
ADMINISTRATION AND DEPLOYMENT
OF WIRELESS MESH NETWORKS

Masterarbeit
der Philosophisch-naturwissenschaftlichen

Fakultät der Universität Bern

vorgelegt von

Daniel Balsiger
April 2009

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Contents

Contents i

List of Figures v

List of Tables vii

List of Listings ix

1 Introduction 1
1.1 Wireless Mesh Networks . 1
1.2 Hardware . 3
1.3 Software . 6
1.4 Configuration . 6

2 Software for Embedded Systems 9
2.1 Linux on Embedded Systems . 9
2.2 Cross Compiling Software . 9
2.3 Requirements for a Build System 10

2.3.1 Cross Toolchain . 11
2.3.2 Compiler . 12
2.3.3 C Library . 12
2.3.4 C++ Support . 12

2.4 Software Packages for the Target Platform 13
2.4.1 Storage Limitations . 13
2.4.2 Used Software Packages 14

3 Related Work 17
3.1 Existing Build Systems . 17

3.1.1 OpenWrt . 17
3.1.2 Openembedded . 18
3.1.3 CLFS . 19

3.2 Existing Configuration Frameworks 19
3.2.1 MAYA . 19
3.2.2 ATMA . 20

i

3.2.3 JANUS . 21
3.2.4 DAMON . 21

3.3 Discussion . 21
3.4 Assets and Drawbacks of SRM 22

4 ADAM Build System 25
4.1 Prerequisites for the Host Platform 25
4.2 Organisation and Structure . 26

4.2.1 Build-Tool Front-End . 26
4.2.2 Build Users . 29
4.2.3 Configuration of the Build Process 29
4.2.4 Build Profiles . 31
4.2.5 Build Environment . 32
4.2.6 Package Build Scripts 33

4.3 Building for a Specific Target Platform 36
4.3.1 Target Board Setup Procedure 36
4.3.2 Cross Toolchain Installation 37
4.3.3 Building Software Packages 37
4.3.4 Configuration Files and Initialisation Scripts 37
4.3.5 Sample Output of Build-Tool 38

4.4 Customisation of the Build System 40
4.4.1 User Defined Package Selection 41
4.4.2 Adding Support for New Packages 41
4.4.3 Adding Support for New Target Platforms 42

5 ADAM Images 43
5.1 Image Types . 43

5.1.1 Software Images . 44
5.1.2 Configuration Images . 44
5.1.3 Standalone Images . 45

5.2 Software Image Creation . 46
5.2.1 Initramfs Archive Creation 46
5.2.2 Linux Kernel Recompilation 48
5.2.3 Parameters for Image-Tool 48

5.3 Configuration Image Creation 48
5.4 Installation and System Booting 49

5.4.1 GRUB with Normal Block Devices 51
5.4.2 Custom Boot Loader with Flash Storage 51
5.4.3 Log and State Files . 52
5.4.4 Booting a Node . 52

5.5 Sample Output of Image-Tool 54

ii

6 ADAM Configuration Framework 57
6.1 Requirements . 57
6.2 Overview . 58
6.3 Core Architecture . 59

6.3.1 Interaction of Cfagent and Cfservd 59
6.3.2 Dedicated IPv6 Cfengine Network 61
6.3.3 Reachable Peer Detection 61
6.3.4 System Clock Issues . 62
6.3.5 Configuration Distribution 64
6.3.6 Detection of Misconfigured Nodes 65

6.4 Initial Network Configuration . 66
6.5 Configuration Modules . 66

6.5.1 Network Configuration Module 67
6.5.2 New Node Module . 69
6.5.3 Image Update Module 70
6.5.4 Command Module . 72

6.6 Updating Software Images . 74
6.6.1 Safe Update with GRUB 74
6.6.2 Unsafe Update with Custom Boot Loader 75

6.7 Node System Information Web Interface 76
6.8 Sample Network Configuration File 76

7 Evaluation 81
7.1 Evaluation of the ADAM Build System 81

7.1.1 Build System . 81
7.1.2 Image Creation . 81
7.1.3 Deployment . 82
7.1.4 Additional Packages . 82

7.2 Evaluation of the ADAM Configuration Framework 82
7.2.1 Setup . 83
7.2.2 Peer Detection . 84
7.2.3 System Clock Synchronisation 84
7.2.4 Misconfigured Nodes . 84
7.2.5 Network Configuration Module 84
7.2.6 New Node Module . 85
7.2.7 System Update Module 85
7.2.8 Command Module . 85
7.2.9 Distribution over Multiple Hops 86

