successfully the module.

Furthermore, the self test allows the students orientating themselves in the theory part

and discovering gap in their knowledge. The Self Test is always available and for wrong

answers it leads to the appropriate theory part.

The quiz at the end of the theory section is also included into grading of the course and

acts as the final test before proceeding to the lab session. Without passing successfully this quiz,

it makes no sense to go further to the laboratory sessions because it could be assumed that there

are parts of the theory that are not worked through properly.

7.5 Module Chapter - Knowledge Application and Explo-

ration

7.5.1 Structure

The practical work in the module is divided into four different hands-on session (see Listing

7.34). Three out of four hands-on sessions are constitutive exercises to get familiarized with

the network simulator and the implementation methods presented in the theoretical part. The

fourth exercise represents the major task in the practical part and includes the implementation

of a routing protocol.

3 Knowledge A p p l i c a t i o n / E x p l o r a t i o n

3 . 1 I n t r o d u c t i o n

3 . 2 Hands−on S e s s i o n

3 . 2 . 1 Hands−on S e s s i o n 1 − Tcl E x e r c i s e

3 . 2 . 2 Hands−on S e s s i o n 2 − W i r e l e s s Tc l E x e r c i s e

3 . 2 . 3 Hands−on S e s s i o n 3 − RFC 865

3 . 2 . 4 Hands−on S e s s i o n 4 − Imp lemen t ing AODV

Listing 7.34: Module Chapter Overview
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7.5.2 Content

Tcl Exercise - a standard setup of a wired network simulation

In the first hands-on session the student has to complete the exercise as follows. The evaluation

criteria will be the NAM trace file generated by ns-2.

a. FTP over TCP

As a first step the student has to create a basic topology as it is depicted in Figure 7.13. The user

Figure 7.13: Network topology for hands-on Session 1 with 4 nodes.

should generate a simualtion as follows:

• Set up a TCP connection between S1 and the sink agent at D1. Attach a FTP application

at S1.

• Set up a TCP connection between S2 and the sink agent at D1. Attach a second FTP

application at S2.

• Set up D1 as a TCP sink agent.

• Set up the links between S1 and R1 and S2 and R1 with 5 Mbps and a delay of 10 ms.

• Set up the link between R1 and R2 with 1.5Mbps and a delay of 10 ms.

• The simulation run time takes 25 seconds.

• Start the FTP application at 0.5 seconds.

• Use a drop tail queue for all nodes and monitor the queues.

• Use NAM as trace file format
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b. CBR

Applying some changes to the first topology, the second simulation should be run as following:

• Remove the TCP connection between S2 and D1. Instead of TCP apply UDP.

• Add a null agent to D1.

• Attach a CBR application to the TCP agent on node S2. Set the packet size to 1024 and

the interval time to 0.0005.

• Start the CBR application at 0.5 sec and end it at 4.5 sec.

To grade this hands-on exercise the student has to deliver parts of the trace file and a comparison

between the two different simulations a. and b. The student has to analyze the packet loss rate

in detail.

Wireless Tcl Exercise - a more advanced Tcl exercise with wireless nodes
and movement setup

In this hands-on session the student has to configure a wireless simulation. The basic wireless

node setup and movement model are predefined. The student has to implement the following

parts:

• Setup 5 wireless nodes with the predefined options.

• Node 0: UDP agent, CBR traffic, connected with NULL agent on node 4

• Node 2: UDP agent, CBR traffic, connected with NULL agent on node 3

• Node 2: UDP agent, CBR traffic, connected with NULL agent on node 4

• Node 1: TCP agent, FTP traffic, connected with TCP sink agent on node 3

• Node 1: TCP agent, FTP traffic, connected with TCP sink agent on node

• Node 2: TCP agent, FTP traffic, connected with TCP sink agent on node 0

• Analyze the trace file and visualize it with vat4net

The grading criteria will be a detailed calculation on the packet loss rate and the end-to-end

delay of the simulations. Intermediate results should be submitted. It should be clear how the

results are gained from the simulation.
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RFC 865 - Implementing Quote of the Day

The main idea of this hands-on session is to extend an existing ns-2 protocol implementation. In

this hands-on session the student has to implement RFC 865 [40]. Implementing ”Quote of the

Day Protocol” as an agent ”agent/QOD” in ns-2 is a basic exercise to show how to implement

and extend new protocols into ns-2.

Most parts of the source code are predefined and the student has only to fill in some

gaps. A new packet type QOD is predefined in the file <nsrootdirectory>/QOD/qod pkt.h (see

Listing A.18). The C++ header file of the main agent implementation is also available (see

Listing A.18) and can be used for the implementation. With help of the two files, the main C++

class qod.cc with the two following methods have to be implemented:

• command: In the command method the Tcl command ”send” has to be implemented,

which will be invoked in the qod.tcl file (Listing A.20, line 28).

• recv: The receive method must implement two main functionalities. The first functional-

ity is to react, as a server, to a ”quote of the day” request, and thus answer to the requestor

by sending back a quote. The second functionality musts process the received/requested

quote. In this simple example only print out the quote to standard output.

After implementing these methods, the new agent has to be included and compiled into ns-2 and

the necessary changes on ns-2 has to be done. To test the implemented code a predefined Tcl file

is available as already mentioned above (Listing A.20). As a result of this exercise, the output

of the simulation and the qod.cc file should be provided.

Implementing AODV - the main exercise of this module

In the last exercise the student has to set up the Ad hoc On Demand Distance Vector (AODV)

routing protocol for ad hoc mobil networks. AODV is a on demand algorithm like LAR,

meaning that it builds routes as desired by a source node without a route to the destination. The

version of AODV to implement is simplified as described in the following section. The full

version of AODV is described in the RFC3561 [41].

The student has to implement a smaller version of AODV, called Small AODV in the

following. He has to implement only the RREQ(route request) and the RREP(route reply)

mechanism of AODV, without any RERR (error) packets and other more complex procedures.

1. RREQ and RREP

When a node wishes to send data to a unknown node without a routing table entry in the

network, it broadcasts a RREQ message. If an other node than the source node receives

the RREQ message, it has two choices: if it knows a route to the destination or if it is the

destination, it can send a RREP back to the source node. Otherwise, it will rebroadcast the

RREQ to all its neighbors. All of the nodes use a sequence number in the RREQ to ensure that

they do not rebroadcast a RREQ.
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2. Sequence numbers

Sequence numbers serve as time stamps. They allow nodes to compare how fresh their

information on other nodes is. Every time a node sends out any type of message it increases its

own sequence number. Each node records the sequence numbers of all the other nodes it talks

to. A higher sequence number signifies a fresher route.

The student has not to implement the whole protocol but to use, the templates prepared in the

ns-2 directory on the laboratory computer in directory <nsrootdirectory>/SMALLAODV. This

hands-on session is similar to the third session, but is much more complex. There are many

methods more to implement.

For grading this hands-on session the student has to do some tests on the implemented

protocol and the basic AODV implementation of ns-2. All the analyzing and visualizing

methods are available for the evaluation of the protocol.

7.6 Module Chapter - Prove Your Knowledge and Skills

At the end of the practical part the student has to demonstrate the gained knowledge in the

following parts used to grade the students work. See Listing 7.1) for details on the structure of

this chapter.

Personal Synthesis, Final Quiz and Survey

In the second essay the student has to prove the acquired knowledge. ”The synthesis should

contain reflections on adopted strategies and the observed results”, [11] of the practical part.

The final quiz serves to grade the results of the hands-on sessions. The student must

prove that he has learned, done the practical part with necessary accuracy and understood the

learning material.

The survey should help the developers to adapt and improve the content of the module.

The student is awarded with some additional point for grading.
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Chapter 8

Conclusions and Outlook

This Diploma thesis consists of two main parts:

• The development of the module ”Implementing Protocols on Network Simulators” in the

context of the EuQoS e-learning infrastructure.

• The implementation of a supporting tool for animation and visualization of network sim-

ulations VAT4Net.

8.1 EuQoS E-learning Module

Use and Problems

The module ”Implementing Protocols on Network Simulators” is already in use now. As one

of the modules of the EuQoS course system, it was used and reviewed in the Master’s course

”Multimedia Communication” at University of Bern. Due to the feedback provided by the stu-

dents some improvements and corrections have been applied. A main criticism was the degree

of difficulty of the provided examples concerning protocol implementations in ns-2. This tasks

requires a good knowledge in C++. A good point would be to include more basic C++ explana-

tions into the e-learning chapters as it has been done already in some parts. The other parts of the

theory are easy to understand and work through. The hands-on session exercises are practica-

ble whenever the student has comprehended the theory part, except of the fact, that the missing

knowledge in C++ could be a problem.

Work Process

Network Simulation is a well known subject in network research, anyhow there are not piles

of standard books available. There are lots of specialized academic papers which concentrate

on some subjects but never try to give a general view on the whole topic. The module gives

a summary on the topic including some standard simulation theory and ends with a tutorial

part which helps to understand one of the most common simulators ns-2. While ns-2 is rather

complex to understand and marginally documented, the module development was a self-learning

process on the simulator and its theory.
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8.2 VAT4Net

Work Process

VAT4Net has been implemented from scratch. There were various different aspects from

different branches in computer science incorporating into the implementation process. The

implementation of SSH connection and client-server architecture into the application demanded

knowledge in network and distributed systems. Finding an appropriate node placing algorithm

was meanwhile a graph drawing problem. A problem from the branch of computational

geometry and graphics was the animation (of network simulations).

A main problem was the memory consumption and the time complexity of the applica-

tion. In a first prototype there has been many limitations in the selection of the trace files

processed with VAT4Net, e.g. the size of the trace file or the number of animated entities and

events. In a new development phase the process of loading data was changed into a streaming

process behavior, which requires buffering and releasing data. With this enhancements, larger

trace files can be used with VAT4Net.

Use and Problems

While working on the hands-on sessions the student has to use VAT4Net as a supporting tool

to gain results an have a closer look at his own simulations. In this case, VAT4Net is available

as client server application while the server is running on the laboratory computers. A main

problem is the connection speed between client and server. There is need of higher bandwidth

(minimum 512 Mbit/s). Further, a trace file should not be to long (maximum 100 MB) because

of the duration of the preprocessing on the server side causing a delay of transmission.

Further Enhancements

Nevertheless, there are points open for future work. Some of them are listed below:

• Opening a trace file on the server should be implemented with a file chooser and a se-

lectable directory.

• For large trace file support there should be a selectable begin and end time for preprocess-

ing, animation and statistical data processing.

• There are some elements and events not yet implemented but available from a trace file,

e.g. traffic agents. It would be a nice-to-have feature to animate them.

• In the current implementation a plugin is loaded when the classes have the same origin as

the core. Future implementations may try to load plugins from ”foreign” locations.

• A further improvement could be the implementation of a selectable trace file preprocessor

that supports other trace file formats either from ns-2 or other network simulators.

• Some additional plugins could be implemented.
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Appendix A

Code Listings

This chapter contains all code listings, which are referenced in the Diploma thesis.

105





Listings

A.1 ns-2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2 ns-2 Nodes Links and Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3 ns-2 Wireless Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.4 ns-2 Wireless Scenario Movement File . . . . . . . . . . . . . . . . . . . . . . 113

A.5 ns-2 Wireless Scenario Traffic File . . . . . . . . . . . . . . . . . . . . . . . . 113

A.6 LAR Packet Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.7 LAR Header File lar.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.8 LAR Source File lar.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.9 Required changes in ns-2 packet.h . . . . . . . . . . . . . . . . . . . . . . . . 122

A.10 Required changes in ns-2 ns-packet.tcl . . . . . . . . . . . . . . . . . . . . . . 122

A.11 Required changes in ns-2 Makefile . . . . . . . . . . . . . . . . . . . . . . . . 122

A.12 Required changes in ns-2 ns-lib.tcl . . . . . . . . . . . . . . . . . . . . . . . . 123

A.13 Extract of a Trace File in Normal Trace Format . . . . . . . . . . . . . . . . . 124

A.14 Extract of a Trace File in New Wireless Trace Format . . . . . . . . . . . . . . 124

A.15 Extract of a Trace File in NAM Trace Format . . . . . . . . . . . . . . . . . . 124

A.16 Perl Script for end-To-end Calculation . . . . . . . . . . . . . . . . . . . . . . 126

A.17 gnuplot Script to Visualize Statistical Data . . . . . . . . . . . . . . . . . . . . 128

A.18 Hands-on session 3 - new packet type QOD . . . . . . . . . . . . . . . . . . . 129

A.19 Hands-on session 3 - QOD header file . . . . . . . . . . . . . . . . . . . . . . 129

A.20 Hands-on session 3 - simulation file qod.tcl . . . . . . . . . . . . . . . . . . . 130

A.21 Preprocessor.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.22 ProcessorQueue.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.23 ProcessorQueueElement.java . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.24 Buffer.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.25 ParsingServer.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.26 ParserStub.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.27 MnuLoadActionListener.java . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.28 TimeController.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.29 NetworkPanel.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.30 V4N Parser.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.31 Network.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.32 Node.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.33 NodeShape.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.34 NodePlacing Algorithm by Fruchterman and Reingold [17] . . . . . . . . . . . 153

107



A.35 Queue.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.36 Packet.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.37 PacketUpdateElement.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.38 DelayPlugin.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.39 PluginLoader.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

108



1 s e t ns [ new S i m u l a t o r ]

2

3 # Open Trace F i l e

4 s e t t r a c e f i l e [ open o u t . t r w]

5 $ns t r a c e −a l l $ t r a c e f i l e

6

7 #Open t h e NAM Trace F i l e

8 s e t n a m f i l e [ open o u t . nam w]

9 $ns namtrace−a l l $ n a m f i l e

10

11 $ns a t 125 .0 ” f i n i s h ”

12

13 p roc f i n i s h {} {
14 g l o b a l ns t r a c e f i l e n a m f i l e

15 $ns f l u s h − t r a c e

16 c l o s e $ t r a c e f i l e

17 c l o s e $ n a m f i l e

18 exec nam o u t . nam &

19 e x i t 0

20 }
21

22 $ns run

Listing A.1: ns-2 Preliminaries

1 s e t ns [ new S i m u l a t o r ]

2

3 # Open Trace F i l e

4 s e t t r a c e f i l e [ open o u t . t r w]

5 $ns t r a c e −a l l $ t r a c e f i l e

6

7 #Open t h e NAM Trace F i l e

8 s e t n a m f i l e [ open o u t . nam w]

9 $ns namtrace−a l l $ n a m f i l e

10

11 $ns a t 2 0 . 0 ” f i n i s h ”

12

13 p roc f i n i s h {} {
14 g l o b a l ns t r a c e f i l e n a m f i l e

15 $ns f l u s h − t r a c e

16 c l o s e $ t r a c e f i l e

17 c l o s e $ n a m f i l e

18 exec nam o u t . nam &

19 e x i t 0

20 }
21

22 # C r e a t e f o u r nodes

23 s e t n0 [ $ns node ]

24 s e t n1 [ $ns node ]
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25 s e t n2 [ $ns node ]

26 s e t n3 [ $ns node ]

