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Abstract 

With the increasing number of available data of vehicles’ trajectories, a 

wide range of trajectory and traffic flow prediction tasks arise. Both 

trajectory and traffic density play an essential role in Intelligent 

Transportation Systems (ITS). ITS resolves around new applications 

such as intelligent traffic management, intelligent traffic forecasting 

and also infotainment applications. In order to accurately predict 

trajectories and traffic densities, deep learning models such as 

Recurrent Neural Networks (RNN) and especially Long Short Term 

Memory (LSTM) are excellent alternatives due to their ability to learn 

spatiotemporal (long-term) dependencies in time-series data. Hand-

crafting these neural networks however turns out to be a very time 

consuming trial-and-error task, due to the broad set of hyper-

parameters. In this thesis an automated framework was proposed to 

predict future trajectories and traffic flows in urban areas without 

human interventions. Reinforcement Learning (RL) is employed to 

generate high-performance LSTM predictors; this is referred to as RL-

LSTM. In addition to speed up the training process, Transfer Learning 

(TL) was applied, which reuses pre-existing knowledge instead of 

training every LSTM predictor anew. Further, a novel deep learning 

algorithm for traffic flow prediction is proposed, namely HERITOR 

(High ordEr tRaffIc convoluTiOn Rl-lstm). HERITOR attempts to 

capture pure spatiotemporal features of urban traffic. The extracted 

features are then used as input for the RL-LSTM to find a high 

performance LSTM for traffic flow prediction. For this work, two large-

scale datasets were used and consistent improvements of 15% - 25% 

over the state-of-the-art could be observed. By using transferrable 

knowledge, an acceleration of up to 70% could be observed when 

searching for an optimal architecture for an LSTM. 
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Abstract—Trajectory and traffic flow prediction will play an
essential role in Intelligent Transportation Systems (ITS) to
enable a whole new set of applications ranging from traffic
management to infotainment applications. In this scenario, deep
learning approaches such as Recurrent Neural Networks (RNN)
and its variant Long Short Term Memory (LSTM) are excellent
alternatives due to their ability to learn spatiotemporal depen-
dencies. However, these neural networks tend to be over-complex
and hard to design due to the broad set of hyper-parameters. We
propose an automated framework to predict future trajectories
and traffic flows in urban areas without human interventions.
We employ Reinforcement Learning (RL) and Transfer Learning
(TL) to generate high-performance LSTM predictors, which is
referred as RL-LSTM. In addition, we introduce HERITOR
(High ordEr tRaffIc convoluTiOn Rl-lstm), a novel deep learning
algorithm for traffic flow prediction. Specifically, HERITOR
attempts to capture pure spatiotemporal features of urban traffic.
The extracted features are fed into the RL-LSTM to realize a high
performance LSTM for traffic flow prediction. We examine the
proposed trajectory and traffic flow predictors on two real-world,
large-scale datasets and observe consistent improvements of 15%
- 25% over the state-of-the-art. By using transferred knowledge,
we can accelerate the process of searching an optimal architecture
of an LSTM by up to 70%.

Index Terms—Trajectory prediction, Traffic flow prediction,
Reinforcement Learning, Transfer Learning, Graph convolution,
LSTM.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) will enable more
efficient, safer, and greener traffic mobility, which will pave
the way to a whole new set of services that will change
the way that we live, work, and play [1]. Trajectory and
traffic flow prediction will play an important role to improve
traffic management decisions, communication protocols, and
infotainment applications [1]. A trajectory predictor attempts
to estimate the path that a moving object is going to take
to travel from one location to another one. The goal of the
traffic flow predictor is to estimate the number of moving
objects in urban areas given historic mobility trace and the
underlying trajectories in a city. Vehicular networking is one of
the ITS foundations and also will take advantage of trajectory
and traffic flow predictions to improve information retrieval,
data dissemination, and resource allocations. For instance,
knowing in advance the number of vehicles that will be in
a region in the next minutes can not only reduce latency in
infotainment applications (e.g., multimedia applications, video

streaming, etc), but also provide better resource allocation for
multi-access edge computing (MEC) services such as virtual
machines, bandwidth and etc.

However, due to the spatiotemporal dependencies of the
urban environment and the time-varying traffic patterns, pre-
dicting the traffic hotspots (e.g., areas with high traffic, con-
gested areas, etc.), the future trajectory of moving objects,
and also the traffic flow estimation between two locations are
challenging tasks.

Deep learning-based approaches such as Recurrent Neural
Networks (RNN) and its variant Long Short Term Memory
(LSTM) have excellent performance in traffic prediction due
to their ability to learn temporal dependencies [2]. On the
other hand, defining a high-performance architecture for neural
networks is still a hard task due to the broad set of hyper-
parameters [2], [3]. Typically, hyper-parameters are the vari-
ables which determine the structure of neural networks (e.g.,
number of hidden layers).

In this work, we propose an adaptive framework to predict
future trajectories and the urban traffic flow between two
locations based on historical data. To optimally capture the
spatiotemporal dependencies of an urban environment, we
used a graph-structured convolution approach, which can learn
the interactions between locations and also support better
traffic flow forecasting [2]. On the other hand, to remove
the human interventions in the neural network architecture
design we used recently proposed model [3], which employs
a Reinforcement Learning (RL) based method to find the
most suitable architecture for a given dataset. Basically, the
RL provides a self-learning approach by rewarding the high-
performance architectures and punishing the low-performance
ones. In this way, the goal is to change the architecture
of a neural network (e.g., the number of hidden layers, the
number of neurons in each hidden layer) based on its pre-
vious performance (e.g., the reward) towards a most suitable
architecture for a given dataset. Nevertheless, due to the high
number of possible neural network architectures, the time to
find an architecture with the desired performance may be
a concern. Thus, Transfer Learning (TL) is used to reduce
this time, the idea is transferring knowledge from a trained
predictor to a newly suggested predictor. This will help the
new algorithm to pass through training phase faster. Moreover,



to identify the spatiotemporal traffic hotspots named as Zone
of Staying (ZoS), a tuning-free method is also presented. The
main contributions of this work can be stated as follows:
• We study a tuning-free approach for eliciting ZoSs of

moving objects from spatiotemporal trajectories without
any a-priori assumptions.

• We design a trajectory predictor that benefits from Re-
inforcement Learning and transferable knowledge for
searching the best architectural description of an LSTM
predictor.

• We present HERITOR, a deep learning technique to
analyze graph-structured data, to extract and predict com-
plex spatiotemporal dependencies of traffic flows in road
networks of urban areas.

• Quantitative experiments on two real-world, large-scale
datasets demonstrate that the proposed trajectory and
traffic flow predictors deliver consistently satisfactory
results.

The rest of this paper is organized as follows. Section II
reviews related work. Section III discusses the problem state-
ment. Section IV introduces the proposed method to discover
ZoSs. Section V describes the trajectory predictor using Re-
inforcement Learning and LSTM, while Section VI describes
the urban traffic flow predictor. The evaluation methodology
and the performance analysis are presented in Sections VII and
VIII, respectively. Finally, Section IX concludes the paper.

II. RELATED WORK

A. Zone of Staying Discovery

Discovering Zones of Staying (ZoS) is an essential com-
ponent for making cities smart, particularly with regards to
traffic management, early congestion warning, mobile network
resource allocation, etc. A ZoS refers to a city area, where a
moving object (e.g., vehicles, pedestrian) has frequent visits
and stays for a considerable amount of time. The initial study
[4] uses an iterative clustering approach to extract ZoSs.
Clustering is a task in data mining for grouping similar
objects into a set known as a cluster. Other clustering-based
models, including temporal clustering [5], hybrid clustering
[6] [7], k-shape and k-multi-shape clustering [8] have been
attempted to discover ZoSs in urban environments. All of
the introduced techniques critically rely on some spatial (e.g.,
acceleration alteration) and temporal (e.g., distance measure)
parameters to detect hot-spots. Moving objects are specified
by distinct mobility patterns, which leads to having different
optimal values of these parameters. Therefore, in this work, we
define a novel technique by benefiting from signal processing
approaches, which omit the affiliation on the spatial and
temporal parameters to detect ZoSs in urban areas.

B. Trajectory Prediction

Future trajectory prediction helps drivers and pedestrians
to have safe and efficient navigation through complex traffic
scenarios. The pioneering survey on trajectory prediction [9]
classified trajectory predictors into two categories: physics-
based and maneuver-based models. Physics-based prediction

in crowded scenes takes into account the mutual interaction
(e.g., traffic rules, road geometry) between surrounding mov-
ing objects to estimate short term trajectories [10], [11]. [12]
employed Kalman Filter (KF) to estimate future trajectories.
The maneuver-based approach could estimate longer trajec-
tories for the moving objects [13]. Heuristic-based classifiers
[14], Markov models [15] [16] and random forest classifiers
[17] are maneuver- based approaches, which could predict
long trajectories in urban areas. Since future trajectories could
be estimated through time-series mobility data, a number
of Recurrent Neural Networks (RNNs) and their variants
including Gated Recurrent Units (GRU) [18] and Long Short
Term Memory (LSTM) [19] have been proven to be very
effective for trajectory prediction task. [20], [21] use LSTMs
to predict motion of human drivers in a grid map. Authors
in [22] propose a social LSTM, which predicts the trajectory
of pedestrians in crowded spaces through the use of a social
pooling layer. Despite the success of the introduced trajectory
predictors, describing the architecture of neural networks is an
effortful task. We automate the process of developing a high-
performance LSTM based trajectory predictor without human
intervention.

C. Traffic Flow Prediction

Traffic flow prediction is a crucial task in ITS. Investigations
on traffic flow prediction most fall into two main categories
[2]: statistical methods and machine learning methods. Sta-
tistical methods [23], [24] were developed years ago when
traffic systems were less complex in the terms of the number
of moving objects and the rate of mobility. The ability of
such traditional models to accurately estimate future traffic
states is quite limited. In recent years, researchers shifted their
attention to the deep learning models, which are more robust
and accurate in dynamic and complex urban areas. Deep Be-
lief Networks (DBN) [25], Deep Recurrent Neural Networks
(DRNN) [26] and Convolutional Neural Networks (CNN)
[27] can effectively learn features of time series data and
achieve good prediction performance. [28] introduces the first
Graph Convolutional Neural network (GCN), which integrates
spectral graph theory with deep neural networks. ChebNet was
proposed in [29] to improve GCN using fast localized convo-
lutional filters. Authors in [30] developed the idea of the graph
Laplacian matrix, which operates on the graph spectrum. [31],
[2], [32] propose Diffusion-Convolutional Neural Networks
(DCNN) to define convolution as a diffusion process in each
vertex of a graph-structured input. The main shortcoming of
the mentioned research works is that they do not investigate
the effect of neighboring base stations (e.g., RSUs and mobile
antennas) and length of trajectories among base stations on the
estimated traffic flow. In this work, we introduced an algorithm
that employs a high-order convolution operator and adaptive
distance adjacency matrix to capture spatiotemporal dependen-
cies of traffic flow in city areas. Besides, we benefit from RL
and TL to generate the best possible LSTM architecture to
make the traffic flow prediction.