8 Conclusion and Future Work 89
8.1 Conclusion . 89

8.1.1 ADAM Build System . 89
8.1.2 Creation of ADAM Images 90
8.1.3 ADAM Configuration Framework 90

iii

8.2 Future Work . 90

Index of Acronyms 91

Bibliography 93

iv

List of Figures

1.1 Example of a hybrid Wireless Mesh Network 2
1.2 Meraki Mini node hardware with indoor case 5
1.3 PC Engines Alix node hardware with indoor case 5
1.4 PC Engines WRAP node hardware with outdoor case 6

4.1 The three build-tool main modes 28
4.2 Details of the software build process 30

5.1 Details of the image creation process 47
5.2 Run time layout of RAM and secondary storage of two platforms . 50
5.3 Details of the boot process . 53

6.1 Interaction of cfagent and cfservd 60
6.2 Synchronising system clocks between nodes 63
6.3 Configuration distribution with cfagent and cfservd. 65
6.4 Network configuration distribution 68
6.5 Integration of a new node to an existing network 71
6.6 Safe update with GRUB . 75
6.7 Node system information web interface 77

7.1 Default setup of the test network 83
7.2 Linear setup of the test network 86

v

List of Tables

1.1 Supported hardware platforms 4

2.1 Default selection of software packages 15

3.1 Key features of existing build systems 22
3.2 Key features of existing monitoring/management solutions 22

4.1 Required packages for the host platform 27

7.1 Additional packages . 82
7.2 Evaluated durations for the different test procedures 87

vii

List of Listings

2.1 Supported functions of Busybox 14

4.1 Usage of the build-tool front-end 28
4.2 Build profile for the Meraki board (buildprofile) 31
4.3 Bash initialisation profile (.bashrc) 32
4.4 Bash initialisation profile (.bash profile) 33
4.5 Example of a package build script (zlib.sh) 34
4.6 Example of a toolchain build script (cross-gcc.sh) 35
4.7 Example of a task build script (cleanup.sh) 35
4.8 Output of the target board setup procedure 38
4.9 Output of the cross toolchain installation procedure 39
4.10 Output of the package installation procedure 40

5.1 Output of the software image creation process 55
5.2 Output of the standalone image creation process 55
5.3 Output of the creation of several configuration images 56
5.4 Output of the injection of an initial network configuration 56

6.1 Example of a command definition file (test.cmd) 73
6.2 Example of a script executed on defined nodes (command.sh) . . . 73
6.3 Example of a node reply file (meraki0-test.reply) 73
6.4 Sample network configuration file (network.conf) 78

ix

Chapter 1

Introduction

The necessity for wireless communication is gaining in importance more and more
these days. Wireless Mesh Networks (WMNs) are a promising technology in the
domain of radio communication.

The Administration and Deployment of Adhoc Mesh (ADAM) framework pro-
vides management and deployment support for WMNs. It consists of three main
parts. First, the ADAM build system simplifies the creation of appropriate software
images for wireless mesh nodes. Second, the ADAM configuration framework pro-
vides robust and safe configuration and software updates during the whole life
cycle of a Wireless Mesh Network (WMN). The third optional component is the
ADAM Graphical User Interface (GUI) which simplifies monitoring and manage-
ment tasks for a WMN by providing assistance with a graphical web interface. The
ADAM GUI is developed by Simon Morgenthaler during his Bachelor thesis and
therefore not part of this Master thesis.

This thesis is divided in eight chapters. This chapter introduces WMNs and the
supported hardware devices. In Chapter 2 general requirements for the software
for embedded devices are shown. Chapter 3 focuses on related work and analyses
existing solutions for software compilation and management of WMNs. The im-
plementation of the ADAM build system is described in detail in Chapter 4. The
different image types created by the ADAM build system are explained in Chap-
ter 5. The implementation of the ADAM configuration framework is described in
detail in Chapter 6. Chapter 7 focuses on the evaluation of the ADAM framework.
The conclusion of this thesis is shown in Chapter 8.

