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Abstract 
 
Indoor localization is a key element for many existing or future applications in various domains, 
such as security, healthcare or advertising. The goal of localization is to provide accurate 
location estimates for target objects such as mobile devices. Due to the complex signal 
propagation behavior in indoor environments, i.e. multipath propagation and Non-Line-of-Sight 
reception, the accuracy of common localization solutions used in outdoor scenarios suffers when 
used indoors. Therefore, more resilient approaches were developed that can withstand the 
challenges of indoor signal propagation and deliver accurate results under such conditions. 
Those so-called hybrid approaches either combine multiple localization techniques or different 
signal metrics for finding a hybrid location estimate. Existing hybrid solutions include, but are 
not limited to, combining fingerprinting with range-based localization, and multi-metric 
localization, e.g. a combination of signal-strength and time-of-arrival metrics. 

In this work, we propose another approach to hybrid localization. However instead of 
combining multiple metrics from the same radio interface or multiple algorithms, we combine 
the same metric from different radio interfaces (RIs). The primary goal of our proposed hybrid 
approach is to benefit from the different characteristics of distinct radio signals and RIs. Such 
differences can be found both on the signal level, where differences in radio frequencies cause 
different propagation behavior, as well as on the RI level, where differences in packet rates and 
signal stability can be observed. In this work, captured signals from the WiFi and GSM 
interfaces were evaluated, but other RIs such as Bluetooth or LTE can be substituted. The GSM 
radio interface transmits radio signals on a licensed frequency band with controlled access (Time 
Division Multiple Access, TDMA). Therefore, GSM radio signals are rarely subject to 
interference, and the overall signal stability is relatively high. In contrast to this, the use of 
Carrier Sense Multiple Access (CSMA) on the WiFi interface allows for access collisions and, 
therefore, signal interference. The interference caused by access collisions lowers signal 
stability. However, this downside of the WiFi RI can be remedied by other means. The packet 
rate of WiFi is significantly higher compared to GSM. Operating with more captured signals 
allows for filtration and stabilization of the signal in a preprocessing stage. By deliberately 
capitalizing on such features and characteristics of different radio interfaces, a reliable 
localization result can be obtained from the hybrid process. 

A secondary goal of using two different radio signals for the localization process is to add 
stability to the localization system. Combining multiple radio signals in our hybrid localization 
approach grants us the possibility of controlling the influence of each signal on the localization 
result. The quality of each radio signal is evaluated and a probabilistic weighting mechanism 
applies weights to the signals of each RI. These weights determine the amount of contribution of 
the signal in the hybrid localization process. In consequence, the negative effect on localization 
due to low signal quality can be mitigated. 
 When capturing two radio signals, the receivers need to be equipped with two antennas, one 



for each RI. This allows for either collocating the two antennas for each receiver, or separating 
the antennas from each other, which results in a denser antenna distribution. We propose four 
different options for combining the two signals: combining the signal metrics of both signals in a 
preprocessing step for (1) collocated antennas and (2) distributed antennas, and combining 
independently calculated location estimates for both RIs in a post processing step for (3) 
collocated and (4) distributed antennas. 
 A test-bed has been set up and extensive experiments have been performed in order to 
compare the different signal combination options against each other and validate our approach. 
We have found that all hybrid localization options have achieved more accurate localization 
compared to non-hybrid localization using only the WiFi or GSM signal. We attribute this gain 
to the self-regulating weighting mechanism and the resulting resistance of the hybrid options 
against the unpredictable signal behavior. Our results show that indoor localization can be 
improved by leveraging the diversity of different radio signals. 

