
IMPLEMENTATION AND EVALUATION OF THE
MULTICAST FILE TRANSFER PROTOCOL

(MCFTP)

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Alican Gecyasar
Dezember, 2010

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Abstract

Large amounts of data are exchanged and shared over the Internet every day. This is traditionally
performed using client-server communication. Big files such as movies and music are nowadays
often shared using Peer-to-Peer (P2P) networks like BitTorrent. In this thesis, we introduce
an implementation of Multicast File Transfer Protocol (MCFTP), which is a data dissemina-
tion approach based on native IP Multicast and Application Level Multicast (ALM). MCFTP
aims to save valuable bandwidth resources without increasing download time. MCFTP has no
single point of failure and can serve all its downloaders efficiently. We compare MCFTP with
BitTorrent, a leading state of the art data dissemination protocol. In this thesis, we present an
implementation of MCFTP and show that using our implementation, data can be disseminated
in a much more resource-conserving way than when using BitTorrent. Although the presented
algorithms are not fully optimized yet, our implementation of MCFTP is normally faster and
more resource-conversing regarding data dissemination for every downloader, compared to Bit-
Torrent.

Contents

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Peer-to-Peer Networks . 1
1.3 Multicast Paradigm . 1
1.4 Contributions . 2
1.5 Thesis Outline . 2

2 Related Work 5
2.1 Traditional Client-Server Unicast Communication 5
2.2 IP Multicast . 6
2.3 Peer-to-Peer Networks . 7

2.3.1 BitTorrent . 8
2.3.2 Pastry P2P Network . 12

2.4 Application Level Multicast / Overlay Multicast 14
2.4.1 Slurpie . 15
2.4.2 Scribe . 15

3 Multicast File Transfer Protocol - MCFTP 21
3.1 Overview . 21
3.2 MCFTP Modes . 22

3.2.1 Network Modes . 22
3.2.2 MCFTP Swarm Establishment . 23

3.3 MCFTP Nodes . 26
3.3.1 Regular Node . 26
3.3.2 File Leader Node . 27

3.4 MCFTP Messages . 27
3.4.1 Status Messages . 27
3.4.2 Keep-Alive Messages . 28

iii

3.4.3 Chunk Messages . 28
3.5 Multicast Groups . 29

3.5.1 File Management Group . 29
3.5.2 Sending Groups . 29

3.6 Strategies . 30
3.6.1 Centralized Mode . 30
3.6.2 Decentralized Mode . 32

3.7 MCFTP Example . 34
3.7.1 Centralized Approach . 34
3.7.2 Decentralized Approach . 37

3.8 Summary and Conclusion . 39

4 MCFTP Implementation 41
4.1 Overview . 41
4.2 MCFTP Modes . 41
4.3 Sending Messages . 42

4.3.1 Status Messages . 44
4.3.2 Keep Alive Messages . 45
4.3.3 Chunk Messages . 45

4.4 Application Level Multicast Groups . 46
4.5 Summary and Conclusion . 47

5 Evaluation 49
5.1 Testbed used for Evaluation . 49
5.2 Evaluation Scenarios . 49
5.3 BitTorrent Client used for Comparison with MCFTP 50
5.4 Evaluation using 8 MB Files . 51

5.4.1 Overview . 51
5.4.2 Results Discussion . 53

5.5 Seeder Check . 55
5.6 Evaluation using 50 MB Files . 56

5.6.1 Overview . 56
5.6.2 Results Discussion . 57

5.7 Simulation Results . 59
5.8 Summary and Conclusion . 59

6 Conclusion and Outlook 61
6.1 Conclusion . 61
6.2 Outlook . 62

Glossary 63

Bibliography 65

iv

List of Figures

2.1 Client-Server communication: A node sends data to four clients, one after the
other or in parallel . 6

2.2 Multicast: A node sends data only once but is received by four clients in parallel 7
2.3 Client-Server network . 8
2.4 Peer-to-Peer network . 8
2.5 An overview of how BitTorrent works . 9

(a) New node contacts the BitTorrent tracker 9
(b) BitTorrent tracker receives status updates of the P2P network and returns

a set of peers to the new node . 9
(c) New node becomes part of the P2P network downloading and uploading

pieces . 9
2.6 Pastry: Example of routing a message . 14
2.7 Application Level Multicast compared to IP Multicast 15
2.8 An overview of how Slurpie works . 16

(a) Clients contact Topology Server . 16
(b) Clients form a mesh network . 16
(c) Clients exchange information . 16
(d) File server used only when needed . 16

2.9 Creating a multicast group in Scribe . 17
2.10 Scribe using children tables to create a multicast tree 18

(a) Two nodes send a join message . 18
(b) Resulting multicast tree . 18

3.1 MCFTP-ALM runs on top of Scribe/Pastry P2P/ALM framework 23
3.2 Regular nodes send status messages and file leader nodes send keep live messages 24
3.3 Status messages and keep alive messages are sent by regular nodes and also

processed by all regular nodes . 25
3.4 Pseudo-Code Basic Strategy . 31
3.5 Bootstrapping of cMCFTP in native IP Multicast mode 34
3.6 Keep alive message created by file leader node 35
3.7 Node B sends chunks and Node C joins multicast groups 35
3.8 Node D joins the MCFTP swarm . 36
3.9 All nodes finish downloading the file . 36

v

3.10 Bootstrapping of dMCFTP in native IP Multicast mode 37
3.11 Keep alive message created by a regular node 37
3.12 Node A sends chunks and Node B joins multicast groups 38
3.13 Node C joins the MCFTP swarm . 38
3.14 Node B and node C finish downloading all chunks 39

4.1 Class Diagram of MCFTP nodes . 42
4.2 Class Diagram of MCFTP network modes . 43
4.3 Class Diagram of MCFTP messages . 44
4.4 Structure of status messages . 45
4.5 Structure of keep alive messages . 46
4.6 Structure of chunk messages . 46
4.7 MCFTP-ALM nodes used as pure forwarders in a Pastry ring 47

5.1 BitTorrent usage in 2008/2009 in Germany 51
5.2 Overview of all scenarios with one seeder and a file size of 8MB 52
5.3 Down-/Upload bandwidth factors - 8 MB file size 53

(a) Download bandwidth factor - 20 nodes 53
(b) Download bandwidth factor - 50 nodes 53
(c) Upload bandwidth factor - 20 nodes . 53
(d) Upload bandwidth factor - 50 nodes . 53

5.4 Seeders over time - 8 MB file size . 54
(a) Seeders over time - 20 nodes - MCFTP-ALM 54
(b) Seeders over time - 50 nodes - MCFTP-ALM 54
(c) Seeders over Time - 20 nodes - MCFTP-IPMC 54
(d) Seeders over Time - 50 nodes - MCFTP-IPMC 54

5.5 Seeder Check with 20 and 50 nodes using a file size of 8 MB 56
(a) Seeder check with 20 nodes . 56
(b) Seeder check with 50 nodes . 56

5.6 Overview of all scenarios with one seeder and a file size of 50 MB 57
5.7 Down-/Upload bandwidth factors - 50 MB file size 58

(a) Download bandwidth factor - 20 Nodes 58
(b) Download bandwidth factor - 50 Nodes 58
(c) Upload bandwidth factor - 20 Nodes . 58
(d) Upload bandwidth factor - 50 Nodes . 58

5.8 Seeders over time - 50 MB file size . 58
(a) Seeders over Time - 20 Nodes . 58
(b) Seeders over Time - 50 Nodes . 58

vi

List of Tables

2.1 Pastry: Example of a routing table in a quaternary system 13

3.1 An example of an allNodesInfo table . 26
3.2 An example of a downloadQueue table . 30

5.1 P2P usage in 2008/2009 . 51

vii

Acknowledgments

I would like to thank to Prof. Dr. Torsten Braun who gave me the opportunity to carry out my
master thesis in his research group named ’Computer Networks and Distributed Systems’. Fur-
thermore, I would like to express my gratitude and thanks to my tutor Marc Brogle for his effort
in exchanging his constructive and interesting views. He gave valuable feedback and advices.
He was always available for exchanging ideas and supported me in my approaches. Special
thanks go to Dragan Milic and Markus Anwander who were as well available for exchanging
ideas and helped me out, when the servers caused problems. Additionally I would like to thank
Sandro De Zanet for giving me different kind of input, that motivated me to optimize my results.

ix

Chapter 1

Introduction

1.1 Motivation

The use of the Internet has changed immensely since it was first available. In a time where
only text and small pictures had to be exchanged, it was doubtless the best solution to have
one server providing data and many clients downloading data from that server. But, one might
need to reconsider the client server communication paradigm, as the kind of data exchanged has
changed to rather big files like movies or music albums. Not only the amount of data has grown,
but also the amount of Internet users has increased dramatically. This means that the same data
is often requested multiple times over and over again by different users. Using the traditional
client server communication, the server is responding to each of the clients one after another.
All work is done by the server and it has to have appropriate bandwidth available, to serve all
users requesting this data. There have been many different approaches opposed to traditional
client server communication.

1.2 Peer-to-Peer Networks

Peer-to-Peer(P2P) networks seem to be the most successful protocols to disseminate large
amount of data. BitTorrent is a widely spread and often used P2P protocol. Nevertheless, there
are different issues with BitTorrent. The BitTorrent tracker could be considered as single point
of failure. If the BitTorrent tracker fails, data exchange will fail. Newer implementations of
BitTorrent use a trackerless version to overcome this issue.

1.3 Multicast Paradigm

Another approach to disseminate data efficiently is the multicast paradigm. It offers a possi-
bility to send data simultaneously to a group of receivers. An implementation of the multicast
paradigm for the Internet is IP Multicast. The multicast functionality has to be enabled at the
routers inside an IP Multicast network. IP Multicast has been available for over 20 years. Un-
fortunately, IP Multicast was not being used widely in the Internet for a long time. This was
most likely due to the missing support by Internet Service Providers (ISP). ISPs have billing

1

challenges and new security issues when confronted with IP Multicast. Nowadays Internet TV
applications like zattoo[1] and wilmaa[2] use native IP Multicast. IP Multicast can be used in an
environment where all routers and service providers between end nodes support it. But, this is
not the case for the entire Internet. To overcome these limitations, Application Level Multicast
(ALM) approaches were developed, which shift the multicast functionally from the network to
the end systems.

1.4 Contributions

In this thesis, we introduce Multicast File Transfer Protocol (MCFTP) a data dissemination
approach based on native IP Multicast and Application Level Multicast. MCFTP focuses on
reducing overall bandwidth consumption for all downloaders by using the multicast paradigm.
Evaluations of MCFTP on a simulation basis have already shown good results in [3].
With this thesis, we define and implement MCFTP from scratch such that it can compete with
BitTorrent and still be resource-conserving. The implementation consider native IP Multicast as
well as Application Level Multicast. We use Scribe/Pastry for the MCFTP-ALM implementa-
tion. The ALM framework can be replaced by any other ALM framework with little effort. To
experiment with different settings, two different approaches of MCFTP are implemented. The
first approach is called centralized Multicast File Transfer Protocol (cMCFTP). It has one file
leader node, which is responsible for coordinating all data dissemination. The other approach
is called decentralized Multicast File Transfer Protocol (dMCFTP) and does not require a file
leader node. All nodes are equal and each of them is responsible for efficient data dissemina-
tion. The decentralized approach is inspired by the trackerless version of BitTorrent. These two
MCFTP approaches are evaluated separately. The most important part of our implementation is
the possibility to adapt dissemination strategies. Furthermore, tools are provided to extend and
optimize dissemination strategies for further work. We compare MCFTP to the most popular
protocol, which is used to exchange data, such as movies, music and more. Peer-to-Peer (P2P)
is surely the most used and most spread protocol to disseminate data. We use BitTorrent, a very
well known P2P protocol to compare its performance with MCFTP. We focus especially on sce-
narios with one seeder, but also evaluate scenarios with more than one seeder.
With this implementation we proof the concept of MCFTP. Although it is only a prototype ver-
sion of MCFTP, we are able to evaluate different dissemination strategies. Special care is given
to code interfaces, such that this implementation can be used for future experiments by easily
adapting dissemination strategies or the underlying ALM framework.

1.5 Thesis Outline

Chapter 2 gives an overview of already existing mechanisms and approaches. One of the main
approaches discussed in detail is the BitTorrent protocol. Another focus is on Scribe and Pastry,
as we use these protocols for our underlying Application Level Multicast framework. The main
chapter of this thesis is Chapter 3, where all information about MCFTP is provided. MCFTP is
presented with all its elements and variations. Potential problems are pointed out and solutions

2

are provided on how to avoid them. In Chapter 4, details about our specific MCFTP imple-
mentation are depicted. Furthermore, details on how MCFTP messages are constructed are also
described. In Chapter 5, the results and evaluations of the comparison between BitTorrent and
MCFTP are presented. Details about the used environment and problems encountered during
evaluations can be found in this chapter as well. Chapter 6 sums up evaluations and points out
various ideas for future work.

3

Chapter 2

Related Work

Efficient data distribution has been quite an important research topic for a while. There are
several approaches to distribute data over a network. In this Chapter, different approaches are
explained and underlined with examples starting with the traditional unicast architecture model
in Section 2.1, followed by IP Multicast shown in Section 2.2. P2P networks are presented in
Section 2.3. Finally Application Level Multicast is introduced in Section 2.4.

2.1 Traditional Client-Server Unicast Communication

A traditional unicast architecture model is based on roles, with a server and a client. The server is
keeping data and as the name implies, it serves the data whenever it is requested by a client. The
bandwidth limitations are given either by the maximum available download rate by the clients
or the maximum available upload rate by the server.