27

28 # C r e a t e l i n k s between t h e nodes

29 $ns duplex−l i n k $n0 $n2 1Mb 10ms D r o p T a i l

30 $ns duplex−l i n k $n1 $n2 1Mb 10ms D r o p T a i l

31 $ns duplex−l i n k $n3 $n2 1Mb 10ms D r o p T a i l

32

33 # C r e a t e a TCP c o n n e c t i o n on n0

34 s e t t c p 0 [ new Agent / TCP]

35 $ns a t t a c h −a g e n t $n0 $ t c p 0

36 $ t c p 0 s e t f i d 1

37 $ t c p 0 s e t p a c k e t S i z e 552

38

39 # Se tup a FTP ove r TCP c o n n e c t i o n

40 s e t f t p 0 [ new A p p l i c a t i o n / FTP ]

41 $ f t p 0 a t t a c h −a g e n t $ t c p 0

42

43 # Se tup

44 s e t s i n k 0 [ new Agent / TCPSink ]

45 $ns a t t a c h −a g e n t $n3 $ s i n k 0

46

47 $ns c o n n e c t $ t c p 0 $ s i n k 0

48

49 # Se tup a UDP c o n n e c t i o n

50 s e t udp1 [ new Agent /UDP]

51 $ns a t t a c h −a g e n t $n1 $udp1

52 $udp1 s e t f i d 2

53

54 # Se tup a CBR ove r UDP c o n n e c t i o n

55 s e t cb r1 [ new A p p l i c a t i o n / T r a f f i c /CBR]

56 $cbr1 a t t a c h −a g e n t $udp1

57 $cbr1 s e t p a c k e t S i z e 1000

58 $cbr1 s e t i n t e r v a l 0 .005

59 $cbr1 s e t random f a l s e

60

61 # Se tup a Nu l l Agent

62 s e t n u l l 1 [ new Agent / Nu l l ]

63 $ns a t t a c h −a g e n t $n3 $ n u l l 1

64 $ns c o n n e c t $udp1 $ n u l l 1

65

66 $ns a t 1 . 0 ” $ f t p 0 s t a r t ”

67 $ns a t 4 . 0 ” $ f t p 0 s t o p ”

68 $ns a t 0 . 5 ” $cbr1 s t a r t ”

69 $ns a t 4 . 5 ” $cbr1 s t o p ”

70 $ns run

Listing A.2: ns-2 Nodes Links and Traffic
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1 s e t o p t ( chan ) Channel / W i r e l e s s C h a n n e l

2 s e t o p t ( prop ) P r o p a g a t i o n / TwoRayGround

3 s e t o p t ( n e t i f ) Phy / W i r e l e s s P h y

4 s e t o p t ( mac ) Mac /802 11

5 s e t o p t ( i f q ) Queue / D r o p T a i l / Pr iQueue

6 s e t o p t ( l l ) LL

7 s e t o p t ( a n t ) Antenna / OmniAntenna

8 s e t o p t ( x ) 670 ; # X d imens ion of t h e t o p o g r a p h y

9 s e t o p t ( y ) 670 ; # Y d imens ion of t h e t o p o g r a p h y

10 s e t o p t ( i f q l e n ) 50 ; # max p a c k e t i n i f q

11 s e t o p t ( s eed ) 0 . 0

12 s e t o p t ( t r ) 694demo . t r ; # t r a c e f i l e

13 s e t o p t ( nam ) 694demo . nam ; # nam t r a c e f i l e

14 s e t o p t ( adhocRou t ing ) DSDV

15 s e t o p t ( nn ) 3 ; # how many nodes a r e s i m u l a t e d

16 s e t o p t ( cp ) ” t r a f f i c . f i l e ”

17 s e t o p t ( sc ) ” movement . f i l e ”

18 s e t o p t ( s t o p ) 200 .0 ; # s i m u l a t i o n t ime

19

20 # c r e a t e s i m u l a t o r i n s t a n c e

21 s e t n s [ new S i m u l a t o r ]

22

23 # t o p o l o g y

24 s e t t opo [ new Topography ]

25 $ topo l o a d f l a t g r i d 670 670

26

27 # ns t r a c e

28 s e t t r a c e f d [ open w i r e l e s s s c e n a r i o . t r w]

29 $ n s t r a c e −a l l $ t r a c e f d

30

31

32 # nam t r a c e

33 s e t n a m t r a c e [ open w i r e l e s s s c e n a r i o . nam w]

34 $ n s namtrace−a l l −w i r e l e s s $namt race 670 670

35

36 # c r e a t e god

37 s e t god [ c r e a t e −god 3]

38

39 # Mobile Node c o n f i g u r a t i o n

40 $ n s node−c o n f i g −adhocRou t ing $op t ( adhocRou t ing ) \
41 −l l T y p e $op t ( l l ) \
42 −macType $op t ( mac ) \
43 −i f q T y p e $op t ( i f q ) \
44 −i f q L e n $op t ( i f q l e n ) \
45 −an tType $op t ( a n t ) \
46 −propType P r o p a g a t i o n / TwoRayGround \
47 −phyType $op t ( n e t i f ) \
48 −channe lType Channel / W i r e l e s s C h a n n e l \
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49 − t o p o I n s t a n c e $ topo \
50 −a g e n t T r a c e ON \
51 − r o u t e r T r a c e OFF \
52 −macTrace ON

53

54 f o r { s e t i 0} { $ i < 3} { i n c r i } {
55 s e t node ( $ i ) [ $ n s node ]

56 # d i s a b l e random mot ion

57 $node ( $ i ) random−motion 0

58 $node ( $ i ) t o p o g r a p h y $ topo

59 }
60

61 #Load movement f i l e

62 s o u r c e movement . f i l e

63

64 #Load t r a f f i c f i l e

65 s o u r c e t r a f f i c . f i l e

66

67 # D e f i ne node i n i t i a l p o s i t i o n i n nam

68 f o r { s e t i 0} { $ i < 3 } { i n c r i } {
69 $ n s i n i t i a l n o d e p o s $node ( $ i ) 20

70 }
71

72 f o r { s e t i 0} { $ i < 3 } { i n c r i } {
73 $ n s a t 150 .0 ” $node ( $ i ) r e s e t ” ;

74 }
75

76 # T e l l ns / nam t h e s i m u l a t i o n s t o p t ime

77 $ n s a t 150 .0 ” $ n s nam−end−w i r e l e s s 150 .0 ”

78 $ n s a t 150 .0 ” $ n s h a l t ”

79

80 # S t a r t your s i m u l a t i o n

81 $ n s run

Listing A.3: ns-2 Wireless Scenario
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1 $ n s a t 50 .000000000000 ” $node ( 2 ) s e t d e s t 369.463244915743

170.519203111152 3.371785899154 ”

2 $ n s a t 51 .000000000000 ” $node ( 1 ) s e t d e s t 221.826585497093

80.855495003839 14.909259208114 ”

3 $ n s a t 33 .000000000000 ” $node ( 0 ) s e t d e s t 89 .663708107313

283.494644426442 19.153832288917 ”

4 $god s e t−d i s t 1 2 2

5 $god s e t−d i s t 0 2 3

6 $god s e t−d i s t 0 1 1

7 $node ( 2 ) s e t Z 0.000000000000

8 $node ( 2 ) s e t Y 199.373306816804

9 $node ( 2 ) s e t X 591.256560093833

10 $node ( 1 ) s e t Z 0.000000000000

11 $node ( 1 ) s e t Y 345.357731779204

12 $node ( 1 ) s e t X 257.046298323157

13 $node ( 0 ) s e t Z 0.000000000000

14 $node ( 0 ) s e t Y 239.438009831261

15 $node ( 0 ) s e t X 83.364418416244

Listing A.4: ns-2 Wireless Scenario Movement File

1 #

2 # 0 c o n n e c t i n g t o 2 a t t ime 127.93667922166023

3 #

4 s e t udp ( 0 ) [ new Agent /UDP]

5 $ n s a t t a c h −a g e n t $node ( 0 ) $udp ( 0 )

6 s e t n u l l ( 0 ) [ new Agent / Nu l l ]

7 $ n s a t t a c h −a g e n t $node ( 2 ) $ n u l l ( 0 )

8 s e t c b r ( 0 ) [ new A p p l i c a t i o n / T r a f f i c /CBR]

9 $ c b r ( 0 ) s e t p a c k e t S i z e 512

10 $ c b r ( 0 ) s e t i n t e r v a l 4 . 0

11 $ c b r ( 0 ) s e t random 1

12 $ c b r ( 0 ) s e t maxpk t s 10000

13 $ c b r ( 0 ) a t t a c h −a g e n t $udp ( 0 )

14 $ n s c o n n e c t $udp ( 0 ) $ n u l l ( 0 )

15 $ n s a t 36 .93667922166023 ” $ c b r ( 0 ) s t a r t ”

16

17 s e t t c p [ new Agent / TCP]

18 $ t c p s e t c l a s s 2

19 s e t s i n k [ new Agent / TCPSink ]

20 $ n s a t t a c h −a g e n t $node ( 1 ) $ t c p

21 $ n s a t t a c h −a g e n t $node ( 2 ) $ s i n k

22 $ n s c o n n e c t $ t c p $ s i n k

23 s e t f t p [ new A p p l i c a t i o n / FTP ]

24 $ f t p a t t a c h −a g e n t $ t c p

25 $ n s a t 3 .00000000000000 ” $ f t p s t a r t ”

Listing A.5: ns-2 Wireless Scenario Traffic File
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1 # i f n d e f l a r p k t h

2 # d e f i n e l a r p k t h

3

4 # i n c l u d e <p a c k e t . h>

5

6

7 /∗ Header Macros ∗ /

8 # d e f i n e HDR LAR PKT( p ) h d r l a r p k t : : a c c e s s ( p )

9 # d e f i n e maxRouteLength 32

10

11 s t r u c t h d r l a r p k t {
12

13 n s a d d r t p k t s r c ; / / Node which o r i g i n a t e d t h i s p a c k e t

14 u i n t 1 6 t p k t l e n ; / / Pa ck e t l e n g t h ( i n b y t e s )

15 u i n t 8 t p k t s e q n u m ; / / Pa ck e t s e q u e n c e number

16 char fo rwardCode ; / / F=f l o o d , S=Scheme 2 , U=u n s e t ,

17 char l a r C o d e ; / / D=data , R=r o u t i n g , A= r o u t e r e p l y

18 double sendTime ;

19 bool newPkt ; / / t r u e i f t h i s i s p a c k e t done o n l y one hop

20 double sou rceX ;

21 double sou rceY ;

22 i n t hops ;

23 double l a s tHopX ;

24 double l a s tHopY ;

25 n s a d d r t d e s t i n a t i o n I D ;

26 n s a d d r t r o u t e [ maxRouteLength ] ;

27

28 double d e s t i n a t i o n X ;

29 double d e s t i n a t i o n Y ;

30 double r e q u e s t S e n d T i m e ;

31 n s a d d r t r e q u e s t I D ;

32

33 n s a d d r t r e p l y I D ;

34 double r ep lySendT ime ;

35

36 i n l i n e n s a d d r t& p k t s r c ( ) { re turn p k t s r c ; }
37 i n l i n e u i n t 1 6 t& p k t l e n ( ) { re turn p k t l e n ; }
38 i n l i n e u i n t 8 t& pk t seq num ( ) { re turn p k t s e q n u m ; }
39 i n l i n e char& forwardCode ( ) { re turn fo rwardCode ; }
40 i n l i n e char& l a r C o d e ( ) { re turn l a r C o d e ; }
41 i n l i n e double& sendTime ( ) { re turn sendTime ; }
42 i n l i n e bool& newPkt ( ) { re turn newPkt ; }
43 i n l i n e double& sourceX ( ) { re turn sou rceX ; }
44 i n l i n e double& sourceY ( ) { re turn sou rceY ; }
45 i n l i n e i n t& hops ( ) { re turn hops ; }
46 i n l i n e double& las tHopX ( ) { re turn l a s tHopX ; }
47 i n l i n e double& las tHopY ( ) { re turn l a s tHopY ; }
48 i n l i n e n s a d d r t& d e s t i n a t i o n I D ( ) { re turn d e s t i n a t i o n I D ; }
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49

50 i n l i n e double& d e s t i n a t i o n X ( ) { re turn d e s t i n a t i o n X ; }
51 i n l i n e double& d e s t i n a t i o n Y ( ) { re turn d e s t i n a t i o n Y ; }
52 i n l i n e double& reques tSend T ime ( ) { re turn r e q u e s t S e n d T i m e ;}
53 i n l i n e n s a d d r t& r e q u e s t I D ( ) { re turn r e q u e s t I D ; }
54

55 i n l i n e n s a d d r t &r e p l y I D ( ) { re turn r e p l y I D ; }
56 i n l i n e double &rep lySendTime ( ) { re turn r ep lySendT ime ; }
57

58 s t a t i c i n t o f f s e t ;

59 i n l i n e s t a t i c i n t& o f f s e t ( ) { re turn o f f s e t ; }
60 i n l i n e s t a t i c h d r l a r p k t ∗ a c c e s s ( c o n s t P a c k e t ∗ p ) {
61 re turn ( h d r l a r p k t ∗ ) p−>a c c e s s ( o f f s e t ) ;

62 }
63 } ;

64 # e n d i f

Listing A.6: LAR Packet Type
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1 # i f n d e f l a r h

2 # d e f i n e l a r h

3

4 # i n c l u d e ” l a r p k t . h ”

5 # i n c l u d e ” t r a c e . h ”

6 # i n c l u d e ” o b j e c t . h ”

7 # i n c l u d e ” a g e n t . h ”

8 # i n c l u d e ” p a c k e t . h ”

9 # i n c l u d e ” i p . h ”

10 # i n c l u d e ” mobi lenode . h ”

11 # i n c l u d e ” t i m e r−h a n d l e r . h ”

12 # i n c l u d e ” random . h ”

13 # i n c l u d e ” c l a s s i f i e r −p o r t . h ”

14

15 # i n c l u d e <s e t >

16 # i n c l u d e <map>

17 # i n c l u d e < l i s t >

18 # i n c l u d e <i o s t r e a m >

19

20 us ing namespace s t d ;

21

22 # d e f i n e CURRENT TIME S c h e d u l e r : : i n s t a n c e ( ) . c l o c k ( )

23 # d e f i n e maxRouteLength 32

24

25 c l a s s LAR; / f o r w a r d d e c l a r a t i o n

26

27 t y p e d e f s t r u c t

28 {
29 double x ;

30 double y ;

31 char method ; / / f l o o d or scheme 2

32 n s a d d r t r o u t e [ maxRouteLength ] ;

33 i n t hops ;

34 double t i m e O f L a s t R e q u e s t ;

35 bool r e q u e s t P e n d i n g ;

36 bool noRoute ;

37 } l a r D e s t T y p e ;

38

39

40 c l a s s LAR PktTimer : p u b l i c TimerHand le r {
41 p u b l i c :

42 LAR PktTimer (LAR∗ a g e n t ) : T imerHand le r ( ) {
43 a g e n t = a g e n t ;

44 }
45 p r o t e c t e d :

46 LAR ∗ a g e n t ;

47 v i r t u a l vo id e x p i r e ( Event ∗ e ) ;