As future work, adding more RIs to the hybrid mechanism may further increase the benefit of 
using a probabilistic weighting scheme for mitigating signal quality fluctuations. The different 
characteristics of additional radio signals and radio interfaces could be used to better recognize 
changes in quality of one signal, and weights could be distributed accordingly to reduce the 
impact of this change in signal quality. Thus, the possibility of distributing weights between 
more than two radio signals would add further stability to our approach. 
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ABSTRACT
There is an increasing demand for accurate indoor localiza-
tion systems, which support a broad range of applications in
di↵erent contexts, such as locating users in o�ces or shop-
ping malls. At the same time, the number of smartphones
with multiple Radio Interfaces (RIs) is also increasing. This
paper presents a hybrid approach for real-time indoor local-
ization without interaction with the end users or network
operators. The proposed solution uses signal strength infor-
mation from multiple RIs to estimate locations of target de-
vices. This solution profits from the di↵erent characteristics
of radio signals at each RI, such as the frequency at which
a RI is going to operate, to overcome challenges of indoor
localization, such as multipath propagation. The proposed
algorithms may combine signal information prior or after to
the localization process. In both cases, the system operates
blindly without a priori knowledge of the environment layout
or target devices’ radio settings. We conducted experiments
using WiFi and GSM radio technologies. Results of real in-
door experiments show a big improvement by the proposed
hybrid solution with a median error of 1.6m compared to
2.3m for WiFi and 3.0m for GSM.

1. INTRODUCTION
Localization, tracking, and activity detection based on ra-
dio signals are of great interest in many indoor applications,
such as healthcare, emergency systems or smart homes. In
some application scenarios, interaction with the target Mo-
bile Device (MD) or the serving network is not desired or not
possible. Therefore, passive localization solutions become
attractive for independent third party service providers, where
several Anchor Nodes (ANs) with known coordinates partic-
ipate in the localization process. In passive scenarios, ANs
overhear radio signals from the target MD and use them
to estimate its location. However in indoor environments,
multipath propagation and Non-Line-of-Sight (NLOS) re-
ception are primary contributors to the decrease in signal
quality and consequently inaccurate localization [13]. More-
over, the lack of direct interaction with the MD introduces
further obstacles to passive localization approaches. The ab-
sence of information that can only be obtained by actively
communicating with the MD, such as the MD’s transmit-
ting power P

tx

, narrow the range of possible localization
techniques, such as the range-based algorithms.

To deliver an accurate indoor localization system, various
literature studies propose advanced hybrid solutions, which
combine multiple localization techniques [9] or radio metrics

[1]. One choice of such a hybrid solution is the combination
of fingerprinting localization and Time of Arrival (TOA)
method using Ultra Wideband (UWB) signals [9]. This
approach aims to reduce the calculation complexity of fin-
gerprinting localization. However, both fingerprinting and
TOA localization do not fit the passive requirement of our
system. A more advanced hybrid approach that combines
fingerprinting with range-based localization is proposed in
[10]. This solution relies on a sparsely populated fingerprint-
ing database and benefits from radio propagation models to
improve localization. However, this solution is still obliged
to a time-consuming calibration process of fingerprints.

Localization techniques that combine multiple signal met-
rics (hybrid metric localization) instead of depending on
fingerprinting are also increasing in popularity. Those so-
lutions obtain multiple radio metrics, such as Received Sig-
nal Strength Indicator (RSSI), TOA, Time Di↵erence of Ar-
rival (TDOA) or Angle of Arrival (AOA) from a single signal
source and apply ranging or triangulation techniques to de-
rive the distance or angle between transmitter and receiver.
The di↵erent outputs are then combined to improve the po-
sitioning estimates [1, 16, 11]. Such hybrid approaches tend
to perform well in comparison with conventional indoor lo-
calization systems. However, combining parameters from
the same radio signal gives rise to a particular problem. Ra-
dio metrics from a single RI are highly correlated. As such,
if metrics of a radio signal are impaired, all metrics’ quality
gathered from this RI will be a↵ected by multipath prop-
agation and NLOS reception. Therefore, we expect these
approaches to be challenged in real indoor environments.

In this paper, we present a hybrid indoor localization method
that utilizes multiple RIs. The proposed hybrid solution
detects changes in signal quality in real-time and employs
di↵erent weighting schemes to favor the signal with higher
quality. By combining di↵erent signals instead of di↵erent
metrics of the same radio signal, we benefit from the diver-
sity in signal characteristics. The natural RSSI acquisition
and relatively low deployment costs of the system motivate
us to use RSSI-based localization. For passive localization
systems, we verify the proposed solutions using a proximity-
based localization algorithm, namely, the Combined Di↵er-
ential RSSI (CDRSS) method [5]. The proposed solution
benefits from the varying uncorrelated characteristics of dif-
ferent radio signals and o↵ers a reliable and accurate local-
ization performance in real indoor environments. Our con-
tributions to the current indoor localization state of the art



enclose the following:

‚ Hybrid signal preprocessing for combining online radio
signal information based on a probabilistic approach
(c.f. Section 3.2).