BandwidthLimit = min(max(ClientDownloadrate),max(ServerUploadrate))

In a traditional unicast architecture model, there is one server containing the data and several
clients requesting data from this server. Assuming there are multiple clients requesting the
same data at the same time from the server, which might occur actually very often if the server
contains popular data, then the server can either serve all the clients at the same time or one
after the other, or a combination of both. In either case, the server will send out the same data
as often as the amount of clients requesting the data. If the server serves all the clients at the
same time, the bandwidth limit will decrease dramatically. As an example, all clients could have
the same available download rate of 500kBps and the server’s upload rate could be 1000kBps.
In a scenario with up to two clients, this case would work optimal. The clients could download
at their full rate of 500kBps. But imagine 20 clients downloading at the same time from the
server. This would lead to a bandwidth limit of 50kBps for each client. Thus, to have a correct
bandwidth limit, we should not forget the amount of clients. In a homogeneous network with the
same sort of clients and bandwidth, this leads to the following bandwidth limit for each client:

BandwidthLimitEach =
min(max(ClientDownloadrate),max(ServerUploadrate)/AmountClients)

5

For an inhomogeneous network the bandwidth limit calculation gets rather confusing, simply
because there are different kinds of variations and strategies. For example, the server could
serve all the clients as it does in a homogeneous network or the server could prefer to serve only
clients with a higher bandwidth rate. In client-server communication, all file transmissions start
from the server to each client served. The server is always the source of all transmissions. Given
a scenario like in Fig. 2.1 with one sender and four receivers, the server starts a new transmission
to each of the clients interested in the file. The server sends the same data to the first router four
times. The first router forwards the same data twice to the second router.

Figure 2.1: Client-Server communication: A node sends data to four clients, one after the other or in
parallel

These transmissions are redundant. There are a total of eleven transmissions including the
routers. A further downside of the traditional unicast approach is, that it does not take the
location of the clients into account. If there is only one server, which has the needed files, all
clients have to get the files from this server, there is no alternative. If the server is for exam-
ple located in California, USA, but some of the clients are located in Europe, they would each
have to get the file by themselves. Another disadvantage is that the server is a single point of
failure. If the server crashes, goes down for maintenance or simply is not reachable, no one can
download any data from the server. All these examples show, that there is a lot of potential to
optimize the traditional unicast file distribution approach.

2.2 IP Multicast

IP Multicast communication [4] [5] [6] gives the possibility to address a group of nodes at once
by sending IP packets to an IP Multicast address and not directly to a receiver’s IP address.
Nodes interested form a multicast group by joining the IP Multicast address. An IPv4 IP Mul-
ticast address is in the range of 224.0.0.0 to 239.255.255.255. There is no need to be joined in
a multicast group, in order to send data packets to a multicast group. In any case, whether the

6

sender is joined to the group or not, the sender has no information about any node joined to the
multicast group nor about the size of the group. Any node can join and leave a multicast group
at will. More than one multicast group can be joined at a time. The roles of server and receiver
are not clearly distributed, since every node could send data to the IP Multicast address at any
time. There can be more than one sender per multicast group. Figure 2.2 is the same scenario as
presented in Fig. 2.1. This time, IP Multicast is being used to transmit a file. The source sends
the file only once and the data is being replicated at the routers. Therefore, there is only one
transmission between the source and the first router and also between the first and second router.
In total, there are 7 transmissions.

Figure 2.2: Multicast: A node sends data only once but is received by four clients in parallel

Local area networks support IP Multicasting over Ethernet for immediate neighbors in the same
subnetwork, no special hardware is needed. But as soon as switches or routers are in between
networks, the hardware has to support IP Multicasting. Especially to use IP Multicast over the
Internet, all the routers and all the switches on the way to the own ISP have to support IP Mul-
ticast. This though limits to use multicast within one ISP’s network. To use IP Multicast all
over the Internet, all the ISPs and backbones should be using IP Multicast supporting hardware.
However, this is not (yet) the case due to several reasons. For an ISP it could be unclear how
to bill the traffic usage. But there are different approaches in order to use the advantages of
multicast communication over the Internet without IP Multicast support. Some of them will be
described in Section 2.4.

2.3 Peer-to-Peer Networks

Peer-to-Peer (P2P) networks [7] [8] have become a very popular way of distributing and sharing
data between nodes. The advantages compared to traditional client-server networking are shown
in Fig. 2.3 and 2.4. The client-server network is built using a star topology. Every client has only
one connection, which is a connection to the server. If the server goes down for maintenance

7

or is not reachable due to any kind of reason, this topology can not continue sharing data. The
server is the only node using its upload-bandwidth. Whereas in a P2P network, there are multiple
connections between nodes. Since a file is broken into file pieces, the nodes can share the pieces
they have with other nodes. A node does not have to get all the pieces from the same node, and
therefore has more flexibility to fetch the whole file. When one particular node is not reachable
by the network, the rest of the nodes still can continue to share data among each other. Chances
are that all nodes are using their upload-bandwidth. In a P2P network, data is often parted into
chunks and distributed partially. As soon as a node has a few chunks, it can start to act like a
server and distribute the chunks it has. This mechanism is reducing the payload from the normal
server and distributing the bandwidth load to the P2P nodes in the network.

Figure 2.3: Client-Server network Figure 2.4: Peer-to-Peer network

In this Section, two popular P2P protocols will be introduced and discussed: BitTorrent and
Pastry.

2.3.1 BitTorrent

The BitTorrent protocol was first introduced in July 2001 by Bram Cohen [9][10]. Its purpose
is to distribute the upload cost and duties among the downloaders. The protocol is based on a
torrent file, which includes various information about the data being downloaded and shared. A
torrent file must be fetched prior to entering the P2P network. The main information stored in a
torrent file are:

• File length in bytes

• File name

• Amount of pieces

• Concatenated SHA1 [11] hash value of each piece

• Tracker URL

In the BitTorrent protocol, a file is divided into pieces, which are distributed inside the P2P
network. Each piece is a small part of the actual file. To manage the piece distribution inside
the P2P network, a tracker is needed. The tracker is a server, which keeps information about the

8

status of all clients inside the P2P network. Thus, the URL of the tracker is an important piece
of information, which has to be included in the torrent file.

BitTorrent Swarm Establishment

For an illustrated overview of the BitTorrent protocol see Fig. 2.5. When a new node is interested
in a file, it downloads the torrent file and opens it with a BitTorrent client. The client then
contacts the BitTorrent tracker defined in the torrent file. In this example, there exists already
a P2P network, and therefore the tracker already knows about the existing P2P network. The
tracker knows about all the nodes and their status of already downloaded file pieces. It returns
a set of nodes to the new joined node, telling which other nodes in the P2P network to contact
next.

(a) New node contacts the BitTorrent tracker (b) BitTorrent tracker receives status updates of the P2P
network and returns a set of peers to the new node

(c) New node becomes part of the P2P network downloading
and uploading pieces

Figure 2.5: An overview of how BitTorrent works

Seeder and Leecher

In BitTorrent terms, there is a leecher and a seeder. A node who has the complete file is consid-
ered a seeder. Compared to the traditional client-server scenario, a seeder would be like a server.

9

A leecher on the other hand is a node, which does not have the complete file. Nevertheless, it
might have already some pieces of the file, but not all of them. Leechers could be considered as
clients in the traditional client-server scenario.

Torrent-File

For a file to be shared, a seeder has to create a torrent file. A torrent tracker has to be declared
with a full URL or hostname and a port to which it will be listening to. The announced tracker
has to be reachable at any time while the file is being shared, otherwise data can not be dis-
tributed. During creation, the file is parted into pieces and for each of the pieces a SHA1 hash
is calculated and put into the torrent file. This hash will help identify which pieces already have
been downloaded and which are still missing.
After it has been created, the torrent file has to be distributed among the nodes, which are inter-
ested in the original file. The torrent file is rarely larger than 20kB and can be distributed using
traditional client-server communication.

File Sharing in BitTorrent

Once the torrent file is created and distributed, and the torrent tracker is up and running, sharing
the file is possible. Interested nodes (called ”peers” in BitTorrent terms) contact the tracker
through a simple protocol and let it know, which file they are interested in and which pieces
they have already. This exchange of information is done periodically by each peer inside the
P2P network. The torrent tracker in return sends to each peer a list of other peers interested
in the same file. The standard algorithm suggests to include only a random subset of all peers
inside this list. This information sent by the tracker will then be used by the peers to connect to
each other and build the P2P network. When two peers connect with each other, they exchange
information about their needs concerning the pieces of the file. There is a chance that two peers
connect but have nothing to share with each other. It is also possible that a peer has already
reached its maximum upload bandwidth limit and therefore is not able to share data with further
peers. There is also a mechanism called choking, which disallows another peer to download
any pieces. This mechanism will be discussed later. Thus, not all peers which are connected to
another, do exchange pieces of a file.
As soon as a peer finishes downloading one piece, it creates the SHA1 hash of that piece and
cross-checks it with the SHA1 hash in the torrent file. If they match, the peer can announce the
new information to the connected peers. When all the pieces are downloaded, a leecher turns
into a seeder.
There are two main algorithms for BitTorrent, the piece selection algorithm and the choking
algorithm. Both of them are subject to be adapted and changed by implementations. We would
like to discuss the main algorithms for each and give a little insight to them.

Piece Selection

One of the main keys to a good performance in BitTorrent is the piece selection algorithm. It is
used to define the order of pieces being shared in the P2P network. The main problem that could

10

arise when a bad algorithm is used, is that not all of the nodes would finish downloading after a
certain time. When thinking about a piece selection algorithm, it is important to remember that
a node (especially a seeder) might not stay for a long time in the network and that there might be
different bandwidth available for each of the nodes. There are three piece selection algorithms
proposed in [9].

Rarest First

This algorithm is aware of the risk that nodes can disconnect from the P2P network at any time.
Therefore, the main goal of this algorithm is to replicate the rare pieces as soon as possible, be-
fore the node with the rare piece would disconnect from the P2P network. The rarest piece within
the set of peers connected to a node is selected and downloaded, if there is enough bandwidth
available. Pieces, which are more common are postponed for later download.

Random First

An issue with the ”Rarest First” algorithm is that rare pieces are mostly present on only one
node. The node with a rare piece could possibly not deliver the rare piece to all of the nodes in
the P2P network with an accurate bandwidth. At the beginning of a P2P network, no leecher has
any piece, and therefore can not upload any data. The idea behind the ”Random First” algorithm
is that a leecher should have something to offer to other nodes as soon as possible. This is
considered as more important than to focus on the rarest piece at the beginning. According to
[9] the ”Random First” algorithm should turn into the ”Rarest First” algorithm as soon as the
first piece is downloaded from the P2P network.

Endgame Mode

BitTorrent also has a strategy to speed up the finishing period of a piece download. A piece is
divided into subpieces and a request is based on a subpiece. When a node has requested all of the
missing sub-pieces, it also sends out a request for the same sub-pieces to all of the nodes it has
an open connection to. As soon as a sub-piece is fetched, a cancel message is being sent to avoid
redundant data transfers. This strategy is mainly introduced to avoid a delay when finishing the
download of a piece which could happen with slow transfer rates. Bram Cohen ensures in [9]:
”In practice, not much bandwidth is wasted this way, since the endgame period is very short,
and the end of a file is always downloaded quickly.”

Choking

BitTorrent nodes decide by themselves who they want to share data with. There is no global
instance telling which nodes should send which pieces to whom. Nodes will try to download
pieces from any other node they have an open connection to. But a node can restrict its upload
to certain nodes. When a node is not willing to upload data to another node, then this is referred
as ’choking’. The ’choke’ mechanism is introduced by BitTorrent to gain better performance for
the whole P2P network. By default, four nodes are always unchoked. The algorithm to select

11

which nodes to unchoke is based on a variant of tit-for-tat. That means, a node is more willing
to upload data to another node of which it is currently downloading data from.

Trackerless BitTorrent

The original BitTorrent protocol as proposed by [9] is not mentioning a trackerless version of
BitTorrent. The idea of having a decentralized tracking came up with later approaches. The most
important purpose of a BitTorrent tracker is to provide nodes with information of other nodes in
the BitTorrent swarm. The most common problem with the tracker is, that it is a single point of
failure. If the tracker fails, the whole BitTorrent swarm fails. There have been solutions having
multiple trackers, but the most used solution is to apply a trackerless version of BitTorrent having
a distributed hash table(DHT) to share information about the BitTorrent swarm. Most of the cur-
rent BitTorrent clients use Kademlia [12] as their DHT implementation. The DHT implements
the BitTorrent tracker functionalities. DHT is still used to provide nodes with information of
other nodes in the BitTorrent swarm. In [13], there is another approach to replace the BitTorrent
tracker completely by using entry points which perform random node selection without tracking
all nodes in the swarm. Instead they perform multiple perpetual random walks. The bias of
these walks determine the distribution from which nodes are randomly sampled. This approach
omits tracker functionalities completely. In trackerless approaches of BitTorrent there are no
differences between nodes. All nodes are the same and each of them has the same responsibility
to disseminate data. We took this idea and used it for our decentralized approaches (See 3.2.2).

2.3.2 Pastry P2P Network

Pastry is an implementation of a self-organizing P2P network proposed by Antony Rowstron
and Peter Druschel in November 2001 [14]. Each node in Pastry uses a unique random node
ID when joining a Pastry network. A node ID is 128-bit long and is uniformly distributed in a
circular space in the range of 0 to 2128 − 1. By default, any ID or key in Pastry is represented as
a sequence of 32 hex. When a Pastry node receives a message and its destination represented as
a numeric key, it will route the message to the Pastry node, which is numerically closest to the
given destination address.

Pastry Node Setup

Every Pastry node maintains a neighborhood set, a leaf set and a routing table. The neighborhood
set is referred to as M and keeps track of nodes, which are close in terms of locality. To measure
the locality distance, different variables may be considered, such as hop count or round trip time
(RTT) delays. The neighborhood set is mainly used to maintain the routing table and is not used
for routing messages. The leaf set, referred to as L, contains nodes, which are numerically close
by ID and it is mainly used for routing. Half of the entries in the leaf set have a larger node ID
and the other half has a smaller node ID than the current node. The neighborhood set and leaf
set both have 16 or 32 entries each in a default Pastry configuration. The routing table has 16
columns by default, one for each hex value. The rows in the routing table indicate the amount
of matching prefixes of a node’s ID to the current node’s ID, starting with zero. For the sake of

12

simplicity, our example is using a quaternary numeral system instead of a hexadecimal numeral
system and node IDs are limited to a size of only 10 bit. For the given node with ID 21023, the
routing table might look like shown in Table 2.1.

Table 2.1: Pastry: Example of a routing table in a quaternary system

Row n means that there are n common prefix matches for the given node’s ID compared to
the current node’s ID and that digit n+1 of the node’s ID, is the same as the column value.
For any entry in the routing table, there might be multiple candidates fulfilling the described
requirements. But only the closest node according to the neighborhood set is chosen and put
into the routing table. In case of no such node in the Pastry network, the field in the routing table
is left empty. The routing table is not the prime lookup table when routing a message.