III. PROBLEM STATEMENT

Our work addresses problems of future trajectory prediction
and traffic flow prediction in urban areas, which are the core
components of Intelligent Transportation Systems (ITS).
Hereafter, to address the main problem we split it to the three
sub-problems as described below.

Problem 1: Zone of Staying (ZoS) Discovery
We propose a tuning-free technique for detecting hot-

spots from spatiotemporal trajectories without any a-priori
assumption (e.g., constraints on distance, speed of movement,
duration of staying, number of collected Global Positioning
System (GPS) point, etc.). We eliminate parameter dependence
by treating spatiotemporal trajectories as space-time signals
and apply signal processing algorithms to discover ZoSs for
moving objects (e.g., vehicles and Pedestrians).
• Requirements and Challenges.
(i) extracting a moving object’s trajectory as an

ordered set of visited locations Tr(latn, lonn, tn) =
[(lat1, lon1, t1), . . . , (latn, lonn, tn)], where latn and lonn
are GPS coordinates and tn denotes timestamp of the visited
location point. (ii) transforming extracted trajectory T into a
2D signal S(t). (iii) interpreting the space-time signal S(t)
in time and frequency domain to detect ZoSs.

Problem 2: Trajectory Prediction with LSTM
Recurrent Neural Networks (e.g., LSTM) are powerful and

flexible models that work well for trajectory prediction in city
areas. Despite their success, designing an architecture for the
LSTM based predictors requires both human expertise and
effort. In this research, we study a method to generate a high-
performance LSTM for the given learning task automatically.
• Requirements and Challenges.
(i) defining a learning agent to suggest the architecture

description for the LSTM to have a satisfying accuracy on
a validation dataset. (ii) transferring the knowledge from a
previous model to the new suggested architecture to speed up
the experimentation process.

Problem 3: Traffic Flow Prediction
In this research a traffic flow predictor attempts to estimate

future traffic states, in terms of the number of moving objects
in the trajectories. The trajectories, base stations (e.g., RSUs
and mobile antennas), and the collected traffic flow of a city
can be represented by a directed graph G = (V , E, A, W ),
where V is a set of nodes |V | = N (base stations), E
is a set of ordered pairs of edges (trajectories). Directional
adjacency matrix presented by A ∈ RN×N , in which each
element Ai,j = 1 if there is a path connecting base station
i and base station j, otherwise Ai,j = 0. W ∈ RN×N is a
distance adjacency matrix representing base stations mutual
influence as a function of their real road distance. The traffic
flow collected in a city is shown as F =

[
f t . . . f t+T

]
, where

f t ∈ RN×P is a set representing number of connected users
(P ) for each base station (N ) at time interval t. The traffic

predictor L(.) attempts to learn patterns of traffic flow at time
T and make an estimation for the future time T ′, given a traffic
graph G:

L
[(

f (t), · · · , f (t+T );G = (V,E,A,W )
)]
≡
(
f (t+1+T ), · · · , fT

′)
(1)

• Requirements and Challenges.
(i) modeling spatiotemporal dependencies of traffic flow,

indicating explicitly where and when the traffic happens. (ii)
learning the impact of traffic flows among adjacent trajectories
and neighboring base stations.

IV. FROM SPATIOTEMPORAL TRAJECTORIES TO ZOSS

In this section we address Problem 1. The Solution in-
cludes translating spatiotemporal GPS trajectories into two-
dimensional signals and interpreting generated signal in time
and frequency time to detect ZoSs for every single moving
object.

A. Trajectory Extraction

A trajectory is an observed path of a moving object when it
travels from one ZoS to another one. Both pedestrians and ve-
hicles can take multiple routes to move among different loca-
tions. To discover trajectories, we explore two rich real-world
datasets (see Section VII). To extract trajectories for each
moving object, we need the list of sequentially connected base
stations (e.g., RSUs, antennas) and GPS coordinates of each
connected station. We use the Google Maps API Direction Ser-
vice1 to discover all possible routes between two consecutive
base stations. The discovered trajectory per each individual
moving object between ZoSi and ZoSj is stored as a 3D sig-
nal T (latn, lonn, tn) = [(lat1, lon1, t1), . . . , (latn, lonn, tn)].
After discovering the paths the next step is to partition the
trajectories into grid cells, for which we use the Python
Google S2 Geometry Library 2. Each grid cell is a four-
corner cell, which covers a specific region. Each observed
path tk is partitioned into a sub-list of grid cells. In this
work, the coverage area of each grid cell is set to be 300
m2. The resulting partitioned path can be shown as a 2D
signal r(cl, tl) = {(c1, t1), (c2, t2), . . . , (cl, tl)}, where cl is
the grid cell ID and tl is the time stamp of visiting the grid
cell. Figure 1(a) visualizes a moving object’s trajectory as a 3D
trajectory and the transformation to a 2D signal is presented
in Figure 1(b). In the next subsection, we will analyze the 2D
signal in time and frequency domain to extract ZoSs for each
single moving object.

1) Time Domain Analysis: Interprets the signal concerning
time. As shown in Figure 1(b), a 2D signal in time domain
reveals two main features of a moving object’s mobility
patern: (i) staying at locations, (ii) traveling along paths.
The local maxima/minima of the signal are interpreted as
staying locations of a moving object. A set of distinct staying
locations can be discovered by selecting the maxima/minima
with distinct cell IDs. The staying location areas, where the

1https://cloud.google.com/maps-platform/
2http://s2geometry.io/



(a) Visualizing one day trajectory as
a 3D space-time signal

(b) Visualizing one day trajectory as
a 2D signal

Fig. 1. Visualizing the OBU’s movements as space-time signal.

moving objects spend a long duration of time, can directly
assume to be their ZoSs (e.g., home, workplace and congested
city center, etc.). Moreover, travel paths depict the routes that
moving objects take to travel from one staying location to
another one. The rest of the detected locations have a shorter
staying time duration. Therefore, to be able to transform them
as a ZoS, it is necessary to know how often a user visits
these staying locations. This information can be obtained by
analyzing the signal in the frequency domain, which is the
second step of ZoS detection.

2) Frequency Domain Analysis: A periodic signal S(t) is
typically represented as S(t) = S(t + T ) for all time stamps
t, where T is the period of the signal [33]. It represents the
smallest duration of time that the signal needs to repeat itself.
Analyzing a signal in frequency domain reveals visiting peri-
odicity of each location by a moving object. High periodicities
mean that the user visits the location frequently so that the
location can be assumed as a ZoS. On the other hand, low
periodicity shows that users visit the location infrequently. As
explained in Equation 2, applying Discrete Fourier Transform
(DFT) converts a signal from the space-time domain to a
representation in the frequency domain.

P [l] =

L−1∑
l=0

r(cl, tl)e
−jl2π/L (2)

r(cl, tl) is the 2D trajectory of length L composed of grid
cells (cl). P [l] is the computed visiting periodicity for grid
cell cl. From calculated periodicities for the grid cells, we
select the first four dominant periodicities. To interpret the
selected visiting periodicities, we applied the Inverse Discrete
Fourier Transform (IDFT) to convert the signal back from the
frequency domain to the time domain (see Equation 3).

ZoS(cl) = (1/N)

N−1∑
n=0

P ′[k]ejn2π/N (3)

ZoS(cl) denotes detected ZoSs including grid cell cl and P ′[l]
is the selected dominant periodicity. Figure 2 illustrates an
example of discovered ZoSs for a vehicle in the city of Porto,
which are represented by a set of rectangular grid cells.

V. TRAJECTORY PREDICTOR

In this section, we address Problem 2. We introduce RL-
LSTM, a trajectory predictor based on Reinforcement Learn-
ing (RL) to automatically realize a high-performing LSTM

Fig. 2. Discovered ZoSs for OBU ID = 2599

predictor for a given learning task. Besides, to accelerate the
architecture search process, we benefit from Transfer Learning
(TL). Using TL the knowledge of the pre-trained architecture
(teacher LSTM) to estimate the trajectory of a moving object is
used as the starting point of the newly suggested architecture
(student LSTM) for the same task. The leading search method
that we use in this work is the Neural Architecture Search
(NAS) framework [3]. In NAS, the RL-based controller gen-
erates architectures for the predictor. Basically, architecture
of a neural network refers to the number of hidden layers,
the number of neurons per each layer, and how they are
connected. Then, the predictor is trained to make predictions
on a validation dataset. The outputs of the algorithm are
used to update the controller so that it will generate better
architectures over time. Our proposed RL-LSTM has three
main units: (i) Long Short Term Memory (LSTM) as a student
predictor to grow up to get a satisfying accuracy for the
prediction task (ii) Q-learning as the controller to propose
better architectures for the student LSTM to maximize the
expected prediction results and (iii) the Transfer Learning
(TL) unit to accelerate the architecture search process. Details
of each unit and how they are integrated to predict future
trajectories are explained in the following subsections.

A. Long Short Term Memory (LSTM)

A special kind of Recurrent Neural Network (RNN) that
can be applied to time series forecasting is the popular Long
Short Term Memory (LSTM) [2]. This architecture represents
only the most common implementation of the LSTM as a
predictor. To have a highly accurate LSTM predictor the
learning agent in Section V-B explores a search space, which
includes: (i) Action space refers to a set of constraints that
restrict the learning agent from taking certain actions. First,
we allow the agent to terminate the iterations if the student
LSTM can deliver a satisfying prediction accuracy (e.g., 90%).
Otherwise, the process will terminate when the learning agent
has explored the whole search space. Besides, we force the
learning agent to have a dropout layer [34] after each hidden
layer. (ii) Parameter space is defined as a set of all relevant
layer parameters that the learning agent can take. The number
of hidden layers is an integer value selected from (0, 150].
For each hidden layer, the number of neurons is chosen from
{1, 5, 10, 20, 40, 60, 80, 100, 150, 200} and the dropout ratio
is chosen from {0.1, 0.3, 0.5, 0.7, 0.9}. Additionally, we use
Rectified Linear Unit (ReLU) as non-linearities [35] for each
dense layer. Note that defining the Action and Parameter



spaces must have a faster convergence because of limited
hardware resources, and it is not a limitation of the method
itself.