‚ Hybrid location processing that combines online loca-
tion output of radio signals based on a probabilistic
approach (c.f. Section 3.3).

‚ A set of real indoor experiments and corresponding
performance evaluations (c.f. Section 4).

2. CHARACTERISTICS OF
CAPTURED SIGNALS

The proposed hybrid solution targets MDs with multiple
RIs. We aim to combine signal strength measurements (RSSI)
in a way that favors instantaneously stable radio signals over
signals with higher fluctuation. How we achieve such a com-
bination is discussed in Section 3. However, we first need to
address particular challenges that may arise when combin-
ing metrics from di↵erent RIs. A realistic indoor scenario
from our daily life is the use of Global System for Mobile
Communications (GSM) and WiFi RIs of a MD simultane-
ously. Our smartphones are equipped with two independent
RF chips for these RIs. GSM is a preferable technology for
energy saving and WiFi is a preferred technology for broad-
band applications. We consider specifically the GSM cellular
technology as a continuation of our previous work [7, 2, 3,
5]. Moreover, however, the proposed hybrid solution is scal-
able to other RIs, such as Bluetooth and Long-Term Evolu-
tion (LTE). In LTE-Advanced, MDs can exchange data with
the LTE network using di↵erent carrier components (CCs),
which we consider in our proposed solution as di↵erent RIs.
To combine radio metrics from di↵erent RIs, an essential
step is to understand the propagation characteristics of the
combined metrics.

Path Loss vs. Frequency: Standardization organizations
and research institutions have defined several indoor prop-
agation models for di↵erent applications [6, 15, 8]. Most of
these models are originated from the Free Space (FS) model
with some slight modification according to the target sce-
nario. The Free Space Path Loss model PLFS, as expressed
in Equation 1, is a function of distance d between the trans-
mitter and receiver and the radio frequency f .

PLFS “
ˆ
4⇡df
c

˙2

(1)

c is the speed of light. It is evident from Equation 1 that
higher frequency signals, such as WiFi at 2.4 GHz, tend to
su↵er more from path loss introduced by distance and obsta-
cles than lower frequency signals, such as GSM at 900 MHz.
For ease of description, the propagation model, inherited
from Equation 1, omits the frequency part. For most indoor
environments, the log-normal path loss model, known also
as Single Slope (SS) model, is proposed (c.f. Equation 2).

PLSS “ PL0 ` 10 ↵ log10

ˆ
d

d0

˙
(2)

↵ indicates the Path Loss Exponent (PLE), PL0 is the Path
Loss (PL) at a reference distance, which is usually 1m for
indoor environments. The SS model expresses that the PL
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Figure 1: Signal overhearing setup

increases with the distance at a fixed rate and equally in
all directions. Because of the di↵erent radio frequencies,
colocated WiFi and GSM ANs will receive di↵erent RSSI R
values from a MD at a distance d, even if both WiFi and
GSM RIs are transmitting the same amount of power P

tx

.
How our proposed solution combines di↵erent R values for
colocated ANs with same distance d to the MD is explained
in Section 3.2.1.

Transmitted power vs. Radio Interface: Most radio
technologies, such as GSM and WiFi, contain power control
algorithms. These algorithms aim to reduce signal interfer-
ence inside the network by limiting MDs’ transmitted power
to the minimum success decoding threshold. In the com-
monly used log-normal shadowing model, distance-power re-
lationship is expressed in Equation 3.