Routing in Pastry

Every message has a key, which is considered as the destination address. Thus, every node will
try to forward the message to the node with the same ID as the key of the message. This is done
by first checking if the message key is in the range between the lowest and highest node ID
inside the leaf set. If so, the message will be forwarded to the node, which has the numerically
closest node ID to the message key. If the message key is outside the mentioned range, then the
routing table is consulted. The only criteria, which has to be fulfilled, is that the next node ID
should have at least one more common prefix digit match than the current node’s ID. Assuming
that the node from the example before does not have an entry in its leaf set for the message key
21213, then a lookup in the routing table is required. The current node ID is 21023. Since the
first two digits of the current node ID match with the message key, row number 2 of the routing
table has to be considered. Next, the node with at least one more common prefix digit has to
be found. This is done by looking at the columns of the routing table. Accordingly, the node
with ID 21202 would be selected as the next node in our example. If there is no matching entry
in the routing table or the node is not reachable, then the message has to be routed to a node,
which has at least the same amount of matching prefixes and its node ID is numerically closer
to the messages key then the current node’s ID. This is considered as a special case though.
The authors of Pastry state: ”The expected number of routing steps is O(log N), where N is the
number of Pastry nodes in the network.” [14]. Figure 2.6 is an example of how the message
with the key 21213 would be routed in the given Pastry ring.

13

Figure 2.6: Pastry: Example of routing a message

A message sent in the Pastry network is routed to the node with the same first digit as
the message key. In the example, this is digit 2. Next, the message is routed to the node with
one more common prefix digit. That would be 21. This routing mechanism is continued until
the message key and the node ID match all digits.

2.4 Application Level Multicast / Overlay Multicast

As described in Section 2.2, IP Multicast has an efficient solution for many to many communi-
cation. But, as also discussed in Section 2.2, there is no Internet-wide support for IP Multicast
as of today. There have been different approaches to support a multicast communication over
the Internet. These approaches are mostly referred to as Application Level Multicast or Over-
lay Multicast [15] [16] [17]. In this Section, three Application Level Multicast Models will
be introduced. Basically, the idea is to move the multicasting functionalities to the end sys-
tems. Therefore, the multicasting trees are built directly between the end systems, using a P2P
network. These models are not as efficient as IP Multicast, but are rather thought of as an alter-
native solution to enable multicast over the Internet. Figure 2.7 shows an example of Application
Level Multicast compared to IP Multicast. In the IP Multicast example, there is no physical link
used twice to distribute data. Routers are replicating data and send it to subscribed nodes. In the
Application Level Multicast example, data is replicated at end nodes, and therefore some of the
physical links are used more than only once.

14

Figure 2.7: Application Level Multicast compared to IP Multicast

2.4.1 Slurpie

Slurpie was developed at the University of Maryland in 2004 [18]. Slurpie has the goal to reduce
client download times and to reduce load on servers. To achieve this goal, Slurpie builds an
overlay network between downloading clients, which is referred to as a mesh network. Instead
of getting all data from the server, clients try to download data from each other. Only if this is
not possible, the server is contacted to download missing data.

Implementation

Every client downloading the same file is first contacting a topology server as shown in Fig.
2.8(a). The topology server is returning a list of some other clients, which have contacted the
topology server before. In the example, client 8 receives a list from the topology server with
clients 5, 12, 3 and 9. Furthermore, client 8 adds all clients of the newly received list as its
neighbors and the clients form a mesh network as shown in Fig. 2.8(b). In the mesh network,
progress updates are propagated periodically to let other clients know which client has which
blocks. In Fig. 2.8(c) client 5 is propagating information about blocks F to L to client 8. Each
client stores information about N other clients. Data blocks can now be requested by client 8 as
shown in Fig. 2.8(d). If a client needs a block, which non of his neighbors can propagate to him,
the client would make a HTTP or FTP [19] request to a file-server as client 4 is doing in Fig.
2.8(d).

2.4.2 Scribe

Scribe [20] is an Application Level Multicast infrastructure built on top of Pastry (presented in
Section 2.3.2). A Pastry network has to exist prior the usage of a Scribe infrastructure. Scribe’s
effort is to bring multicast functionality to a Pastry network. Any node inside a Scribe infras-
tructure can create a multicast group.

15

(a) Clients contact Topology Server (b) Clients form a mesh network

(c) Clients exchange information (d) File server used only when needed

Figure 2.8: An overview of how Slurpie works

Any other node is able to join a multicast group as well to send a message to all of the multicast
group members. The main methods introduced with Scribe’s application programming interface
(API) are: create, deliver, join, forward, leave and multicast. A scribe multicast group is also
referred as topic.

Creating a Multicast Group

The create method is used to create a new multicast group for a given group ID as Fig. 2.9
shows. To create a multicast group, Scribe creates a new Pastry message containing the keyword
”CREATE” and the group ID as the message key. Pastry delivers the message to the Pastry

16

node with the numerically closest node ID for the given group ID. Pastry passes the content of
the message to the Scribe method called deliver, which then points the Scribe node to be the
rendezvous node for the given group ID.

Figure 2.9: Creating a multicast group in Scribe

Joining and Leaving a Multicast Group

As soon as a rendezvous node is determined, Scribe nodes can join to the given group, by
creating a Pastry message with the group ID as the message key and the content ”JOIN”. While
Pastry is routing the message towards the rendezvous node, each of the intermediate Pastry
nodes call the forward method of Scribe. The forward method is used to build a multicast
tree rooted at the rendezvous point. When the forward method is called, the current Scribe
node adds the preceding node to its children table and sends back the message to Pastry to
continue delivering the original message. If Scribe has the preceding node already in its children
table, the original message will be discarded. Figure 2.10(a) depicts an example of the same
scenario as in Section 2.3.2. In this example, all children tables are empty and the multicast
group with ID 21213 has just been created. Node 13202 is the first one to send out a join message
towards the rendezvous node 21213. The standard Pastry routing is applied while each of the
intermediate nodes is calling the forward method of Scribe. Since all children tables are empty,
each of the intermediate nodes will add the preceding node to their children table and forward
the original message using Pastry. Node 20031 is willing to join the same multicast group,
and therefore sends a join message towards the rendezvous point. Node 21002 will receive
the original message, add node 20031 to its children table and forward the original message to
node 21202. Node 21202 already having node 20031 in its children table will not add any new
information to its children table and it will not forward the original message further. Thus, the
multicast tree as shown in Fig. 2.10(b) will be built after the first two join messages are sent
for the given multicast group with ID 21213. Due to Pastry’s routing mechanism, as described
in Section 2.3.2 there will not be loops in the multicast tree. When a node wants to leave a
multicast group, it first checks the children table, if there are any other nodes, which are in its
tree branch. If the node wanting to leave is a leaf node of the multicast tree, then Scribe creates
a Pastry message with the content ”LEAVE” and the group ID as the message key. It also stores
that it left the group. If there are other nodes in the children table, the node wanting to leave only

17

stores that it left the group and does not create a Pastry message. When a Scribe node receives
a ”LEAVE” message, it confirms, that there are no other entries in its children table than the
one who just left the group before it forwards the message. The ”LEAVE” message will not be
forwarded when there are still other nodes in the children table.

(a) Two nodes send a join message (b) Resulting multicast tree

Figure 2.10: Scribe using children tables to create a multicast tree

Let us assume that node 20031 is leaving the multicast group 21213 from the example before.
After Node 21002 receives the ”LEAVE” message, it checks its children table and sees that there
is still another node with ID 20112 subscribed. Therefore, node 21002 is not forwarding the
”LEAVE” message. Further, let us also assume that node 13202 is leaving the multicast group
after a while. Node 20112 receives the message and confirms that there are no other entries in
its children table. Node 20112 forwards the ”LEAVE” message, since its children table is empty
at this time. Nodes 21002, 21202 and 21213 will do the same recursively.

Message Transfer inside a Multicast Group

When a node wants to send data to a multicast group, it first creates a Pastry message with the
keyword ”MULTICAST” and the group ID as the message key. After routing the message, the
rendezvous node returns its IP address. This initial message is sent to cache the IP address of
the rendezvous node in order to avoid repeated routing through the Pastry network. To send the
actual data as a multicast message, Scribe creates a new message sent directly to the IP address
of the rendezvous node. If the rendezvous node changes or is not reachable anymore, a new
routing through Pastry is initiated to gather another IP address to send the multicast message to.
Once the rendezvous node receives the multicast message, it disseminates the message to all its
leaf nodes along the multicast tree. Therefore, any Scribe node receiving the multicast message
has joined the multicast group, is used as a forwarder, or both.

18

Summary and Conclusion

In this chapter, we presented why there is a need to restructure the way big files are exchanged.
Traditional client-server communication is inefficient for one-to-many communication when the
data exchanged is large and/or the amount of participants is increasing. IP Multicast is efficient
for group based one-to-many and many-to-many communication. But, IP Multicast is not avail-
able over the Internet, mostly because of ISP restrictions. Hence, Application Level Multicast
could be used on top of P2P instead. We presented various P2P networks and Application Level
Multicast approaches such as Slurpie, BitTorrent, Scribe and Pastry. Our MCFTP implementa-
tion uses Scribe and Pastry as underlying ALM. We compare the performance of MCFTP with
BitTorrent.

19

Chapter 3

Multicast File Transfer Protocol - MCFTP

The Multicast File Transfer Protocol (MCFTP) is designed to disseminate data efficiently us-
ing multicast mechanisms. It supports not only native IP Multicast (see Section 2.2) but also
Application Level Multicast (see Section 2.4). MCFTP consists of nodes that send messages to
different multicast groups. All components of MCFTP will be introduced in this chapter, start-
ing with a short overview of MCFTP presented in Section 3.1, followed by the different MCFTP
variations shown in Section 3.2. The nodes are presented in Section 3.3, and the messages in
Section 3.4 and the multicast groups in Section 3.5 respectively. Finally, the different strate-
gies for the two approaches of MCFTP are depicted in Section 3.6 and an example is shown in
Section 3.7.

3.1 Overview

The main goal of MCFTP is to distribute files to every node inside the MCFTP swarm as effi-
ciently as possible. MCFTP divides the whole file into chunks. The dissemination of a file is
done by disseminating these chunks. We used a predefined configuration file with a size less than
1kB which has to be gathered prior entering the MCFTP swarm. Basically the configuration file
tells how to connect to the MCFTP swarm by predefining the Multicast address and port. When
a node starts MCFTP, it will join to a predefined multicast group (file management group) for
each file being shared. This group is only used to communicate among nodes, i.e., to exchange
information and announcements. No data of the file will be sent on this group. For each chunk,
there will be a new multicast group (sending group). As soon as a regular node, which is in-
terested in downloading and/or sharing the file, has joined the file management group, it will
start sending status messages periodically. Depending on the chosen approach, either regular
nodes or a file leader node will create keep alive messages, which contain information about
which multicast group a specific chunk will be sent to. When a keep alive message has been
received, a regular MCFTP node will decide whether it will join to a multicast group to gather
the announced chunk or whether it has to send the announced chunk to the specified multicast
group. A sender creates a chunk message and starts sending it to the multicast group without
joining it, while a node who wants to receive data will only join to the multicast group. When a
node has received the whole chunk message, it will leave the multicast group and create a new

21

status message announcing an updated status about the missing chunks. This cycle is repeated
until the file is distributed to every node inside the MCFTP swarm.

3.2 MCFTP Modes

MCFTP can run in two different modes. One uses native IP Multicast and the other uses Applica-
tion Level Multicast. Those modes are influencing the MCFTP algorithm and will be discussed
in this section. Also, there are different approaches concerning the behavior and the set up of
MCFTP. Two of them will be depicted further in this section.

3.2.1 Network Modes

When a MCFTP node is started, it will join to a predefined multicast group. Depending to the
running mode, this will either be an IP Multicast address in case of the native IP Multicast mode
or it will be a bootstrap MCFTP node’s IP address in case of the Application Level Multicast
mode. The choice of the mode has an influence on the addressing and creation of multicast
groups. It has no effect though on the handling of messages exchanged in the MCFTP swarm.
If native IP Multicast is supported by the underlying network for all MCFTP nodes, it is rec-
ommended to use the native IP multicast mode of MCFTP. The reasons why to prefer native IP
Multicast over Application Level Multicast were discussed in Section 2.2. If there is no native
IP Multicast support for all the MCFTP nodes, MCFTP can still be used with the Application
Level Multicast mode.

Native IP Multicast MCFTP

For the sake of simplicity, the native IP Multicast mode in MCFTP will be abbreviated with
MCFTP-IPMC. In MCFTP-IPMC, all communication between MCFTP nodes is done using the
IP Multicast paradigm. Thus, all MCFTP nodes have to be able to communicate to each other
over native IP Multicast. MCFTP-IPMC is straight forward and does not have any specific setup,
except the usage of native IP Multicast.

Application Level Multicast MCFTP

The Application Level Multicast mode in MCFTP is abbreviated with MCFTP-ALM. In this
mode, an underlying ALM framework is used. MCFTP-ALM will act the same way as it would
with MCFTP-IPMC, but using IP addresses of other nodes instead of IP Multicast addresses.
When joining a multicast group or sending to a multicast group, MCFTP will pass the MCFTP
message with the IP address and port of the multicast group to the underlying ALM framework,
which will take care of the connections. Figure 3.1 is an adaption of the example used in Section
2.4.2, which shows how MCFTP-ALM mode would look like in case of using Scribe / Pastry as
the Application Level Multicast framework. MCFTP-ALM nodes do not have to care about the
handling of messages on the ALM level.

22

Scribe

Pastry

message(CREATE, C1E) deliver(CREATE)

Node A Node B

Node ID: 2AF Node ID: C1Esend

Node: 21 Node: 14

MCFTP
send(data) receive(data)

Figure 3.1: MCFTP-ALM runs on top of Scribe/Pastry P2P/ALM framework

3.2.2 MCFTP Swarm Establishment

There are two different set up approaches implemented in MCFTP. These approaches influence
the behavior of the nodes and handling of received messages. The choice of the approaches
also has an impact on the strategies to prefer. The centralized approach has one file leader
node and the rest are regular nodes, whereas in the decentralized approach the MCFTP swarm
is homogeneous with regular nodes. The main difference between the two approaches is the
responsibilities the nodes are given.