B. LSTM Architecture Design With Reinforcement Learning

In this subsection, we seek to automate the process of
LSTM architecture selection through a searching procedure
based on RL. We create a controller using Q-learning, that
attempts to define high-performance architectural description
of an LSTM that performs well to predict the future trajectory
of moving objects without human intervention. As explained
in Section V-A, by limiting the layer parameters (e.g., number
of hidden layers, number of neurons in each hidden layer
and dropout ratio) and actions to choose from, the controller
has a finite but large space of possible architectures to search
from. The controller as a learning agent trains through random
exploration and slowly begins to exploit its finding to select
higher-performance architectures employing the ε-greedy strat-
egy [36]. The learning agent receives the computed accuracy
for the estimated future trajectory as the reward. Based on the
reward signal, the learning agent suggests better architectures
over time. The whole procedure is shown on the right side
of Figure 3. As explained, we benefit from the Q-learning
approach as a learning agent to propose architectures for the
student LSTM. We now summarize the theoretical formulation
of Q-learning, as adapted to our problem. We construct an
environment where an agent interacts with a discrete and
finite Parameter space S, which includes a set of all relevant
parameters (see Section V-A) that the learning agent is allowed
to take. Moreover, we define Action space A, which refers to a
set of all possible actions that the agent should consider (see
Section V-A). At each iteration t ∈ {0, 1, 2, . . .}, the agent
in state s ∈ S will take an action a ⊆ A(s) to pass into
next state s′. At each iteration t, computed accuracy is given
to the agent as a reward signal (rt ∈ R), which depends on
the transition from state s to the next state s′. The ultimate
objective of the agent is to maximize the total cumulative
reward over all possible iterations. Although we limit the
agent to a finite search space, there is still a large number
of possible architectures, which motivates the use of RL. We
define the reward maximization problem recursively in terms
of sub-problems as follows; for any state s ∈ S and action
a ∈ A (s), we define the maximum total expected reward over
all possible iterations to be Q′ (s, a). Q′(·) is named as the
action-value function and individual Q′ (s, a) is known as Q-
value. The recursive maximization equation, which is known
as Bellman’s Equation, can be written as:

Q′ (s, a) = Es′|s,a
(
Er|s,a,s′(r|s,a,s′)+γmaxa′∈A(s′) Q

′(s′,a′)

)
(4)

In our problem, the learning agent does not know a-priori
what are the effects of each suggested architecture. The agent
only knows what the set of possible parameters and actions
are. In this case, the agent has to learn through the output
of the suggested architectures. Therefore, we can write the
Bellman’s Equation as an iterative formula (see Equation 5):

Qt+1 (s, a) = (1− α)Qt (s, a) + α

(
rt + γ max

a′∈R(s′)
Qt
(
s′, a′

))
(5)

α ∈ (0, 1] is the Q-learning rate, which determines the weight
given to new information over old information and γ ∈ (0, 1]
is the discount factor, which determines the weight given
to immediate rewards over future rewards. Q-learning is off
policy RL, i,e. the learning agent could explore the environ-
ment randomly, and despite of this, it can find the optimal
architecture for the student LSTM. In this research, we use the
ε-greedy exploration/exploitation strategy. In the exploration
phase, the learning agent begins to suggest a new architecture
to the student LSTM randomly. However, as soon as the agent
gets better and suggests high-performance architectures to
the LSTM, the agent starts to converge, which refers to the
exploitation phase. With ε-greedy [36], the learning agent at
each iteration suggests a random architecture including a set
of possible parameters with probability ε, 0 ≤ ε ≤ 1. At the
beginning of the architecture search, we start with ε = 1.0
to ensure that the learning agent has enough time for the
exploration phase and we slowly decay ε to 0.01 (and not
to ε = 0) to move toward the exploitation phase.

C. Accelerated Training with Transfer Learning

When training an LSTM, it is not very efficient to train
every suggested architecture from scratch. Transfer Learning
(TL) offers a solution to this, as it offers possibilities on how
to transfer knowledge from a trained predictor (teacher), to a
new predictor (student). Typically, this will help the student
LSTM to pass through the learning phase faster.
If two LSTMs have a similar architecture (in terms of
layers and connectivity) partly, we can call them semi-
homogeneous. Now given that teacher and student LSTMs
are semi-homogeneous, then we can transfer the knowledge
from the teacher to the student. This is achieved by extracting
the learned knowledge, which is saved as weights from the
teacher predictor and initializing the new student predictor
with those weights. Specifically, we use an adaptation of the
Net2Net research [37], where the authors attempt to transfer
knowledge from the pre-trained predictor at iteration t− 1 to
the new one at iteration t. In [37] , for a newly added hidden
layer, it must have more hidden units than the previous hidden
layer, otherwise initializing weights (transferring knowledge)
from the previous hidden layer to the new hidden layer will
not work.
As a solution for this deficiency, we introduce a new tech-
nique to transfer knowledge from the teacher LSTM to the
student LSTM. Let the layers of the pre-trained LSTM be
L = {l1, l2, . . . , ln}, where the layers l1 and ln represent input
and output layers, respectively. Suppose that a new layer l′i is
proposed by the learning agent, and then implanted into the
student LSTM between index n − 1 and n before the output
layer; thus its layers would be L̃ = {l̃1, l̃2, . . . , l̃n−1, l′i, l̃n}.
Then, we define the function υ(lj) ∈ N> 0 to represent the
number of hidden neurons for each layer lj , where 1 ≤ j ≤ n.



Further, we define a weight function ω(lj) ∈ Rn×m, where
n,m ∈ N> 0, to form the weight matrix. Now, we can find
hidden layers with the same number of units in each layer
between L and L̃ by defining L

⋂
L̃ := {li | υ(li) = υ(l̃i) for

i = 1, . . . , n−1. So the first n−1 layers of both networks are
found to be similar; thus we can transfer knowledge from li to
l̃i for i = 1, . . . , n− 1. Further, the transfer learning can then
be defined as applying ω(l̃i) := ω(li),∀i = 1, . . . , n− 1. This
describes copying the first n− 1 weights from the teacher to
the student. With our proposed approach we can choose the
number of hidden units n in l′i freely, so υ(l′i) = n for any
n ∈ N. Therefore, we could effectively add the layer l′i to the
student and then perform transfer knowledge on the layers lj
for j = 1, . . . , n− 1.

VI. URBAN TRAFFIC FLOW PREDICTION

In this Section, we address Problem 3. We introduce HER-
ITOR (High ordEr tRaffIc convoluTiOn Rl-lstm), a novel
deep learning algorithm to estimate future states of urban
traffic flow in terms of the number of moving objects in
the trajectories. HERITOR employs a high order convolution
operator and an adaptive distance adjacency matrix to extract
rich spatiotemporal features of urban traffics. Then, the RL-
LSTM is fed by the extracted features to generate the best
possible LSTM to predict traffic flows. Details of the proposed
urban traffic flow predictor are described in the following
subsections.

A. High Order Traffic Graph Convolution Operator

The convolution operator at a specific node vj in graph G
can be generally expressed as:

Conv(j) =
∑
i∈Nj

wijf
i (6)

f t ∈ F is the extracted feature for node vj , wi,j is the weight
and Nj is the set of nodes that are adjacent to vj . In this
section we introduce the high order convolution operator in
the graph. The high order (k-th order) neighborhood can be
defined as Nj = {vi ∈ V |d (vi, vj) ≤ k} for node vj [38]. The
directional adjacency matrix of a graph G represents the 1-hop
neighborhood. Then, the k-hop adjacency matrix of n stations
can be obtained by calculating the k-th product of A ∈ RN×N .
Therefore, we can define the k-th order convolution operator
for a specific time interval t of the traffic graph as follows:

G
(k,t)
Conv =

[
Wk �A′k

]
f t (7)

Here, � refers to element-wise matrix product. A′k is obtained
by adding identity matrix I to the k-hop directional adjacency
matrix Ak that creates a self-loop for each node to make them
self-accessible in the graph. This means that the moving object
can stay connected to the base stations. Otherwise, they are
forced to make a transition in each time step. f t ∈ F is
the feature matrix, to show the number of connected users
to each station at a specific time interval t. W ∈ RN×N is a
directional distance adjacency matrix computed based on the
real distance among stations and threshold Gaussian kernel

weighting function [39] in the traffic network. The k-order
convolution operator for the time interval t (G(k,t)

Conv) takes the
k-hop directional adjacency matrix, k-hop directional distance
adjacency matrix, and the feature matrix as the input. Then, it
computes the weighted average of the feature matrix, which
has the same size as f t.

The introduced k-order convolutional operator in Equation
7 takes into account only the number of hops around each
base station that fails to capture pure spatiotemporal features
of traffic flows. In urban areas, nearby base stations are more
related than distant base stations. Following this idea, we
aim to give large weights to the short trajectories between
nodes. Therefore, we propose the adaptive directional distance
adjacency matrix in Equation 8. More specifically, we use
the real length of trajectories to assign the weight between
two base stations. So, closer nodes will be linked with higher
weights.

W ′k = σ
[
Wkf

t] (8)

Wk and f t are k-hop directional distance adjacency matrix and
feature matrix, respectively. Sigmoid non-linearity is applied
to map elements of the W ′k into a range between [−1, 1].
By adding the adaptive directional distance adjacency matrix
(Equation 8) into the high order convolution operator, we
introduce our convolution operator in Equation 9.

G
′(k,t)
Conv =

[
W ′k �A′k

]
f t (9)

Extracted information about traffic flow in urban road network
by the graph convolution within k-hops adjacent nodes with
respect to time t are accumulated as follows:

G
′(k,t)
Conv−Total =

[
G
′(1,t)
Conv, . . . , G

′(k,t)
Conv

]
(10)

G
′(k,t)
Conv−Total is a set of k-order traffic graph convolutional

feature, that can be fed to the predictor described in the
following subsection.

B. High Order Traffic Convolution RL-LSTM (HERITOR)
The proposed traffic flow predictor on a directional graph

is a holistic approach that aims to capture patterns of traffic
dynamics in urban areas by taking both node features and
graph connections into account. The extracted features by
incorporating both k-hop convolution operator and adaptive
directional distance adjacency matrix are fed into the predic-
tor. We leverage the LSTM predictor to estimate the future
spatiotemporal state of urban traffic. In particular, to design
the most efficient architecture for the LSTM, similar to Sec-
tion V-B, we applied Q-learning as a controller to suggest
architectures to the student LSTM. The model architecture
of HERITOR is illustrated in Figure 3. The RL-LSTM as a
component of the model is shown on the right side and the
high order traffic convolution operator is the left side, where k-
hop convolution orders for each time interval t are represented
with respect to a red node. HERITOR can learn and predict
spatiotemporal dependencies in directional graph-structured
data for various forecasting problems (e.g., pedestrians and
vehicles)



Fig. 3. The system architecture of HERITOR designed for spatiotemporal
traffic flow forecasting in urban areas.

VII. EVALUATION

In this section, we present an evaluation methodology to
validate the proposed moving object trajectory predictor and
urban traffic flow estimator.

A. Dataset

We conduct experiments on two rich real-world datasets: (i)
MDC dataset: This dataset includes reach context information
from the smartphones of around 100+ users connected to
500 mobile antennas around the Lake Geneva region in
Switzerland from October 2009 to March 2011 [40]. (ii) Porto
dataset: This dataset includes real vehicle traces collected
from the VANET testbed deployed in the city of Porto in
Portugal from October 2016 until August 2017. This urban-
scale testbed consists of 100+ networked vehicles connected
to the infrastructure through 120 RSUs [41]. In both of these
datasets, we select mobility traces of 100 users, which include
connected base station IDs, GPS coordinates of each base
station, and the time stamps of the connections. Using this
information, the introduced estimators can discover movement
patterns of the users and predict the future behaviors of them.

B. Evaluation Metrics

To interpret the prediction success of the proposed RL-
LSTM algorithm as a trajectory predictor, we use F1-Score
(11), which is the harmonic mean of precision and recall:

F1-Score =

(
recall−1 + precision −1

2

)−1

(11)

Here, the precision is the part of the predicted trajectory that
genuinely belongs to the observed trajectory. The recall refers
to the part of the observed trajectory that is correctly estimated.
The performance of the introduced traffic flow predictor is
examined by the Mean Absolute Error (MAE) (12):

MAE(f, f̂) =
1

|N |
∑
n∈N

∣∣∣fn − f̂n

∣∣∣ (12)

F = f1, · · · , fn represents the number of users connected
to each base station, which is extracted directly from the
dataset, F̂ = f̂1, · · · , f̂n represents the estimated values, and
N denotes the number of base stations in each dataset.