Rpdq “ A ´ 10 ↵ log10

ˆ
d

d0

˙
´ X

�

(3)

A is a constant, which depends on P

tx

, transmitter and
receiver gains and PL0. The environmental influences are
summarized in the random variable X

�

of a Gaussian distri-
bution X

�

„ Np0,�2q with zero mean and � standard devi-
ation. As illustrated in Figure 1, the GSM Base Transceiver
Station (BTS) controls the MD to transmit with P

GSM

tx

that
allow successful signal decoding. Because GSM signals have
to penetrate floors and walls and travel a relatively large dis-
tance (path 1) to reach the GSM BTS, PGSM

tx

implicitly takes
these parameters into consideration. However, WiFi propa-
gation distance and obstructions between the WiFi Access
Point (AP) and the MD (path 2) are di↵erent than in GSM.
WiFi APs are typically located within a relatively short dis-
tance († 100m). Hence PWiFi

tx

is typically lower than P

GSM
tx

.
In our passive localization scenario, the propagation path
between a passive AN and the target MD (path 3) as well
as intermediate obstructions are also di↵erent than the WiFi
and GSM propagation paths and obstacles. Hence, RWiFi

and RGSM are di↵erent because of di↵erent RI transmitting
powers. Without knowing the exact transmitted power at
each RI, combining WiFi and GSM signals is a challenging
task.

To eliminate the P

tx

dependency in passive localization sys-
tems, Di↵erential RSSI D was introduced [5]. D is the dif-
ference of R measurements at di↵erent ANs of the same RI
(c.f. Equation 4).

D “ Rpd
i

q ´ Rpd
j

q “ 10 ↵ log10

ˆ
d

j

d

i

˙
` p

X

�ij (4)

p
X

�ij is the di↵erence between the X

�i and X

�j shadowing



e↵ects. Given that X

�i and X

�j are independent random

variables, p
X

�ij has lognormal distribution with zero mean

and
b
�

2
i

` �

2
j

standard deviation [14]. D exploits the fact

that R decreases non-linearly with distance. In theory, we
cannot yet combine D measurements of WiFi and GSM RIs
because D is a frequency-dependent variable. However, for
short-range indoor communication, we expect the environ-
ment layout, such as walls and furniture, to be a more dom-
inant factor in D measurements than the radio frequency.
An empirical analysis that confirms this assumption is per-
formed in Section 4.3.

Signal Quality vs. Radio Interface: GSM operates in
a controlled and a managed licensed spectrum, where spec-
trum resources, such as frequency and time, are well opti-
mized to avoid as much signal interference as possible. On
the other hand, WiFi devices operate in the unlicensed band,
where signals are vulnerable to radio interference depend-
ing on the number of active surrounding devices. Hence,
measurements over the GSM RI are less vulnerable to radio
interference and consequently expected to obtain a higher
quality of D compared to measurements over the WiFi RI.
Analysis that compares measurements from both RIs is per-
formed in Section 4.2.

Passive overhearing vs MD activities: ANs of a pas-
sive localization system rely only on signal overhearing. This
means that the target MD must have active RIs, i.e., trans-
mitting radio signals. On the one side, our passive GSM up-
link receiver [3] relies only on capturing control messages for
localization, such as in Mobile Originating Call (MOC), Mo-
bile Terminated Call (MTC), and Location Update (LAU)
scenarios. In these scenarios, GSM MDs transmit their
own identity, such as Temporary Mobile Subscriber Iden-
tity (TMSI), without encryption over the air interface. On
the other side, WiFi standards include transmitters’ MAC
address in every transmitted packet. Therefore, our passive
WiFi uplink receiver [7] benefits from all uplink transmis-
sions for localization. Given the di↵erent capturing rate of
localization messages, our passive ANs will receive a dif-
ferent amount of messages over a certain period, i.e., un-
synchronized datasets. Hence, the proposed hybrid solu-
tion requires a robust mechanism to convert unsynchronized
datasets at di↵erent RIs into synchronized datasets. This
mechanism is described in detail in Section 3.1.

2.1 Related Work: Localization Techniques
An R-based localization system uses signal strength mea-
surements to derive coordinates of a MD. R acquisition re-
quires simpler hardware and lower processing resources com-
pared to other radio metrics such as TDoA [12]. In existing
R-based localization algorithms, a typical approach is to es-
timate the distance d

i

between a MD and an AN
i

based
on instantaneous R

i

measurements. Estimated distances
are then passed to the localization algorithm along with the
AN’s coordinates px

i

, y

i

q. Alternatively, the location of a
MD is determined relative to the ANs in proximity-based
algorithms [12], i.e., d

i

is calculated using proximity relation
to the AN’s coordinates. We developed multiple proximity-
based algorithms that combine the invisibility requirement
and performance reliability in indoor environments. In this
work, we choose the CDRSS localization algorithm to verify

c)