Centralized MCFTP Approach

cMCFTP is the abbreviation for the centralized MCFTP approach, which consists of one file
leader node and multiple regular nodes. The file leader node is the only node listening to status
messages sent by regular nodes and it is as well the only one that creates keep alive messages.
Therefore, it is the only one deciding what should be announced in a keep alive message. The
strategy which chunks to announce in a keep alive message has to be defined only by the file
leader node. That means, the file leader is the single instance, which has the responsibility to
disseminate data as efficiently as possible. The regular nodes do not have any influence on the
strategy, and therefore are not able to choose specific chunks to be sent by other nodes. The only
choice regular nodes have, is that they can decide which chunk they want to download that was
announced in a keep alive message. Figure 3.2 illustrates the handling of messages in cMCFTP.
While the file leader node listens only to status messages, regular nodes only listen to keep alive
messages.

23

File Managment Group

File Leader Node

Regular Nodes

Keep alive messages
Status messages

Figure 3.2: Regular nodes send status messages and file leader nodes send keep live messages

Single Point Of Failure

Having the whole responsibility at the file leader node is actually a single point of failure sit-
uation. If the file leader node would have any connection problems or technical problems, the
whole MCFTP swarm would starve, since there would be no more announcements by the file
leader node. There are multiple solutions for this problem which will be discussed in 3.2.2. The
file leader node is sending keep alive messages periodically, and therefore these messages are
received by all regular nodes. The detection of the failure of the file leader node is predictable
as soon as there are no more keep alive messages sent in the MCFTP swarm. If such a failure is
detected a new file leader node has to be elected. One solution to the single point of failure sit-
uation could be that as soon as a failure of the file leader node is detected, a regular node would
take over the the responsibility of creating new keep alive messages, and thus start collecting
status messages ans send keep alive messages.

File Leader Election

Theoretically, any node, which has a collection of a few status messages should be able to
calculate a new keep alive message with chunk announcements. The relevance and quality of the
chunk announcements are depending on the amount of available status messages. If a potential
new file leader received a status message by all regular nodes, the chunk announcements will
be optimal. An announcement can only be as good as the amount of different status messages
received. A keep alive announcement can only consider regular nodes which have sent a status
message. Different election methods could be applied in this case. A very basic and most likely
not the best election method could be to elect the node with the lowest node ID as the new file
leader node. A more advanced election could consider a predefined list of regular nodes, which
would have to take over the responsibility of the file leader node one after another. These two
solutions are optimistic and assume that there rarely is a failure of the file leader node. These two
solutions would wait until there is a failure and start acting afterwards. Another possible way
to elect a new file leader node is to have a few regular nodes acting additionally as backup file

24

leader nodes by storing status messages, but they do not create new keep alive messages. They
would be running in the background and only become active as soon as there are indications that
there was a failure at the original file leader node. This solution would be pessimistic, since there
is not enough confidence in the file leader node, and multiple regular nodes would be collecting
status messages additionally. There are a lot of different approaches on how to elect a new
file leader node. Most importantly one needs to consider reliable and stable nodes with a good
network connectivity as potential new file leader nodes. In our prototype version of MCFTP our
file leader node was always predefined and known by all participating nodes inside the MCFTP
swarm. We did not provoke any failure of the file leader node.
The election procedure for MCFTP is yet undefined. One way could be to use pessimistic
approaches and predefine a list of follow up file leader nodes and distribute this list to every
node in the MCFTP swarm. For the optimistic approaches one would need to define a new
message type and maybe also a new multicast group, where only potential new file leader nodes
would join and interact with each other in a failure situation.

Decentralized MCFTP Approach

The decentralized MCFTP approach is abbreviated with dMCFTP and consists only of regular
nodes. This approach has different parts in common with the cMCFTP approach: regular nodes
send periodically their status messages and also listen to keep alive messages. But, in dMCFTP,
all regular nodes will listen to every status message sent by any other regular node.

File Managment Group

Regular Nodes

Keep alive messages
Status messages

Figure 3.3: Status messages and keep alive messages are sent by regular nodes and also processed by all
regular nodes

As soon as they can send a chunk to a multicast group, they will create a keep alive message with
their announcements. The only way to ask for chunks is to tell the whole MCFTP swarm, which
chunks they are missing. This is done by sending a corresponding status message. All regular
nodes will decide by themselves which chunks to announce. This is one of the main differences
compared to the cMCFTP approach. The responsibility of disseminating data efficiently is now
distributed to every single regular node. There is not anymore a single instance deciding and
controlling the announcements of chunks. Therefore, the strategy in dMCFTP differs to the

25

strategy of cMCFTP, which will be discussed in Section 3.6. Handling of messages in dMCFTP
is illustrated in Fig. 3.3. Every regular node sends and receives status messages and keep alive
messages.

3.3 MCFTP Nodes

There are two different kind of nodes in MCFTP. A file leader node has a special task assigned
to coordinate between regular nodes, while a regular node is disseminating and gathering data.
A file leader node is not being used in the decentralized approach (see Section 3.2.2).

3.3.1 Regular Node

A regular node is interested in sharing a file. If a regular node holds the whole file, it is referred
to as a seeder, otherwise it is referred to as a leecher. In the beginning, every regular node joins
the predefined file management group to communicate with other nodes. Every regular node
sends periodically a status message to inform about, amongst others, which chunks are missing.
Whenever a keep alive message arrives, a regular node will read it and decide for each of the
containing announcements what to do. Either the regular node can join the multicast group to
receive a missing chunk or one of the announcements selected the regular node to send a chunk
to a multicast group. If a regular node was selected as a sender, it must create a new multicast
group on the given address and port and start sending the selected chunk with the given sending
rate. A new multicast group is created for every chunk and bandwidth. Other nodes will then be
joining to the newly created multicast group and will receive the missing chunk.

Decentralized Approach vs. Centralized Approach

In the decentralized approach of MCFTP, there are only regular nodes and each of them locally
manages an allNodesInfo table, which stores information gathered from the status messages sent
by every regular node. Table 3.1 shows an example of an allNodesInfo table.

Table 3.1: An example of an allNodesInfo table

It stores all information extracted from status messages, such as IP address, node ID, chunks
that are available, and bandwidth information of a node. Every time a node receives a status
message, the allNodesInfo table is updated with the corresponding information and the time
stamp is adapted to reflect the arrival time of the latest status message. The allNodesInfo table

26

is the base to calculate a new keep alive message. How to calculate a new keep alive message
will be discussed in Section 3.6. Only in the decentralized approach of MCFTP, regular nodes
will be collecting status messages and extract information into the allNodesInfo table. In the
centralized approach of MCFTP, regular nodes will ignore all incoming status messages and let
the file leader node collect the information.

3.3.2 File Leader Node

A file leader node is used only in the centralized approach of MCFTP. It is the node, which
coordinates all other nodes. Thus, a file leader node is designed to collect information of all
other nodes. All information of status messages are stored in the allNodesInfo table the same
way as described in Section 3.3.1. The file leader node has a special role, since it is the only
node that has the whole responsibility to manage the distribution of a file efficiently. There is
always only one instance of a file leader node at a time active in a MCFTP swarm.

3.4 MCFTP Messages

In MCFTP, there is a total of three different message types: keep alive messages, status mes-
sages and chunk messages. Keep alive messages and status messages are referred to as control
messages and do not include any data of the original file being shared. They are only used as
an information channel. Chunk messages include parts of the file being shared, and thus they
are referred to as data messages. Any MCFTP message is built the same way for both MCFTP
modes (native IP Multicast and ALM) and both MCFTP approaches (centralized and decentral-
ized). Since control messages are sent frequently, they have to be as small as possible in order to
reduce overhead. Implementation details, such as size, content and overhead of a message will
be illustrated in Chapter 4.

3.4.1 Status Messages

Status messages are sent periodically by regular nodes to inform the MCFTP swarm about their
status. This includes information about network bandwidth, network address, user identification,
and most importantly about currently available chunks. As soon as a regular node joins the
MCFTP swarm, it first checks if there are any chunks already available for the given file, then
creates a status message and sends it immediately to the file management group. After the
initial sending of a status message, the node will create new status messages every SM Interval
seconds. Additionally, a new status message is created whenever a chunk has been successfully
downloaded. All information inside a status message, except the information about the chunks,
is static and is not going to change. Therefore, it would be enough to only send a difference
to the previous status message. This would reduce the size of a status message and ultimately
save bandwidth. One downside of this idea is related to the single point of failure situation
described in Section 3.2.2. Whenever a new file leader takes the lead it will not be able to
create an appropriate keep alive message, when it does not have enough full status messages
received. A good workaround would be to increase SM Interval and therefore keep sending

27

full status messages periodically, but to create partial status messages whenever a new chunk is
downloaded successfully.

3.4.2 Keep-Alive Messages

In the decentralized approach of MCFTP, keep alive messages are sent periodically by regular
nodes. In the centralized approach, they are sent periodically by the file leader node. Keep alive
messages contain chunk announcements. The amount of announcements varies depending on
the strategy, the MCFTP approach and the available resources in the MCFTP swarm. One chunk
announcement contains information about the sending group, the chunk which will be sent to the
sending group, the bandwidth with which the chunk will be sent, and the node that has to send
the chunk. A keep alive message must have at least one announcement and has an upper limit of
maxChunkInfoInKAM announcements per keep alive message, where the maxChunkInfoInKAM
is set to 10 by default to avoid too big messages on the file management group. A keep alive
message will be created every KM Interval seconds. In the cMCFTP approach, the file leader
node is the only node sending keep alive messages, and the KM Interval should be set as low as
possible to create as many chunk announcements as possible. Nevertheless, it should not flood
the MCFTP swarm with useless keep alive messages when there are not enough free resources to
send or even to receive chunks. A good choice of the KM Interval should depend on the strategy
and the approach chosen for a MCFTP swarm. In the dMCFTP approach, chunk announcements
always have to have the own node as the sender of a chunk, due to security reasons as pointed
out in Section 3.2.2. Since a regular node always knows about its own resources, it would not
be optimal if a regular node would have to wait until it is asked by the KM Interval period to
create a new keep alive message. It would be optimal to create a new keep alive message as
soon as there are enough resources, for example just after a finishing sending a chunk message.
Therefore, the influence of the KM Interval period is rather small, once the regular node has a
continuous way of creating keep alive messages. But, the KM Interval period is still needed, to
guarantee that there will be at least an attempt to create a new keep alive message once every
KM Interval seconds, to avoid silent starvation of the MCFTP swarm.

3.4.3 Chunk Messages

When a node announces a chunk using a keep alive message, the sender will split the announced
chunk into subChunkLength sized parts and create a new chunk message for each of them. These
parts are referred to as sub chunks. They only include data of the size of subChunkLength Bytes.
A chunk message stores information about the current chunk and the sub chunk included in the
current chunk message plus the actual data of the sub chunk. Chunk messages are only sent
by regular nodes when they are asked to do so by a chunk announcement inside a keep alive
message. The subChunkLength should not be too large, since it would create big sub chunks
which might lead to high delays, whereas too small sub chunks might lead to too many chunk
messages being created. Another variable is the amountOfChunks, which defines the amount
of chunks a file should be cut into. The size of a whole chunk depends on the file size and the
amountOfChunks. The amountOfChunks should be adapted so that a whole chunk will not be

28

too big. On the other hand, the amountOfChunks should not create too many small chunks which
then would lead to too many chunk messages being sent.

3.5 Multicast Groups

In MCFTP, there are two different kind of multicast groups, one is the file management group
and the other is the sending group. In MCFTP-ALM, all multicast groups are based on the
multicast mechanism of the underlying ALM implementation. In MCFTP-IPMC, these groups
are all native IP multicast groups. The functionalities and roles of the MCFTP multicast groups
are abstracted and are not influenced by the choice of the multicast mechanism. To separate
data messages from control messages there are two different kinds of MCFTP multicast groups.
Implementation details on the MCFTP multicast groups will be illustrated in Chapter 4.

3.5.1 File Management Group

The file management group is the main multicast group of the whole MCFTP swarm. All con-
trol messages are sent to the file management group and every node that is interested in either
sharing or managing a file has to join the file management group. There is one file manage-
ment group for each file. Every node that joined the file management group will send control
messages periodically. These control messages are received by every other node that joined the
file management group. But not all nodes will interact with the control messages the same way.
In dMCFTP, every regular node will only listen to their own keep alive messages and all other
status messages. In cMCFTP, the file leader node is the only one processing status messages and
all regular nodes will listen to keep alive messages sent by the file leader. In MCFTP-IPMC, the
file management group address is a predefined native IP multicast address for a file. In MCFTP-
ALM, the file management group has to be predefined as well. But, it is not a native IP multicast
address, it is a predefined bootstrap address. This is usually the IP address with a predefined port
of the first node joining the MCFTP swarm. Every node is subscribed to the file management
group until the MCFTP application is terminated. In our prototype implementation of MCFTP
we predefined the file management groups address in a configuration file. It is still an open
topic how to predefine these addresses and make them known by all participant nodes inside the
MCFTP swarm. This has to be considered when creating an real world application.

3.5.2 Sending Groups

Sending groups are multicast groups, which are used to disseminate the file data. There are
multiple sending groups for one file. For each chunk announcement in a keep alive message,
there will be a new sending group. Each chunk announcement includes details about the sending
group, such as the multicast address and port. Every regular node interested in receiving the
chunk described in a chunk announcement will join to the announced multicast group. The
announced sender does not have to join the sending group, it is enough to send chunk messages
to it. Therefore, all nodes that joined a sending group are also interested in getting the chunk
messages. When a node has all parts of a chunk, it will leave the sending group. A sending

29

group can be reused as soon as all regular nodes have left the sending group and the sender has
stopped sending chunk messages to the specific sending group.

3.6 Strategies

There are two different approaches for MCFTP. One approach treats all nodes equally, which
is the dMCFTP approach. The other approach has a dedicated file leader node, which takes
care of the file dissemination management and the other nodes are all regular nodes. This is the
cMCFTP approach. Both approaches use different strategies to disseminate data as efficiently
as possible which will be the topic of this section. The efficiency of data dissemination depends
mainly on the strategy. The strategies presented here are only a selection of many potential
strategies. They are used to show different variations on how to potentially optimize MCFTP.
To be able to announce sending groups, it is crucial to have at least a rough idea about the status
of some regular nodes.