48 } ;
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49

50

51 c l a s s LAR : p u b l i c Agent {
52

53 f r i e n d c l a s s LAR PktTimer ;

54

55 p r i v a t e :

56 map<n s a d d r t , l a r D e s t T y p e , l e s s <i n t > > r o u t e T a b l e ;

57 MobileNode ∗node ;

58

59 p r o t e c t e d :

60 P o r t C l a s s i f i e r ∗ dmux ;

61 Trace ∗ l o g t a r g e t ;

62 LAR PktTimer p k t t i m e r ;

63

64 i n l i n e n s a d d r t& r a a d d r ( ) { re turn r a a d d r ; }
65

66 void f o r w a r d d a t a ( P a c k e t ∗ , Hand le r ∗ , l a r D e s t T y p e ∗ ) ;

67 void r e c v l a r p k t ( P a c k e t ∗ , Hand le r ∗ ) ;

68

69 void r e s e t l a r p k t t i m e r ( ) ;

70

71 p u b l i c :

72 u i n t 8 t seq num ;

73 n s a d d r t r a a d d r ;

74 LAR( n s a d d r t ) ;

75 void r e c v ( P a c k e t ∗ , Hand le r ∗ ) ;

76 i n t command ( i n t , c o n s t char∗ c o n s t ∗ ) ;

77 } ;

78 # e n d i f

Listing A.7: LAR Header File lar.h
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1 # i n c l u d e ” l a r . h ”

2

3 us ing namespace s t d ;

4

5 / / i f a r o u t e r e p l y i s n o t r e c i e v e d i n t h i s amount o f t i m e t h e

6 / / r e q u e s t i s f l o o d e d

7 double LARRouteRequestTimeout = 0 . 5 ;

8

9 / / l a r f a c t o r f o r scheme 2

10 double LARDelta = 0 . 0 ;

11

12 i n t h d r l a r p k t : : o f f s e t ;

13 s t a t i c c l a s s LARHeaderClass : p u b l i c P a c k e t H e a d e r C l a s s {
14 p u b l i c :

15 LARHeaderClass ( ) : P a c k e t H e a d e r C l a s s ( ” P a c k e t H e a d e r /LAR” , s i z e o f

( h d r l a r p k t ) ) {
16 b i n d o f f s e t (& h d r l a r p k t : : o f f s e t ) ;

17 }
18 } c l a s s r t P r o t o L A R h d r ;

19

20 s t a t i c c l a s s LARClass : p u b l i c T c l C l a s s {
21 p u b l i c :

22 LARClass ( ) : T c l C l a s s ( ” Agent /LAR” ) {}
23 T c l O b j e c t ∗ c r e a t e ( i n t argc , c o n s t char∗ c o n s t ∗ a rgv ) {
24 a s s e r t ( a r g c ==5) ;

25 re turn ( new LAR ( ( n s a d d r t ) Address : : i n s t a n c e ( ) . s t r 2 a d d r ( a rgv

[ 4 ] ) ) ) ;

26 }
27 } c l a s s r t P r o t o L A R ;

28

29 void LAR PktTimer : : e x p i r e ( Event ∗ e ) {
30 a g e n t −> r e s e t l a r p k t t i m e r ( ) ;

31 }
32

33 void LAR : : r e s e t l a r p k t t i m e r ( ) {
34 p k t t i m e r . r e s c h e d ( ( double ) 5 . 0 ) ;

35 }
36

37 LAR : : LAR( n s a d d r t i d ) : Agent ( PT LAR ) , dmux ( 0 ) , p k t t i m e r ( t h i s ) {
38 r a a d d r = i d ;

39 node = NULL;

40 / / b i n d b o o l (” a c c e s s i b l e v a r ” , &a c c e s s i b l e v a r ) ;

41 }
42

43 i n t LAR : : command ( i n t argc , c o n s t char∗ c o n s t ∗ a rgv ) {
44 i f ( a r g c == 2) {
45 i f ( s t r c a s e c m p ( a rgv [ 1 ] , ” s t a r t ” ) == 0) {
46 p k t t i m e r . r e s c h e d ( 0 . 0 ) ;
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47 re turn TCL OK ;

48 }
49 } e l s e i f ( a r g c == 3) {
50 i f ( s t r c mp ( a rgv [ 1 ] , ” p o r t−dmux” ) == 0 ) {
51 dmux = ( P o r t C l a s s i f i e r ∗ ) T c l O b j e c t : : lookup ( a rgv [ 2 ] ) ;

52 i f ( dmux == 0) {
53 f p r i n t f ( s t d e r r , ”%s : %s lookup of %s f a i l e d \n ” , F ILE

,

54 a rgv [ 1 ] , a rgv [ 2 ] ) ;

55 re turn TCL ERROR ;

56 }
57 re turn TCL OK ;

58 } e l s e i f ( s t r c mp ( a rgv [ 1 ] , ” t r a c e t a r g e t ” ) == 0 ) {
59 l o g t a r g e t = ( Trace ∗ ) T c l O b j e c t : : lookup ( a rgv [ 2 ] ) ;

60 i f ( l o g t a r g e t == 0) {
61 re turn TCL ERROR ;

62 }
63 re turn TCL OK ;

64 } e l s e i f ( s t r c a s e c m p ( a rgv [ 1 ] , ” node ” ) == 0) {
65 node = ( MobileNode ∗ ) T c l O b j e c t : : lookup ( a rgv [ 2 ] ) ;

66 re turn TCL OK ;

67 }
68 }
69 re turn ( Agent : : command ( argc , a rgv ) ) ;

70 }
71

72 void LAR : : r e c v ( P a c k e t ∗ pkt , Hand le r ∗ h ) {
73 s t r u c t hdr cmn∗ ch = hdr cmn : : a c c e s s ( p k t ) ;

74 s t r u c t h d r i p ∗ i h = h d r i p : : a c c e s s ( p k t ) ;

75

76 i f ( ch−>p t y p e ( ) == PT LAR ) {
77 ih−> t t l −−;

78 r e c v l a r p k t ( pkt , h ) ;

79 re turn ;

80 }
81

82 i f ( ih−>s a d d r ( ) == r a a d d r ( ) ) {
83 / / t h e r e e x i s t s a loop −> drop t h e p a c k e t

84 i f ( ch−>num forwards ( ) > 0) {
85 drop ( pkt , DROP RTR ROUTE LOOP) ;

86 re turn ;

87 } e l s e i f ( ch−>num forwards ( ) == 0) {
88 ch−>s i z e ( ) += IP HDR LEN ;

89 }
90 } e l s e i f (−−( ih−> t t l ) == 0) {
91 drop ( pkt , DROP RTR TTL ) ;

92 re turn ;

93 }
94
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95 i f ( ( u i n t 3 2 t ) ih−>daddr ( ) != IP BROADCAST ) {
96 r o u t e r e s o l v e ( pkt , h ) ;

97 } e l s e {
98 f o r w a r d d a t a ( pkt , h , ( l a r D e s t T y p e ∗ ) 0 ) ;

99 }
100 }
101

102 void LAR : : r e c v l a r p k t ( P a c k e t ∗ pkt , Hand le r ∗ h ) {
103 s t r u c t hdr cmn∗ ch = hdr cmn : : a c c e s s ( p k t ) ;

104 s t r u c t h d r i p ∗ i h = h d r i p : : a c c e s s ( p k t ) ;

105 s t r u c t h d r l a r p k t ∗ l a r h d r = h d r l a r p k t : : a c c e s s ( p k t ) ;

106

107 a s s e r t ( ih−>s p o r t ( ) == RT PORT ) ;

108 a s s e r t ( ih−>d p o r t ( ) == RT PORT ) ;

109

110 node−>u p d a t e p o s i t i o n ( ) ;

111 l a r h d r −>newPkt ( ) = f a l s e ;

112

113 i f ( t h i s −>d u p l i c a t e R c v d P a c k e t ( ch−>u i d ) | | t h i s −>

d u p l i c a t e S e n t P a c k e t ( ch−>u i d ) ) {
114 P a c k e t : : f r e e ( p k t ) ;

115 re turn ;

116 }
117

118 /∗ p r o c e s s i n g o f LAR r o u t i n g p a c k e t s ∗ /

119

120 P a c k e t : : f r e e ( p k t ) ;

121 re turn ;

122 }
123

124 void LAR : : f o r w a r d d a t a ( P a c k e t ∗ p , Hand le r ∗ h , l a r D e s t T y p e ∗ r t ) {
125 s t r u c t hdr cmn∗ cmnhdr = hdr cmn : : a c c e s s ( p ) ;

126 s t r u c t h d r i p ∗ i p h d r = h d r i p : : a c c e s s ( p ) ;

127

128 i f ( i p h d r−> t t l == 0) {
129 drop ( p , DROP RTR TTL ) ;

130 re turn ;

131 }
132

133 i f ( cmnhdr−>p t y p e ( ) != PT LAR && cmnhdr−>d i r e c t i o n ( ) == hdr cmn : : UP

&& ( ( u i n t 3 2 t ) i p h d r−>daddr ( ) == IP BROADCAST | | i p h d r−>daddr

( ) == r a a d d r ( ) ) ) {
134 dmux −>r e c v ( p , h ) ;

135 re turn ;

136 }
137

138 i f ( r t ) {
139 cmnhdr−>d i r e c t i o n ( ) = hdr cmn : :DOWN;

140 cmnhdr−>a d d r t y p e ( ) = NS AF INET ;
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141 cmnhdr−>n e x t h o p = r t −>r o u t e [ 1 ] ;

142 } e l s e {
143 / / B r o a d c s t message

144 cmnhdr−>d i r e c t i o n ( ) = hdr cmn : :DOWN;

145 cmnhdr−>a d d r t y p e ( ) = NS AF NONE ;

146 }
147

148 S c h e d u l e r : : i n s t a n c e ( ) . s c h e d u l e ( t a r g e t , p , 0 . 0 ) ;

149 }

Listing A.8: LAR Source File lar.cc
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1 enum p a c k e t t {
2 PT TCP ,

3 PT UDP ,

4 PT CBR ,

5 ( . . . )

6 PT LAR ,

7 PT NTYPE / / T h i s MUST be t h e LAST one

8 } ;

9

10 ( . . . )

11

12 p i n f o ( ) {
13 name [ PT TCP ]= ” t c p ” ;

14 name [ PT UDP]= ” udp ” ;

15 name [ PT CBR]= ” c b r ” ;

16 ( . . . )

17 name [ PT LAR]= ”LAR” ;

18 name [ PT NTYPE]= ” u n d e f i n e d ” ;

19 }

Listing A.9: Required changes in ns-2 packet.h

1 f o r e a c h p r o t {
2 AODV

3 ARP

4 ( . . . )

5 LAR

6 NV

7 }
8 {
9 dd−packe t−h e a d e r $ p r o t

10 }

Listing A.10: Required changes in ns-2 ns-packet.tcl

1 OBJ CC = \
2 t o o l s / random . o t o o l s / rng . o t o o l s / r a n v a r . o

3 common / misc . o common / t i m e r−h a n d l e r . o \
4 ( . . . )

5 l a r / l a r . o l a r / l a r p k t . o \
6 ( . . . )

7 $ ( OBJ STL )

Listing A.11: Required changes in ns-2 Makefile
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1 sw i t ch −e x a c t $ r o u t i n g A g e n t {
2 DSDV {
3 s e t r a g e n t [ $ s e l f c r e a t e −dsdv−a g e n t $node ]

4 }
5 DSR {
6 $ s e l f a t 0 . 0 ” $node s t a r t −d s r ”

7 }
8 AODV {
9 s e t r a g e n t [ $ s e l f c r e a t e −aodv−a g e n t $node ]

10 }
11 ( . . . )

12 LAR {
13 s e t r a g e n t [ $ s e l f c r e a t e −l a r −a g e n t $node ]

14 }
15 DumbAgent {
16 s e t r a g e n t [ $ s e l f c r e a t e −dumb−a g e n t $node ]

17 }
18 d e f a u l t {
19 p u t s ”Wrong node r o u t i n g a g e n t ! ”

20 e x i t

21 }
22 }
23

24 ( . . . )

25

26 S i m u l a t o r i n s t p r o c c r e a t e −l a r −a g e n t { node } {
27 # C r e a t e Lar r o u t i n g a g e n t

28 s e t r a g e n t [ new Agent /LAR [ $node node−a dd r ] ]

29 $ s e l f a t 0 . 0 ” $ r a g e n t node $node ”

30 $node s e t r a g e n t $ r a g e n t

31 re turn $ r a g e n t

32 }

Listing A.12: Required changes in ns-2 ns-lib.tcl
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1 + 1 .84375 0 2 c b r 210 −−−−−−− 0 0 . 0 3 . 1 225 610

2 − 1 .84375 0 2 c b r 210 −−−−−−− 0 0 . 0 3 . 1 225 610

3 r 1 .84471 2 1 c b r 210 −−−−−−− 1 3 . 0 1 . 0 195 600

4 r 1 .84566 2 0 ack 40 −−−−−−− 2 3 . 2 0 . 1 82 602

5 + 1 .84566 0 2 t c p 1000 −−−−−−− 2 0 . 1 3 . 2 102 611

6 − 1 .84566 0 2 t c p 1000 −−−−−−− 2 0 . 1 3 . 2 102 611

7 r 1 .84609 0 2 c b r 210 −−−−−−− 0 0 . 0 3 . 1 225 610

8 + 1 .84609 2 3 c b r 210 −−−−−−− 0 0 . 0 3 . 1 225 610

9 d 1 .84609 2 3 c b r 210 −−−−−−− 0 0 . 0 3 . 1 225 610

10 − 1 .8461 2 3 c b r 210 −−−−−−− 0 0 . 0 3 . 1 192 511

11 r 1 .84612 3 2 c b r 210 −−−−−−− 1 3 . 0 1 . 0 196 603

12 + 1 .84612 2 1 c b r 210 −−−−−−− 1 3 . 0 1 . 0 196 603

13 − 1 .84612 2 1 c b r 210 −−−−−−− 1 3 . 0 1 . 0 196 603

14 + 1 .84625 3 2 c b r 210 −−−−−−− 1 3 . 0 1 . 0 199 612

Listing A.13: Extract of a Trace File in Normal Trace Format

1 s − t 0 .267662078 −Hs 0 −Hd −1 −Ni 0 −Nx 5 . 0 0

2 −Ny 2 . 0 0 −Nz 0 . 0 0 −Ne −1.000000 −Nl RTR −Nw −−− −Ma 0 −Md 0

3 −Ms 0 −Mt 0 −I s 0 .255 −Id −1.255 − I t message − I l 32 − I f 0

4 − I i 0 −Iv 32

5

6

7 s − t 1 .511681090 −Hs 1 −Hd −1 −Ni 1 −Nx 390 .00

8 −Ny 385 .00 −Nz 0 . 0 0 −Ne −1.000000 −Nl RTR −Nw −−− −Ma 0 −Md 0

9 −Ms 0 −Mt 0 −I s 1 .255 −Id −1.255 − I t message − I l 32 − I f 0

10 − I i 1 −Iv 32

11

12 r − t 10 .000000000 −Hs 0 −Hd −2 −Ni 0 −Nx 5 . 0 0

13 −Ny 2 . 0 0 −Nz 0 . 0 0 −Ne −1.000000 −Nl RTR −Nw −−− −Ma 0 −Md 0

14 −Ms 0 −Mt 0 −I s 0 . 0 −Id 1 . 0 − I t t c p − I l 1000 − I f 2 − I i 2

15 −Iv 32 −Pn t c p −Ps 0 −Pa 0 −Pf 0 −Po 0

Listing A.14: Extract of a Trace File in New Wireless Trace Format

1 n − t ∗ −a 1 −s 1 −S UP −v c i r c l e −c b l a c k

2 n − t ∗ −a 11 −s 11 −S UP −v c i r c l e −c b l a c k

3 n − t ∗ −a 6 −s 6 −S UP −v c i r c l e −c b l a c k

4 ( . . . )