C. Experimental Details

During the exploration phase, which refers to searching the
highly accurate architecture for the student LSTM, we train
each algorithm with 70% of the trace data and 30% of the data
is used for testing each suggested predictor. After convergence
and starting the exploitation phase, the discovered LSTM
predictor was trained for 100 epochs. An epoch represents
one iteration over the entire dataset. To speed up the training
over defined epochs, we use a method called Early Stopping.
Early Stopping monitors the training progress within epochs
by checking the computed accuracy of each training epoch.
If the fluctuation of accuracy over the patience epochs (e.g.,
Pepochs = 10) is less than ∆min = 0.1, we stop the training.
Besides, the batch sizes are set to 200, and the initial learning
rate of the LSTM is set to 0.002. We set the Q-learning rate
(α) and discount factor (γ) to 0.01 and 1, respectively to
prioritize rewards in the distant future. The predictors are
trained and evaluated on a High Performance Computing
Cluster at the University of Bern in Switzerland (HPC Cluster
- UBELIX 3) with Intel(R) Xeon(R) CPU E5-2630 v4 @
2.20GHz.

VIII. PERFORMANCE ANALYSIS

We evaluate the performance of the proposed RL-LSTM and
the advantages provided by the TL to predict the trajectory of
moving objects and also to predict the traffic flow in urban
environments. To evaluate adaptability of the RL-LSTM, we
analyze the prediction in the MDC and Porto datasets. The
results of the advantages provided by TL is presented in
Subsection VIII-A. Subsection VIII-B shows the trajectory
prediction results while Subsection VIII-C shows the results
for the traffic flow prediction.

A. Transfer Learning Results

Due to the large number of different architectures suggested
by the RL-LSTM, the convergence time (e.g., reaching to a
highly accurate architecture for the student LSTM) can be an
issue. Therefore, to have a faster convergence, we employed
knowledge transfer between pre-trained LSTM at iteration t−1
and newly suggested LSTM at iteration t by the controller. The
results of such a reduction for trajectory prediction for both
datasets (e.g., MDC and Porto) are shown in Figure 4(a). In
particular, Figure 4(a) shows the trajectory accuracy results
in function of the architectures suggested by the RL-LSTM,
while Figure 4(b) shows the accumulated training time of each
architecture comparing the RL-LSTM with knowledge transfer
against RL-LSTM without it.

When using the TL the RL-LSTM can reach the desired
performance (trajectory prediction accuracy of 75% in the
Porto dataset and 90% in MDC) earlier than RL-LSTM with-
out knowledge transfer. Therefore, RL-LSTM with knowledge
transfer converges at the 5-th and at the 7-th suggested archi-
tecture considering the Porto and MDC datasets, respectively
(see Figure 4(a)). On the other hand, the RL-LSTM without

3https://docs.id.unibe.ch/ubelix



(a) Convergence time (b) Exploration time

Fig. 4. Reinforcement Learning-designed LSTM results

knowledge transfer converges at the 11-th and 13-th suggested
architecture considering the Porto and MDC datasets, respec-
tively (see Figure 4(a)). In terms of exploration time (e.g., time
to find the most suitable architecture), the knowledge transfer
provides a reduction of 70% in the accumulated time for both
datasets (see Figures 4(b)).

B. Trajectory Prediction Results

In this analysis, we evaluate the performance of the most
suitable LSTM architecture found in the previous section to
predict the trajectory of moving objects in an urban envi-
ronment based on the Porto and MDC datasets. We have
compared the RL-LSTM with the following literature so-
lutions: Hybrid Markov Chain (HMC) [42], Markov Chain
(MC), Random Forest (RF), J48, and the LSTM proposed
in [43]. Figure 5 shows the F1-Score results of each solution.
Figure 5(a) shows the average F1-Score considering business
days and weekends, while Figure 5(b) shows the results for
all predictions as a Cumulative Distribution Function (CDF).

The results show that J48 and RF present the worst results in
both datasets, reaching an average F1-Score of approximately
0.4 during business days and weekend for both datasets (see
Figure 5(a)). Also, for 80% of the predictions, both J48
and RF present an F1-Score lower than 0.6 in both datasets
(see Figure 5(b)). In turn, the performance of MC depends
on the quality of the input data. Therefore, MC presents
better results in the MDC dataset achieving an average F1-
Score of about 0.6 during business days and weekends (see
Figure 5(a)), while in the Porto dataset the MC reaches an
average F1-Score of around 0.4 for both business days and
weekends. To improve prediction performance of the MC
predictor, the authors in [42] proposed the HMC, which can
switch dynamically between the first and second order Markov
Chain based on the quality of the input data, consequently
improving the performance of the predictor. The HMC was
specifically designed for performing prediction tasks (e.g.,
mobility and trajectory estimation) for the Porto and MDC
datasets. The results show that HMC provides an average
F1-Score of approximately 0.6 in both datasets considering

business days and weekends (see Figure 5(a)). In addition, for
40% of the predictions, HMC provides a F1-Score higher than
0.7 in both datasets (see Figure 5(b)).

The LSTM predictor presented in [43] does not achieve
a satisfying prediction performance in both datasets. This
is the result of the hyper-parameters adjustments that need
to be tuned specifically for each dataset, but the predictor
has not such a capability. In this way, by using the LSTM
present in [43], the average F1-Score decreases by 15% when
compared to the HMC in both datasets. Moreover, only 20%
of the predictions present a F1-Score greater than 0.6 in
both datasets (see Figure 5(b)). Finally, the efficiency of
the architecture suggested by the RL-LSTM can be seen by
analyzing the substantial improvements over the HMC results.
Therefore, by using the most suitable architecture for each
dataset, the RL-LSTM increases the average F1-Score by 33%
in the Porto dataset and by 50% in the MDC dataset compared
to HMC. Also, for 80% of the predictions, the F1-Score is
higher than 0.7 in both datasets. Therefore, by employing the
RL to realize high-performance architectures for the LSTM,
we overcome the performance of all predictors, even the HMC,
which is a predictor designed explicitly for the MDC and Porto
datasets.

C. Traffic Flow Prediction Results

TABLE I
HIGH ORDER CONVOLUTION RESULTS

Convolution orders
k-order 1-st 2-nd 3-rd 4-th 5-th

MAE-Porto dataset 0.3782 0.3280 0.2567 0.3378 0.3976
MAE-MDC dataset 1.7348 1.1203 1.4351 1.5644 1.8421

In this subsection, we evaluate the performance of HER-
ITOR to predict traffic flow dynamics in comparison with
the novel probabilistic model proposed in [42]. In this way,
first, we need to find the most efficient convolution order
(e.g., the k-th order) for HERITOR. Table I shows the MAE
results for 5 different orders in which k ∈ {1, 2, 3, 4, 5}. The
convolution order represents the area (e.g., number of hops)
around each node that will be taken into account during the
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Fig. 5. Spatiotemporal trajectory prediction results.
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Fig. 6. Traffic flow prediction results.

convolution task. For the given datasets HERITOR reaches
its best prediction performance with k = 3 and k = 2,
which represents the optimal spatiotemporal structure based
on the road network used. These results are presented in
Table I. Therefore, the HERITOR will be fed using the 3-rd
convolution order in the Porto dataset and 2-nd in the MDC
dataset.

Figure 6 shows the urban traffic flow prediction results as
an average density over the city throughout the day comparing
HERITOR and the solution proposed in [42]. Figure 6(a)
represents the predictions and the ground truth for business
days while Figure 6(b) shows the results during weekends.
The results show the efficiency of HERITOR, which provides
a traffic flow prediction very similar to the real traffic flow
during business days and weekends (see Figures 6(a) and 6(b)).
This is due to the high order graph convolution operator
and adaptive distance adjacency matrix that capture the pure
spatiotemporal dependencies and also due to the efficient
LSTM designed using RL. Specifically, in the worst case
scenario HERITOR introduces an average error of 10% when
compared to the real traffic, while the solution proposed in [42]
can introduce an error of approximately 50% in the traffic flow
prediction when compared to the real traffic flow.

With these results, we can conclude that (i) the TL methods

employed by the framework proposed in this work can speed
up the time to find the most efficient LSTM architecture;
(ii) the LSTM designed using Reinforcement Learning is
highly adaptive and outperforms literature solutions for trajec-
tory and traffic flow prediction; and (iii) the graph convolution
methods extract optimal spatiotemporal dependencies of a road
network and provide better support for traffic flow prediction.

IX. CONCLUSIONS

In this work, we employed LSTM to estimate future tra-
jectories and traffic flows of moving objects in urban areas.
The main challenges are (i) realizing a high-performance
architecture for the LSTM to have satisfying prediction perfor-
mance for the given task (ii) capturing the rich spatiotemporal
dependencies of traffic flows over trajectory networks in urban
areas. To address the first challenge, we propose an RL-based
method for training a learning agent as a controller within a
large search space to automatically generate high-performance
LSTMs for the given prediction task. To accelerate this pro-
cess, we introduced a TL approach to transfer knowledge from
a pre-trained LSTM to the new suggested LSTM. Besides, we
represent network traffic as graph-structured data, and intro-
duced a high-order convolution operator and directional dis-
tance adjacency matrix to learn spatiotemporal dependencies



in the traffic network. Experimental evaluations on two real-
world, large-scale datasets show that the proposed predictors
provides better prediction performance over state-of-the-art
works. Using transferred knowledge, we speed up the process
of searching an optimal architecture of an LSTM by up to
70%.
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Abstract

Integration of wireless communication systems and machine learning tech-

niques are generating new applications and services in vehicle ad-hoc networks

(VANETs). By analyzing data transmission in vehicle-to-vehicle (V2V) com-

munications and vehicle-to-infrastructure (V2I) communications, an intelligent

transportation system (ITS) can provide better safety applications. This work

explores machine learning approaches to estimate vehicle density on predicted

trajectories, which is further utilized to provide intelligent safety message dis-

semination. With our approach, the traffic safety message, such as accident

notifications, will only be disseminated to relevant vehicles that are predicted

to pass by the accident areas. Depending on the network connectivity, our sys-

tem adaptively chooses vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I)

or hybrid communications to disseminate a message to relevant vehicles. We

evaluate the system by using real-world VANET mobility datasets, and ex-

periment results show that our system outperforms other mechanisms without

considering predicted vehicle trajectory density information.

Keywords: Vehicle Trajectory Density Prediction, Congestion Prediction,

Intelligent Transport System, Safety Data Dissemination.
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1. Introduction

Intelligent transportation systems (ITS) refer to systems that fuse informa-

tion processing, wireless communication and sensor technologies to vehicles and

transportation infrastructure to provide real-time information for road users

and transportation system operators to make better decisions. The main goals5

of ITS are to improve traffic safety and efficiency via intelligent vehicle-to-

infrastructure (V2I) or vehicle-to-vehicle (V2V) communications.