WiFi
GSM

b)

WiFi

GSM

WIFI AN

GSM AN

Centroid

a)

Figure 2: Simplified illustration of CDRSS algo-
rithm.

our proposed solutions [4]. Any set of ANs that do not lie
on a single line can be seen as forming a polygon. Hence, ge-
ometric calculations can be applied to the polygon to deter-
mine a point that can represent the target location [5]. The
CDRSS concept is illustrated in Figure 2-a. The CDRSS al-
gorithm further exploits the D relation betweenM ANs with
the highest R measurements to update the triangle centroid.
Each AN contributes to the estimated location pxest, yestq
calculation proportionally to the weight associated to itself
as shown in Equation 5.

pxest, yestq “
Mÿ

i“1

w

i

ANpx
i

, y

i

q{
Mÿ

i“1

w

i

(5)

Weights w
i

are calculated from relative DRSS values of ad-
jacent DRSS branches [5], e.g., w1 9 D1{D2.

3. HYBRID INDOOR LOCALIZATION
The proposed hybrid solution aims to overcome challenges of
indoor propagation in the localization process. As described
in Section 2, we expect to have a low number of high-quality
GSM measurements and a large number of low-quality WiFi
measurements. The proposed hybrid solution benefits from
advanced characteristics of both signals to produce more
accurate location estimates compare to the performance of
each RI individually. We propose two main hybrid solutions:
(i) a hybrid signal processing at the AN level, and (ii) a hy-
brid location processing at the system level. The processing
chain of these two solutions is shown in Figure 3, where 3-a
shows the preprocessing solution and 3-b outlines the post-
processing solution. Given the deployment flexibility of our
hybrid sensors (ANs), their capturing antennas (or RIs) can
be colocated or distributed. Hence, we have two processing
levels and two antenna deployment setups, which gives us
four possible signal combination options to choose from: (i)
signal preprocessing for colocated antennas, (ii) signal pre-
processing for distributed antennas, (iii) location processing
for colocated antennas, and (iv) location processing for dis-
tributed antennas.
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3.1 Aggregation, Filtration, Interpolation
The CDRSS algorithm sorts instantaneous R measurements
such that their corresponding D values are always positive.
Based on the assumption made in Section 2 that R and D
measurements will be dominated by the environment layout
more than the radio frequency, hybrid processing of radio
metrics from both RIs is possible. However, in the hybrid
approach over a period T , we have two main challenges: (i)
How to create synchronized datasets from unsynchronized
datasets captured from both RIs? Moreover, (ii) which RI’s
measurements will dominate the CDRSS sorting process?

To avoid the problem of unsynchronized datasets, we con-
sider the aggregation of R measurements within a smaller
period t “ T {N , in which we collect measurements from
both RIs. N is the number of aggregated measurements
within T . N is constant and fixed for both RIs. We choose
to use the median estimator to aggregate all R measure-
ments within the period t into one measurement. From now
on, we deal with aggregated R measurements. We call them
R for simplicity. If the passive receiver did not catch any
signal within a period t

i

; i “ 1 : N , we consider linear
interpolation in that period t

i

with previously collected R
measurements. Reasons for missing measurements include
(i) small numbers of usable transmitted packets or (ii) im-
perfection of the passive receiver capturing process. From
this point on, we consider having two synchronized datasets,
RWiFi and RGSM with N measurements each.

For the CDRSS sorting requirement, we have the flexibil-
ity to choose which RI will dominate. For example, if we
choose the WiFi RI to control the sorting process, DGSM

i

, i P
t1 : Mu might contain negative values. A negative D pro-
duces weights that push the centroid away from correspond-
ing ANs [5].

3.2 Hybrid Signal Preprocessing
The preprocessing approach of the proposed solution com-
bines R measurements of the two RIs with a probability
weighting scheme. The basic idea of the probabilistic ap-
proach is that radio measurements (within a period T ) with
higher probability are considered more accurate, i.e., less
influenced by the indoor environment, than measurements
with low probability.