3.6.1 Centralized Mode

The file leader is a dedicated node, which is responsible for efficient data dissemination in the
centralized approach of MCFTP. The file leader collects status messages in order to apply a
strategy to disseminate data to the MCFTP swarm. When collecting status messages, a new
entry is made in the downloadQueue table for each missing chunk reported in a status message.
A downloadQueue-Entry includes information about the current maximum download bandwidth
for a regular node. This can be different from the overall maximal download bandwidth. For
each new status message for the same chunk, a counter is increased to show that there is another
node requiring this chunk. The higher the counter is, the more nodes are missing the chunk. An
example of a downloadQueue is depicted in Table 3.2.

Table 3.2: An example of a downloadQueue table

The file leader node has another table, the allNodesInfo table as described in 3.1. This table
stores information filtered from the status messages. With the help of the allNodesInfo table, an

30

up to date list is always available containing chunks, which can be announced. The file leader is
the only node with a strategy and the strategy has to work for all nodes. There is no other node
which has any influence on the strategy than the file leader node. The goal of a dissemination
strategy is to select the amount and order of chunks out of the downloadQueue and announce
them in a keep alive message as efficiently as possible.

Basic Strategy

The basic strategy collects a subset of the downloadQueue table and another subset out of the
allNodesInfo table with the available chunks. For each chunk, which is at least missing at one
node and which is available at another node, a new chunk announcement is created by the file
leader node and added into the keep alive message. This selection is done randomly. The
chunk announcements are stored and the sending nodes are marked as busy, and therefore are
not available for any further chunk announcement, until they finish sending the chunk. After a
KM Interval period, a new keep alive message is created the same way. This is repeated until
there are no more chunks missing in the MCFTP swarm. A pseudo code of the basic strategy is
given in Fig. 3.4. Note that allNodesInfo is sorted randomly for the basic strategy.

Figure 3.4 Pseudo-Code Basic Strategy

for all missingChunk in downloadQueue do
for all potentialSender in allNodesInfo do

if missingChunk.downBandwidth() ≥ potentialSender.upBandwidth() then
if !potentialSender.busy() then

sender = potentialSender
sender.markBusy()
addToChunkAnnouncements(missingChunk, sender)
break

end if
end if

end for
end for

Advanced Strategy

A more advanced strategy includes being aware of bandwidth limits and its impact on each reg-
ular node. The file leader node manages a list with nodes, which have already sent chunks. This
list is consulted when new chunk announcements are created. Regular nodes, which did not send
many chunks will be preferred in order to distribute the work load evenly on the MCFTP swarm.
The performance and thus bandwidth is more important though, and therefore is considered first.
Another aspect of the advanced strategy is to use nodes with high bandwidth capabilities to send
chunks that are requested most, and to let slow nodes send chunks, which are not requested that
often. The selection of high bandwidth capability nodes is part of the advanced strategy. For
our implementation we used predefined limits to group between bandwidth capabilities. The

31

advanced strategy is based on the assumption that less requested chunks are available at many
nodes. More nodes having a chunk results in a higher probability to find a node with modest
bandwidth. But the more nodes request a chunk, the less this chunk is available at other nodes
and thus the probability is low to find a node with a good bandwidth. The important part of the
advanced strategy is to use the maximum number of nodes to send with maximum bandwidth
but still to guarantee that prioritized chunks are considered with appropriate bandwidth. Priori-
tized chunks could either be chunks, which are missing for a small group of nodes to finish their
download and become seeders as well, or it can be chunks, which are needed most by the whole
MCFTP swarm. The definition of prioritized chunks is part of the advanced strategy. Group-
ing different nodes together according their bandwidth is as well another part of the advanced
strategy.

3.6.2 Decentralized Mode

In dMCFTP, all nodes are equal and each of them has to decide what chunk announcements
should be sent. Each of them follows a strategy to select chunks to announce. It is possible to set
all strategies the same, so each of them will decide for themselves in the same manner. Even if
a strategy is very good, it is still possible that the entire MCFTP swarm would disseminate data
more efficiently, when there is a mixture of different strategies. Therefore, it is possible to give
different strategies to different nodes, although they are all of the same kind. This is called meta
strategy. A mixture of strategies would be for example, if nodes with an even node ID would
use strategy A and nodes with an odd node ID would use strategy B. Or, another example of a
meta strategy would be if the first 50 nodes would use strategy A, the next 25 nodes would use
strategy B and the rest would use strategy C. Any node creating a new announcement is aware
of its own status and it knows which chunks are available that can be announced. It also knows
about its total bandwidth and its available bandwidth at a given point of time.

Basic Strategy

When using the basic strategy, a node collects status messages and knows which chunks are still
needed by other nodes. It also knows about its available chunks. An intersection of those two
collections is done in order to determine which chunks are available and are still needed by other
nodes. Out of this intersection, a random chunk is chosen and announced to be sent using the
full bandwidth available of the node. Another variation is to randomly select n chunks and to
announce each of them with 1

n of the bandwidth available at the node. As soon as a chunk has
finished sending a chunk, either one or two chunks will be selected and announced the same
way again. This is done until there are no more chunks required by other nodes in the MCFTP
swarm.

Announcement Aware Strategy

The basic strategy does not take note of other announcements, and therefore a chunk can be
announced multiple times in a short period of time. This strategy can lead to redundant an-
nouncements. A node using the announcement aware strategy stores all recently received keep

32

alive messages and before announcing a chunk, it checks the recent announcements and com-
pares if its announcement would be redundant. In this strategy it is also possible to announce n
chunks with each using 1

n of the bandwidth available at a node instead of announcing one chunk
with the full bandwidth available at a node.

Serve Fast Strategy

Using the serve fast strategy, a node is not only aware of other announcements, but it also knows
the bandwidth capabilities of other nodes. The allNodesInfo table (described in Section 3.1)
stores information about each node and their missing chunk. This table is used with the serve
fast strategy in order to look for nodes with fast connections. For a chunk announcement, the
allNodesInfo table is checked first and the table is sorted by bandwidth availability. Nodes are
categorized according to their bandwidth availability. The nodes inside the category with higher
bandwidth availability get a higher priority, and thus all nodes with high bandwidth availability
are considered only when new chunk announcements are created. Inside such a category, all
nodes are analyzed and a list with missing chunks is created. For each chunk, a counter is added
in order to count how often the chunk is missing inside its priority category. The chunk with the
highest count will then be announced. If there is no need for any node inside the highest priority
category, the next category is consulted and only nodes inside this category are considered for
new chunk announcements. Either, there is always one announcement with the full bandwidth
available or there are multiple announcements with different bandwidth availabilities according
to the priority. The idea behind this strategy is to disseminate chunks to “fast” nodes, which
have higher bandwidth available to disseminate the data to further nodes in a second step. The
more fast nodes become seeders the faster the MCFTP swarm will finish downloading a file.

Serve First Strategy

The serve first strategy is similar to the serve fast strategy. It also takes recent announcements
into account. Categories are used as in the serve fast strategy, but this time, categories are
grouped differently. The highest priority is given to nodes that have been participating in the
MCFTP swarm for the longest period of time. The motivation for this strategy is to avoid long
start to end times for nodes. The higher the priority is, the more chunks will be announced
to match the requirements of these specific nodes. Thus, the earlier a node joins the MCFTP
swarm the more “valuable” it becomes. As for the serve fast strategy, if there is no more chunk
to announce for a priority category, the next category is chosen with the next highest priority.
The higher the priority is, the higher the sending rate has to be.

Starvation Avoidance

In the previously described advanced strategies groups are prioritized. In such circumstances it
is always possible that higher prioritized nodes only consider each other. Not prioritized nodes
will not be considered anymore and therefore never finish gathering data. This situation is called
starvation. To avoid starvation of lower prioritized groups, it is possible to announce n chunks
in total. A total of o (where o <n) chunks for nodes with the highest priority using more than 1

n

33

of the bandwidth available could be announced. And a total of p (where p <= n) chunks with
each less than 1

n bandwidth available for nodes inside the second highest priority category could
be announced. The same could be done for lower prioritized categories. Many variations are
possible. We examined different approaches and finally decided to always consider at least one
announcement from a lower prioritized category from time to time. It is also possible to always
announce from different priority categories with different sending rates.

3.7 MCFTP Example

To illustrate the Multicast File Transfer Protocol, this section includes two examples of MCFTP
with its two different approaches as described in Section 3.2.2. These examples include the
whole process from bootstrapping MCFTP until every node has finished downloading a given
file. For simplicity reasons, these examples are shown in the native IP Multicast mode as de-
scribed in Section 3.2. The examples look similar at the first glance, but they are different when
comparing the responsibilities and roles of nodes.

3.7.1 Centralized Approach

Figure 3.5 shows how the bootstrap is realized in cMCFTP mode. In the beginning, there is one
file leader node (node A), which bootstraps the whole MCFTP swarm by joining a multicast
group at the predefined IP Multicast address 225.1.2.3 and port 7000.

File Management Group (FMG)
 225.1.2.3 : 7000

File Leader Node
 (node A)

1. joins / bootstraps
2. joins

Regular Node
 (node B)

Joining FMG

Figure 3.5: Bootstrapping of cMCFTP in native IP Multicast mode

The file leader and the multicast group address are predefined in a configuration file. In our
evaluations our file leader node was always bootstraping the MCFTP swarm. This multicast
group is the file management group, where all communication is done. Thus every participating
node of the MCFTP swarm will have to join the file management group. In the example, a seeder
joins the MCFTP swarm (node B) which then starts sending status messages periodically. The
status messages indicate that node B has all 4 chunks of the file being shared. The file leader
collects these status messages and checks periodically if there is another node in the MCFTP
swarm which might need a chunk, which is available at node B.
In Fig. 3.6 a leecher joins the MCFTP swarm (node C) and also sends status messages to the file
management group, the file leader node will also store its status messages. The status message
of node C states that this node does not have any chunks yet.

34

225.1.2.3 : 7000

node A
node B

node C

chunks: 1, 2, 3, 4

chunks: -

1. joins & sends
status message

node B 1, 2, 3, 4
node C -

2. keep alive message:
 -- node B,
 chunk 1,
 225.2.1.100:19100

 -- node B,
 chunk 2,
 225.2.1.150:19150

Already joined FMG
Joining FMG
Sending message to FMG

Figure 3.6: Keep alive message created by file leader node

The file leader node now calculates the best possible chunk announcements and adds them into
a new keep alive message, which is then sent to the file management group. The calculation of
keep alive messages depends on the strategy used. After nodes B and C have received a keep
alive message, node C will join to the multicast group announced in the keep alive message.
This is 225.2.1.100 on port 19100 for chunk 1 and 225.2.1.150 on port 19150 for chunk 2.

225.1.2.3 : 7000

node A
node B

node C

chunks: 1, 2, 3, 4

chunks: -

node B 1, 2, 3, 4
node C -

chunk 1@
225.1.2.100:19100

chunk 2@
225.1.2.150:19150

joins

sends chunks

Already joined FMG
Joining sending group
Sending chunks

Figure 3.7: Node B sends chunks and Node C joins multicast groups

Node B will send chunk 1 and chunk 2 to the according multicast groups without joining to it as
depicted in Fig. 3.7. When node C has finished downloading a chunk, it will leave the multicast
group and create a new status message with its new information. According to the new status
message, the file leader node will calculate a new keep alive message.

35

225.1.2.3 : 7000

node A
node B

node C

chunks: 1, 2, 3, 4

chunks: 1, 2

node B 1, 2, 3, 4
node C 1, 2
node D -

2. keep alive message:
 -- node B,
 chunk 3,
 225.2.1.200:19200

 -- node B,
 chunk 4,
 225.2.1.250:19250

 -- node C,
 chunk 1,
 225.2.1.300:19300

 -- node C,
 chunk 2,
 225.2.1.350:19350

node D
chunks: - 1. joins

Already joined FMG
Joining FMG
Sending message to FMG

Figure 3.8: Node D joins the MCFTP swarm

When further nodes join the MCFTP swarm, node C can be chosen as a sender for chunks 1 and
2. Figure 3.8 shows the case when a new leecher having no chunks joins the MCFTP swarm.

225.1.2.3 : 7000

node A
node B

node C

chunks: 1, 2, 3, 4

chunks: 1, 2

joins

sends chunks

node B 1, 2, 3, 4
node C 1, 2
node D -

node D
chunks: -

chunk 1@
225.1.2.300:19300

chunk 2@
225.1.2.350:19350

joins

chunk 3@
225.1.2.200:19200

chunk 4@
225.1.2.250:19250

sends chunks

Already joined FMG
Joining sending group
Sending chunks

Figure 3.9: All nodes finish downloading the file

The file leader node then calculates a new keep alive message such that the whole network can
profit the most. This is depicted in Fig. 3.9. Node D can download all four chunks and node C
will download chunks 3 and 4. Hence, all nodes will have finished their downloads with only
two announcements by the file leader node.

36

3.7.2 Decentralized Approach

In dMCFTP, there is no file leader node, thus a seeder (node A) bootstraps the MCFTP swarm
on a multicast group at the native IP Multicast address 225.1.2.3 and port 7000. Status messages
are sent periodically by node A to show its existence. This is shown in Fig. 3.10.

File Management Group (FMG)
 225.1.2.3 : 7000

joins & sends
status messages

node A
chunks: 1, 2, 3, 4Joining FMG

Sending message to FMG

Figure 3.10: Bootstrapping of dMCFTP in native IP Multicast mode

When a leecher node joins the MCFTP swarm (node B), it will as well send status messages. But,
this time node A will receive the status message and calculate a keep alive message according
to a given strategy. The keep alive message with the announcements for chunk 1 and chunk 2 is
then sent to the file management group as illustrated in Fig. 3.11.

225.1.2.3 : 7000

node A

node B

chunks: 1, 2, 3, 4

chunks: -

1. joins & sends
status message

node B -

2. keep alive message:
 -- node A,
 chunk 1,
 225.2.1.100:19100

 -- node A,
 chunk 2,
 225.2.1.150:19150

node A 1, 2, 3, 4

Already joined FMG
Joining FMG
Sending message to FMG

Figure 3.11: Keep alive message created by a regular node

Node A will then send chunk 1 and chunk 2 as announced in the keep alive message and node
B will join the two multicast sending groups to receive the chunks as shown in Fig. 3.12. After
finishing each chunk download, node B will announce its new status message. When another
leecher joins (node C), it will send its status messages. Figure 3.13 shows how the MCFTP
swarm looks like after node C joined. All other nodes will receive node C’s status message and
each of them will calculate new keep alive messages with their own chunks.