1.1 Wireless Mesh Networks

A WMN is a network consisting of multiple nodes, which are capable of commu-
nicating through radio devices. An example of a WMN is shown in Figure 1.1.

WMNs are a possible solution for communication in regions, like deserts or
mountains, where development of a wire based communication is too expensive or
just not possible. WMNs can also be used for communication in well developed

1

Figure 1.1: Example of a hybrid Wireless Mesh Network

areas since they can provide a cost efficient variant of accessing other networks.
For example a WMN could be used as an interconnection network to various other
networks like the Internet or local sensor networks.

In comparison to centralised wireless communication forms, like for example
Global System for Mobile communications (GSM), the nodes of a WMN are fully
self-contained and need no base station or access point. WMNs can use special
mesh routing mechanisms and protocols which can enhance the stability and fault
tolerance of the network by providing intelligent multipath routing algorithms. A
failure or temporary loss of connectivity of some nodes should not cause a failure
of the network, other reachable nodes should take over the work seamlessly.

The wireless communication protocol according the Institute of Electrical
and Electronics Engineers (IEEE) 802.11 can be used for implementing a WMN.
WMNs generally use the 802.11 adhoc mode for the interconnection of the individ-
ual nodes. The 802.11 adhoc mode allows communication between multiple nodes
without the need for an access point. In order to support normal clients which
are not adhoc capable, a mesh node may further provide a standard infrastructure
network like an ordinary wireless access point.

According to [1], WMNs get classified into client, infrastructure and hybrid
WMNs. Infrastructure WMNs provide a wireless mesh backbone network for
conventional clients, which are not capable of mesh routing themselves. Client
WMNs on the other hand are classical peer-to-peer networks among multiple
clients without the need for an access point. Hybrid WMNs are a combination
of both client and infrastructure WMNs and therefore the most general type of a
WMN. Clients are either connected by the conventional infrastructure mechanisms
or by additional mesh mechanisms on the clients. The implemented framework
focuses on such hybrid WMNs. Other papers, which provide an overview on the
topic of WMNs are [2], [3] and [4].

2

Radio communication is influenced by weather conditions, static or dynamic
obstacles and interferences with other local radio signals in the environment.
Nodes may therefore be temporary unreachable and sometimes additional nodes
have to be added to the network to enhance throughput or connectivity.

1.2 Hardware

The hardware for setting up a WMN depends on the environment where the deploy-
ment takes place. Nodes which are deployed at hardly accessible, isolated places,
like trees or rooftops, have to be protected against weather influences and theft,
while nodes placed in buildings do not need such protections. In many scenarios
the power consumption of the device is also crucial as even fully solar powered
nodes are imaginable. Another important factor of WMN hardware is the price per
node. For all these reasons hardware for wireless mesh nodes is generally realised
in an embedded form factor. Embedded systems are computer devices designed
to perform one or a few dedicated functions. Normally Central Processing Unit
(CPU) power and the amount of Random-Access Memory (RAM) and secondary
storage is limited in comparison to contemporary workstations. Some embedded
devices are realised in a System on a Chip (SoC) and contain a CPU, RAM, sec-
ondary storage and even communication controllers in only one single integrated
circuit. A WMN may also be set up of different hardware devices, designed for dif-
ferent locations, transmissions power requirements, number of network interfaces
or other attributes according the function of the involved nodes. Such a network is
usually called a heterogeneous WMN.

Being hardware independent, the ADAM build system supports currently sev-
eral platforms, with different processors, wireless chipsets and secondary stor-
age. In the following a list of hardware devices is shown, for which a working
software image has been built with ADAM. Some of these devices require spe-
cial kernel sources, others only use a different wireless driver. The implemented
ADAM configuration framework supports heterogeneous WMNs containing the
hardware platforms, whose hardware attributes and features are shown in Table
1.1.

• The Meraki Mini [5], shown in Figure 1.2

The important hardware attributes of the Meraki Mini board are shown in
Table 1.1. This platform is used for the ADAM evaluation tests described in
Chapter 7.

• The PC Engines Alix [6], shown in Figure 1.3

The hardware attributes of the Alix board are shown in Table 1.1. Like the
Meraki, the Alix board is used for the ADAM evaluation tests described in
Chapter 7.