5 l − t ∗ −s 9 −d 0 −S UP −r 10000000 −D 0.002 −o r i g h t

6 l − t ∗ −s 10 −d 7 −S UP −r 10000000 −D 0.002 −o l e f t

7 l − t ∗ −s 11 −d 6 −S UP −r 10000000 −D 0.002 −o l e f t

8 ( . . . )

9 + − t 0 .012664 −s 9 −d 0 −p t c p −e 1000 −c 0 − i 2 −a 0 −x {9 . 0 1 0 . 0 1

−−−−−−− n u l l }
10 − − t 0 .012664 −s 9 −d 0 −p t c p −e 1000 −c 0 − i 2 −a 0 −x {9 . 0 1 0 . 0 1

−−−−−−− n u l l }
11 h − t 0 .012664 −s 9 −d 0 −p t c p −e 1000 −c 0 − i 2 −a 0 −x {9 . 0 1 0 . 0 −1

−−−−−−− n u l l }
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12 + − t 0 .012664 −s 9 −d 0 −p t c p −e 1000 −c 0 − i 3 −a 0 −x {9 . 0 1 0 . 0 2

−−−−−−− n u l l }
13 − − t 0 .013464 −s 9 −d 0 −p t c p −e 1000 −c 0 − i 3 −a 0 −x {9 . 0 1 0 . 0 2

−−−−−−− n u l l }
14 h − t 0 .013464 −s 9 −d 0 −p t c p −e 1000 −c 0 − i 3 −a 0 −x {9 . 0 1 0 . 0 −1

−−−−−−− n u l l }
15 r − t 0 .015464 −s 9 −d 0 −p t c p −e 1000 −c 0 − i 2 −a 0 −x {9 . 0 1 0 . 0 1

−−−−−−− n u l l }
16 + − t 0 .015464 −s 0 −d 7 −p t c p −e 1000 −c 0 − i 2 −a 0 −x {9 . 0 1 0 . 0 1

−−−−−−− n u l l }
17 h − t 0 .015464 −s 0 −d 8 −p t c p −e 1000 −c 0 − i 2 −a 0 −x {9 . 0 1 0 . 0 1

−−−−−−− n u l l }
18 r − t 0 .016264 −s 9 −d 0 −p t c p −e 1000 −c 0 − i 3 −a 0 −x {9 . 0 1 0 . 0 2

−−−−−−− n u l l }

Listing A.15: Extract of a Trace File in NAM Trace Format
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1 # ! / u s r / b i n / p e r l

2 # =============

3 i f ( $#ARGV < 0 | | $#ARGV > 0 ) { usage ( ) ; } # e x e c u t i o n c o n d i t i o n s o f

p e r l s c r i p t

4 # Argument ARGV[ 0 ] i s t h e f i l e n a m e o f t h e t r a c e f i l e

5 open ( FILE , $ARGV[ 0 ] ) | | d i e ” f i l e $ARGV[ 0 ] n o t found .\ n ” ;

6 # v a r i a b l e d e c l a r a t i o n s b e g i n

7 my %p a c k e t S e n d ;

8 my %p a c k e t R e c e i v e d ;

9 my %endToEndDelay ;

10 my %s o u r c e ;

11 my %d e s t i n a t i o n ;

12 # v a r i a b l e d e c l a r a t i o n s end

13 # read

14 whi le ( $ l i n e = <FILE> )

15 {
16 @word = s p l i t ( ’\ s+ ’ , $ l i n e ) ; # s p l i t co lumns o f a l i n e and save

i n t o a r r a y

17 #word [ 0 ] : e v e n t

18 #word [ 1 ] : t i m e s t a m p

19 #word [ 2 ] : s o u r c e

20 #word [ 3 ] : d e s t i n a t i o n

21 #word [ 4 ] : p a c k e t t y p e

22 #word [ 5 ] : P a ck e t S i z e

23 #word [ 6 ] : F lags

24 #word [ 7 ] : Flow ID

25 #word [ 8 ] : Source Addres s

26 #word [ 9 ] : D e s t i n a t i o n Addres s

27 #word [ 1 0 ] : Sequence Number

28 #word [ 1 1 ] : Unique P ac k e t ID

29 i f ( e x i s t s $packe tSend {$word [ 1 1 ] } ) {
30 i f ( $word [ 0 ] eq ” r ” )

31 {
32 $ p a c k e t R e c e i v e d {$word [11 ]}= $word [ 1 ] ;

33 $ d e s t i n a t i o n {$word [11 ]}= $word [ 3 ] ;

34 }
35 i f ( $word [ 0 ] eq ” d ” ) {
36 d e l e t e $ p a c k e t R e c e i v e d {$word [ 1 1 ] } ;

37 d e l e t e $packe tSend {$word [ 1 1 ] } ;

38 }
39 }
40 e l s e

41 {
42 $packe tSend {$word [11 ]}= $word [ 1 ] ;

43 $ s o u r c e {$word [11 ]}= $word [ 2 ] ;

44 }
45 }
46
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47 # c a l c u l a t e end t o end d e l a y

48 foreach my $key1 ( keys %p a c k e t S e n d ) {
49 $endToEndDelay{$key1}= $ p a c k e t R e c e i v e d {$key1}−$packe tSend {$key1 } ;

50 }
51 p r i n t T o F i l e ( ) ;

52 p r i n t S t a t s ( ) ;

53 e x i t ;

54 # −−−−−−−−−−−−−−−
55 sub p r i n t T o F i l e ( ) {
56 open ( FILE , ”>endToEnd v2 . d a t ” ) ;

57 f l o c k ( FILE , 2 ) ;

58 foreach my $key1 ( s o r t { $packe tSend {$a} cmp $packe tSend {$b} } keys %

p a c k e t S e n d ) {
59 p r i n t FILE ” $packe tSend {$key1} $endToEndDelay{$key1 }\n ” ;

60 }
61 c l o s e FILE ;

62 }
63 # −−−−−−−−−−−−−−
64 sub p r i n t S t a t s

65 {
66 my $ i =0 ;

67 foreach my $key1 ( keys %p a c k e t S e n d ) {
68

69 p r i n t ” $key1 ( $ s o u r c e {$key1 } , $ d e s t i n a t i o n {$key1 } )=> send :

$packe tSend {$key1 }\ t ” ;

70 p r i n t ” r e c e i v e d : $ p a c k e t R e c e i v e d {$key1 }\ t ” ;

71 p r i n t ” d e l a y : $endToEndDelay{$key1 }\n ” ;

72 $ i ++;

73 }
74 p r i n t ” There a r e $ i r e c e i v e d p a c k e t s ( w h i t o u t drop e v e n t s ) \n ” ;

75 e x i t ;

76 }
77 # −−−−−−−−−−−−
78 sub usage

79 {
80 p r i n t STDERR ” S t a t s :\ t \ t p r i n t s t a t i s t i s o f a . t r − t r a c e f i l e \n ” ;

81 p r i n t STDERR ” Usage :\ t \ tendToEnd . p l f i l e . t r \n ” ;

82 e x i t ;

83 }
84 # ============

Listing A.16: Perl Script for end-To-end Calculation
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1 s e t t e r m i n a l p o s t s c r i p t enhanced c o l o r dashed

2 d e f a u l t p l e x ” H e l v e t i c a ” 20

3 show o u t p u t

4 s e t o u t ” endToEnd . ps ”

5

6 u n s e t key

7 s e t t i t l e ”End−To−End Delay ”

8 s e t x l a b e l ” S i m u l a t i o n Time ”

9 s e t y l a b e l ”End−To−End Delay ”

10 s e t s t y l e d a t a l i n e s p o i n t s

11 p l o t ” endToEnd . d a t ” u s i n g 1 : 2 wi th l i n e s

Listing A.17: gnuplot Script to Visualize Statistical Data
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1 / / q o d p k t . h

2 # i f n d e f q o d p k t h

3 # d e f i n e q o d p k t h

4

5 # i n c l u d e <p a c k e t . h>

6

7 # d e f i n e HDR QOD PKT( p ) h d r q o d p k t : : a c c e s s ( p )

8

9 s t r u c t h d r q o d p k t {
10 char r e t u r n C o d e ;

11 char q u o t e [ 6 8 ] ;

12 double sendTime ;

13

14 s t a t i c i n t o f f s e t ;

15 i n l i n e s t a t i c i n t& o f f s e t ( ) { re turn o f f s e t ; }
16 i n l i n e s t a t i c h d r q o d p k t ∗ a c c e s s ( c o n s t P a c k e t ∗ p ) {
17 re turn ( h d r q o d p k t ∗ ) p−>a c c e s s ( o f f s e t ) ;

18 }
19 } ;

20 # e n d i f

Listing A.18: Hands-on session 3 - new packet type QOD

1 / / qod . h

2 # i f n d e f q o d h

3 # d e f i n e q o d h

4

5 # i n c l u d e ” a g e n t . h ”

6 # i n c l u d e ” t c l c l . h ”

7 # i n c l u d e ” p a c k e t . h ”

8 # i n c l u d e ” a d d r e s s . h ”

9 # i n c l u d e ” i p . h ”

10 # i n c l u d e ” q o d p k t . h ”

11

12

13 c l a s s QODAgent : p u b l i c Agent {
14 p u b l i c :

15 QODAgent ( ) ;

16 i n t command ( i n t argc , c o n s t char∗ c o n s t ∗ a rgv ) ;

17 void r e c v ( P a c k e t ∗ , Hand le r ∗ ) ;

18

19 } ;

20

21 # e n d i f

Listing A.19: Hands-on session 3 - QOD header file
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1 # C r e a t e a s i m u l a t o r o b j e c t

2 s e t ns [ new S i m u l a t o r ]

3

4 # S e t t i n g up ne twork t o p o l o g y

5 ( . . . )

6

7 # De f i ne a ’ r e c v ’ f u n c t i o n f o r t h e c l a s s ’ Agent /QOD’

8 Agent /QOD i n s t p r o c r e c v { from q u o t e r t t } {
9 $ s e l f i n s t v a r node

10 p u t s ” node [ $node i d ] r e c e i v e d q u o t e o f t h e day : \” $q uo t e \” from

\
11 $from wi th round−t r i p −t ime $ r t t ms . ”

12 }
13

14 # C r e a t e two p ing a g e n t s and a t t a c h them t o t h e nodes n0 and n2

15 s e t p0 1 [ new Agent /QOD]

16 $ns a t t a c h −a g e n t $n0 $p0 1

17 s e t p0 2 [ new Agent /QOD]

18 $ns a t t a c h −a g e n t $n0 $p0 2

19 s e t p2 [ new Agent /QOD]

20 $ns a t t a c h −a g e n t $n2 $p2

21 s e t p3 [ new Agent /QOD]

22 $ns a t t a c h −a g e n t $n3 $p3

23 # Connect t h e two a g e n t s

24 $ns c o n n e c t $p2 $p0 1

25 $ns c o n n e c t $p3 $p0 2

26

27 # S c h e d u l e e v e n t s

28 $ns a t 0 . 2 ” $p2 send ”

29 $ns a t 0 . 4 ” $p3 send ”

30 $ns a t 0 . 6 ” $p2 send ”

31 # $ns a t 0 . 6 ” $p2 send ”

32 # $ns a t 0 . 6 ” $p3 send ”

33 $ns a t 1 . 0 ” f i n i s h ”

34

35 #Run t h e s i m u l a t i o n

36 $ns run

Listing A.20: Hands-on session 3 - simulation file qod.tcl
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1 p u b l i c c l a s s Preproces sor implements Runnable {
2

3 p r i v a t e P r o c e s s o r Q u e u e queue ;

4 p r i v a t e S t r i n g p r o c e s s e d F i l e n a m e ;

5 p r i v a t e L i n k e d L i s t t e m p l i s t ;

6 p r i v a t e Thread p r e p r o c e s s o r ;

7 ( . . . )

8

9 p u b l i c Preproces sor ( S t r i n g pa th , S t r i n g f i l e n a m e ) {
10

11 }
12 p u b l i c vo id s t a r t P r e p r o c e s s o r ( ) {
13 p r e p r o c e s s o r = new Thread ( t h i s ) ;

14 p r e p r o c e s s o r . s t a r t ( ) ;

15 }
16

17 p u b l i c vo id run ( ) {
18 t h i s . s t a r t P r e p r o c e s s i n g ( ) ;

19 }
20

21 /∗ S t a r t s p r e p r o c e s s i n g − read i n t h e f i l e ∗ /

22 p u b l i c vo id s t a r t P r e p r o c e s s i n g ( ) {
23 ( . . . )

24 / / P r o c e s s each l i n e i n d i v i d u a l l y

25 whi le ( c o n t i n u e R e a d i n g ) {
26 t r y {
27 l i n e = br . r e a d L i n e ( ) ;

28 i f ( l i n e == n u l l ) {
29 emptyQueue ( ) ;

30 c o n t i n u e R e a d i n g = f a l s e ;

31 } e l s e {
32 p r o c e s s L i n e ( l i n e ) ;

33 }
34 } ca tch ( IOExcep t ion e ) {
35 e . p r i n t S t a c k T r a c e ( ) ;

36 }
37 }
38 c l o s e F i l e ( ) ;

39 ( . . . )

40 secondRun ( ) ;

41 merge ( t h i s . pa th , t h i s . p r o c e s s e d F i l e n a m e ) ;

42 ( . . . )

43 }
44 ( . . . )

45 /∗ ∗P r o c e s s a l i n e o f t h e t r a c e f i l e − w i t h i n each p r o c e s s i n g t r y

t o empty t h e queue i f queue i s f u l l manage t h e queue u n t i l

t h e r e i s space f o r a n o t h e r queued e l e m e n t s

46 ∗ /
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47 p u b l i c vo id p r o c e s s L i n e ( S t r i n g l i n e ) throws IOExcep t ion {
48

49 p a r s e L i n e ( l i n e , 1 , queue ) ;

50 ( . . . )

51 whi le ( ! queue . i sEmpty ( ) ) {
52 i f ( queue . hasReadyElement ( ) )

53 {
54 q = queue . dequeue ( ) ; / / dequeue an e l e m e n t

55 / / W r i t e a l l E l e m e n t s which are i n s t a t e ” ready ” t o t h e

new f i l e

56 ( . . . )

57 }
58 e l s e

59 {
60 / / There i s a f i r s t e l e m e n t which c an no t be dequeued − i f

queue i s f u l l , manage t h e queue o t h e r w i s e t a k e a n e x t

l i n e from t h e t r a c e f i l e

61 i f ( queue . i s F u l l ( ) )

62 {
63 / / W r i t e e l e m e n t s which are n o t y e t ready and are

b l o c k i n g t h e queue o u t t o a t emporary l i s t . Go on

w i t h e l e m e n t s t h a t are handab le

64 ( . . . )

65 }
66 break ;

67 }
68 }
69

70 }
71 ( . . . )

72 /∗ ∗ P a r s i n g a l i n e from t h e o r i g i n a l NAM t r a c e f i l e and g e n e r a t i n g

a new n e t . s f . v a t 4 n e t . i o . ProcessorQueueElemen t or add ing t h e

l i n e t o an e x i s t i n g one

73 ∗ /

74 p r i v a t e void p a r s e L i n e ( S t r i n g l i n e , i n t l e v e l , P r o c e s s o r Q u e u e queue )

{
75 ( . . . )

76 }
77 ( . . . )

78 /∗ ∗ Merge t h e worked−t h r o u g h temporary l i s t w i t h t h e e x i s t i n g

new t r a c e f i l e from t h e f i r s t run−t h r o u g h

79 ∗ /

80 p u b l i c vo id merge ( S t r i n g pa th , S t r i n g f i l e n a m e ) {
81 ( . . . )

82 }
83 ( . . . )

84 /∗ ∗ F i l e has t o be p r o c e s s e d a second t ime , t h e r e are r e c e i v e

e l e m e n t s l e f t . For t h i s do t h e same on t h e t emporary l i s t as

done on t h e o r i g i n a l t r a c e f i l e i n t h e f i r s t run .