37

225.1.2.3 : 7000

node B
chunks: -

chunk 1@
225.1.2.100:19100

chunk 2@
225.1.2.150:19150

joins

sends chunks

node A
chunks: 1, 2, 3, 4

node B -

Already joined FMG
Joining sending group
Sending chunks

Figure 3.12: Node A sends chunks and Node B joins multicast groups

Thus, node B will be able to announce chunk 1 and chunk 2. Each node will decide with their
own strategy which chunks to announce. And according to an advanced strategy, node A would
announce chunk 3 and 4.

225.1.2.3 : 7000

node A

node B

chunks: 1, 2, 3, 4

chunks: 1, 2
node C
chunks: - 1. joins

node A 1, 2, 3, 4
node C -

node B 1, 2
node C -

3. keep alive message:
 -- node A,
 chunk 3,
 225.2.1.200:19200

 -- node A,
 chunk 4,
 225.2.1.250:19250

2. keep alive message:
 -- node B,
 chunk 1,
 225.2.1.300:19300

 -- node B,
 chunk 2,
 225.2.1.350:19350

Already joined FMG
Joining FMG
Sending message to FMG

Figure 3.13: Node C joins the MCFTP swarm

38

Node C will join all 4 announced sending groups, whereas node B will only join the two multi-
cast sending groups for chunk 3 and 4 as shown in Fig. 3.14. All nodes will finish downloading
the file with a total of 3 keep alive messages.

225.1.2.3 : 7000

node A

node B

chunks: 1, 2, 3, 4

chunks: 1, 2

joins

sends chunks

node C
chunks: -

chunk 1@
225.1.2.300:19300

chunk 2@
225.1.2.350:19350

joins

chunk 3@
225.1.2.200:19200

chunk 4@
225.1.2.250:19250

sends chunks

node B 1, 2
node C -

node A 1, 2, 3, 4
node C -

node A 1, 2, 3, 4
node B 1, 2

Already joined FMG
Joining sending group
Sending chunks

Figure 3.14: Node B and node C finish downloading all chunks

3.8 Summary and Conclusion

In this chapter, we presented the design of MCFTP. We explained the different MCFTP network
modes using IP Multicast and Application Level Multicast. Additionally, we introduced two dif-
ferent set up approaches of MCFTP (centralized and decentralized approaches). We explained
the different node types (regular and file leader based nodes), the different kind of messages
(status, keep-alive and chunk messages) and introduced different types of multicast groups (file
management and sending groups). We briefly outlined different strategies for determining which
chunks to send and showed comprehensive examples of how MCFTP would work in some sim-
ple scenarios.

39

Chapter 4

MCFTP Implementation

In this chapter we discuss implementation details beginning with some general information pre-
sented in Section 4.1, followed by MCFTP variations implementation details shown in Section
4.2. Finally, the implementation of MCFTP messages is presented in Section 4.3.

4.1 Overview

MCFTP was implemented using Java (JDK 6 Update 16) [21]. As Application Level Multicast
(ALM) 2.4 infrastructure, we used Scribe/Pastry (see Section 2.4.2), but MCFTP could
support any ALM framework. We chose Scribe/Pastry because there exists already a mature
implementation of these protocols in Java which is called Freepastry (Release 2.1) [22], which
we used as the ALM framework for our prototype implementation.

Generally, the MCFTP protocol has been described in Chapter 3. Our implementation is
a proof of concept and not a fully featured application. Hence, some characteristics are missing.
There is no support for multiple files to download. We use a predefined configuration file
with a size less than 1kB and the application will take care of that file only. There is also no
implementation of a graphical user interface. Our prototype works as a command line tool only.
A more basic missing feature is the absence of a hand over mechanism for a file leader node
which was described in Section 3.2.2. Therefore, there could be a single point of failure in
our current implementation. But still, all parts to have a working prototype are implemented.
The only missing part is the handover of a file leader node, which was not needed in our
experimental environment. The messages are implementation specific and were defined during
this thesis.

4.2 MCFTP Modes

The implementation considers both MCFTP variations and the two different modes as described
in Sections 3.2 and 3.2.2. There is one application, which is able to run in different modes using
different approaches. The regular node and the file leader node inherit from a common super
class called User as shown in Fig. 4.1.

41

Figure 4.1: Class Diagram of MCFTP nodes

A regular node could become a file leader node without any issue and take over the file leader
role in a MCFTP swarm. Also, the two different MCFTP modes only differ in creation and
usage of the different multicast addresses. The class diagram is shown in Fig. 4.2. When a new
ALM framework is considered to be used for MCFTP, one might need to adapt the methods in
McftpScribeClient to reflect the correct usage of the new ALM framework.

4.3 Sending Messages

The three types of MCFTP messages inherit from a common super class called McftpMessage
as shown in Fig. 4.3. A keep alive message has many KeepAliveChunkInfo which we earlier
referred as chunk announcements. Messages are sent frequently and repeatedly in a MCFTP
swarm. Therefore, it is important to decrease them to a minimal size. The KM Interval as
described in Section 3.4.2 is set to 1 second. This means that nodes, which send keep alive
messages will attempt to create a new keep alive message every second. This attempt may fail
in the decentralized approach more often than in the centralized approach.

42

Figure 4.2: Class Diagram of MCFTP network modes

This is because in the decentralized approach, nodes can create keep alive messages only
for themselves and there is a high probability that a regular node can not announce new chunks
every second. Status messages are sent every 10 seconds and every time a chunk has finished
downloading a chunk. Periodic sending of status messages is important in order to inform the
MCFTP swarm about the presence of a node. This is especially important in the centralized
MCFTP approach. In this implementation of MCFTP, a file is divided into chunkAmount equal
sized chunks, where chunkAmount depends on the file size. When a big file is disseminated, the
file is divided into more chunks. When the file to be disseminated is rather small, it is divided
into less chunks. Using previous evaluations, we chose to divide a file such that each chunk
size is ranging between 150kB and 300kB depending on the file size. A chunk is then divided

43

into subchunks with the subChunkLength length of 8kB each. This procedure was discussed in
Section 3.4.3.

Figure 4.3: Class Diagram of MCFTP messages

4.3.1 Status Messages

In detail, a status message is constructed as illustrated in Fig. 4.4. The field Type is an identifi-
cation number for the message itself. It has a size of one byte, which is fairly large enough since
we only have three different message types in MCFTP. The user identification number is as well
fit into one byte. This limits a MCFTP swarm to 256 users. The field IP address is the user’s IP
address and fits into four bytes. In MCFTP, every node needs to have a certain number of open
ports, which can be used to share data with other MCFTP nodes. The given port in a status mes-
sage is the first open port that can be used for this purpose. The field Bandwidth uses two bytes,

44

one byte for the available upload bandwidth and one byte for the available download bandwidth.
32 bytes are reserved for available chunk information corresponding to 256 bits using the field
Chunk Bitset. For each chunk, there is one bit used. Thus, the maximum number of chunks is
limited to 256.

0 1 2 3 4 5 6 7

Type User ID IP Address Port

Bandwidth

Chunk Bitset

Figure 4.4: Structure of status messages

4.3.2 Keep Alive Messages

In detail, a keep alive message is constructed as shown in Fig. 4.5. The first byte is used for
identification of the message type itself. For each chunk announcement nine bytes are used.
These fields consist of the User ID (one byte) identifying the instance that has to send a given
chunk identified by the field Chunk ID (one byte) using the given Bandwidth (one byte) and the
corresponding multicast IP Address (four bytes) and given Port (two bytes). There is at least
one chunk announcement per keep alive message but no more then ten. This results in a size of
a keep alive message between ten bytes and 91 bytes.

4.3.3 Chunk Messages

A chunk is divided into sub chunks, which are then sent using individual chunk messages. The
structure of a chunk message is presented in Fig. 4.6. Next to the message identifier in the first
byte (field Type), the second byte presents the identifier (field Chunk ID) of the whole chunk.
The third byte is a flag-byte (field Next) which is set when further sub chunks follow. It is not set
when this message contains the last sub chunk for a given chunk. The last byte is the sub chunk
identifier (field Sub Chunk ID), which is finally followed by the Sub Chunk Data field.

45

0 1 2 3 4 5 6 7

Type A-1: User
ID

A-1:
Chunk ID

A-1:
Bandwidth

A-1: IP Address

A-1: Port
A-2: User

ID
A-2:

Chunk ID
A-2:

Bandwidth
A-2: IP Address

A-2: Port

...

A-n: User
ID

A-n:
Chunk ID

A-n:
Bandwidth

A-n: IP Address

A-n: Port

Figure 4.5: Structure of keep alive messages

0 1 2 3 4 5 6 7

Type Chunk ID Next
Sub Chunk

ID

Sub Chunk Data
hh

hh

Figure 4.6: Structure of chunk messages

4.4 Application Level Multicast Groups

MCFTP-ALM is based on Scribe/Pastry as described in Section 2.4.2. A Scribe multicast group
is referred to as a topic. In MCFTP-ALM, two Pastry rings are used. The first Pastry ring is used
for the file management group. There is only one single topic on this ring and it is used only
for exchanging control messages. The second Pastry ring has many topics, one topic for each
announced chunk in the entire MCFTP swarm. This solution is not optimal because all regular
MCFTP nodes are present in this Pastry ring for all chunk topics. This means that there are

46

Pastry nodes, which actually do not require a specific chunk, but still are used in the underlying
Pastry ring as a forwarder for this chunk. This procedure is illustrated in Fig. 4.7. In the
example, nodes C and D are not interested in a chunk, and therefore do not join to the according
Scribe topic. But, since all nodes use the same Pastry ring, node C and node D could still be
used as forwarders if required by the Pastry protocol. A more optimized approach would be to
use one Pastry ring for each announced chunk. This would imply creating Pastry rings on the
fly or in advance. We tried to use the more sophisticated second approach, but it used too many
resources for our scenario setups so that the machines slowed down dramatically. That is why
we had to use the first approach with a single Pastry ring for data exchange and multiple topics
on that ring.

Figure 4.7: MCFTP-ALM nodes used as pure forwarders in a Pastry ring

4.5 Summary and Conclusion

In this chapter, we presented the implementation of our MCFTP prototype. We used Freepas-
try as our underlying Application Level Multicast protocol. The different variations of MCFTP
were implemented and presented. Furthermore, we showed in detail the structure of the dif-
ferent MCFTP messages (Status, Keep alive and Chunk messages). Finally, we presented
how MCFTP-ALM nodes in our Freepastry based implementation are used as forwarders. We
showed that the MCFTP protocol and its different variants can be easily implemented and that it
is also possible to integrate existing ALM implementations to be used with MCFTP.

47

Chapter 5

Evaluation

The different approaches and modes of MCFTP have been evaluated and compared to BitTorrent
using different scenarios. In this Chapter, various results will be illustrated and discussed. In the
beginning the testbed will be introduced in Section 5.1. The basic scenarios will be presented in
Section 5.2, followed by the BitTorrent client used to compete against MCFTP shown in Section
5.3. Finally, the results of the comparisons will be discussed in Sections 5.4, 5.6 and 5.5.

5.1 Testbed used for Evaluation

We used the infrastructure provided by the research group “Computer Networks and Distributed
Systems” of the University of Bern, which offers 26 nodes distributed over three racks. Each
rack uses its own switch and all three switches are interconnected. The 26 nodes do not provide
the same performance. Some nodes have an Intel Pentium D processor with a clock rate of 3
GHz and 2 GB of RAM while others have Intel Core 2 Quad processors with a 2.8 GHz clock
rate and a total of 8 GB of RAM. These nodes are used by several students and thus are not
used evenly at different times. For our evaluations, we limited our scenarios to 15 nodes, which
were not heavily used. Due to the fact that the values evaluated are not generated in a dedicated
simulation environment, we removed 5% of the outliers from all results presented in this chapter.

5.2 Evaluation Scenarios

In our evaluation scenarios, one file was distributed at a time. We tested a total of two different
files sizes. The first being a Firefox tar-ball with a size of approximately 8.5 MB. The second
being a “Damn Small Linux” image with a file size of approximately 50 MB. The maximum
bandwidth assigned for incoming traffic was limited between 60kBps and 180kBps. The max-
imum outgoing traffic was always 1

3 of the maximum incoming traffic. We chose the 1
3 factor

because this is currently the most offered setup by ISP’s in our region. The assigned maximum
bandwidth for each node was uniformly distributed in the given range. Evaluations have been
performed using one seeder node and multiple leecher nodes, where the amount of leecher nodes
was varying between 10, 20, 30, 50 and 100 nodes. Other evaluations were performed varying
the number of initial seeders between 1, 2, 3 and 5 with the total number of nodes set to 20 and

49

50. Each scenario was executed 10 times with different assigned bandwidths for the nodes in
the swarm. The main focus of our experiments was on scenarios where there is only one seeder
and the rest of the nodes do not yet have any chunks of the file at all. This could be a valid case
for a new and popular file, which is rare to find.
Our evaluations focused on the average download time for downloading one file for all nodes
in the swarm. The measured start time is defined by the time a node joins the swarm and the
measured end time is defined when all parts of a file are downloaded completely by a given node.
Since we use different bandwidth values for the different nodes, we normalized the download
values. The actual time spent to download a file was divided by the time, which could have
been spent to download the file with full bandwidth usage(optimal download time, ODT). We
called this normalized value download factor. The lower the download factor is the better the
dissemination time is. For example, we assume a node took nine seconds to download a file of a
size of 6000 bytes and its maximum download bandwidth was 1000 bps resulting in a best case
value as follows:

ODT =
6000B

1000Bps
= 6s

The download factor(DF) would then result in:

DF =
9s

6s
= 1.5

5.3 BitTorrent Client used for Comparison with MCFTP

We let MCFTP compete against BitTorrent, which is also based on P2P mechanisms as described
in Section 2.3. A current Internet study done by ipoque [23] claims that P2P generates by far
the most traffic in all evaluated regions in the years of 2008/2009. A summary is shown in
Table 5.1. The study also states that: “in all regions apart from South America, BitTorrent is the
dominating protocol followed by HTTP.” We show an example of how popular BitTorrent is in
Germany in Fig. 5.1. We used Azureus (now known as Vuze) [24] as a competing BitTorrent
client. According to the ipoque study, Azureus/Vuze is the most popular BitTorrent client. We
used the latest release of Azureus with command line support (version 3.0.3.0). This version
was released in 2007, 4 years after the initial release of the first Azureus client. Although there
are options to limit bandwidth for the Azureus client, they do not always stick and are omitted
on a irregular basis. This was the reason why we also used trickle (version 1.06) [25] for our
BitTorrent evaluations. Even with trickle, it was not always possible to limit the bandwidth
for our BitTorrent evaluations. This problem occurred especially with evaluations using many
nodes. For evaluations with a small file size, this problem was more crucial than for evaluations
with a bigger file.