3

Platform Meraki Mini Alix WRAP
Vendor Meraki Inc. PC Engines GmbH PC Engines GmbH
CPU MIPS 4KEc AMD Geode NSC Geode
MHz 180 500 233
Architecture MIPS i386 i386
RAM 32 MByte 256 MByte 128 MByte
Ethernet Port 1 1 1
Wireless Atheros 2315 2x Mini PCI (Atheros) 2x Mini PCI (Atheros)
Storage 8 MByte NAND Flash Compact Flash Compact Flash
Expansion None USB 2.0 USB 1.1

Table 1.1: Supported hardware platforms

• The PC Engines Wireless Router Application Platform (WRAP) [7], shown
in Figure 1.4

The WRAP board is the predecessor of the Alix board. WRAP and Alix
boards are very similar in their hardware design. The important hardware
attributes of the WRAP board are shown in Table 1.1.

• The Neo Freerunner mobile phone (GTA02) by Openmoko [8]

This device uses an Advanced RISC Machine (ARM) processor. The Neo
Freerunner phone is used for testing the support for ARM processors in
ADAM. Special kernel sources published by the vendor under an open
source license are required to build a working software image.

• The Fusiv VX180 IFE6 VDSL evaluation board by Ikanos [9]

This device uses a Microprocessor without Interlocked Pipeline Stages
(MIPS) compatible processor. A partially closed source kernel provided by
the manufacturer is required to build a working software image. The Fusiv
VX180 is used for testing the support for external kernel sources provided
by device manufacturers.

• Several i386 compatible Thinkpad notebooks by IBM/Lenovo

These devices use an i386 compatible processor and are used to test the
support for additional wireless chipsets (e.g. Cisco Aironet 340, Intel WiFi
Link 5300AGN) in ADAM.

• Wireless routers (63XX chipset based) by Broadcom

These devices use a MIPS compatible processor and a Broadcom wireless
chipset. Therefore the routers by Broadcom are used for testing the support
for 63XX based wireless chipsets in ADAM.

4

Figure 1.2: Meraki Mini node hardware with indoor case

Figure 1.3: PC Engines Alix node hardware with indoor case

5

Figure 1.4: PC Engines WRAP node hardware with outdoor case

1.3 Software

Since mostly embedded systems are used as hardware platforms for wireless mesh
nodes, software for these nodes has to be tailored for the use on such devices.
Main limitations for the software are actually the amount of RAM and secondary
storage of the hardware devices involved. If a general purpose software framework
for a WMN is envisioned, a portable and architecture independent framework is
required, which allows supporting a wide variety of available hardware devices.
Due to the lack of hardware requirements as enough RAM, secondary storage or
computing power, the software for many of the involved embedded devices has to
be compiled on other systems which fulfil these requirements. Another difficult
task is the debugging of software for embedded systems due to space limitations,
for example if debugging symbols were stripped out of the binaries or no debugger
can be installed on the node platform.

1.4 Configuration

WMNs can be dynamic, nodes can temporary appear and disappear and routes from
a given source to a desired destination in a WMN can change over time. There-
fore a robust configuration mechanism which handles dynamic changes as well
as temporary outages is required. It should provide functions for monitoring and
configuration of the different parameters of the network, like the reachable nodes,
the software installed and network addresses and routing mechanisms used on the
nodes. A configuration framework used for WMNs should provide functions for
monitoring and configuration of the different parameters of the network, like the
reachable nodes, the software installed and network addresses and routing mech-

6

anisms used on the nodes. Moreover features like software upgrades, configura-
tion changes and the possibility to define new configuration parameters should be
supported too. In addition to normal mesh nodes the provided ADAM framework
supports some distinguished nodes which have some additional management ca-
pabilities used for configuration and monitoring purposes. These node are called
management nodes throughout this document.

7

Chapter 2

Software for Embedded Systems

2.1 Linux on Embedded Systems

Many embedded systems today exist today, e.g. mobile phones, car navigation
devices and wireless nodes. Many of them use a proprietary operating system,
often designed for a specific device of a specific company. Such operating systems
are mostly in binary formats and seldom customisable.