The initial motivation behind the development of V2X communications was

road safety application, which aims to provide efficient early warning informa-

tion and assistance to road users in order to prevent road accidents and dissem-10

inate accident information to relevant road users. In this perspective, knowing

the future trajectories of road users and the vehicle’s trajectory density play an

important role. The trajectory density is defined as the number of vehicles that

may take the same trajectory to travel in the city at a future moment.

Many solutions have been proposed to estimate the vehicle’s density [1][2][3],15

which can be generally divided into two categories: infrastructure-based and

infrastructure-less. The infrastructure-based approach requires some additional

devices on the road networks, such as roadside magnetic loop detectors, surveil-

lance cameras, wireless vehicle sensors, pressure pads, roadside radar and in-

frared counters. Instead, the infrastructure-less approach requires only informa-20

tion obtained from the vehicle networks, such as network connectivity and traffic

flow information. Compared to infrastructure-based solutions, infrastructure-

less solutions are more robust and reliable.

Predicting the density of vehicles is important to support various types of

ITS applications (e.g., improve communication capabilities and reduce vehicle25

congestion), but only a few efforts have been made to study how the estimated

vehicles density can be used to enhance wireless communications or improve

traffic flow. In addition, few studies have focused on the combination of V2V

and V2I communications to enhance system performance or to overcome in-

frastructure failures without compromising system reliability. In this work, we30
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tackle the two problems of vehicle density prediction and integrating V2V and

V2I communications simultaneously, and present a system that is able to predict

the vehicle trajectory density, and explore the density prediction information to

improve the safety message dissemination mechanism in an efficient way. We

design a vehicle trajectory density prediction algorithm using a hybrid Markov35

chain approach. With this prediction information, road accident information

will be only disseminated to vehicles that are predicted to pass by the accident

areas. The dissemination mechanism will select direct V2V communication to

transmit safety messages, if the network is connected. In case the network is

sparse and interested vehicles can not be reached via V2V communications, the40

system will automatically switch to V2I mode to inform the relevant vehicles to

guarantee the timely delivery of the safety messages. The main contributions

of this work can be summarized as follows:

• We design a trajectory density prediction algorithm that considers vehicle

mobility and trajectory prediction. we propose an inverted index model45

to estimate the density of vehicles in the routes.

• We present a hybrid early warning system together with a multi-hop data

dissemination protocol for VANETs based on vehicle mobility and density

prediction to deliver alert messages to relevant vehicles (e.g., vehicles that

need to receive such warning) in both sparse and dense scenarios. Our50

system can adaptively select either the V2V or V2I mechanism to dissem-

inate a warning message based on the network connectivity information

to guarantee the timely delivery of the warning message.

• We evaluate our trajectory density predictor, hybrid early warning system,

and multi-hop data dissemination protocol using a rich vehicle dataset55

collected from a real-world VANET testbed. Through comprehensive ex-

periments, we obtain consistently satisfactory results.

This paper is organized as follows. Section 2 discusses existing work on

vehicle density prediction in VANETs and its application in VANETs. Section
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4 presents the proposed vehicle trajectory density prediction algorithm. Section60

5 explains the density prediction-based traffic accident message dissemination

mechanism. Section 6 describes the experiments and evaluation methodology

applied to validate our solutions. Section 7 analyzes the experimental results.

Finally, Section 8 presents the concluding remarks.

2. Related Work65

This section presents the related work of vehicles’ trajectory and density

prediction, and discusses their applications in intelligent transportation systems

with their advantages and drawbacks.

2.1. Trajectory and Density Prediction

Accurate density estimation of On-Board Units (OBUs) in urban environ-70

ments is important for various applications in VANETs: safety-related appli-

cations are expected to reduce the risk and severity of accidents, and warn a

driver whenever a collision at an intersection is probable; efficiency-related ap-

plications aim at managing the traffic flow on roads and monitoring vehicles’

movements; and comfort-related applications are aimed to provide entertain-75

ments facilities and up-to-date contextual information for passengers by means

of Internet access while traveling in urban areas. These applications could be

more efficient if they become aware of the density of OBUs at any given time and

place [4]. Knowing the accurate density of OBUs in a vehicular communication

environment is essential for these applications because a vehicle should be able80

to adapt its behavior according to vehicle’s density anytime and anywhere due

to the high mobility and dynamics of VANETs [1]. Therefore, several research

efforts have been made to study predictability of vehicle density in trajectories

as discussed in the following. The first studies to predict the density of vehicles

used Kalman filter to extract traffic density by monitoring camera images [2],85

or estimating the traffic density by utilizing cumulative acoustic signal collected

from a roadside-installed microphone in the road segments [5]. However, apply-

ing these approaches are very costly, and in real-world urban areas, only a small
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fraction of the road segments are covered by sensors. For those road segments

without sensors, those methods, may be no longer applicable. In addition, the90

damage of installed sensor is another shortcoming that should be considered.

To deliver better prediction results, some studies explore models that rely on

the vehicles’ movement patterns. A novel model to forecast traffic flow that de-

pends on acceleration and velocity of vehicles is presented in [6]. Online learning

weighted support-vector regression (OLWSVR) [3] integrates a regression model95

with a weighted learning method. Bastani et al. [7] studied urban traffic esti-

mation by analyzing the number of vehicles located in the transmission range

of road-side units (RSUs). These density estimation approaches are not robust

enough for accurate vehicle density estimation in urban areas, since they rely

on vehicles’ movement information (e.g., acceleration variation, velocity or di-100

rection of movement), which includes many complicated interactions over the

roads and involved crowds. Due to the non-linear and stochastic nature of traf-

fic, some proposals have used deep learning methods [8], such as deep belief

network [9] and stacked autoencoder (SAE) [10]. Most of them perform traffic

prediction for highways, where traffic flow is relatively stable. In addition to105

the aforementioned methods, type-2 FL model [11], infinite-mixture model [12]

and dynamic traffic assignment [13] were also used to estimate traffic flow in

city areas. However, the main drawback of these models is their inability to

estimate the specific time of predicted density in trajectories, since these mod-

els only work on spatial granularity (location of congestion), which means that110

the algorithm outputs only the number of vehicles at each specific segment of a

trajectory without any timing information. To overcome this shortcoming, we

propose a model that improves prior methods with the ability to predict the den-

sity of vehicles in trajectories by estimating the time of congestion. Moreover,

the proposed technique does not demand costly actions as opposed to existing115

deep learning models.
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2.2. Intelligent Traffic Management

Several solutions have been proposed to deal with mobility issues including

traffic congestion [14, 15, 16], unexpected traffic incidents [17, 18] and vehicular

traffic re-routing [19, 20, 21]. Services such as INRIX [22] provide real-time120

traffic information, which might support drivers to choose their routes. In turn,

Google Maps and Waze are Vehicular Navigation Systems (VNSs) that can rec-

ommend faster routes based on a global traffic view whenever a route planning

is requested [23, 24]. On the other hand, vehicular re-routing based solutions

focus on recommending periodically faster routes to vehicles to improve the125

overall traffic efficiency.

Those approaches try to improve traffic efficiency by recommending faster

routes based on current traffic conditions on the roads, but their performance

potentially decrease during unexpected traffic incidents, since they do not im-

plement any pro-active mechanism to deal with such specific issue. Unexpected130

traffic incidents, such as vehicle crashes, can dramatically decrease the mobility

efficiency if not properly handled [25, 24]. In this scenario, vehicles affected by

such unexpected incident, e.g., vehicles that will pass by the accident location,

need to be notified as soon as possible to take some actions such as change

the route or delay their departure to minimize the effects introduced by this135

unexpected event.

To tackle this issue, most proposals rely either on multi-hop data dissemina-

tion approaches [17, 14, 20] or on infrastructure-based approaches [18]. Multi-

hop data dissemination approaches consider only vehicle-to-vehicle (V2V) com-

munications, thus assuming a fully connected network to send notification warn-140

ings to target vehicles. In infrastructure-based approaches, RSUs are responsible

for delivering the notifications to the set of target vehicles, which need to be cov-

ered by RSUs. However, for most cities, it is far from reality to consider having

a fully connected vehicular network all day long in such a dynamic environment

as well as full RSU coverage. Moreover, the delivery of early warnings could be145

a very difficult task [23]. For instance, in sparse scenarios, data dissemination-

based approaches need to replicate warning notifications periodically during the

6



whole duration of an unexpected incident to ensure that they will deliver the

warning to all target vehicles. This approach potentially overloads the network

with unnecessary transmissions and decreases the overall system effectiveness.150

In some cases, vehicles might receive the warning too late, not allowing them to

take alternative routes to improve their mobility. In principle, infrastructure-

based approaches can not work if the unexpected incident occurs in some area

not covered by RSUs.

Wang et al. [18] proposed NRR, an adaptive next road rerouting system for155

unexpected urban traffic congestion avoidance. NRR saves the cost of obtaining

a global traffic view by relying on local information available at RSUs (which

are assumed to be deployed at each intersection) to select the best next road for

each vehicle. The idea is to avoid the road that contains an unexpected incident

rather than computing a whole new route. The local information is built based160

on the vehicles’ report. In order to detect unexpected congestion, NRR relies

on a central server responsible for sending a notification to the RSU closest

to the congestion. Thus, the RSU broadcasts such notification to all vehicles

within its coverage, consequently enabling them to verify whether their routes

go toward some road that will potentially become congested. The RSU uses the165

latest obtained traffic information to compute the next road, so that vehicles

can avoid the unexpected incident based on their local traffic view. However,

having a RSU deployed at each intersection of the city for delivering the service

efficiently is not a realistic assumption due to geographical and economic issues.

In our previous work, we proposed ICARUS [17], an intelligent system to im-170

prove the traffic condition based on an alerting and rerouting system. ICARUS

is aware of both the current traffic condition and unexpected traffic incidents.

Therefore, when it detects any traffic congestion or an unexpected traffic inci-

dent, it creates a warning message and spreads it through the network (based on

a predefined area of interest) to warn vehicles about the incident. ICARUS em-175

ploys a delay-based data dissemination protocol, which addresses the broadcast

storm problem by relying on a broadcast suppression mechanism based on the

sweet spot concept. In addition to ensure that all vehicles receive the warning,
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ICARUS periodically rebroadcasts it. Finally, to avoid congestion, whenever a

vehicle receives a warning message, it verifies if it will pass through the con-180

gested area or the area with the unexpected traffic incident and requests a new

route to a central server that possesses global traffic view. Yet, as ICARUS uses

only V2V communications to deliver the warning for the vehicles that will pass

by the accident, thus delivering an early warning in partitioned scenarios (e.g.,

scenarios with network partitions) might not be possible, and in some cases it185

can also decrease the system efficiency due to late delivery.