132



85 ∗ /

86 p u b l i c vo id secondRun ( ) {
87 ( . . . )

88 }
89 }

Listing A.21: Preprocessor.java
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1 p u b l i c P r o ce s s o r Q ue u e E l em e n t s e a r c h ( i n t packe t ID , i n t s t a t u s , i n t

p a c k e t D e s t i n a t i o n , i n t p a c k e t S o u r c e , S t r i n g packe tType )

2 {
3 f o r ( I t e r a t o r i t = queue . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {
4 q =( P ro c e s s o rQ u e u e E le m e n t ) i t . n e x t ( ) ;

5 i f ( q . g e t P a c k e t I D ( ) == p a c k e t I D ) {
6 i f ( t h i s . s i m u l a t i o n T y p e == WIRELESS && q . g e t P a c k e t S t a t u s ( ) ==

s t a t u s && q . g e t P a c k e t T y p e ( ) . e q u a l s ( packe tType ) ) {
7 re turn q ;

8 }
9 i f ( p a c k e t S o u r c e == −1 && q . g e t P a c k e t S t a t u s ( ) == s t a t u s && q .

g e t P a c k e t D e s t i n a t i o n ( ) == p a c k e t D e s t i n a t i o n && q .

g e t P a c k e t T y p e ( ) . e q u a l s ( packe tType ) )

10 {
11 re turn q ;

12 }
13 i f ( q . g e t P a c k e t S t a t u s ( ) == s t a t u s && q . g e t P a c k e t D e s t i n a t i o n ( )

== p a c k e t D e s t i n a t i o n && q . g e t P a c k e t S o u r c e ( ) == p a c k e t S o u r c e

&& q . g e t P a c k e t T y p e ( ) . e q u a l s ( packe tType ) ) {
14 re turn q ;

15 }
16 }
17 }
18 re turn n u l l ;

19 }

Listing A.22: ProcessorQueue.java
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1 package n e t . s f . v a t 4 n e t . i o ;

2

3 p u b l i c c l a s s ProcessorQueueElement {
4 ( . . . )

5 p u b l i c ProcessorQueueElement ( S t r i n g t r a c e L i n e , boolean readyToWri te

, i n t packe t ID , i n t p a c k e t S t a t u s , i n t p a c k e t D e s t i n a t i o n , i n t

p a c k e t S o u r c e , S t r i n g packe tType ) {
6 / / Pa c ke t E lement / Trace Even t

7 t h i s . t r a c e L i n e = t r a c e L i n e ;

8 t h i s . r e adyToWr i t e = readyToWr i t e ;

9 t h i s . p a c k e t I D = p a c k e t I D ;

10 ( . . . )

11 t h i s . queueElementType = QUEUEPACKETELEMENT;

12 }
13 p u b l i c ProcessorQueueElement ( S t r i n g t r a c e L i n e , boolean r eadyToWr i t e

) {
14 / / non Pa ck e t E lement / Trace Even t

15 t h i s . t r a c e L i n e = t r a c e L i n e ;

16 t h i s . r e adyToWr i t e = readyToWr i t e ;

17 t h i s . queueElementType = QUEUEOTHERELEMENT;

18 }
19 ( . . . )

20 }

Listing A.23: ProcessorQueueElement.java
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1 p u b l i c Buf fer ( i n t s i z e ) {
2 b u f f e r = new L i n k e d L i s t ( ) ;

3 maxElements = s i z e ;

4 }
5

6 p u b l i c synchronized void p u t ( O b j e c t o ) {
7 whi le ( maxElements == b u f f e r . s i z e ( ) ) {
8 t r y { w a i t ( ) ; }
9 ca tch ( I n t e r r u p t e d E x c e p t i o n i e ) { ( . . . ) }

10 }
11 b u f f e r . add ( o ) ;

12 n o t i f y A l l ( ) ;

13 }
14

15 p u b l i c synchronized O b j e c t g e t ( ) {
16 whi le ( b u f f e r . i sEmpty ( ) ) {
17 t r y { w a i t ( ) ; }
18 ca tch ( I n t e r r u p t e d E x c e p t i o n i e ) { ( . . . ) }
19 }
20 n o t i f y A l l ( ) ;

21 re turn ( b u f f e r . r e m o v e F i r s t ( ) ) ;

22 }

Listing A.24: Buffer.java
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1 p u b l i c c l a s s Pars ingServer {
2

3 p u b l i c f i n a l S t r i n g FILE EXTENSION = ” . nam” ;

4 p u b l i c f i n a l S t r i n g FILE EXTENSION PREPROCESSED = ” . v4n ” ;

5 ( . . . )

6 p u b l i c Pars ingServer ( F i l e p a t h ) {
7 ( . . . )

8 }
9

10 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws IOExcep t ion {
11 / / E x t r a c t i n g i n f o r m a t i o n s from args [ ] a r r a y

12 ( . . . )

13 i f ( tmpPath . e x i s t s ( ) && tmpPath . i s D i r e c t o r y ( ) ) {
14 System . o u t . p r i n t l n ( ” s t a r t i n g s e r v e r a t ” + h o s t + ” : ” + p o r t

+ ” l o o k i n g f o r f i l e s i n ” + tmpPath ) ;

15 Pars ingServer p a r s e r S e r v e r = new Pars ingServer ( tmpPath ) ;

16 p a r s e r S e r v e r . s e t u p ( hos t , p o r t ) ;

17 } e l s e {
18 ( . . . ) / / Error message

19 }
20 }
21 p r i v a t e void s e t u p ( S t r i n g hostname , i n t p o r t ) throws IOExcep t ion {
22 i f ( s s c != n u l l ) {
23 s s c . c l o s e ( ) ;

24 }
25 s s c = S e r v e r S o c k e t C h a n n e l . open ( ) ;

26 I n e t S o c k e t A d d r e s s i s a = new I n e t S o c k e t A d d r e s s ( I n e t A d d r e s s .

getByName ( hostname ) , p o r t ) ;

27 s s c . s o c k e t ( ) . b ind ( i s a ) ;

28 whi le ( t rue ) {
29 t r y {
30 w a i t F o r C o n n e c t i o n ( ) ;

31 } ca tch ( Throwable t ) {
32 ( . . . ) / / Error message

33 }
34 }
35 }
36

37 p r i v a t e void w a i t F o r C o n n e c t i o n ( ) throws IOExcep t ion {
38 Socke tChanne l sc = s s c . a c c e p t ( ) ;

39 ( . . . )

40 S t r i n g f i l e n a m e = g e t F i l e ( ) ;

41 i f ( f i l e n a m e != n u l l ) {
42 s t a r t S e r v i n g ( sc ) ;

43 }
44 ( . . . ) / / Error on s e r v i n g / f i n d i g f i l e

45 }
46
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47 p r i v a t e S t r i n g g e t F i l e ( ) {
48 / / E i t h e r p r e p r o c e s s a . nam f i l e f i r s t and r e t u r n t h e f i l e n a m e

a f t e r w a r d s or r e t u r n t h e a v a i l a b l e . v4n f i l e name which i s

p r e p r o c e s s e d y e t

49 ( . . . )

50 re turn f o u n d F i l e ;

51 }
52 ( . . . )

53 p r i v a t e void s t a r t S e r v i n g ( Socke tChanne l sc ) {
54 t r y {
55 byte networkConf ;

56 long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;

57 O b j e c t O u t p u t S t r e a m o u t = new O b j e c t O u t p u t S t r e a m ( sc . s o c k e t ( ) .

g e t O u t p u t S t r e a m ( ) ) ;

58 ( . . . )

59 F i l e R e a d e r i n = new F i l e R e a d e r ( f ) ;

60 whi le ( t h i s . p roc != n u l l && ! t h i s . p roc . f i n i s h e d ( ) ) {
61 ( . . . ) / / I n fo r m c l i e n t , t h a t f i l e i s on p r e p r o c e s s i n g

s t a t e

62 }
63 whi le ( ( l i n e = bIn . r e a d L i n e ( ) ) != n u l l ) {
64 commandAvai lable ( sc , o u t ) ;

65 i f ( c o n n e c t i o n C l o s e d B y C l i e n t ) {
66 break ;

67 }
68 o u t . w r i t e O b j e c t ( l i n e ) ;

69 o u t . f l u s h ( ) ;

70 o u t . r e s e t ( ) ;

71 }
72 o u t . w r i t e O b j e c t ( e o f ) ;

73 o u t . f l u s h ( ) ;

74 o u t . r e s e t ( ) ;

75 bIn . c l o s e ( ) ;

76 whi le ( t rue && ! c o n n e c t i o n C l o s e d B y C l i e n t ) {
77 o u t . w r i t e O b j e c t ( ”NOD” ) ;

78 commandAvai lable ( sc , o u t ) ;

79 i f ( c o n n e c t i o n C l o s e d B y C l i e n t ) {
80 break ;

81 }
82 }
83 o u t . c l o s e ( ) ;

84 } catch ( IOExcep t ion e ) {
85 ( . . . ) / / Error message

86 }
87 }
88

89 p u b l i c vo id commandAvai lable ( Socke tChanne l sc , O b j e c t O u t p u t S t r e a m

o u t ) {
90 t r y {
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91 i f ( s c . s o c k e t ( ) . g e t I n p u t S t r e a m ( ) . a v a i l a b l e ( ) > 0) {
92 i n t command = sc . s o c k e t ( ) . g e t I n p u t S t r e a m ( ) . r e a d ( ) ;

93 i f ( command == 0 && ! t h i s . incomingStatsCommand ) {
94 t h i s . c o n n e c t i o n C l o s e d B y C l i e n t = t rue ;

95 } e l s e i f ( command == 2 && ! t h i s . incomingStatsCommand ) {
96 t h i s . incomingStatsCommand = t rue ;

97 }
98 e l s e i f ( command==3 && t h i s . incomingStatsCommand ) {
99 ( . . . )

100 C l a s s p l u g i n C l a s s = t h i s . g e t C l a s s ( ) . g e t C l a s s L o a d e r ( ) .

l o a d C l a s s ( s t a t s [ 0 ] ) ;

101 t h i s . p l u g i n = ( S t a t i s t i c s P l u g i n ) p l u g i n C l a s s .

n e w I n s t a n c e ( ) ;

102 t h i s . p l u g i n . s e t S t a t i s t i c D a t a S e t R e a d y ( f a l s e ) ;

103 t h i s . p l u g i n . c a l c u l a t e ( t h i s . l o a d e d F i l e , I n t e g e r . p a r s e I n t

( s t a t s [ 1 ] ) , s t a t s [ 2 ] ) ;

104 ( . . . )

105 }
106 e l s e i f ( t h i s . incomingStatsCommand ) {
107 t h i s . statCommand += ( char ) command ;

108 }
109 ( . . . )

110

111 } e l s e i f ( t h i s . p l u g i n != n u l l ) {
112 / / P l u g i n i s ready w i t h c a l c u l a t i o n and can send da ta o u t

113 i f ( t h i s . p l u g i n . g e t S t a t i s t i c D a t a S e t R e a d y ( ) && t h i s .

d a t a S e n t ) {
114 t h i s . p l u g i n . s e n d S t a t i s t i c D a t a S e t ( o u t ) ;

115 ( . . . )

116 }
117 }
118 } ca tch ( IOExcep t ion e ) {
119 ( . . . ) / / Error Message

120 }
121 }
122 }

Listing A.25: ParsingServer.java
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1 p u b l i c c l a s s ParserStub implements Runnable {
2 ( . . . )

3 p u b l i c boolean c o n n e c t ( S t r i n g hos t , i n t p o r t ) {
4 ( . . . )

5 sc = Socke tChanne l . open ( ) ;

6 I n e t S o c k e t A d d r e s s i s a = new I n e t S o c k e t A d d r e s s ( I n e t A d d r e s s .

getByName ( h o s t ) , p o r t ) ;

7 sc . c o n n e c t ( i s a ) ;

8 s u c c e s s f u l = t rue ;

9 ( . . . )

10 re turn s u c c e s s f u l ;

11 }
12 p u b l i c vo id s t a r t L o a d i n g D a t a ( B u f f e r b u f f e r ) {
13

14 t h i s . b u f f e r = b u f f e r ;

15 r e a d i n g F i l e T h r e a d = new Thread ( t h i s ) ;

16 r e a d i n g F i l e T h r e a d . s t a r t ( ) ;

17 }
18 p u b l i c vo id run ( ) {
19 ( . . . )

20 sc . s o c k e t ( ) . g e t O u t p u t S t r e a m ( ) . w r i t e ( ( byte ) 1 ) ;

21 O b j e c t I n p u t S t r e a m o i s = new O b j e c t I n p u t S t r e a m ( sc . s o c k e t ( ) .

g e t I n p u t S t r e a m ( ) ) ;

22 O b j e c t s t r e a m O b j e c t ;

23 whi le ( ( s t r e a m O b j e c t = o i s . r e a d O b j e c t ( ) ) != n u l l ) {
24 i f ( s t r e a m O b j e c t i n s t a n c e o f S t r i n g ) {
25 i f ( s t r e a m O b j e c t . e q u a l s ( ”V − t ∗ p r e p r o c e s s i n g ” ) ) {
26 / / p r e p r o c e s s i n g debug message

27 }
28 e l s e i f ( s t r e a m O b j e c t . e q u a l s ( ”NOD” ) ) {
29 / / no o b j e c t debug message