The fact, that Linux [10] supports many hardware architectures and its open
source license makes it a very good candidate for a general purpose operating sys-
tem. Additionally developing software for Linux and its related GNU is Not Unix
(GNU) tools and libraries is a standardised process and very well documented.
Most of the software used is written with a high degree of portability in mind.
Therefore, Linux is a very good choice of an operating system for wireless mesh
nodes, if the target platform has a minimal amount of RAM and secondary storage.
Most node devices used in a WMN meet these conditions. Nowadays some man-
ufacturers ship their embedded devices already with a Linux firmware and profit
therefore from the mentioned facts. Their number is continuously growing, Linux
is already running on several mobile phones, handhelds and many other wireless
devices available today.

2.2 Cross Compiling Software

Generally it is a complex task to compile and link binaries on a Linux platform,
even for the machine the compiler runs on. Such compilers are called native com-
pilers. For their proper functionality many preconditions must be met and many
tools with appropriate versions have to be installed (shell, assembler, linker and
various libraries). In addition, some software packages often require other soft-
ware packages in a predefined version, which even enhances the complexity.

Since software for WMNs mostly runs on embedded devices it is often not a
good choice to use a native compiler on these devices due to space and performance
limitations. On some small devices it is often not even possible to install a native

9

compiler and the corresponding tools. To compile software for such devices cross
compilers are used.

A cross compiler is a compiler which runs on machine A (called host) and gen-
erates code for another machine B (called target). This is exactly what is needed,
when it comes to compile software for embedded devices. There even exist cross
compilers which are built on machine A (called build), run on machine B (called
host) and produce code for machine C (called target). Such compilers are called
canadian cross compilers and are mentioned only for completeness. In the normal
cross compilation procedure used by the ADAM build system, the host and build
platform are the same and called host throughout this document.

2.3 Requirements for a Build System

A build system for embedded wireless mesh nodes should at least fulfil the follow-
ing requirements:

• WMNs are often heterogeneous and therefore consist of more than one node
hardware platform. The build system should be able to support as many
target platforms as possible.

• The developer wants to choose the host platform used. Therefore the build
system should be able to support as many host platforms as possible.

• The effort of the developer to use the build system should be as small as
possible, so it has to be easy to understand and well documented.

• A network evolves and maybe new node hardware is added in the future. The
build system should have capabilities to build the already deployed software
for the new hardware, and the effort for this adaptions should be as minimal
as possible.

• The selection of the software which is built and installed should be left to
the developer. The build system should use as few mandatory software as
possible.

• The compiled software as well as the system configuration should be in a
format which is easy to deploy to a wireless network consisting of multiple
nodes with different target architectures. This leads to some sort of software
images for the wireless nodes, unless a package manager is used.

• The configuration of wireless mesh nodes is dynamic. Therefore the build
system has to respect the configuration mechanism of the nodes during the
installation process.

• All nodes in a network should provide the same minimal functionality.
Therefore the software running on the target nodes should not be dependent

10

on the hardware platform. To guarantee a maximum degree of compatibility
between all nodes, they all should use the same software in the same version.

2.3.1 Cross Toolchain

As seen before, a cross compiler has to be used for compiling source code for the
target platform. The collection of the cross compiler, its related binary tools and
the C library as well as the system headers for the target platform is called a cross
toolchain.

Since multiple target and host platforms have to be supported, it is definitely
not a good choice to provide cross toolchains in binary format for all possible
combinations of target and host platforms. This leads to create the cross toolchain
for the actually desired combination of host and target platform from source. If
the final software used on the nodes has to be dynamically linked against shared
libraries, which is generally the case on Linux platforms, the creation of the cross
toolchain has to accommodate this. The following steps outline the normal way to
create a cross toolchain.

1. Installation of operating system headers

Operating system headers define data structures (e.g. machine endianness)
and system procedures (e.g. system calls). For cross compilation they have
to be copied to the right place, which is no problem in general.

2. Installation of machine-specific Executable and Linkable Format
(ELF) binary tools

The GNU binutils package provides utilities which are used for creating, in-
specting, manipulating and linking ELF binaries. ELF binaries are the de-
fault binary type used on Linux platforms and are dependent of the target
platform used. The normal compiler installed on the host platform is used to
compile these tools for the target platform. After compilation the ELF binary
utilities have to be installed to the right place.

3. Installation of an intermediate cross compiler

The final goal is to create a cross compiler which is able to produce code,
that is dynamically linked to the C library of the target platform. Since no
C library for the target architecture has been installed yet, the C library must
be cross compiled first. Therefore the intermediate cross compiler is used.
For its compilation again the normal compiler installed on the host platform
and the previously installed machine-specific ELF binary tools are used.