3.2.1 Colocated Antennas

ANs with colocated RIs consider identical path obstructions
(walls and furniture) of WiFi and GSM radio signals. Let’s
assume that WiFi R measurements control the sorting pro-
cess in the CDRSS algorithm. For each dataset D, we apply
the following steps individually:

‚ Quantize D into N equally spaced bins between the
minimum and maximum value of D (c.f. Figure 2-b).

‚ Count the number of measurements n

b

inside each
quantized bin (c.f. Figure 2-b).

‚ If a bin is empty, its number of measurements is given
by linear interpolation from surrounding bins.

‚ Calculate probability of each bin as P

b

“ n

b

{ ∞
N

b“1 nb

as shown in Figure 2-c, where D0{D1 and P0{P1 are
the di↵erential RSSI and the corresponding probability
for both GSM and WiFi measurements, respectively.

‚ Associate original D values with their corresponding
probabilities.

‚ Calculate weights of original D values as expressed in
Equation 6. J is the number of RIs, i.e., two in our
case.

w

j
b

“ P

j
b

{
Jÿ

j“1

P

j
b

, j P t1, ..., Ju (6)

Over a period T , we will have a vector of weights wj. Now,
we can calculate the hybrid Dh dataset as illustrated in
Equation 7.

Dh “
Jÿ

j“1

wj Dj (7)

By using the probability-based weights for controlling how
much each RI’s measurement contributes to the localiza-
tion process, the impact of lower quality signals is reduced.
When estimating the MD location, we use Dh with N mea-
surements as a single dataset for all RIs.

3.2.2 Distributed Antennas

For distributed AN’s antennas, captured signals over dis-
tributed RIs are no longer sharing the same propagation
path. To benefit from the diversity of radio measurements
and improve the localization accuracy, we construct virtual
ANs (VANs). As illustrated in Figure 4, VANs lie between
the distributed antennas of di↵erent RIs. By placing a VAN
between each set of M ANs of di↵erent RIs, we will have M2

VANs contributing in the localization process. Recall that
the CDRSS algorithm selects M ANs (now called VANs)
with highest R measurements for calculating a location es-
timate. Hence, the large number of VANs will only a↵ect
the selection process for finding M VANs with highest R.
However, the complexity of the localization process itself will
not be a↵ected. Both the coordinates and the R values of a
VAN are given by a weighted linear combination of the coor-
dinates and the R values of the ANs upon which the VAN is
based. The weights for this combination are based on prob-
abilities, as described in Section 3.1. The VAN construction
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process and an example of a VAN layout are shown in Figure
4. We consider synchronous RWiFi and RGSM datasets with
N measurements each (c.f. Section 3.1). First, we follow the
same procedure in Section 3.2 to calculate probabilities wj

of all RIs R measurements (c.f. Equation 6). The hybrid
measurements datasetRv of a virtual AN is calculated using
a probabilistic approach as described in Equation 8.

Rv “
Jÿ

j“1

wj Rj (8)

However, the captured power at the di↵erent RIs is not the
same. Equation 8 is valid under the assumption that PGSM

tx

and P

WiFi
tx

are constant within a period t. Let px
i

, y

i

q be the
antenna position for the i

th RI, and px
j

, y

j

q be the antenna
position for the j

th RI. The calculation of the position of a
VAN over a period T (X

v

, Y
v

) is shown in Equation 9.

pX
v

, Y

v

q “ wipx
i

, y

i

q ` wjpx
j

, y

j

q (9)

Then, we use coordinates and corresponding Rv of VANs as
an input to the CDRSS localization algorithm.

3.3 Hybrid Location Post-processing
With post-processing, we refer to analyzing the output of
the localization algorithm, i.e. location estimates of the tar-
get MD. In a first step, MD location estimates from both
RIs are calculated independently (c.f. Figure 3-b). The
localization process is performed using the CDRSS proxim-
ity localization algorithm described in Section 2.1 for both
colocated and distributed antenna deployment setups. As
input for the CDRSS algorithm, the aggregated R datasets
that are compiled in the preliminary aggregation process are

used. After gathering the set Lj “
„

X

j

Y

j

⇢
“ tL1, ...,LN

u
of N location estimates for the j

th RI as an example, we
measure the linear correlation coe�cient between the X-axis
and the Y-axis distribution of the location estimates. Let
X

j and Y

j contain the x- and y-coordinates of location esti-
mates Lj. The correlation coe�cient ⇢j of both coordinates
is described in Equation 10.