30 }
31 e l s e i f ( s t r e a m O b j e c t . e q u a l s ( ” s t a t s ” ) ) {
32 / / s t a t i s t i c o b j e c t debug message

33 }
34 e l s e i f ( s t r e a m O b j e c t . e q u a l s ( ”EOF” ) ) {
35 ( . . . )

36 b u f f e r . p u t ( ”EOF” ) ;

37 }
38 e l s e {
39 b u f f e r . p u t ( ( S t r i n g ) s t r e a m O b j e c t ) ;

40 }
41 }
42 e l s e i f ( C l a s s . forName ( t h i s . s t a t P l u g i n . g e t R e t u r n T y p e ( ) ) .

i s I n s t a n c e ( s t r e a m O b j e c t ) ) {
43 t h i s . s t a t P l u g i n . s ho w S t a t ( s t r e a m O b j e c t ) ;

44 }
45 s t r e a m O b j e c t = n u l l ;
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46 }
47 ( . . . )

48 }
49 p u b l i c vo id s e n d S t a t i s t i c R e q u e s t ( S t a t i s t i c s P l u g i n s t a t P l u g i n ,

S t r i n g command , S t r i n g v a l u e s ) {
50 t h i s . s t a t P l u g i n = s t a t P l u g i n ;

51 ( . . . )

52 sc . s o c k e t ( ) . g e t O u t p u t S t r e a m ( ) . w r i t e ( ( byte ) 2 ) ;

53 S t r i n g s t a t R e q u e s t = s t a t P l u g i n . g e t C l a s s ( ) . getName ( ) +”%”+

command+”%”+ v a l u e s ;

54 sc . s o c k e t ( ) . g e t O u t p u t S t r e a m ( ) . w r i t e ( s t a t R e q u e s t . g e t B y t e s ( ) ) ;

55 sc . s o c k e t ( ) . g e t O u t p u t S t r e a m ( ) . w r i t e ( ( byte ) 3 ) ;

56 sc . s o c k e t ( ) . g e t O u t p u t S t r e a m ( ) . f l u s h ( ) ;

57 ( . . . )

58 }
59 ( . . . )

60 }

Listing A.26: ParserStub.java
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1 p u b l i c c l a s s MnuLoadActionListener implements A c t i o n L i s t e n e r {
2 ( . . . )

3 p u b l i c MnuLoadActionListener ( MainFrame frmRoot ) {
4 t h i s . f rmRoot = frmRoot ;

5 t h i s . b u f f e r = new B u f f e r ( P r e f e r e n c e s . g e t I n t ( ” b u f f e r s i z e ” , 3 0 0 ) )

;

6 }
7 p u b l i c vo id a c t i o n P e r f o r m e d ( A c t i o n E v e n t e ) {
8 i f ( P r e f e r e n c e s . g e t B o o l e a n ( ” u s e p r e f a d d r ” , f a l s e )

9 / / Connect t o a VAT4Net s e r v e r w i t h o u t SSH e n a b l e d

10 ( . . . )

11

12 } e l s e i f ( P r e f e r e n c e s . g e t B o o l e a n ( ” enableSSHTunnel ” , t rue ) ) {
13 i n t tmpPor t = s e t u p S s h T u n n e l (−1) ;

14 ( . . . )

15 i f ( tmpPor t > 0) {
16 add r = ” l o c a l h o s t ” ;

17 p o r t = tmpPor t ;

18

19 } e l s e {
20 ( . . . ) / / E r r r o r message

21 }
22 } e l s e {
23 / / Connect t o a VAT4Net s e r v e r w i t h o u t SSH e n a b l e d

24 ( . . . )

25 }
26 i f ( p o r t > 0 && addr != n u l l ) {
27 ( . . . )

28 t h i s . p a r s e r = new P a r s e r S t u b ( ) ;

29 f rmRoot . s e t D a t a S o u r c e ( p a r s e r ) ;

30 p a r s e r . c o n n e c t ( addr , p o r t ) ;

31 p a r s e r . s t a r t L o a d i n g D a t a ( t h i s . b u f f e r ) ;

32 V4N Parser V4Nparser = new V4N Parser ( ) ;

33 T i m e C o n t r o l l e r t c = new T i m e C o n t r o l l e r ( t h i s . b u f f e r , V4Nparser

, f rmRoot ) ;

34 t c . s t a r t A n i m a t i o n ( ) ;

35 ( . . . )

36 }
37 }
38 p u b l i c vo id r e t r y T o C o n n e c t ( i n t c o n n e c t i o n T y p e ) {
39 ( . . . )

40 }
41

42 /∗ S e t s up t h e SSH t u n n e l and r e t u r n s t h e l o c a l p o r t t h a t i s

f o rwarded a f t e r s u c c e s s f u l s e t u p . ∗ /

43 p r i v a t e i n t s e t u p S s h T u n n e l ( i n t t e m p p o r t ) {
44 ( . . . )
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45 S t r i n g username = P r e f e r e n c e s . g e t S t r i n g ( ” sshUsername ” , ” no

username a v a i l a b l e ” ) ;

46 S t r i n g password = P r e f e r e n c e s . g e t S t r i n g ( ” s shPas sword ” , ” no

password a v a i l a b l e ” ) ;

47 S t r i n g hos tname = P r e f e r e n c e s . g e t S t r i n g ( ” sshHostname ” , ” no

hostname a v a i l a b l e ” ) ;

48 S t r i n g r H o s t = P r e f e r e n c e s . g e t S t r i n g ( ” sshRHost ” , ” no r h o s t

a v a i l a b l e ” ) ;

49 i n t r P o r t = P r e f e r e n c e s . g e t I n t ( ” s s h R P o r t ” , −1) ;

50 ( . . . )

51 C o n n e c t i o n conn = new C o n n e c t i o n ( hos tname ) ;

52 conn . c o n n e c t ( nul l , 0 , TIMEOUT MILLIS ) ;

53

54 boolean i s A u t h e n t i c a t e d = conn . a u t h e n t i c a t e W i t h P a s s w o r d (

username , password ) ;

55 i f ( i s A u t h e n t i c a t e d ) {
56 conn . c r e a t e L o c a l P o r t F o r w a r d e r ( l o c a l p o r t , rHos t , r P o r t ) ;

57 } e l s e {
58 ( . . . ) / / E r r r o r message

59 }
60 ( . . . )

61 re turn l o c a l p o r t ;

62 }
63 ( . . . )

64 }

Listing A.27: MnuLoadActionListener.java
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1 p u b l i c c l a s s TimeControl ler implements Runnable {
2 ( . . . )

3 p u b l i c TimeControl ler ( B u f f e r b u f f e r , V4N Parser p a r s e r , MainFrame

frmRoot ) {
4 ( . . . )

5 t h i s . t i m e S t e p = P r e f e r e n c e s . ge tDoub le ( ”

a n i m a t i o n t i m e s t e p s t a r t ” , 0 . 0 5 ) ;

6 t h i s . p e r i o d =1000/ P r e f e r e n c e s . g e t I n t ( ” f r a m e s p e r s e c o n d ” , 5 ) ;

7 ( . . . )

8 }
9 p u b l i c vo id s t a r t A n i m a t i o n ( ) {

10 n e t P a n e l = frmRoot . loadNetwork ( t h i s ) ;

11 p a r s e r . i n i t i a l i z e P a r s e r ( t h i s , n e t P a n e l ) ;

12 t i m e C o n t r o l l e r T h r e a d = new Thread ( t h i s ) ;

13 t i m e C o n t r o l l e r T h r e a d . s t a r t ( ) ;

14 }
15 p u b l i c vo id run ( )

16 {
17 ( . . . )

18 boolean n e t w o r k I s I n i t i a l i z e d = f a l s e ;

19 double parse rT imeStamp = 0 . 0 ;

20 whi le ( ! n e t w o r k I s I n i t i a l i z e d )

21 {
22 l i n e = ( S t r i n g ) b u f f e r . g e t ( ) ;

23 ( . . . )

24 p a r s e r . p a r s e L i n e ( l i n e ) ;

25 i f ( ! n e t w o r k I s I n i t i a l i z e d && parserTimeStamp>t h i s .

a n i m a t i o n S t a r t T i m e ) {
26 n e t w o r k I s I n i t i a l i z e d = t rue ;

27 n e t P a n e l . s e t R e s e t S t a t u s ( t rue ) ;

28 n e t P a n e l . s e t N e t w o r k ( ne twork ) ;

29 ne twork . u p d a t e ( t h i s . t ime ) ;

30 ne twork . c o n n e c t L i n k s ( ) ;

31 n e t P a n e l . i n i t i a l i s e N e t w o r k P a n e l ( ) ;

32 n e t P a n e l . u p d a t e T i m e D i s p l a y ( ) ;

33 n e t P a n e l . s e t N e t w o r k I n i t S t a t u s ( t rue ) ;

34 n e t P a n e l . r e p a i n t ( ) ;

35 }
36 }
37 double beforeTime , a f t e r T i m e , t i m e D i f f , s l e epT ime ;

38 boolean e n d O f F i l e = f a l s e ;

39 whi le ( t h i s . t ime<t h i s . endTime )

40 {
41 be fo reT ime = System . c u r r e n t T i m e M i l l i s ( ) ;

42 synchronized ( t h i s )

43 {
44 whi le ( t h i s . i s A n i m a t i o n P a u s e d ( ) )

45 { ( . . . ) /∗ w a i t i n g ∗ / }
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46 }
47 n e t P a n e l . s e t R e s e t S t a t u s ( f a l s e ) ;

48 whi le ( parserTimeStamp <( t h i s . t ime +1∗ t h i s . g e tT imeS tep ( ) ) && !

e n d O f F i l e ) {
49 l i n e = ( S t r i n g ) b u f f e r . g e t ( ) ;

50 i f ( l i n e . e q u a l s ( ”EOF” ) ) {
51 e n d O f F i l e = t rue ;

52 }
53 e l s e {
54 p a r s e r . p a r s e L i n e ( l i n e ) ;

55 parse rT imeStamp = Double . va lueOf ( g e t O p t i o n ( l i n e , ’ t ’ ) ) .

doub l eVa lue ( ) ;

56 }
57 }
58 ne twork . u p d a t e ( t h i s . t ime ) ;

59 n e t P a n e l . u p d a t e T i m e D i s p l a y ( ) ;

60 i f ( ! t h i s . j u m p I n S i m u l a t i o n ) {
61 n e t P a n e l . r e p a i n t ( ) ;

62 a f t e r T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;

63 t i m e D i f f = a f t e r T i m e − be fo reT ime ;

64 s l eepT ime = ( p e r i o d − t i m e D i f f ) ;

65 / / l e t t h r e a d s l e e p f o r t h e r e m a i n i n g t i m e ( 1 0 0 0 / f p s n o t

used )

66 i f ( s l eepT ime > 0) {
67 ( . . . ) / / s l e e p

68 }
69 ( . . . )

70 be fo reT ime = System . c u r r e n t T i m e M i l l i s ( ) ;

71 }
72 e l s e {
73 ( . . . ) / / Do n o t r e p a i n t or s l e e p when f a s t −f o rward

74 }
75 t h i s . t ime = t h i s . t ime + t h i s . g e tT imeS tep ( ) ;

76 }
77 ( . . . )

78 }
79 ( . . . ) / / s e t and g e t methods

80 }

Listing A.28: TimeController.java
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1 p u b l i c c l a s s NetworkPanel ex tends J P a n e l {
2 ( . . . )

3 p u b l i c vo id i n i t i a l i s e N e t w o r k P a n e l ( ) {
4 i f ( t h i s . ge tNe twork ( ) . ge tWi re l e s sRangeX ( ) != n u l l && t h i s .

ge tNe twork ( ) . ge tWi re l e s sRangeY ( ) != n u l l )

5 {
6 / / f o r w i r e l e s s n e t w o r k s t h e d i m e n s i o n i s g i v e n by t h e

w i r e l e s s range

7 ne twork . n o d e P l a c i n g 2 ( t h i s . ge tNe twork ( ) . ge tWi re l e s sRangeX ( ) .

i n t V a l u e ( ) , t h i s . ge tNe twork ( ) . ge tWi re l e s sRangeY ( ) . i n t V a l u e

( ) ) ;

8 t h i s . s e t P r e f e r r e d S i z e ( new Dimension ( ( i n t ) ( t h i s . ge tNe twork ( ) .

ge tWi re l e s sRangeX ( ) . i n t V a l u e ( ) ) /∗ t h i s . s t r e t c h F a c t o r ) ∗ / , (

i n t ) ( t h i s . ge tNe twork ( ) . ge tWi re l e s sRangeY ( ) . i n t V a l u e ( ) /∗
t h i s . s t r e t c h F a c t o r ∗ / ) ) ) ;

9 t h i s . g e t S c r o l l P a n e ( ) . s e tV iewpor tView ( t h i s ) ;

10 }
11 e l s e

12 {
13 / / f o r o t h e r n e t w o r k s nodes are p l a c e d over t h e v i e w a b l e

space ( p a n e l i n i t s i n i t a l appearance )

14 ne twork . n o d e P l a c i n g 2 ( ( i n t ) t h i s . pane lWidth , ( i n t ) t h i s .

p a n e l H e i g h t ) ;

15 ( . . . ) / / i n i t i a l i z e p a n e l

16 }
17 }
18 p u b l i c vo id pa in tComponen t ( G r a p h i c s g )

19 {
20 ( . . . )

21 i f ( t h i s . n e t w o r k I s I n i t i a l i z e d ) {
22 ( . . . )

23 ne twork . drawNetwork ( g2 ) ;

24 ( . . . )

25 }
26 t h i s . s e t R e s e t S t a t u s ( f a l s e ) ;

27 }
28 ( . . . ) / / s e t and g e t methods

29 }

Listing A.29: NetworkPanel.java
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1 p u b l i c c l a s s V4N Parser {
2 ( . . . )

3 p u b l i c vo id p a r s e L i n e ( S t r i n g l i n e ) {
4 sw i t ch ( l i n e . c ha rA t ( 0 ) ) {
5 ( . . . )

6 case ’ n ’ : / / Node

7 nodeSe tup ( genera teHashMap ( s p l i t L i n e ( l i n e ) ) ) ;

8

9 break ;

10 case ’ l ’ : / / L ink

11 l i n k S e t u p ( genera teHashMap ( s p l i t L i n e ( l i n e ) ) ) ;

12 break ;

13 case ’ h ’ : / / Hop

14 case ’ r ’ : / / R e c e i v e

15 case ’ d ’ : / / Drop L ine

16 case ’+ ’ : / / Enqueue Pa ck e t

17 case ’− ’ : / / Dequeue Pa ck e t

18 p a c k e t S e t u p ( l i n e ) ;

19 break ;

20 ( . . . )

21 d e f a u l t :

22 break ;

23 }
24 }
25 p r i v a t e void nodeSe tup ( HashMap nodeTab le ) {
26 Node node ;

27 i n t nodeID = I n t e g e r . p a r s e I n t ( nodeTab le . g e t ( ”−s ” ) . t o S t r i n g ( ) ) ;