4. Installation of the target C library

With the previously installed intermediate cross compiler the C library for
the target platform is compiled and installed.

11

5. Installation of the final cross compiler

Since a C library for the target platform is available now, the final cross com-
piler can be built. The final cross compiler is compiled by the intermediate
cross compiler and replaces the intermediate cross compiler after its instal-
lation. The final cross compiler is able to produces code that is dynamically
linked to the previously installed C library and is used to compile all further
dynamically linked software for the target platform.

2.3.2 Compiler

The GNU Compiler Collection (GCC) [11] is a very widely used compiler suite
and is the standard on Linux platforms. The build system uses the C compiler and
optionally the C++ compiler of GCC. Unlike other cross compiled software, the
cross compiler itself is never installed to a target device, therefore the size of the
compiler binaries is not relevant for the storage footprint of the target device.

2.3.3 C Library

Another important question is which C library has to be used on the target platform.
There are many implementations of C libraries nowadays. The common choice for
Linux systems is the GNU C library (Glibc) [12]. However, for embedded systems
with a small amount of secondary storage or RAM a smaller implementation of a
C library is often more useful or even required.

The ADAM build system uses therefore the uClibc [13] C library which is a
very small C library implementation (about 400 KByte on a i386 system), designed
specially for embedded systems. The goal of uClibc is to be as small as possible,
while staying compatible with Glibc in the most cases. Source code adjustments
for using uClibc as replacement for Glibc are not needed in general or are relatively
easy to achieve.

2.3.4 C++ Support

If the target board has to support software written in C++, generating a final C++
cross compiler and installing a standard C++ library is required during the instal-
lation of the cross toolchain. GCC already supports these tools and libraries and
the required installation procedure is well documented. But C++ support involves
more dependencies on the host platform than supporting only the C programming
language in the cross toolchain. Therefore the C++ support is disabled in the de-
fault configuration of the build system, but it can be enabled easily by editing the
default package selection for a specific target board.

12

2.4 Software Packages for the Target Platform

As seen before, it is useful to use the same software versions on all target platforms
to ensure a high degree of compatibility between the involved target platforms. In
addition, it is advisable to use as much of the normal software packages found on a
non-embedded Linux platforms as possible, to reach even a higher degree of com-
patibility. Problems with this strategy are possible hardware limitations (mostly in
secondary storage and RAM), which do not allow using the standard tools. Since
all platforms should run the same minimal software, the selected software pack-
age has to be adjusted to the minimum amount of RAM, secondary storage and
CPU power of all occurring supported target platforms.

Normally the software installed on Linux systems is grouped into so called
packages. A package is a collection of software for a dedicated purpose, it can
be a program, a library or only documentation. Modern Linux distributions gen-
erally provide software packages in binary form, which means that the compiled
programs and libraries are collected in different packages which can be installed to
or removed from the system at run time.

As far as open source software is concerned, these packages are available in
source code format. The source code of a software package is generally available
in compressed tar archive format downloadable from the website of the developer.
The build system uses only these source code software packages, as the software
has to be compiled with the corresponding cross compiler and linked against the
special C library for the target platform.

2.4.1 Storage Limitations

Due to limitations in secondary storage or RAM, the software packages used on
the nodes have to be small enough even for fitting on the node platform with the
smallest amount of secondary storage and RAM. Nevertheless they should stay
as compatible to the standard packages used on non-embedded Linux systems as
possible. To achieve both of these contradictory requirements, some trade-offs con-
cerning the selection of software packages have to be made. All the software com-
ponents have to be carefully selected and alternatives to standard packages with a
similar functionality but a smaller memory footprint are preferred. For example
the C library used by the ADAM build system, uClibc described in Section 2.3.3,
seems to be a good compromise between size, functionality and compatibility.

Another important package to mention in this context is Busybox [14], which
provides a single, small multifunctional binary as replacement or the most standard
UNIX tools, like e.g. sh, cp, mv, grep, sed, and awk. The resulting Busybox binary
is very small (about 800 KByte on i386) compared to the collection of the replaced
standard UNIX tools (about 5 MByte on i386). Newer versions of Busybox can
even provide much more functionality than just these common tools. ADAM uses
many of these additional features of Busybox. A complete list of the functions
provided by the current Busybox binary used on the nodes is shown in Listing 2.1.