50

Table 5.1: P2P usage in 2008/2009

Figure 5.1: BitTorrent usage in 2008/2009 in Germany

5.4 Evaluation using 8 MB Files

5.4.1 Overview

Figure 5.2 shows an overview of all scenarios evaluated using one seeder. The amount of nodes
is increasing and reflects regular nodes only. The BitTorrent tracker and the MCFTP file leader
node are not included. The box shows the average value of the download factor as described in
Section 5.2 for each scenario as well as the minimum and maximum values respectively. The
file distributed has a size of 8.5 MB. We compared BitTorrent with the two MCFTP modes
(Application Level Multicast and native IP Multicast) and with the two different approaches
(cMCFTP and dMCFTP) each. BitTorrent has a considerable higher download factor compared
to MCFTP-IPMC for the scenarios with 10 to 50 nodes, especially when the number of nodes is
set to 30.

51

 0

 2

 4

 6

 8

 10

 12

10 20 30 50 100

do
w

nl
oa

d
fa

ct
or

:

number of nodes:

BT
dMCFTP-IPMC
cMCFTP-IPMC
dMCFTP-ALM
cMCFTP-ALM

Figure 5.2: Overview of all scenarios with one seeder and a file size of 8MB

MCFTP-ALM is as well competitive to BitTorrent, whereas the difference is not always signifi-
cant. BitTorrent has a clear advantage with the scenario with 100 nodes. This can be relativized
though if we put in perspective that using BitTorrent, it was not always possible to limit the
bandwidth. This was especially the case when having 100 nodes in the scenarios. MCFTP-
IPMC has a lower download factor compared to MCFTP-ALM in both approaches. This is
as expected since native IP Multicast is based on a more efficient technology than Application
Level Multicast (See Chapter 2). It is interesting to see the different results for MCFTP-ALM
and MCFTP-IPMC regarding the different approaches. In MCFTP-IPMC, the decentralized ap-
proach has in all scenarios a lower download factor compared to the centralized approach. This
is not the case for MCFTP-ALM. The more nodes are in the MCFTP-ALM network, the better
the centralized approach performs compared to the decentralized approach. For all protocols,
there seems to be a tendency to a decreased download factor with increasing number of nodes.
This is as expected since the more nodes are available, the more seeders will be in the swarm
to serve leechers, which join the network later. Overall the results are mostly as expected. We
can not clearly state if cMCFTP or dMCFTP is the better approach for data dissemination. We
can see that dMCFTP-IPMC is the best approach for MCFTP and that we could still optimize
the ALM approach of MCFTP. It would have been interesting to evaluate MCFTP-ALM with
another ALM framework as well. We can state that in most evaluated scenarios MCFTP is the
better approach to disseminate data than BitTorrent concerning the download factor. We imple-
mented a prototype version of MCFTP from scratch in a few month and could proof concept
that it is competitive with some state of the art BitTorrent client.

52

5.4.2 Results Discussion

Bytes transfered have been measured and compared to the available maximum bandwidth. Simi-
lar to the download factor we introduced bandwidth factors for the upload and for the download.
These factors show how much of the available bandwidth is used for upload and download re-
spectively. We compared the bandwidth factors over the whole runtime of a scenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

d
o
w

n
lo

a
d
 b

a
n
d
w

id
th

 f
a
c
to

r

simulation time (seconds):

BT
dMCFTP-ALM

dMCFTP-IPMC
cMCFTP-ALM

cMCFTP-IPMC

(a) Download bandwidth factor - 20 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

d
o
w

n
lo

a
d
 b

a
n
d
w

id
th

 f
a
c
to

r

simulation time (seconds):

BT
dMCFTP-ALM

dMCFTP-IPMC
cMCFTP-ALM

cMCFTP-IPMC

(b) Download bandwidth factor - 50 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

u
p
lo

a
d
 b

a
n
d
w

id
th

 f
a
c
to

r

simulation time (seconds):

BT
dMCFTP-ALM

dMCFTP-IPMC
cMCFTP-ALM
cMCFTP-IPMC

(c) Upload bandwidth factor - 20 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

u
p
lo

a
d
 b

a
n
d
w

id
th

 f
a
c
to

r

simulation time (seconds):

BT
dMCFTP-ALM

dMCFTP-IPMC
cMCFTP-ALM

cMCFTP-IPMC

(d) Upload bandwidth factor - 50 nodes

Figure 5.3: Down-/Upload bandwidth factors - 8 MB file size

Thus, every second we measured how many bytes were transfered. For example, if the max-
imum download bandwidth is 80 kBps and the current received data has a size of 60 kB, this
would result in a download bandwidth factor(DBF) of:

DBF =
60kB

80kBps
= 0.75

When all bandwidth is used, the corresponding bandwidth factor is 1 and if there is no bandwidth
used at all, the bandwidth factor is 0. The bandwidth factors give an overview of the workload
and efficiency of a protocol. The higher the factor is, the higher the workload is in the swarm.
Figure 5.3 shows an overview of download and upload bandwidth factors for chosen scenarios.

53

For the 8 MB file, we compared scenarios with 20 and 50 nodes with each having one seeder.
For both scenarios, BitTorrent has a significant higher download and upload bandwidth factor
compared to any MCFTP variant almost during the whole scenario runtime. This means, there
was more data sent and received in total in the BitTorrent network than in any MCFTP swarm.
As discussed in Fig. 5.2, all MCFTP variants have either a lower download factor or the down-
load factor is not significantly worse compared to BitTorrent. Combining the two scenarios, we
can conclude that all MCFTP variants can compete regarding download factor and additionally
they are more efficient than BitTorrent regarding bandwidth factors. Hence, MCFTP can dis-
seminate the same data in a shorter or similar time frame but uses significantly less bandwidth in
the whole network. Not only the download factor of MCFTP is more efficient, also the upload
factor is immensely better than at BitTorrent. In Fig. 5.3(a) and 5.3(c) we can see a drop for
BitTorrent around second 200. This is about the same time, where the first leechers become
seeders. New nodes have to be contacted and new connections have to be made at this time,
which explains the drop.
Figure 5.4 shows how many seeders in a swarm develop over time and how many nodes joined
the network.

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

nu
m

be
r

of
 p

ee
rs

:

simulation time (seconds):

#Peers started - BT
Seeds of BT

#Peers started - dMCFTP-ALM
Seeds of dMCFTP-ALM

#Peers started - cMCFTP-ALM
Seeds of cMCFTP-ALM

(a) Seeders over time - 20 nodes - MCFTP-ALM

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

nu
m

be
r

of
 p

ee
rs

:

simulation time (seconds):

#Peers started - BT
Seeds of BT

#Peers started - dMCFTP-ALM
Seeds of dMCFTP-ALM

#Peers started - cMCFTP-ALM
Seeds of cMCFTP-ALM

(b) Seeders over time - 50 nodes - MCFTP-ALM

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

nu
m

be
r

of
 p

ee
rs

:

simulation time (seconds):

#Peers started - BT
Seeds of BT

#Peers started - dMCFTP-IPMC
Seeds of dMCFTP-IPMC

#Peers started - cMCFTP-IPMC
Seeds of cMCFTP-IPMC

(c) Seeders over Time - 20 nodes - MCFTP-IPMC

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

nu
m

be
r

of
 p

ee
rs

:

simulation time (seconds):

#Peers started - BT
Seeds of BT

#Peers started - dMCFTP-IPMC
Seeds of dMCFTP-IPMC

#Peers started - cMCFTP-IPMC
Seeds of cMCFTP-IPMC

(d) Seeders over Time - 50 nodes - MCFTP-IPMC

Figure 5.4: Seeders over time - 8 MB file size

54

Figures 5.4(a) and 5.4(b) show the amount of finished seeders of BitTorrent compared to
MCFTP-ALM. Figures 5.4(c) and 5.4(d) compare seeder development of BitTorrent compared
to MCFTP-IPMC. Since the evaluations were not done in an absolutely clean environment, it is
crucial to always combine the seeder development with the total peers started/joined. For exam-
ple on the first view, Fig. 5.4(d) indicates that the number of seeders for cMCFTP-IPMC did not
increase as fast as the amount of seeders in BitTorrent. But if one considers the increase of the
total number of peers in combination with the seeder development, one can see that in both pro-
tocols, the number of seeders is increasing almost in parallel to the number of total peers. Thus,
the seeder development in the cMCFTP-IPMC protocol is not or only a little worse compared to
the seeder development in BitTorrent. In all four scenarios there are edges in the development
of seeders. The growth of seeders is not evenly increasing. For example, in Fig. 5.4(a) theres
is an edge for all three protocols around second 500. This means, that there have been a few
nodes becoming seeder at the same time. Therefore we can conclude, that there have been a few
nodes waiting probably for the same chunk to finish. This is an indication that, the algorithm
can be optimized to avoid such irregularities. It is interesting to see, that BitTorrent has the same
behavior as MCFTP.

5.5 Seeder Check

We defined scenarios with the same amount of nodes but with increasing amount of starting
seeders as seeder check simulations. With the 8 MB file, we ran scenarios with increasing the
number of seeders available from the beginning/start of a scenario. We focused on scenarios
with 20 and 50 nodes including the seeders but excluding the BitTorrent tracker and the MCFTP
file leader node. For the seeder check simulations, we did not use the centralized approach of
MCFTP.

Results for 20 Nodes

Figure 5.5(a) shows the summary of the seeder check with a total of 20 nodes. MCFTP-IPMC
has its lowest download factor with 3 seeders available from the beginning, whereas BitTorrent
and MCFTP-ALM have their minimum with 5 seeders available from the beginning. The down-
load factor for all three protocols are decreasing significantly from the scenario with one seeder
compared to the scenario with two seeders. From the scenarios with 2 to 5 seeders, there is no
significant difference between the protocols. The download factors are between the values of 2
and 2.5 for all scenarios with more than 1 seeder available from the beginning.

Results for 50 Nodes

The seeder check for the 8 MB file with 50 nodes is depicted in Fig. 5.5(b). The two different
MCFTP modes are quite similar to each other regarding the dependency on the number of seed-
ers available from the beginning. MCFTP-IPMC has throughout a lower download factor than
MCFTP-ALM. The download factor for BitTorrent is decreasing continuously with additional
seeders available from the beginning.

55

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 5

do
w

nl
oa

d
fa

ct
or

:

number of seeders:

BT
dMCFTP-ALM

dMCFTP-IPMC

(a) Seeder check with 20 nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 5

do
w

nl
oa

d
fa

ct
or

:

number of seeders:

BT
dMCFTP-ALM

dMCFTP-IPMC

(b) Seeder check with 50 nodes

Figure 5.5: Seeder Check with 20 and 50 nodes using a file size of 8 MB

MCFTP-IPMC and BitTorrent scenarios with 50 nodes have lower download factors compared
to scenarios with 20 nodes. Thus, the tendency described in Section 5.4 can be reconfirmed.
The more nodes are in a network, the lower the download factor. This is also the case for sce-
narios with more than one seeder. When more nodes are available, more nodes will be sending
different chunks in parallel and thus more leechers can download multiple chunks at the same
time. The demands from leechers can better be fulfilled with increasing amount of nodes inside
the MCFTP swarm or the BitTorrent swarm. The decentralized approach of MCFTP-ALM does
not have such a low download factor as compared to BitTorrent nor MCFTP-IPMC. But as Fig.
5.2 shows, the centralized approach works better with MCFTP-ALM. And as mentioned before,
there have been difficulties to limit bandwidth usage in BitTorrent scenarios. The issues to limit
the bandwidth usage of BitTorrent are reflected in Fig. 5.5(b), where the download factor is
decreasing to 1.5.

5.6 Evaluation using 50 MB Files

5.6.1 Overview

For the 50 MB file, we evaluated only the decentralized approach of MCFTP. An overview of the
evaluated scenarios with one seeder is shown in Fig. 5.6. MCFTP-IPMC has a significant lower
download factor compared to BitTorrent for all scenarios. The Application Level Multicast
mode of MCFTP has a lower download factor than BitTorrent for scenarios with 10, 20 and 50
nodes. In the scenario with 30 nodes, BitTorrent has a slightly lower download factor compared
to MCFTP-ALM. An interesting fact to point out is that the download factors for each protocol
are comparable to the download factors for the 8 MB file respectively (see Fig. 5.2). It is
interesting to see how good dMCFTP-IPMC is doing compared to BT with more than 20 nodes
each. We expected that dMCFTP-IPMC would perform better than BitTorrent, but we did not
expect it to be that clear. Especially not, since we had difficulties to limit the bandwidth usage
of BitTorrent.

56

 0

 2

 4

 6

 8

 10

 12

10 20 30 50

do
w

nl
oa

d
fa

ct
or

:

number of nodes:

BT
dMCFTP-IPMC
dMCFTP-ALM

Figure 5.6: Overview of all scenarios with one seeder and a file size of 50 MB

5.6.2 Results Discussion

The download and upload factors for scenarios with the 50 MB file are shown in Fig. 5.7. The
BitTorrent protocol is using significantly more bandwidth compared to both MCFTP modes.
Whereas there is almost no difference between the MCFTP-ALM mode and the MCFTP-IPMC
mode. The download and upload factors of all three protocols are comparable with the scenarios
disseminating the 8 MB file as seen in Fig. 5.3. The upload factor of BitTorrent for scenarios
with 50 nodes reaches 0.8 easily, whereas the MCFTP modes rarely reach the upload factor of
0.2. There is an amazingly high saving of resources when using MCFTP. There is a drop in Fig.
5.7(c) for the BitTorrent protocol around second 1400. This is the same time, where the first
leechers become seeders. New nodes have to be contacted and new connections have to be made
at this time, which explains the drop.
The seeder growth of all three protocols do not have any significant difference as depicted in
Figures 5.8(a) and 5.8(b). The growth of seeder is stepwise. There is not an evenly increasing
amount of seeders. This is an indication for having many nodes waiting to finish. This is
possibly due to many nodes waiting for the same missing chunk. This means, that the algorithm
to disseminate data should be reconsidered and optimized. The steps are a bit clearer in MCFTP
than in BitTorrent. In MCFTP we could optimize the given strategies and try to mkae the growth
of seeders linear.