28 / / check i f node a l r e a d y e x i s t s , when yes , t r y t o make an up da t e

e l e m e n t

29 i f ( t c . ge tNe twork ( ) . e x i s t N o d e ( nodeID ) ) {
30 node = t c . ge tNe twork ( ) . getNode ( new I n t e g e r ( nodeID ) ) ;

31 }
32 e l s e

33 {
34 node = new Node ( nodeID , n e t P a n e l ) ;

35 t c . ge tNe twork ( ) . addNode ( node ) ;

36 }
37 S t r i n g t ime = nodeTab le . g e t ( ”− t ” ) . t o S t r i n g ( ) ;

38 NodeUpdateElement e l e m e n t = new NodeUpdateElement ( t ime ) ;

39 ( . . . )

40 e l e m e n t . se tXCoord ( new Double ( Double . p a r s e D o u b l e ( nodeTab le . g e t ( ”

−x ” ) . t o S t r i n g ( ) ) ) ) ;

41 e l e m e n t . se tYCoord ( new Double ( Double . p a r s e D o u b l e ( nodeTab le . g e t ( ”

−y ” ) . t o S t r i n g ( ) ) ) ) ;

42 e l e m e n t . s e tMovemen tDura t ion ( new Double ( Double . p a r s e D o u b l e (

nodeTab le . g e t ( ”−T” ) . t o S t r i n g ( ) ) ) ) ;

43 ( . . . )

44 node . addUpdateElement ( e l e m e n t ) ;
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45 }
46 p r i v a t e void l i n k S e t u p ( HashMap l i n k T a b l e ) {
47 ( . . . )

48 }
49 p u b l i c vo id p a c k e t S e t u p ( S t r i n g l i n e ) {
50 I n t e g e r p a c k e t I D i n t = new I n t e g e r ( I n t e g e r . p a r s e I n t ( g e t O p t i o n (

l i n e , ’ i ’ ) ) ) ;

51 P a c k e t p a c k e t = t c . ge tNe twork ( ) . g e t P a c k e t ( p a c k e t I D i n t ) ;

52 i f ( p a c k e t == n u l l )

53 {
54 p a c k e t = new P a c k e t ( p a c k e t I D i n t . i n t V a l u e ( ) , n e t P a n e l ) ;

55 t c . ge tNe twork ( ) . a d d P a c k e t ( p a c k e t ) ; / / ne twork i s he re

NetworkData no tNe twork

56 }
57 ( . . . )

58 / / s w i t c h i n g be tween d i f f e r e n t p a c k e t t r a c e r e s u l t s and s p e c i a l

c a s e s

59 ( . . . )

60 i f ( p a c k e t E l e m e n t . g e t ( 0 ) . t o S t r i n g ( ) . ch a r A t ( 0 ) == ’+ ’ &&

p a c k e t E l e m e n t . g e t ( 1 ) . t o S t r i n g ( ) . ch a r A t ( 0 ) == ’− ’ /∗ ( . . . ) ∗ / ) {
61 ( . . . )

62 e l e m e n t = new P ac k e t Up d a t e E l e me n t ( packe t , s t a r t T i m e , endTime ,

sou rce , d e s t i n a t i o n , packe tType , l a s tHop , n e t P a n e l ) ;

63 e l e m e n t . se tEnqueueTime ( g e t O p t i o n ( p a c k e t E l e m e n t . g e t ( 0 ) .

t o S t r i n g ( ) , ’ t ’ ) ) ;

64 e l e m e n t . se tDequeueTime ( g e t O p t i o n ( p a c k e t E l e m e n t . g e t ( 1 ) .

t o S t r i n g ( ) , ’ t ’ ) ) ;

65 e l e m e n t . setHopTime ( g e t O p t i o n ( p a c k e t E l e m e n t . g e t ( 2 ) . t o S t r i n g ( )

, ’ t ’ ) ) ;

66 }
67 ( . . . )

68 p a c k e t . addUpdateElement ( e l e m e n t ) ;

69 }
70 ( . . . )

71 }

Listing A.30: V4N Parser.java
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1 p u b l i c c l a s s Network {
2 p r i v a t e HashMap nodes = new HashMap ( ) ; / / Node L i s t

3 / / A l l o t h e r ne twork e l e m e n t s are h e l d i n a l i s t

4 ( . . . )

5

6 /∗Draw t h e Network on to t h e p a n e l ∗ /

7 p u b l i c synchronized void drawNetwork ( Graphics2D g )

8 {
9 / / draw Network e n v i r o n m e n t

10 n e t w o r k s h a p e . draw ( g ) ;

11 / / draw nodes

12 f o r ( I t e r a t o r i t = nodes . v a l u e s ( ) . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {
13 ( ( Node ) i t . n e x t ( ) ) . draw ( g ) ;

14 }
15 / / draw a l l o t h e r ne twork e l e m e n t s

16 ( . . . )

17 }
18 /∗ Updates a l l o b j e c t i n t h e ne twork ∗ /

19 p u b l i c synchronized void u p d a t e ( double t ime )

20 {
21 /∗ ∗ Update Nodes f i r s t ∗ /

22 Node node ;

23 f o r ( I t e r a t o r i t = nodes . v a l u e s ( ) . i t e r a t o r ( ) ; i t . hasNext ( ) ; ) {
24 node = ( Node ) i t . n e x t ( ) ;

25 i f ( node . doUpdate ( ) ) {
26 node . u p d a t e ( t ime ) ;

27 }
28 }
29 / / u p d a t i n g a l l o t h e r ne twork e l e m e n t s

30 ( . . . )

31 }
32 / / Adding , removing and s e a r c h i n g methods

33 ( . . . )

34

35 /∗New node p l a c i n g approach by THOMAS M. J . FRUCHTERMAN∗ AND

EDWARD M. REINGOLD Graph Drawing by Force−D i r e c t e d P l a c i n g ∗ /

36 p u b l i c vo id n o d e P l a c i n g 2 ( i n t width , i n t h e i g h t ) {
37 ( . . . )

38 }
39 ( . . . )

40 /∗ Connect L i n k s t o Nodes w i t h t h e i r s o u r c e and d e s t i n a t i o n ID ∗ /

41 p u b l i c vo id c o n n e c t L i n k s ( )

42 {
43 f o r ( i n t i = 0 ; i < ne tworkLink . s i z e ( ) ; i ++)

44 {
45 Node f i r s t N o d e = ( Node ) nodes . g e t ( new I n t e g e r ( ( ( Link )

ne tworkLink . e l emen tAt ( i ) ) . g e t S o u r c e ( ) ) ) ;
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46 Node secondNode = ( Node ) nodes . g e t ( new I n t e g e r ( ( ( Link )

ne tworkLink . e l emen tAt ( i ) ) . g e t D e s t i n a t i o n ( ) ) ) ;

47 ( ( Link ) ne tworkLink . e l emen tAt ( i ) ) . g e t S h a p e ( ) . s e t N o d e s (

f i r s t N o d e , secondNode ) ;

48 }
49 }
50 ( . . . )

51 }

Listing A.31: Network.java
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1 p u b l i c c l a s s Node {
2 ( . . . )

3 p u b l i c Node ( i n t nodeID , NetworkPane l p a n e l ) {
4 ( . . . )

5 t h i s . nodeID = nodeID ;

6 t h i s . u p d a t e E v e n t s = new V ec to r ( ) ;

7 ( . . . )

8 / / Node Shape

9 nodeshape = new NodeShape ( t h i s ) ;

10 / / Even t L i s t e n e r ( Mouse )

11 p a n e l . a d d M o u s e L i s t e n e r ( new NodeMouseAdapter ( nodeshape , pane l ,

mousePoin t ) ) ;

12 p a n e l . addMouseMot ionLi s t ene r ( new NodeMouseMotionAdapter (

nodeshape , pane l , mousePoin t ) ) ;

13 }
14 /∗ ∗Draw method f o r node , draws t h e node i n a c t u a l s t a t e , t h e draw

method i s d e f i n e d i n NodeShape ∗ /

15 p u b l i c vo id draw ( Graphics2D g )

16 {
17 nodeshape . draw ( g ) ;

18 }
19

20 /∗ ∗Update method f o r t h e node . Updates node a t g i v e n a n i m a t i o n

t i m e . ∗ /

21 p u b l i c vo id u p d a t e ( double t ime )

22 {
23 ( . . . )

24 / / Update node p o s i t i o n

25 t h i s . ge tNodeShape ( ) . se tXCoord ( t h i s . s t a r t P o i n t X + ( ( percOfWay

/ 1 0 0 ) ∗ ( ( ( t h i s . s t a r t P o i n t X + ( t h i s . g e t X V e l o c i t y ( ) ∗ t h i s .

ge tMovementDura t ion ( ) ) )− t h i s . s t a r t P o i n t X ) ) ) ) ;

26 t h i s . ge tNodeShape ( ) . se tYCoord ( t h i s . s t a r t P o i n t Y + ( ( percOfWay

/ 1 0 0 ) ∗ ( ( ( t h i s . s t a r t P o i n t Y + ( t h i s . g e t Y V e l o c i t y ( ) ∗ t h i s .

ge tMovementDura t ion ( ) ) )− t h i s . s t a r t P o i n t Y ) ) ) ) ;

27 ( . . . )

28 / / Update c o l o r o f node shape

29 nodeshape . s e t C o l o r ( ( ( NodeUpdateElement ) t h i s . u p d a t e E v e n t s . g e t ( i )

) . g e t C o l o r ( ) ) ;

30 ( . . . )

31 }
32 /∗ Adding an up da t e e l e m e n t ( e v e n t ) t o a node ∗ /

33 p u b l i c vo id addUpdateElement ( NodeUpdateElement e l e m e n t ) {
34 ( . . . )

35 }
36 }

Listing A.32: Node.java
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1 p u b l i c c l a s s NodeShape

2 {
3 p u b l i c NodeShape ( Node node )

4 {
5 t h i s . x = 0 ;

6 t h i s . d ispX = 0 ;

7 t h i s . dx = 0 ;

8 t h i s . y = 0 ;

9 t h i s . d ispY = 0 ;

10 t h i s . dy = 0 ;

11 t h i s . node = node ;

12 t h i s . n o d e S e l e c t e d = f a l s e ;

13 ( . . . )

14 t h i s . w i r e l e s s R a n g e = P r e f e r e n c e s . g e t I n t ( t h i s , ” w i r e l e s s r a n g e ” ,

250) ;

15 }
16 p u b l i c vo id draw ( Graphics2D g2 )

17 {
18 i f ( node . g e t W i r e l e s s S t a t u s ( ) ==Node . WIRELESS NODE)

19 {
20 / / drawing w i r e l e s s range around t h e node

21 ( . . . )

22 }
23 / / drawing t h e shape ( s t r o k e s , c i r c l e s , t e x t . . . )

24 ( . . . )

25 }
26 ( . . . )

27 }

Listing A.33: NodeShape.java
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1 a r e a := W ∗ L ; { W and L a r e t h e wid th and l e n g t h o f t h e f rame }
2 G := (V, E ) ; { t h e v e r t i c e s a r e a s s i g n e d random i n i t i a l p o s i t i o n s }
3 k := s q r t ( a r e a / |V | ) ;

4 f u n c t i o n f a ( z ) := b e g i n re turn x ˆ 2 / k end ;

5 f u n c t i o n f r ( z ) := b e g i n re turn k ˆ 2 / z end ;

6

7 f o r i := 1 t o i t e r a t i o n s do b e g i n

8 { c a l c u l a t e r e p u l s i v e f o r c e s }
9 f o r v i n V do b e g i n

10 { each v e r t e x has two v e c t o r s : . pos and . d i s p }
11 v . d i s p := 0 ;

12 f o r u i n V do

13 i f ( u # v ) t h e n b e g i n

14 { D i s s h o r t hand f o r t h e d i f f e r e n c e }
15 { v e c t o r between t h e p o s i t i o n s o f t h e two v e r t i c e s )

16 D := v . pos − u . pos ;

17 v . d i s p := v . d i s p + (D / |D | ) ∗ f r ( |D | )

18 end

19 end

20

21 { c a l c u l a t e a t t r a c t i v e f o r c e s }
22 f o r e i n E do b e g i n

23 { each edge i s an o r d e r e d p a i r o f v e r t i c e s . v and . u }
24 D := e . v . pos − e . u . pos

25 e . v . d i s p := e . v . d i s p − (D / |D | ) ∗ f a ( |D | ) ;

26 e . u . d i s p := e . u . d i s p + (D / |D | ) ∗ f a ( |D | )

27 end

28 { l i m i t t h e maximum d i s p l a c e m e n t t o t h e t e m p e r a t u r e t }
29 { and t h e n p r e v e n t from b e i n g d i s p l a c e d o u t s i d e f rame }
30 f o r v i n V do b e g i n

31 v . pos := v . pos + ( v . d i s p / | v . d i s p | ) ∗ min ( v . d i sp , t ) ;

32 v . pos . x := min (W/ 2 , max(−W/ 2 , v . pos . x ) ) ;

33 v . pos . y := min ( L / 2 , max(−L / 2 , v . pos . y ) )

34 end

35 { r e d u c e t h e t e m p e r a t u r e a s t h e l a y o u t a p p r o a c h e s a b e t t e r

c o n f i g u r a t i o n }
36 t := c o o l ( t )

37 end

Listing A.34: NodePlacing Algorithm by Fruchterman and Reingold [17]
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1 p u b l i c c l a s s Queue {
2 ( . . . )

3 p u b l i c Queue ( i n t sou rce , i n t d e s t i n a t i o n , NetworkPane l pane l , Link

l i n k )

4 {
5 ( . . . )

6 }
7 p u b l i c Queue ( i n t sou rce , NetworkPane l p a n e l )

8 {
9 ( . . . )

10 }
11 ( . . . )

12 /∗ ∗Enqueue p a c k e t on t h i s queue ∗ /

13 p u b l i c vo id enqueue ( P ac k e t U pd a t e E l e me n t p a c k e t E l e m e n t ) {
14 q u e u e d P a c k e t s . addElement ( p a c k e t E l e m e n t ) ;

15 t h i s . queueshape . addQueueHeight ( p a c k e t E l e m e n t . g e t S h a p e ( ) .

g e t R a d i u s ( ) ∗2) ;

16 }
17

18 /∗ ∗Dequeue p a c k e t on t h i s queue ∗ /

19 p u b l i c vo id dequeue ( P ac k e t U pd a t e E l e me n t p a c k e t E l e m e n t ) {
20 q u e u e d P a c k e t s . removeElement ( p a c k e t E l e m e n t ) ;

21 t h i s . queueshape . minusQueueHeight ( p a c k e t E l e m e n t . g e t S h a p e ( ) .

g e t R a d i u s ( ) ∗2) ;

22 }
23 ( . . . )

24 }

Listing A.35: Queue.java
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1 p u b l i c c l a s s Packet {
2 ( . . . )

3 p u b l i c Packet ( i n t packe t ID , NetworkPane l p a n e l ) {
4

5 t h i s . u p d a t e E v e n t s = new V ec to r ( ) ;

6 t h i s . p a c k e t I D = p a c k e t I D ;

7 t h i s . p a n e l = p a n e l ;

8 t h i s . packe tComple t e lyDone = f a l s e ;