13

Another space relevant piece of software are the kernel modules. Normally,
kernel modules are stored in binary form, but the use of the module-init-tools pack-
age makes it possible to store them in gzip compressed format, which reduces their
storage footprint on the target system significantly.

root@meraki0:˜ # busybox --help
BusyBox v1.11.2 (2009-02-03 20:48:52 CET) multi-call binary
Copyright (C) 1998-2008 Erik Andersen, Rob Landley, Denys Vlasenko
and others. Licensed under GPLv2. See source distribution for full notice.

Usage: busybox [function] [arguments]...
or: function [arguments]...

BusyBox is a multi-call binary that combines many common Unix
utilities into a single executable. Most people will create a
link to busybox for each function they wish to use and BusyBox
will act like whatever it was invoked as!

Currently defined functions:
[, [[, adjtimex, ar, arp, ash, awk, basename, brctl, bunzip2, bzcat,
bzip2, cal, cat, chgrp, chmod, chown, chpasswd, chroot, cksum, clear,
cmp, comm, cp, cpio, crond, crontab, cryptpw, cut, date, dc, dd, df,
dhcprelay, diff, dirname, dmesg, dnsd, du, dumpleases, echo, egrep,
env, ether-wake, expand, expr, fakeidentd, false, fgrep, find, fold,
free, fuser, getty, grep, gunzip, gzip, halt, head, hexdump, hostid,
hostname, hwclock, id, ifenslave, init, install, ipcalc, kill,
killall, killall5, klogd, last, length, less, ln, logger, login,
logname, logread, losetup, ls, lzmacat, md5sum, mdev, microcom,
mkdir, mkfifo, mknod, mktemp, mount, mountpoint, mv, nameif, nc,
netstat, nice, nmeter, nohup, nslookup, od, passwd, patch, pgrep,
pidof, pkill, poweroff, printenv, printf, ps, pscan, pwd, readlink,
realpath, reboot, renice, rm, rmdir, sed, seq, sh, sha1sum, sleep,
sort, split, start-stop-daemon, stat, strings, stty, su, sum,
switch_root, sync, sysctl, syslogd, tac, tail, tar, tcpsvd, tee,
telnet, test, tftp, tftpd, time, top, touch, tr, traceroute, true,
tty, udhcpc, udhcpd, udpsvd, umount, uname, unexpand, uniq, unlzma,
unzip, uptime, usleep, uudecode, uuencode, vconfig, vi, watch,
watchdog, wc, which, who, whoami, xargs, yes, zcat

root@meraki0:˜ #

Listing 2.1: Supported functions of Busybox

2.4.2 Used Software Packages

Besides uClibc, Busybox and the Linux kernel, the build system cross compiles
additional software packages for the nodes. Some of these packages are tailored
specially for embedded devices, others are standard packages, which can be found
on a normal, non embedded Linux system. As mentioned before, the question
which package to choose is mostly a trade-off between space and functionality.

Sometimes it is even desirable to have the choice between multiple packages
for the same purpose. A good example for such a package of choice is the web
server used on normal nodes and the one used on management nodes. The one on
management nodes has to support external scripting languages as PHP Hypertext

14

Package Version Intended purpose
Binutils 2.18 ELF binary tools
GCC 4.2.4 C and C++ cross compilers
uClibc 20080913 C library for embedded devices
Linux 2.6.26.8 Linux kernel
Madwifi svn3380 Linux drivers for Atheros wireless chipsets
Zlib 1.2.3 General purpose compression library
Openssl 0.9.8j SSL and cryptographic library
Curl 7.18.2 Networking library and URL tools
Busybox 1.11.2 Small replacement for common UNIX tools
Iproute2 2.6.26 Linux networking and traffic control tools
Wireless-tools 29 Linux wireless tools
Module-init-tools 3.4 Linux module utilities
Iputils s20071127 Additional IPv4 networking tools
Ipv6calc 0.71.0 IPv6 address calculator
Radvd 1.2 IPv6 routing advertisement daemon
Iptables 1.4.0 Linux IPv4 and IPv6 netfilter tools
Dropbear 0.51 SSH client/server for embedded devices
Openntpd 3.9p1 NTP client/server
Nostromo 1.9 SSL and IPv6 single process web server
Sudo 1.6.9p17 Superuser rights manager
Db 4.4.20 Berkeley database needed for Cfengine
Cfengine 2.2.9 Distributed systems configuration engine
Olsrd 0.5.6 Mesh network routing daemon

Table 2.1: Default selection of software packages

Parser (PHP) or Python, while the one running on normal nodes, should be as small
as possible and requires only a subset of the functionality. The default selection of
software packages installed on a normal node, the versions used and the intended
purpose of the packages is shown in Table 2.1.