⇢j “ ⇢pX j
, Y

jq “ covpX j
, Y

jq
�

j
X

�

j
Y

(10)

cov is the covariance measure, �j
X

and �

j
Y

are the standard
deviations of X j and Y

j. ⇢

j is the pairwise correlation co-
e�cient between each pair of columns in the N-by-1 vectors
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Figure 5: a: colocated antennas setup. b: dis-
tributed antennas setup

X

j and Y

j. We define the coordinate weights over a period
T as shown in Equation 11.

wj “ ⇢j{
Jÿ

j“1

⇢j (11)

Finally, the hybrid estimation of the target MD location
pX

h

, Y

h

q is expressed in Equation 12.

pX
h

, X

h

q “
Jÿ

j“1

wjpX j
, Y

jq (12)

4. RESULTS
4.1 Experimental Setup
To validate the performance of our proposed solutions, we
setup a testbed with WiFi and GSM ANs. Our experiments
were conducted in the o�ce space of our research group
on the first floor of the Institute of Computer Science and
Applied Mathematics. Figure 5 shows the two di↵erent an-
tenna setups that were installed for testing colocated and
distributed antenna configurations. For both setups, two
Google Nexus Smartphones were fixed at seven di↵erent
locations. At each location, both MDs continuously gen-
erated WiFi and GSM tra�c over a period of 45 minutes.
The continuous WiFi packet transmission was guaranteed by
streaming a video over a WiFi VPN connection. Moreover,
we used a self-developed Android application that generates
continuous uplink GSMMOCmessages by making fake calls.

For AN deployment, we use five open-mesh product OM2P
devices for WiFi signal overhearing and five Universal Soft-
ware Radio Peripheral (USRP) N210 devices for GSM signal
overhearing. The OM2P devices are equipped with a WiFi
driver to scan channels and report timestamp, R and MAC
address of overheard packets to a central database. USRPs
are connected over an IP network to a central processing ma-
chine that hosts the GSM passive receiver tool [5]. USRPs
are tuned to capture a set of uplink frequencies of surround-
ing GSM BTSs, where the target MD might connect. The
GSM receiver tool reports a timestamp, R, and TMSI to
the same central database.

In GSM networks, a MD’s TMSI is controlled by the net-
work and changes over time (sometimes within one exper-
iment). Hence, there is no direct relationship between the
MD’s MAC address over the WiFi RI and TMSI over the
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cated Antennas

GSM RI. This causes a problem to extract and process ra-
dio measurements from multiple MDs simultaneously. To
overcome this issue, we built the following algorithm inside
our hybrid system (c.f. Figure 6):

‚ Localize MDs using WiFi and GSM signals indepen-
dently and tag estimated locations with their RI iden-
tity (MAC or TMSI).

‚ Measure distances between estimated locations (center
of mass) of WiFi and GSM signals, e.g., dK1 is the dis-
tance between GSM estimated locations with TMSIK
identity and WiFi measurements with MAC1 identity.

‚ Correlate identities of short distances to a MD, e.g.,
dK1 † dK2 and hence, TMSIK and MAC1 are identities
for one MD.

4.2 Signal Quality
In the first experiment, we compare the behavior of WiFi
and GSM signals indoors. We set a MD with two active RIs
at seven di↵erent locations (L1: L7). Results in Figure 7
show the received power of WiFi and GSM signals at ANs
in rooms R4 ad R5. We summarize our observations as
follows:

‚ There is a clear di↵erence in R measurement levels,
with WiFi measurements in the range of -35 to -75
dBm and GSM measurements between 0 and -25 dBm.

‚ Both WiFi and GSM signals react in a similar way to
changes of the MD location.

‚ GSM signals are more stable than WiFi. This is be-
cause GSM operates at a lower frequency and in a li-
censed band (less interference than an unlicensed band).

‚ Evening activities, such as crowd events, imply a large
number of active WiFi devices. Hence, we observe a
big influence on WiFi signal quality (high fluctuations)
during the period of crowd activities.

However, since GSM messages are less frequent when com-
pared to WiFi messages, we nominate the WiFi RI to be
dominant in sorting ANs for the CDRSS algorithm.