Considering the aforementioned issues found in the literature such as limited

performance when dealing with unexpected traffic incidents [14, 19, 20, 21, 22],

the deployment of RSUs at each intersection of the city [18], limited coverage

and latency in partitioned scenarios [17], and not considering future trajectories190

and density to improve their services [14, 17, 18, 19, 20, 21, 22, 23]. We propose

an intelligent safety message dissemination mechanism that offloads network

traffic whenever it is possible (e.g., multi-hop data dissemination), and delivers

early warning messages in partitioned scenarios, through an infrastructure-based

data forwarding considering the RSUs deployed at the scenario and the vehi-195

cles’ trajectory. To do so, we employ an efficient vehicle’s trajectory and road

density predictor to enable the system to know in advance the network scenario

(e.g., connected or partitioned), and the set of vehicles that need to receive

the early warning about some unexpected traffic incident to greatly improve

network utilization and system performance. Therefore, our system addresses200

the following challenges: (i) how to predict the vehicles’ trajectory and traffic

density; (ii) how to decide when to use a multi-hop data dissemination approach

or infrastructure-based solution to deliver early warning messages; (iii) how to

identify the set of vehicles that need to receive the early warning notification;

and (iv) how to perform efficient multi-hop data dissemination.205
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3. System Overview

In this section we provide an overview of the proposed system, which is de-

signed to deliver reliable traffic warning messages to relevant vehicles using V2V

multi-hop data dissemination or infrastructure-based V2I forwarding whenever

V2V connections are not available. The system includes a vehicle trajectory and210

density prediction mechanism, which estimates future locations and densities of

vehicles such that only vehicles that are predicted to pass the accident areas

will be informed about the en-route unexpected traffic incident.

As shown in Figure 1, the system is based on a hybrid architecture com-

posed of vehicles as OBUs, edge servers as RSUs, and centralized cloud servers.215

OBUs are responsible for detecting unexpected incidents, notifying near-by edge

servers, and disseminating warning messages. RSUs, which are working as edge

servers, are responsible for running vehicle trajectory and density predictions

using pre-built models, and deciding whether to deliver the warning messages

to relevant vehicles using V2V or V2I approaches. The cloud servers are re-220

sponsible for managing global network information, and making complex data

analysis, such as building machine learning models that will be used by edge

servers to make real-time trajectory and density predictions.

Whenever an OBU detects an unexpected traffic incident (e.g., such as en-

gine damages, air bags activation, hard breaking), it sends an unexpected traffic225

incident notification to the nearest RSU either using the cellular network or the

IEEE 802.11p protocol. In this way, the trajectory and density prediction func-

tions running in edge or cloud servers will be triggered such that the RSUs can

identify vehicles that will pass the detected traffic incident area and should re-

ceive the early warning. Additionally, from the trajectory and density prediction230

the system can know vehicles’ future locations and consequently the connectivity

among vehicles. This enables the system to transmit the early warning messages

to relevant vehicles using either a V2V multi-hop data dissemination approach

or a V2I solution when the V2V connectivity is not available.

On the one hand, for the vehicles that can receive the early warning through235
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V2V communication, the RSU notifies the source vehicle (the one that sent

the massage to the RSU) to start the multi-hop data dissemination using an

efficient algorithm (described later) that selects the best relay vehicles towards

the destination based on density predictions. On the other hand, for those

vehicles that should receive the message (they are predicted to pass the accident240

areas) through the infrastructure, two cases can occur: (i) the target vehicle is

within the coverage area of another RSU; and (ii) the target vehicle is not within

the coverage area of any RSU. In the first case, the early warning is forwarded

to that RSU and delivered to the vehicle. In the latter case, we rely on the

mobility prediction to know which are the next RSUs that the target vehicle245

will pass. These are the RSUs that will receive the early notification to increase

the delivery rates and as soon as the target vehicles are connected to them, they

will be notified immediately.

Finally, when the early warning is delivered to the target vehicle, it can

change its route using a re-routing algorithm to avoid that particular area (e.g.,250

the unexpected incident location).

Figure 1: System overview

Therefore, the proposed system can be organized into two main components:

(i) vehicle trajectory density prediction; and (ii) intelligent accident message

dissemination, as described in the next sections. It is worth noticing that the

proposed system is built on top of the dataset collected from real-world VANET255

testbed deployed in Porto, Portugal [26] [27].
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4. Vehicle Trajectory Density Prediction

4.1. Trajectory Extraction

A vehicle’s trajectory is defined as the route from one location to another one

in an urban area [28]. Vehicles can take multiple routes to move among different260

locations. To discover the trajectories, we explore a rich vehicle dataset collected

from a real-world VANET testbed deployed in the city of Porto, Portugal [26],

[29]. The testbed consists of 600 OBUs and 120 RSUs. This dataset includes

the actual OBU-RSU connectivity from October 2016 until August 2017, which

enables us to discover the vehicles’ trajectories. The set of discovered paths265

of each single vehicle among two RSU IDi and RSU IDj are recorded in Ti,j

= [t1, t2,..., tn]. The raw data collected from the VANET testbed includes

a large amount of information. However, for OBU’s trajectory extraction, we

only need the list of sequentially connected RSUs, global positioning system

(GPS) coordinates of each connected RSU and the time stamps of the connec-270

tions. Therefore, we have to generate a file with all the connected RSU IDs

as well as timestamp information for every OBU. The data points are received

at a sampling rate of 20 to 40 seconds, and the maximum distance between

two sequential location points is 15 meters. The first five fields indicate the

timestamps of the connections, the sixth field indicates the connected RSU ID,275

and the last two fields indicate latitude and longitude of the connected RSU.

After generating the trace files for each OBU, the next step is to discover the

trajectories. We use the Google Maps API Direction Service1 to discover all

possible routes between two consecutive RSUs. By specifying a starting RSU

(connected RSU at time t), a destination RSU (connected RSU at time t + 2)280

and a way-point RSU (connected RSU at time t+ 1), the Direction Service can

return the route using the way-point. By determining a way-point, the Direc-

tion Service can calculate a more accurate path between origin and destination.

After discovering the routes, the next step is to partition the geographical space

1https://cloud.google.com/maps-platform/
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into grid cells, for which we use the Python Google S2 Geometry Library2. Each285

grid cell is a four-corner cell, which covers a specific region. Generated grid cells

are accumulated into a set of Cell = {c1, c2,..., cm}. Each observed path tk is

partitioned into a sub-list of l visited grid cells. The resulting partitioned path

can be shown as tk : {c1, c2, ..., cl}. Given the GPS coordinates, the location of

any moving object at a specific time can be mapped to a grid cell. In this work,290

we define a grid cell with of a size of 300 m2. Each grid cell is identified by a

64-bit Cell ID. As shown in Figure 2, the discovered trajectory for the OBU ID

2007 among two locations (RSU ID 811 and 981) using way-points in the city

center of Porto is partitioned by successive grid cells.

Figure 2: Partitioned trajectory between two locations for OBU-ID = 2007.

4.2. Trajectory Density Prediction Algorithm295

Collected mobility traces of vehicles during their movement could be used

to explore some regularities in their travels in the city. This knowledge is used

by a density predictor to forecast the number of vehicles that may take the

same trajectories in the future. The two key aspects for density prediction in

trajectories are: (i) predicting the vehicles future locations over time (connected300

2http://s2geometry.io/
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RSU ); and (ii) estimating the future trajectories between predicted RSUs for

multiple vehicles during the same time interval (e.g., next 1 minute). The

collected mobility trace, which includes connected RSU IDs and timestamps for

each vehicle, is used to train our mobility predictor to predict the next connected

RSU. The implemented mobility predictor constantly chooses the first order or305

the second order Markov chain, based on the quality of mobility trace to forecast

future locations of the vehicle [30], [31]. The mobility predictor has a tunable

time threshold, which enables the algorithm to determine the next connected

RSU ID of each vehicle in scales of minutes or hours. After predicting the next

movement of each vehicle, our trajectory predictor attempts to estimate the310

future trajectory that each vehicle is going to take.

As shown in Section 4.1, each trajectory is partitioned as a series of grid

cells between two sequential RSUs. The trajectory predictor is introduced in

our previous work [28], in which the sequence of visited grid cells by each moving

object is the input of the model. The first order and the second order Markov315

based algorithm are available predictors. The proposed model can adapt its

behavior continuously based on the availability of grid cells and the behavior in

the city to maximize the prediction performance. By storing and aggregating

the predicted trajectories for multiple vehicles, we can estimate the OBUs that

will meet each other in a certain grid cell. To do so, we use an inverted index320

model to store the predicted trajectories of multiple vehicles during the same

time interval. The model includes n rows, where n refers to the number of unique

grid cells in all predicted trajectories for a specific time slot. Figure 3 depicts

the proposed vehicles’ trajectory density predictor, which consists of three main

units: hybrid Markov chain as the mobility predictor, adaptive Markov chain325

as the trajectory predictor, and the model which is based on an inverted index

model. The next four steps enable us to estimate the density of vehicles along

the trajectories.

(1) Input for our model: mobility trace of each single vehicle with the con-

nected RSU IDs and connection time.330
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Figure 3: Vehicle trajectory density predictor

(2) Output of our model: after finishing the training step, the hybrid Markov

chain generates a 4-item tuple (RSU IDi+1, Pi,i+1, tstart, tend), where

RSU IDi+1 is the predicted RSU that the OBU is going to connect,

Pi,i+1, represents the transition probability to move from RSU IDi to

RSU IDi+1, tstart and tend are the timestamps to indicate when the335

vehicle was connected to current RSU (RSU IDi) and when the vehicle

will arrive at the next RSU (RSU IDi+1), respectively. The connection

time to a future RSU is estimated by the hybrid Markov chain.

(3) Using the current RSU IDi, which can be easily obtained from the trace

for each vehicle and the estimated RSU IDi+1 from Step 2, the trajectory340

between these two RSUs can be predicted using adaptive Markov chain.

The output of the algorithm is an ordered list of grid cells, which the OBU

will pass through when moving from RSU IDi to RSU IDi+1.

(4) As soon as the predicted trajectory among two RSUs is identified, the in-

verted index should be updated. To do so, first, each row in the inverted345

index model is indexed by each grid cell ID of the predicted trajectory.

Then, the tuple (OBU ID, Pi,i+1, tstart, tend) is stored in the correspond-
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ing row of the inverted index model. Expired tuples for each vehicle are

deleted from the rows. Finally, by summing up the number of tuples

stored at each row, we can estimate the number of vehicles that may pass350

through the respective grid cell from tstart to tend.

The output of the proposed trajectory density predictor is stored in TDpi,j

= {(c1, P -OBUs), (c2, P -OBUs),...,(cl, P -OBUs)}. The set includes two

item tuples, where the cl ∈ {c1, c2,..., cm} demonstrate grid cells on the

predicted trajectory that is passing from RSU IDi to RSU IDi+1, and355

P -OBUs store the OBU IDs that we estimated to meet each other on the

specific grid cell of the predicted trajectory.