9 }
10 p u b l i c vo id draw ( Graphics2D g ) {
11 f o r ( i n t i = 0 ; i<u p d a t e E v e n t s . s i z e ( ) ; i ++){
12 ( ( Pa c ke tU p da t eE l em en t ) u p d a t e E v e n t s . g e t ( i ) ) . draw ( g ) ;

13 }
14 }
15 ( . . . )

16 /∗ Update method f o r v4n p a c k e t f o r m a t ∗ /

17 p u b l i c vo id u p d a t e ( double t ime )

18 {
19 f o r ( i n t i = 0 ; i<u p d a t e E v e n t s . s i z e ( ) ; i ++){
20 i f ( ( ( P a ck e tU pd a t e E le m en t ) u p d a t e E v e n t s . g e t ( i ) ) . doUpdate ( ) &&

( ( Pa c ke tU p da t eE l em en t ) u p d a t e E v e n t s . g e t ( i ) ) . g e t S t a r t T i m e ( )

<=t ime )

21 {
22 ( ( Pa c ke tU p da t eE l em en t ) u p d a t e E v e n t s . g e t ( i ) ) . u p d a t e ( t ime ) ;

23 }
24 e l s e i f ( ( ( P a ck e tU pd a t e E le m en t ) u p d a t e E v e n t s . g e t ( i ) ) . doUpdate

( ) ) {
25 break ;

26 }
27 e l s e {
28 u p d a t e E v e n t s . remove ( i ) ;

29 }
30 }
31 }
32 / / g e t and s e t methods

33 ( . . . )

34 }

Listing A.36: Packet.java

155



1 p u b l i c c l a s s PacketUpdateElement ex tends UpdateElement {
2 ( . . . )

3 p u b l i c PacketUpdateElement ( P a c k e t packe t , S t r i n g s t a r t T i m e , S t r i n g

endTime , i n t sou rce , i n t d e s t i n a t i o n , i n t packe tType , boolean

l a s t P a c k e t H o p , NetworkPane l p a n e l ) {
4 t h i s . p a c k e t = p a c k e t ;

5 t h i s . s r c I D = s o u r c e ;

6 t h i s . d s t I D = d e s t i n a t i o n ;

7 t h i s . s t a r t T i m e = parseTimeStamp ( s t a r t T i m e ) ;

8 t h i s . endTime = parseTimeStamp ( endTime ) ;

9 t h i s . packe tType = packe tType ;

10 t h i s . l a s t P a c k e t H o p = l a s t P a c k e t H o p ;

11 p a c k e t s h a p e = new Packe tShape ( t h i s ) ;

12 ( . . . )

13 }
14 p u b l i c vo id draw ( Graphics2D g ) {
15 ( . . . ) / / i n v o k e t h e a d e q u a t e draw method f o r t h e p a c k e t t y p e (

normal , on a i r , r educed a n i m a t i o n c o m p l e x i t y )

16 }
17

18 p u b l i c vo id u p d a t e ( double t ime ) {
19 i f ( p a n e l . ge tNe twork ( ) . ge tWi re l e s sRangeX ( ) != n u l l ) {
20 i f ( ( ( Node ) p a n e l . ge tNe twork ( ) . getNode ( new I n t e g e r ( t h i s . s r c I D )

) ) . g e t W i r e l e s s S t a t u s ( ) ==1){
21 t h i s . packe tType = PACKET ONAIR ;

22 }
23 }
24 / / ENQUEUE

25 i f ( t ime >= t h i s . s t a r t T i m e ) {
26 i f ( ! t h i s . enqueued ) {
27 hand leEnqueue ( t ime ) ;

28 }
29

30 }
31 / / DEQUEUE

32 i f ( t ime >= t h i s . dequeueTime ) {
33 i f ( ! t h i s . dequeued ) {
34 handleDequeue ( t ime ) ;

35 }
36 }
37 / / HOP

38 i f ( t ime >= t h i s . hopTime ) {
39 i f ( ! t h i s . hopped ) {
40 handleHop ( t ime ) ;

41 }
42 e l s e {
43 c a l c u l a t e P a r t ( t ime ) ;

44 }
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45 }
46 / / RECEIVE

47 i f ( t ime >= t h i s . endTime && t h i s . dropTime <0){
48 i f ( ! t h i s . r e c e i v e d ) {
49 h a n d l e R e c e i v e ( t ime ) ;

50 }
51 }
52 / / DROP

53 i f ( t ime >= t h i s . dropTime && t h i s . dropTime >=0){
54 i f ( ! t h i s . d ropped ) {
55 hand leDrop ( t ime ) ;

56 }
57 e l s e {
58 c a l c u l a t e D r o p P a r t ( t ime ) ;

59 }
60 }
61 }
62 p r i v a t e void c a l c u l a t e P a r t ( double t ime ) {
63 ( . . . ) / / c a l c u l a t e p e r c e n t o f way on a l i n k y e t c o v e r e d

64 }
65 p r i v a t e void c a l c u l a t e D r o p P a r t ( double t ime ) {
66 ( . . . ) / / c a l c u l a t e p e r c e n t o f drop way y e t c o v e r e d

67 }
68 ( . . . )

69 p r i v a t e void hand leEnqueue ( double t ime ) {
70 ( . . . ) / / do t h e han d l e a c t i o n s on a p a c k e t s t a t e

71 }
72

73 p r i v a t e void handleDequeue ( double t ime ) {
74 ( . . . ) / / do t h e han d l e a c t i o n s on a p a c k e t s t a t e

75 }
76

77 p r i v a t e void handleHop ( double t ime ) {
78 ( . . . ) / / do t h e han d l e a c t i o n s on a p a c k e t s t a t e

79 }
80 p r i v a t e void h a n d l e R e c e i v e ( double t ime ) {
81 ( . . . ) / / do t h e han d l e a c t i o n s on a p a c k e t s t a t e

82 }
83 p r i v a t e void hand leDrop ( double t ime ) {
84 ( . . . ) / / do t h e han d l e a c t i o n s on a p a c k e t s t a t e

85 }
86 / / g e t and s e t methods

87 ( . . . )

88 }

Listing A.37: PacketUpdateElement.java
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1 p u b l i c c l a s s DelayPlugin implements S t a t i s t i c s P l u g i n , Runnable {
2 ( . . . )

3 p u b l i c vo id se tMainFrame ( MainFrame mainFrame ) {
4 t h i s . mainFrame = mainFrame ;

5 JComponent tmpComp = mainFrame . ge tNe tworkPn l ( ) ;

6 i f ( tmpComp i n s t a n c e o f NetworkPane l ) {
7 n e t P n l = ( NetworkPane l ) tmpComp ;

8 endToEndDelayItem . s e t E n a b l e d ( t rue ) ;

9 ( . . . )

10 } e l s e {
11 endToEndDelayItem . s e t E n a b l e d ( f a l s e ) ;

12 ( . . . )

13 }
14 }
15 p u b l i c JComponent getComponent ( ) {
16 s t a t P n l = new S t a t i s t i c s P a n e l ( ) ;

17 pane = new J S c r o l l P a n e ( s t a t P n l ) ;

18 re turn pane ;

19 }
20 p u b l i c vo id r e f r e s h C o m p o n e n t ( C h a r t P a n e l c h a r t P a n e l ) {
21 mainFrame . s e t S t a t i s t i c P a n e l ( c h a r t P a n e l ) ;

22 }
23 p u b l i c S t r i n g getName ( ) {
24 re turn ” Delay P l u g i n ” ;

25 }
26 p u b l i c JMenu getAct ionMenu ( ) {
27 S t r i n g name = DelayPlugin . c l a s s . getName ( ) ;

28 JMenu menAction = new JMenu ( name . s u b s t r i n g ( ( name . indexOf ( ’ . ’ ) >

0) ? name . indexOf ( ’ . ’ ) : 0 ) ) ;

29

30 endToEndDelayItem = new JMenuItem ( ”End−to−end d e l a y ” ) ;

31 endToEndDelayItem . a d d A c t i o n L i s t e n e r ( new A c t i o n L i s t e n e r ( ) {
32 p u b l i c vo id a c t i o n P e r f o r m e d ( A c t i o n E v e n t e ) {
33 c a l c D e l a y (END TO END) ;

34 }
35 } ) ;

36 menAction . add ( endToEndDelayItem ) ;

37 ( . . . )

38 re turn menAction ;

39 }
40 p r i v a t e void c a l c D e l a y ( i n t t y p e ) {
41 ( . . . )

42 L i s t s e l e c t e d N o d e s = n e t P n l . g e t S e l e c t e d N o d e s ( ) ;

43 / / Error message when s e t t i n g s do n o t a c h i e v e t h e s p e c i f i c a t i o n

o f t h e p l u g i n

44 ( . . . )

45 / / L e t t h e s e r v e r do t h e s t a t i s t i c a l c a l c u l a t i o n s

46 i f ( mainFrame . g e t D a t a S o u r c e ( ) i n s t a n c e o f P a r s e r S t u b ) {
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47 i f ( t y p e == END TO END) {
48 t h i s . t i t l e = ”End t o End Delay ” ;

49 L i s t . c l a s s . c a s t ( t h i s . r e t u r n T y p e ) ;

50 }
51 ( . . . )

52

53 ( ( P a r s e r S t u b ) mainFrame . g e t D a t a S o u r c e ( ) ) . s e n d S t a t i s t i c R e q u e s t

( t h i s , S t r i n g . va lueOf ( t y p e ) , ( ( Node ) s e l e c t e d N o d e s . g e t ( 0 ) ) .

getNodeID ( ) +” , ” + ( ( Node ) s e l e c t e d N o d e s . g e t ( 1 ) ) . getNodeID ( ) )

;

54 }
55 / / The c a l c u l a t i o n i s done one t h e l o c a l computer

56 e l s e {
57 i f ( t y p e == END TO END) {
58 t h i s . t i t l e = ”End t o End Delay ” ;

59 t h i s . c a l c u l a t e ( ( F i l e ) mainFrame . g e t D a t a S o u r c e ( ) , type , ( (

Node ) s e l e c t e d N o d e s . g e t ( 0 ) ) . getNodeID ( ) +” , ” + ( ( Node )

s e l e c t e d N o d e s . g e t ( 1 ) ) . getNodeID ( ) ) ;

60 }
61 ( . . . )

62 }
63 }
64 p u b l i c vo id s h o wS t a t ( O b j e c t s t a t s D a t a ) {
65 i f ( s t a t s D a t a i n s t a n c e o f L i s t ) {
66 X Y S e r i e s C o l l e c t i o n d a t a s e t = new X Y S e r i e s C o l l e c t i o n ( ) ;

67 XYSeries s e r i e s 1 = new XYSeries ( ” F i r s t ” ) ;

68 double d a t a [ ] [ ] =( double [ ] [ ] ) ( ( L i s t ) s t a t s D a t a ) . t o A r r a y ( new

double [ 2 ] [ ( ( L i s t ) s t a t s D a t a ) . s i z e ( ) ] ) ;

69 f o r ( i n t i = 0 ; i< d a t a [ 0 ] . l e n g t h ; i ++){
70 s e r i e s 1 . add ( d a t a [ 0 ] [ i ] , d a t a [ 1 ] [ i ] ) ;

71 }
72 d a t a s e t . a d d S e r i e s ( s e r i e s 1 ) ;

73 J F r e e C h a r t c h a r t = C h a r t F a c t o r y . c r e a t e S c a t t e r P l o t (

74 / / c h a r t s e t t i n g s

75 ( . . . )

76 d a t a s e t ,

77 ) ;

78 c h a r t P a n e l = new C h a r t P a n e l ( c h a r t , f a l s e ) ;

79 t h i s . r e f r e s h C o m p o n e n t ( c h a r t P a n e l ) ;

80 t h i s . c a l c u l a t e S t a t i s t i c T h r e a d = n u l l ;

81 }
82 }
83 p u b l i c vo id c a l c u l a t e ( F i l e f i l e , i n t type , S t r i n g command ) {
84 / / S t a r t c a l c u l a t i o n t h r e a d

85 ( . . . )

86 }
87 ( . . . )

88 p u b l i c vo id run ( ) {
89 i f ( t h i s . t y p e == END TO END) {
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90 ( . . . )

91 t h i s . d a t a s e t = c a l c u l a t e E n d T o E n d ( bIn , I n t e g e r . p a r s e I n t ( nodes

[ 0 ] ) , I n t e g e r . p a r s e I n t ( nodes [ 1 ] ) ) ;

92 i f ( mainFrame . g e t D a t a S o u r c e ( ) i n s t a n c e o f F i l e ) {
93 t h i s . s h ow S t a t ( t h i s . d a t a s e t ) ;

94 }
95 ( . . . )

96 }
97 ( . . . )

98 }
99 ( . . . )

100 p r i v a t e L i s t c a l c u l a t e E n d T o E n d ( B u f f e r e d R e a d e r in , i n t node1 , i n t

node2 ) {
101 double [ ] [ ] d a t a = new double [ 0 ] [ 0 ] ;

102 / / Do End−to−End c a l c u a l t i o n

103 ( . . . )

104 L i s t d a t a s e t = Ar ra ys . a s L i s t ( d a t a ) ;

105 t h i s . s e t S t a t i s t i c D a t a S e t R e a d y ( t rue ) ;

106 re turn d a t a s e t ;

107 }
108 ( . . . )

109 p u b l i c vo id s e n d S t a t i s t i c D a t a S e t ( O b j e c t O u t p u t S t r e a m o u t ) {
110 ( . . . )

111 o u t . w r i t e O b j e c t ( t h i s . d a t a s e t ) ;

112 o u t . f l u s h ( ) ;

113 o u t . r e s e t ( ) ;

114 ( . . . )

115 }
116

117 }

Listing A.38: DelayPlugin.java
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1 p u b l i c c l a s s PluginLoader {
2 p r i v a t e Main main ;

3 p r i v a t e A r r a y L i s t p l u g i n s = new A r r a y L i s t ( ) ;

4

5 p u b l i c PluginLoader ( Main main ) {
6 t h i s . main = main ;

7 }
8

9 p u b l i c A r r a y L i s t g e t P l u g i n L i s t ( ) {
10 URL l i s tURL = F i l e L o a d e r U t i l . createURL ( ” p l u g i n s . p r o p e r t i e s ” ) ;

11 ( . . . )

12 P r o p e r t i e s p l u g i n s F i l e = new P r o p e r t i e s ( ) ;

13 p l u g i n s F i l e . l o a d ( l i s tURL . openSt ream ( ) ) ;

14

15 f o r ( Enumera t ion keyEnum = p l u g i n s F i l e . keys ( ) ; keyEnum .

hasMoreElements ( ) ; ) {
16 S t r i n g key = ( S t r i n g ) keyEnum . n e x t E l e m e n t ( ) ;

17 C l a s s p l u g i n C l a s s = t h i s . g e t C l a s s ( ) . g e t C l a s s L o a d e r ( ) .

l o a d C l a s s ( key ) ;

18 p l u g i n s . add ( p l u g i n C l a s s . n e w I n s t a n c e ( ) ) ;

19 }
20 ( . . . )

21 re turn p l u g i n s ;

22 }
23 }

Listing A.39: PluginLoader.java
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