4.3 Received Power Vs. Distance
Our proposed solution is based on the assumption that the
indoor environment, such as walls and furniture, dominate
radio measurements more than the frequency of the signal.
To justify this assumption, we collected measurements from
the 14 locations (L1: L14) as shown in Figure 5-a for both
WiFi and GSM RIs. In these experiments, we used our
knowledge of the exact separation distance between the MD
and ANs with colocated antennas. Figure 8 shows the rela-
tionship between path loss (dBm) and separation distance.
The WiFi axis is shifted by 10 dBm to make the visual com-
parison easier. We define the path loss as the di↵erence
between P

tx

and R. However, in passive systems, we do
not know the instantaneous value of P

tx

. To calculate the
path loss of each radio signal, we approximate P

tx

to be the
maximum observed R over a period T . From Figure 8, we
draw the following conclusions:

‚ The degree of signals fluctuation is high at a fixed dis-
tance. This is because di↵erent propagation directions
contain di↵erent numbers and types of obstacles that
degrade the radio signals with di↵erent values.

‚ The path loss of WiFi and GSM signals is di↵erent
at fixed locations. This is due to inaccuracy in P

tx

calculations.

‚ The best line fit of measurements in Figure 8 represent
the PLE ↵. The PLE of WiFi signals is slightly higher
than GSM signals. This is because of the higher radio
frequency of WiFi.

From these conclusions, we confirm our assumption in Sec-
tion 2 that the indoor environment dominates the signal
behavior more than the radio frequency.

4.4 Hybrid Localization
To verify our hybrid localization approaches proposed in Sec-
tion 3, we conducted experiments at 14 locations using two
static MDs with active WiFi and GSM RIs. The duration
of each experiment is 45 min for each antenna setup. We
create quantized and aggregated RWiFi and RGSM datasets
with N “ 6 measurements each over a period T = 1 min and
t = 10 sec. Probabilities of WiFi and GSM signals are cal-
culated on 10-second bases. Therefore, we consider the MD
as static and transmitting at a constant power during this
period. Table 1 shows the median localization error at 14
locations and using di↵erent localization approaches. From
Table 1, we draw the following conclusions:
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Figure 8: Comparing WiFi and GSM path loss

‚ GSM-based localization shows comparable localization
median errors of 3.08m and 3.09m for colocated and
distributed antenna setups. The location of GSM an-
tennas in both setups is explained in Figure 5. These
results show the reliability of the CDRSS algorithm
with di↵erent setups (locations) of ANs.

‚ The WiFi antenna location did not change in both
setups. Hence, we have one set of results for WiFi-
based localization. Moreover, WiFi-based localization
shows better localization accuracy of 2.4m than GSM-
based setups. This is because the median estimator of
WiFi signals over a period of one minute and relatively
large number of captured packets is more robust than
GSM signals with a relatively small number of packets.

‚ Results of hybrid localization solutions show better
performance than original non-hybrid solutions. The
post-processing solution with distributed antenna setup
shows the best localization accuracy of 1.6m. How-
ever, this setup might look like doubling the amount
of ANs. The hybrid preprocessing solution with colo-
cated antennas leverages radio signals most e�ciently
and achieves comparable results of 1.7m.

5. CONCLUSIONS
To improve the localization performance of passive localiza-
tion systems, we proposed di↵erent hybrid solutions. The
proposed solutions rely on leveraging radio information from
multiple radio interfaces of the target mobile device. To
evaluate the performance of the proposed hybrid solutions,
we conducted real indoor experiments at 14 di↵erent lo-
cations. Compared to non-hybrid localization, the hybrid
approach shows a considerable improvement in localization
accuracy. The preprocessing option with colocated and dis-
tributed antenna setups shows a median error distance of
1.70m and 2.01m, respectively. When performing location
analysis in a post-processing step, we achieve median error
distances of 2.21m and 1.63m for colocated and distributed
antennas, respectively. This improvement compared to the
non-hybrid options illustrated the validity of our approach.
We attribute this improvement to the increased resistance
against unpredictable signal behavior due to NLOS recep-
tion and multipath propagation. Further increase in accu-
racy is expected if more radio interfaces are encountered in
the hybrid solutions or the case of active localization with
range-based localization solutions.
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