5. Intelligent Safety Message Dissemination

With the trajectory density prediction, the system knows in advance the

future position of each OBU and OBU densities. This enables it to identify:360

(i) communication scenario (e.g., connected or partitioned); (ii) set of vehicles

that will pass a traffic incident location whenever this occurs; (iii) most suitable

way to send the warning to each vehicle that needs to receive it, considering

multi-hop data forwarding and infrastructure-based forwarding; and (iv) set of

most suitable relay OBUs to perform multi-hop data forwarding.365

Thus, whenever an OBU detects an accident, it notifies it to the closest RSU,

such that the RSU can start the procedures to send the early warning to vehicles

that need to be informed. Algorithm 1 describes the main procedures of the

early warning mechanism. In this scenario, based on the current position of the

OBU that has detected the incident, the system can extract its location (e.g.,370

its current cell ci) (Line 2). Therefore, to identify the communication scenario

(e.g., connected or partitioned) the system needs to create an undirected graph

G = (V,E) representing the communication network based on the trajectory

density prediction TDp (Line 3), in which the set V represents the OBUs while

the set E represents the communication links between them. In other words,375

considering the position of each OBU, the system can identify the set of OBUs
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that are connected together and can communicate to each other by means of

multi-hop data forwarding. This identification is based on the communication

range of each OBU and the distance among them (e.g., the distance between

two OBUs is smaller than the their communication range). Therefore, to iden-380

tify the set of vehicles that need to receive the early warning OBUTargets, the

system predicts the trajectory Ti,j of each OBU and checks if they will pass by

the accident location (e.g., cincident ∈ Ti,j) (Lines 5-8). With the set of target

vehicles (OBUTargets) available, the system can determine how to deliver the

early warning to each target OBU. In this case, if there is a path in the com-385

munication graph from the source OBU to any target OBU, the system will

forward the early warning using a V2V multi-hop data dissemination (Lines 11-

13). Otherwise, the early warning is sent using the RSUs. Thus, the system

needs to predict the set of RSUs that each target vehicle will pass by to forward

the early warning to them to increase the delivery probability (Lines 15-17).390

Algorithm 2 describes the efficient multi-hop data dissemination based on

mobility and density predictions. Considering the origin OBUsource, the desti-

nation OBUdestination and the communication graph G, the system is able to

select the best path (e.g., the best set of relay OBUs) to deliver the early warn-

ing. To do so, it builds a sub-graph Links based on the k-Shortest Paths [32]395

from OBUsource and OBUdestination to identify the set of possible paths that the

warning message can be sent using multi-hop forwarding (Line 3). In this way,

the system selects the next OBU based on the set of neighbors in the Links

sub-graph and the distance to the destination of each neighbor to determine

the set of relay OBUs. Therefore, the next OBU will be the neighboring OBU400

closest to the destination. The set of relay OBUs is computed iteratively from

OBUsource towards OBUdestination (Lines 6-9). The distance-based approach

maximizes the progress of every forwarding operation, and reduces the number

of transmissions to deliver the early warning.

Finally, whenever a target vehicle receives an early warning, it can employ a405

re-routing algorithm to change its route and avoid the incident area to improve

its mobility. A new route changing algorithm is out of the scope of this paper.
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Algorithm 1: Hybrid early warning system

Input : OBUsource ; // OBU-ID that has detected the unexpected incident

1 TDp ; // set of grid-cells (c) with predicted density (|P-OBUs|) ≥ 1

Output: Warning target vehicles either using V 2V or Infrastructure-based forwarding

2 cincident ← getc(OBUsource) ; // Identify the grid-cell (c) of the OBUsource

3 G← buildNetworkGraph(TDp) ; // Build V2V communication network graph

4 OBUTargets ← [] ; // List that defines the OBUs that need to receive the warning

// Identify which OBUs need to receive the warning

5 foreach OBU ∈ P-OBUs do

6 Ti,j ← predictTrajectory(OBU)

// Checks if the OBU will pass by the incident location

7 if cincident ∈ Ti,j then

8 OBUTargets.add(OBU);

9 end

10 end

// Decide how to deliver the warning to OBUTargets

11 foreach OBUdestination ∈ P-OBUs do

12 if G.hasPath(OBUsource, OBUdestination) then

// Deliver the warning using V 2V

13 dissemination(OBUsource, OBUdestination, cincident)

14 end

15 else

// Forward the warning to the set of RSUs that cover the OBUdestination

trajectory

16 RSUs← identifyRSUsCoveringTrajectory(Ti,j);

17 forward(cincident, RSUs,OBUdestination);

18 end

19 end

Therefore, we have implemented the efficient route changing mechanism em-

ployed by our previous work [17]. This route changing approach considers the

ongoing traffic conditions (e.g., which is based on the density of each road) and410

the location of the unexpected incident to compute an alternative route. In ad-

dition, to avoid the problem of creating another congestion spot by computing

the same alternative route for many vehicles with the same origin and desti-

nation (limitation presented in deterministic re-routing approaches), it uses a

probabilistic approach for selecting a route in a set of possible alternative routes415

to each vehicle.
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Algorithm 2: Data dissemination algorithm based on the trajectory and

density prediction

Input : OBUsource ; // OBU that will start the dissemination task

1 OBUdestination ; // OBU that needs to receive the warning

2 G ; // Graph representing V2V communication

Output: The set of relay OBUs selected to perform the multi-hop data forwarding

// Build K-Path subgraph connecting OBUsource and OBUdestination

3 Links← G.KShortestPathsSubGraph(OBUsource, OBUdestination)

4 RelayOBUs ← [];

; // List that defines the relay OBUs during the data dissemination task

5 nextOBU ← OBUsource;

// Define the set of relay OBUs to deliver the warning

6 while nextOBU 6= OBUdestination do

// Add the next relay OBU

7 RelayOBUs.add(nextOBU );

// Find neighbors of nextOBU in the K-Path subgraph

8 neighbors← Links.getNeighbors(nextOBU );

// Selects the neighboring OBU closest to the OBUdestination

9 nextOBU ← getOBUClosest2Destination(neighbors);

10 end

6. Experiment Setup

In this section, we describe the experiment details and evaluation method-

ology to examine the performance of the proposed trajectory density predictor

and its impacts on the safety message dissemination mechanism.420

6.1. Dataset

As described in Section 4, the proposed trajectory density predictor for this

work integrates both mobility and trajectory predictors to estimate the number

of vehicles that may meet each other in grid-cells. In order to train also test our

hybrid and adaptive Markov chains, we need mobility trace datasets. In this re-425

search, we are using a real-world VANET testbed deployed in the city of Porto,

Portugal [26] [27]. This large-scale dataset consists of 600+ networked OBUs

using IEEE 802.11p, WiFi or 4G as well as 120+ RSUs scattered along the

city. The dataset includes different pieces of information, such as RSUs infor-

mation (RSU location, RSU ID, volume of the download/upload traffic via 4G,430
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WiFi, DSRC, etc), and OBU information (connected RSUs, OBU ID, times-

tamps, transmitted 4G/DSRC traffic, etc.). However, for trajectory density

prediction, only RSU IDs, GPS coordinates of connected RSUs and timestamps

are required. To evaluate the prediction performance of our mobility predictor,

we split the trace data as 70% for learning and 30% for testing. To train our435

adaptive Markov chain to estimate future trajectories for every single OBU, the

10-fold cross validation was performed.

6.2. Evaluation of Vehicle Trajectory Density Prediction

To evaluate the effectiveness of the proposed vehicle density predictor, we

use the accuracy. This metric is commonly used as an evaluation measure in440

information retrieval [33], which indicates the relationship between the num-

bers of True Positive (TP), True Negative (TN), False Positive (FP), and False

Negative (FN), which are defined in Equations 1, 2, 3 and 4, respectively.

TP = ci ∈ TDpi, j ∧ ci ∈ TDri, j, (1)

TN = ci /∈ TDpi, j ∧ ci /∈ TDri, j, (2)

FP = ci ∈ TDpi, j ∧ ci /∈ TDri, j, (3)

FN = ci /∈ TDpi, j ∧ ci ∈ TDri, j, (4)

where TDpi,j , TDri,j are the predicted density of vehicles in a trajectory by

the density predictor and the real density, which are extracted directly from

the dataset, according to the vehicles that take the partitioned trajectory to

move from the location of RSU -IDi to the location of RSU -IDj , respectively.

We introduce the function Accuracy(TDpi,j, TDri,j) to quantify prediction

performance of the proposed algorithm, in 5.

Accyracy (TDpi,j , TDri,j) =

TP (TDpi,j , TDri,j) + TN (TDpi,j , TDri,j)

(TP (TDpi,j , TDri,j) + FN (TDpi,j , TDri,j) + FP (TDpi,j , TDri,j) + TN (TDpi,j , TDri,j))

(5)
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6.3. Evaluation of Traffic Accident Message Dissemination445

To evaluate the proposed hybrid early warning system, first we need to

produce a simulation platform based on the real-world VANET dataset. The

simulation platform is composed of: (i) the mobility simulator SUMO [34],

which provides the urban mobility and vehicular traffic management using a

Traffic Command Interface (TraCI) framework; (ii) the network simulator OM-450

NeT++ [35], which is a discrete event-based simulator that provides a set of

tools for developing network applications; and (iii) the vehicular network frame-

work Veins [36], which implements the IEEE 802.11p standard and extends

SUMO and OMNeT++ simulators to offer a comprehensive suite of models for

developing ITS and VANET application and protocols. To produce the same455

characteristics of the real-world VANET dataset, we extracted the Porto city

map using the OpenStreetMap (OSM) tool and converted it into a SUMO sce-

nario. Moreover, to produce the same traffic presented in the dataset we used

the predicted trajectories, i.e., based on the centroid coordinates of each ci that

composes the OBU trajectory we mapped it to the closest road present in the460

scenario. In this case, we were able to employ the proposed hybrid early warn-

ing system and evaluate its performance considering traffic and network based

metrics. For the sake of clarity, Figures ?? and 5 show the extracted SUMO

scenario using OSM and its traffic density for one week all days long considering

the trajectories exported from the dataset.465

Table 1: Simulation parameters

Parameters Values

OSM bounding box 41.1790,-8.6912; 41.1390,-8.5765

Channel frequency 5.89e0 Hz mW

Propagation model Two ray

Transmission power 2.2 mW

Communication range 300 m

Bit rate 18 Mbit/s

PHY model IEEE 801.11p

MAC model EDCA
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Figure 4: SUMO scenario of Porto map extracted using OSM.
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Figure 5: Scenario density along each day of trajectories extracted from the dataset.
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Figure 6: Density prediction in trajectories at different times of days.

With the simulation platform, we analyzed the system performance by ran-

domly introducing a set of 100 unexpected traffic incidents into the scenario

considering different days and periods. To produce an unexpected traffic inci-

dent, for each day and period choose we randomly selected an OBU from the

mobility trace. Thus, we randomly selected and a grid-cell (e.g., ci) from its470

trajectory in which the OBU will make an unexpected stop, thus the vehicle in

the simulation stays stopped in that ci closing the entire road for one hour, and,

after that, the road is released [37]. Therefore, as soon as the unexpected traffic

incident occurs, we trigger the proposed hybrid early warning. As simulation

parameters, we set the bitrate to 18 Mbit/s at the MAC layer and the transmis-475

sion power to 2.2 mW, resulting in a communication range of approximately 300

m under a two-ray ground propagation model. Table 1 summarizes the main

simulation parameters used in our assessment.