57

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

d
o
w

n
lo

a
d
 b

a
n
d
w

id
th

 f
a
c
to

r

simulation time (seconds):

BT
dMCFTP-ALM

dMCFTP-IPMC

(a) Download bandwidth factor - 20 Nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

d
o
w

n
lo

a
d
 b

a
n
d
w

id
th

 f
a
c
to

r

simulation time (seconds):

BT
dMCFTP-ALM

dMCFTP-IPMC

(b) Download bandwidth factor - 50 Nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

u
p
lo

a
d
 b

a
n
d
w

id
th

 f
a
c
to

r

simulation time (seconds):

BT
dMCFTP-ALM

dMCFTP-IPMC

(c) Upload bandwidth factor - 20 Nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

u
p
lo

a
d
 b

a
n
d
w

id
th

 f
a
c
to

r

simulation time (seconds):

BT
dMCFTP-ALM

dMCFTP-IPMC

(d) Upload bandwidth factor - 50 Nodes

Figure 5.7: Down-/Upload bandwidth factors - 50 MB file size

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500

nu
m

be
r

of
 p

ee
rs

:

simulation time (seconds):

#Peers started - BT
Seeds of BT

#Peers started - dMCFTP-ALM
Seeds of dMCFTP-ALM

#Peers started - dMCFTP-IPMC
Seeds of dMCFTP-IPMC

(a) Seeders over Time - 20 Nodes

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500

nu
m

be
r

of
 p

ee
rs

:

simulation time (seconds):

#Peers started - BT
Seeds of BT

#Peers started - dMCFTP-ALM
Seeds of dMCFTP-ALM

#Peers started - dMCFTP-IPMC
Seeds of dMCFTP-IPMC

(b) Seeders over Time - 50 Nodes

Figure 5.8: Seeders over time - 50 MB file size

58

5.7 Simulation Results

In [3], they used the network simulator ns-2 for different MCFTP scenario simulations. They
compared MCFTP with BitTorrent in flash-crowd scenarios. They could get precise values
from the clean ns-2 environment. In their work, they also implemented a very basic BitTorrent
simulator. In [3] they state: “One of the biggest advantages of MCFTP is its rapid increase of the
download performance as soon as more initial seeds are available. Furthermore, MCFTP reaches
an almost optimal download performance if only 3-10% of the peers are initial seeds. BT needs
more than 50% of the peers acting as initial seeds in order to catch up with MCFTP.“ One can
not truly compare the results of this real world implementation with the results of the MCFTP
simulator in [3], because the scenario setups are different and the implementation details are
different as well. In this evaluations we used a fully featured BitTorrent client with at least 7
years of work and optimizations behind it. The simulated BitTorrent client was implemented
by themselves and was very basic. Also we had difficulties to limit the bandwidth usage by our
BitTorrent client.

5.8 Summary and Conclusion

In this Chapter, we presented the evaluations for various scenarios using MCFTP-IPMC and
MCFTP-ALM, both with the centralized and decentralized approach as well as scenarios with
BitTorrent. The evaluations were performed for file sizes of 8 MB and 50 MB. As a conclusion,
we can state that MCFTP can compete to BitTorrent and is even better in various scenarios.
BitTorrent is much more resource intensive compared to MCFTP. We can state that the results
of our evaluations and the simulations done in [3] show that MCFTP is better in most of the
scenarios and that it can still be optimized in various settings.

59

Chapter 6

Conclusion and Outlook

6.1 Conclusion

We implemented and evaluated the Multicast File Transfer Protocol (MCFTP). The imple-
mentation supports native IP Multicast as well as Application Level Multicast (ALM). We
characterized and implemented two different MCFTP approaches(cMCFTP and dMCFTP). We
compared MCFTP with a well known BitTorrent client on a real world environment.

The evaluated scenarios with one seeder and increasing amount of leechers show that
BitTorrent is much more resource intensive than MCFTP. BitTorrent is using up to four times
more resources than MCFTP. This is the most significant difference between BitTorrent and
MCFTP concerning the performance. Not only is MCFTP more resource saving, it is also in
most variations significantly faster to disseminate data to all peers in the swarm. Albeit this
MCFTP implementation is not fully optimized, our evaluations have shown that it is truly
competitive to state of the art dissemination mechanisms, such as BitTorrent.
Not only the MCFTP-IPMC mode scored a lower download factor compared to BitTorrent, but
also the MCFTP-ALM scored lower download factors in various scenarios. MCFTP-IPMC
came out with better results compared to MCFTP-ALM which was as expected since the IP
Multicast mechanism is more efficient than ALM. MCFTP-IPMC scored a lot better than
expected and should be considered as first choice when using MCFTP.
Different scenarios show, that dMCFTP performs generally better than cMCFTP. Especially
when using native IP Multicast. Surprisingly, cMCFTP scored better than dMCFTP in Applica-
tion Level Multicast. But, dMCFTP is as not topic to a single point of failure and therefore to
be chosen when MCFTP is used.
Evaluations on seeder growth over time have shown that there are possibly a few nodes waiting
for the same chunk, which would indicate optimization potential. There is as well optimization
potential for MCFTP when multiple initial seeders are used. Although the results are still
competitive with BitTorrent for various scenarios, a new strategy taking in account multiple
initial seeders could be implemented.
Different scenarios show that the overall download factor is decreasing with increasing amount
of nodes. Overall, there were no significant differences when the file size changed for most of
the scenarios.

61

6.2 Outlook

The most important part of our implementation is the possibility to adapt dissemination strate-
gies. Our evaluations have shown, that there is a great potential to optimize MCFTP by adapting
the different strategies. The strategies used for the final evaluations as presented in this thesis are
not yet fully optimized. As a next step, multiple strategies could be introduced and evaluated to
obtain even better results for the Multicast File Transfer Protocol implementation. The change
of a strategy is done modular and therefor it should not be a difficult task to replace strategies.
Even the support for meta strategies is implemented, but not evaluated properly yet. Additionally
to the strategies, there might be better solutions for different approaches. The centralized and
decentralized approaches were only basic ways to introduce two different nodes. There could
be approaches, which split the MCFTP swarm into clusters to gain a reduction of sent control
messages which might have a negative impact on the download factors.
The current implementation was used as proof of concept and is therefore not user friendly. A
graphical user interface and support for many files at the same time would increase the value of
the user experience with MCFTP dramatically. The introduced hand over of a file leader node in
the centralized MCFTP approach is not implemented and could be used to avoid single point of
failure situations. For future evaluations, a cleaner environment could be advised and many eval-
uation runs should be considered to guarantee a clearer outcome. Another step for future work
could be to test MCFTP-ALM with many Pastry rings, one for each chunk multicast group. To
do so, an environment is needed which has many high performance computers in order to be able
to generate this amount of Pastry rings, which is very resource intensive. Another interesting
evaluation could be to use different ALM frameworks, such as CAN [26], Chord[27] or Tapestry
[28]. The size of MCFTP messages could be further decreased by dividing messages on bit level.
As an example, we used one byte (256 variations) for the message type, which would actually
easily fit into two bits (4 variations), since we do not have more than three different message
types. Even data message could be further decreased in size. Out of the minimizing message,
more data throughput could be achieved. One major issue encountered during our evaluations
was the need to limit the bandwidth usage of BitTorrent consequently. For future work, a better
limitation would be advised.

62

Glossary

Notation Description
ALM Application Level Multicast
API Application Programming Interface

B Bytes
Bps Bytes per second
BT BitTorrent

cMCFTP Centralized Multicast File Transfer Protocol

DBF Download Bandwidth Factor
DF Download Factor
DHT Distributed Hash Table
dMCFTP Decentralized Multicast File Transfer Protocol

FMG File Management Group
FTP File Transfer Protocol

GB Gigabyte
GHz Gigahertz

hex hexadecimal
HTTP Hypertext Transfer Protocol

ID Identification
IM Instant Message
IP Internet Protocol
IPv4 Internet Protocol version 4
ISP Internet Service Provider

JDK Java Development Kit

kBps Kilo Bytes per second

63

Notation Description

MB Megabyte
MCFTP Multicast File Transfer Protocol
MCFTP-ALM Multicast File Transfer Protocol with Application

Level Multicast mode
MCFTP-IPMC Multicast File Transfer Protocol with native IP

Multicast mode

ODT Optimal Download Time

P2P Peer-to-Peer

RAM Random-Access Memory
RTT Round Trip Time

SHA1 Secure Hash Algorithm-1

URL Uniform Resource Locator

VoIP Voice over IP

64

Bibliography

[1] Zattoo Webpage. [Online]. Available: http://www.zattoo.com

[2] wilmaa Webpage. [Online]. Available: http://www.wilmaa.com

[3] D. Papritz, M. Brogle, and T. Braun, “MCFTP(Multicast File Transfer Protocol): Simula-
tion and comparison with BitTorrent,” 2010.

[4] S. E. Deering, “RFC 1112: Host extensions for IP multicasting,” 1989.

[5] W. Fenner, “RFC 2236: Internet Group Management Protocol, Version 2,” 1997.

[6] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan, “RFC 3376: Internet
Group Management Protocol, Version 3,” 2002.

[7] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A Survey and Comparison of
Peer-to-Peer Overlay Network Schemes,” IEEE Communications Surveys and Tutorials,
vol. 7, pp. 72–93, 2005.

[8] R. Schollmeier, “ A Definition of Peer-to-Peer Networking for the Classification of Peer-to-
Peer Architectures and Applications,” in Proceedings of the First International Conference
on Peer-to-Peer Computing, ser. P2P ’01, 2001.

[9] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Proceedings of the Workshop on
Economics of Peer-to-Peer Systems (P2PEcon’03), 2003.

[10] BitTorrent Webpage. [Online]. Available: http://www.bittorrent.org

[11] Secure Hash Standard. National Institute of Standards and Technology, 2008, federal
Information Processing Standard 180-3.

[12] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system based
on the XOR metric,” in Proceedings IPTPS, 2002.

[13] C. P. Fry and M. K. Reiter, “Really truly trackerless bittorrent,” Tech. Rep., 2006.

[14] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems,” 2001.

65

http://www.zattoo.com
http://www.wilmaa.com
http://www.bittorrent.org

[15] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A survey of
application-layer multicast protocols,” IEEE Commun. Surveys and Tutorials, 2007.

[16] S. Fahmy and M. Kwon, “Characterizing overlay multicast networks and their costs,”
IEEE/ACM Trans. Netw., 2007.

[17] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi, and M. Hauswirth, “The
Essence of P2P: A Reference Architecture for Overlay Networks,” in Proceedings of the
Fifth IEEE International Conference on Peer-to-Peer Computing, 2005.

[18] R. S. Ryan, R. Braud, and B. Bhattacharjee, “Slurpie: A Cooperative Bulk Data Transfer
Protocol,” in Proceedings of IEEE INFOCOM, 2004.

[19] J. Postel, R. Comments, and J. Reynolds, “RFC 959: File Transfer Protocol (ftp),” 1985.

[20] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE: A large-scale and
decentralized application-level multicast infrastructure,” IEEE Journal on Selected Areas
in Communications (JSAC), vol. 20, p. 2002, 2002.

[21] Sun Java Webpage. [Online]. Available: http://java.sun.com

[22] Freepastry Webpage. [Online]. Available: http://www.freepastry.org

[23] K. M. Hendrik Schulze, “ipoque. Internet Study 2008/2009,” 2009. [Online]. Available:
http://www.ipoque.com/resources/internet-studies/internet-study-2008 2009

[24] Azureus Webpage. [Online]. Available: http://azureus.sourceforge.net

[25] Trickle Webpage. [Online]. Available: http://monkey.org/∼marius/pages/?page=trickle

[26] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-Level Multicast Using
Content-Addressable Networks,” 2001.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications,” 2001.

[28] B. Y. Zhao, J. Kubiatowicz, A. D. Joseph, B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph,
“Tapestry: An infrastructure for fault-tolerant wide-area location and routing,” Tech. Rep.,
2001.

66

http://java.sun.com
http://www.freepastry.org
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009
http://azureus.sourceforge.net
http://monkey.org/~marius/pages/?page=trickle

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Peer-to-Peer Networks
	Multicast Paradigm
	Contributions
	Thesis Outline

	Related Work
	Traditional Client-Server Unicast Communication
	IP Multicast
	Peer-to-Peer Networks
	BitTorrent
	Pastry P2P Network

	Application Level Multicast / Overlay Multicast
	Slurpie
	Scribe

	Multicast File Transfer Protocol - MCFTP
	Overview
	MCFTP Modes
	Network Modes
	MCFTP Swarm Establishment

	MCFTP Nodes
	Regular Node
	File Leader Node

	MCFTP Messages
	Status Messages
	Keep-Alive Messages
	Chunk Messages

	Multicast Groups
	File Management Group
	Sending Groups

	Strategies
	Centralized Mode
	Decentralized Mode

	MCFTP Example
	Centralized Approach
	Decentralized Approach

	Summary and Conclusion

	MCFTP Implementation
	Overview
	MCFTP Modes
	Sending Messages
	Status Messages
	Keep Alive Messages
	Chunk Messages

	Application Level Multicast Groups
	Summary and Conclusion

	Evaluation
	Testbed used for Evaluation
	Evaluation Scenarios
	BitTorrent Client used for Comparison with MCFTP
	Evaluation using 8 MB Files
	Overview
	Results Discussion

	Seeder Check
	Evaluation using 50 MB Files
	Overview
	Results Discussion

	Simulation Results
	Summary and Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

	Glossary
	Bibliography