In this dataset, we observed that there are potentially two communication

scenarios for all weekdays, which can be broadly organized as connected and480
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partitioned. Figure 6 shows a heatmap representing the OBUs density in the

city for different periods of different days. As can be seen, both communication

scenarios can occur. For instance, on Saturday at 8:00 we potentially have

a connected scenario in the city center, while at 22:00 the OBUs are more

spread out characterizing a partitioned scenario. More detailed analysis of the485

OBU heat map can be found in the experiment evaluation section. Therefore,

to analyze the multi-hop data dissemination algorithm and the infrastructure-

based forwarding mechanism, we consider the following scenarios:

• Connected: the scenario in which it is possible to deliver the early warn-

ing messages using only V2V communications,490

• Partitioned: the scenario in which it is not possible to deliver the early

warning message promptly using the V2V communication.

To evaluate the performance considering the network perspective, we mea-

sure the following metrics:

• Delivery ratio: the percentage of warning messages successfully deliv-495

ered to the target vehicles. It is desired that an efficient system delivers

about 100% of its generated messages for managing the traffic efficiently.

• Transmitted messages: the total number of messages transmitted by

the system to guarantee its service. A high number of transmitted mes-

sages is an indication of redundant and unnecessary transmissions.500

• Latency: the time spent to deliver the warning message to a target vehi-

cle. High latency potentially degrades the system efficiency when dealing

with traffic management.

For the end users who receive the early warning messages, they will adapt

their routing decisions. The following metrics were used to analyze the efficiency505

of the system for improving end users’ travel experiences:

• Travel time: the total time that each OBU takes to travel a trajectory.
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• Time loss: the total time spent in some traffic congestion and/or traffic

bottleneck.

• Travelled distance: the total distance travelled by each OBU consider-510

ing their trajectory.

• Fuel consumption: the total fuel consumed by each OBU to travel its

trajectory.

• CO2 emissions: the total CO2 emitted by each OBU to travel its tra-

jectory.515

7. Evaluation Results

In this section, we present and discuss the results of both the trajectory

density predictor as well as the hybrid early warning system. To examine our

density predictor, we mainly focus on prediction accuracy, whereas to evaluate

the performance of the hybrid early warning system, we evaluate its network520

cost and traffic efficiency.

7.1. Trajectory Density Prediction Results

To verify the trajectory density predictor introduced in Section 4.1, we con-

duct extensive experiments using a real-world VANET dataset. We use time

granularity of 1 minute (λdensity = 1) to estimate the density of vehicles in525

trajectories for different time slots of each day. Figure 7 presents the accuracy

of the proposed density predictor, for 100 OBUs in different days. As we can

see, for most of the time slots in different days, our trajectory density predic-

tor can deliver a satisfactory prediction accuracy of around 60% to 68% and

the highest obtained prediction accuracy is around 75%. To clearly show the530

prediction performance of the proposed model, we calculate the average density

prediction accuracy over different time slots for each single day. As we can see in

Figure 8, for weekdays (Monday to Thursday), we reach an average prediction

accuracy of 60% to 71%. However, for weekends (Sat and Sun), the prediction
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performance of the algorithm is slightly decreased (52% to 56% ). This situ-535

ation arises typically because during weekends road users and vehicles do not

follow their daily movement patterns. Usually, they are taking different routes

to travel among various locations, which shows the difficulty in exploring uncer-

tain mobility patterns [30]. Therefore, our trajectory density predictor cannot

make more accurate predictions on weekends.540

In addition to obtaining the accuracy of predicted trajectory density for

vehicles, we are also interested in identifying the number of OBUs that may

take the same route to travel at a specific time slot of a day in the city of Porto.

As shown in Figure 5, through experiments that we have conducted in the

VANET dataset, we found that during weekdays vehicles are following almost545

the same traffic pattern. However, during weekends, traffic flows are different.

Therefore, to predict the density of all OBUs, we selected randomly Monday and

Thursday as weekdays, and Saturday as a weekend, and, then, we estimated the

traffic pattern of all vehicles for different time slots per each selected day. As

described before, Figure 6 presents the predicted density of vehicles for different550

time intervals of days. We discover that, in the early morning (4:00 am), most

vehicles are traveling in the south-west part of the city center. We observed

that in the morning (8:00 am) vehicles tend to take most of the trajectories that

are passing through the city center. Besides, the predicted density area is more

extensive than the area that is detected at 4:00 am. According to our predictions,555

during mid-day (12:00 pm) most vehicles are still traveling in the routes that

are passing through the city center. However, in the evening (10:00 pm), most

vehicles’ flows are scattered among the touristic center (west side of the city)

and city center of the Porto.

7.2. Network Performance Results560

To evaluate the network performance of the proposed hybrid early warning

system we compared its results with Flooding and ICARUS [17]. Figure 9 shows

the average results considering all assessed metrics in both scenarios partitioned

and connected. As it can be seen, all solutions present a delivery ratio higher
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(a) Monday (b) Tuesday

(c) Wednesday (d) Thursday

(e) Friday (f) Saturday

(g) Sunday

Figure 7: Trajectory density prediction accuracy for different time slots.
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Figure 8: Average trajectory density prediction accuracy per each day.
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Figure 9: Network performance results for both sparse and dense scenarios.

than 90%. However, as our proposal considers the density predictions to perform565

the data dissemination, in case of mispredictions it potentially cannot deliver the

warning accurately, consequently decreasing the delivery ratio in approximately

5% when compared to Flooding and ICARUS in both scenarios (see Figure 9(a)).

Yet, we can see the efficiency of the proposed system when analyzing the

transmitted messages (Figure 9(b)) and the latency (Figure 9(c)) for delivering570

the traffic incident messages. As expected, Flooding has the highest number

of transmissions because all OBUs that receive the warning message rebroad-

cast it, consequently producing a high number of redundant and unnecessary

transmissions. Therefore, in partitioned scenarios, in which Flooding needs to

replicate the transmission of the incident message periodically to ensure the575

delivery to all relevant vehicles (e.g., the set of OBUs predicted to pass the

incident location), the number of transmissions dramatically increases.
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On the other hand, considering latency results, Flooding presents low latency

in connected scenarios because it does not introduce any additional delay in the

multi-hop data forwarding, thus the vehicles rebroadcast the incident message as580

soon as they receive it. However, in partitioned scenarios, an undesired latency

is introduced, since the multi-hop dissemination is not possible the source OBU

(e.g., the OBU involved in the unexpected traffic incident) needs to wait for

the relevant vehicles to be within its coverage to forward the warning message.

In particular, in connected scenarios, Flooding presents an average latency of585

300 milliseconds, while in partitioned scenarios Flooding presents an average

latency of approximately 200 seconds.

Unlike Flooding, ICARUS employs an efficient broadcast suppression mech-

anism to avoid that all OBUs that receive the warning rebroadcast it. Hence,

ICARUS reduces the number of transmissions in 70% when compared to Flood-590

ing. However, as ICARUS only relies on V2V communications to deliver the

warning messages, in partitioned scenarios the source OBU also needs to re-

broadcast the warning periodically, consequently increasing the number of trans-

missions (see Figure 9(b)). Therefore, the latency results for partitioned sce-

narios ICARUS potentially has the same behavior as Flooding (e.g., it increases595

the latency because the multi-hop dissemination is not possible), but for con-

nected scenarios, ICARUS presents a higher latency than Flooding because it

introduces a small delay in each hop to enable the broadcast suppression (see

Figure 9(c)). This delay is based on the distance between the transmitting and

receiving OBU, allowing that the OBUs that received the warning message wait600

for few milliseconds to know whether or not the rebroadcast of the incident

message is necessary.

Finally, different from ICARUS and Flooding, our proposal can use the

multi-hop and infrastructure-based forwarding. Hence it can decrease the num-

ber of transmissions and the latency even in partitioned scenarios. Besides,605

due to the efficient data dissemination algorithm based on vehicles’ trajectory

and traffic density predictions, our proposal selects the most efficient set of relay

OBUs that will promptly rebroadcast it as soon as they receive the incident mes-
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Figure 10: Traffic efficiency results for the assessed metrics comparing the proposed system

and ICARUS.

sage, consequently providing a low latency in connected scenarios. On the other

hand, in partitioned scenarios, the system forwards the incident message to the610

next RSU that the relevant vehicle will pass, decreasing the latency. Moreover,

the proposed data dissemination algorithm only sends the warning message to-

wards the relevant vehicles direction (since the system knows where each relevant

vehicles is located based on predictions), thus reducing the number necessary

transmission to deliver the warning accurately. However, Flooding and ICARUS615

need to disseminate the message in all directions to find the relevant vehicles,

increasing the number of transmissions. In particular, our proposal can reduce

the number of transmissions and the latency in 95% and 98% when compared

to Flooding and ICARUS, respectively in partitioned scenarios.

7.3. Traffic Efficiency Results620

To evaluate the traffic efficiency of the proposed system, we have compared

its results with ICARUS [17]. Figure 10 shows the results of the assessed metrics
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as relative values (e.g., the ratio between the mobility with a solution to avoid

the unexpected traffic incident and the mobility of real mobility extracted from

the data set) in a Cumulative Distribution Function (CDF).625

As expected, both ICARUS and the proposed system present better results

for all assessed metrics when compared to the real mobility extracted from the

data set. This is result of the knowledge about the unexpected traffic incident

deliver to the vehicles and also to the re-routing mechanism employed by them

to avoid the incident area. Therefore, the vehicles will not get stuck in the630

congestion produced by the traffic incident, consequently decreasing their travel

time as well as time loss (see values smaller than 1 in Figure 10(a) and Fig-

ure 10(b)). To avoid the incident location, the vehicles increase their traveled

distance by approximately 5% (see Figure 10(c) values greater than 1). How-

ever, such increasing in the traveled distance is not an issue, since it not only635

improves the overall traffic efficiency, but also decreases fuel consumption and

CO2 emissions (see Figures 10(d) and 10(e)).

The slight improvement in the assessed metrics achieved by the proposed

system in comparison to ICARUS is because our system can deliver the warn-

ing messages earlier than ICARUS even in partitioned scenarios, consequently640

enabling the relevant vehicles to change their route and improve their mobility

with appropriated time. However, due to the limited performance of ICARUS

in partitioned scenarios, in some cases, the vehicles can be informed too late

about the traffic incident, not allowing them to perform a detour to avoid the

traffic incident location.645

In this context, due to the lower overhead produced by the proposed sys-

tem and to its traffic efficiency, we can conclude that knowing in advance the

vehicles’ trajectory and road density can provide substantial improvements for

ITS applications, not only for improving traffic efficiency, but also for improving

network performance.650
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8. Conclusions

This work proposes an intelligent safety message dissemination system by

using machine learning-empowered vehicle trajectory density prediction infor-

mation. With the proposed system, the traffic safety alarming message will

only be disseminated to relevant vehicles that are predicted to pass through655

the accident areas. Depending on the network connectivity, the system adap-

tively chooses either the V2V or V2I approach to disseminate the message to

relevant vehicles to ensure timely message delivery. We evaluate the system by

using a real-world VANETs mobility dataset. Simulation results showed that

our system outperforms other dissemination mechanisms without considering660

the predicted vehicle trajectory density information. For future work, we will

investigate the following two aspects: (1) model the trajectories of urban as a

graph and define a traffic graph convolution operation to capture spatial and

temporal features from traffic network; (2) further improvements of the message

dissemination mechanism together with the predicted trajectories traffic flow.665
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