15

Chapter 3

Related Work

In Chapter 2 the requirements of a build system for embedded devices and the
need for a special cross compilation toolchain were outlined. The ADAM software
framework tries to cover more than just being a build system. The integration
of the image creation process as well as the configuration framework are further
important aspects. The three main functions of ADAM can be described as follows.

• Customisable cross compilation build system.

• Creation of adequate software and configuration images and their deploy-
ment to multiple node platforms.

• An enhanced version of the management framework based on Cfengine [15]
and its seamless integration in the build and deployment process.

This chapter focuses first on available cross compilation build systems for em-
bedded devices. Second, existing management solutions for WMNs are analysed.
In a third part the key features of the existing build systems and the management
frameworks are discussed. The last section describes assets and drawbacks of the
Secure Remote Management and Software Distribution for Wireless Mesh Net-
works (SRM) [16] framework, which can be regarded as predecessor of ADAM.

3.1 Existing Build Systems

In this section three different existing cross compilation build systems are analysed
in terms of complexity, available documentation and compatibility with the above
requirements. Furthermore, the limitations of the existing solutions are shown.

3.1.1 OpenWrt

OpenWrt [17] is a Linux distribution tailored for embedded devices. The OpenWrt
distribution provides a package manager based approach for installing software
on embedded devices. Creating a static single firmware is not intended by this

17

distribution, instead a root file system on secondary storage is used. OpenWrt is
normally provided in binary format, but can be built also fully from the available
source due to its open source license. For this reason, a cross compile environment
is provided, which can build and compile the OpenWrt distribution for a specific
device.

OpenWrt is able to cross compile many software packages for a wide variety of
embedded wireless devices. OpenWrt uses the small C library uClibc [13] which
is also desirable for ADAM. The OpenWrt team provides required adjustments to
source code in form of patch files. They contain mostly hardware platform de-
pendent changes for the Linux kernel, which allows using Linux on many devices.
Other patches contain adjustments and bug fixes for the cross toolchain installation,
mostly related to uClibc. Some of these patches are also needed by ADAM (e.g.
Linux patches for the Meraki node). The build system of OpenWrt is controlled by
various Makefiles and the documentation for the most features of the build process
is available.

However, OpenWrt does not match the criteria of being compatible with the
ADAM image creation and management framework. OpenWrt relies on its pack-
age management system when creating firmware for particular devices. The pack-
age manager based approach installs packages to a read and writable file system on
the device’s secondary storage. Therefore less software can be installed on small
devices, whose amount of RAM is bigger than the amount of secondary storage
compared to the compressed read-only all-in-one software image used by ADAM.
The separation of cross compiled software and configuration data is another needed
feature of ADAM. Package manager based solutions rather do the opposite, they
combine the software and its configuration in one package. The effort of adjusting
this complex package manager based approach for the needs of the image creation
process (e.g. divided software and configuration) would have been much more
time consuming, then developing a new build system. However, many ideas and
the already mentioned patches provided by the OpenWrt team were used during
the development of the ADAM build system.

3.1.2 Openembedded

Openembedded [18] is an open source cross compile environment. It is designed to
create a complete Linux distribution for embedded systems. Openembedded offers
the possibility to cross compile a huge amount of software packages. Mostly every
software package can be cross compiled with the help of Openembedded.

Moreover, every aspect in Openembedded can be configured, the compilation
procedure as well as the selection of the packages to build can be fine-tuned.
Even the way the cross compiled software is installed on the target platforms is
adjustable. Unlike OpenWrt, Openembedded can therefore be configured to im-
plement the separation of configuration and software with an affordable effort.

Openembedded is very flexible and customisable. But due to its complexity, it
is difficult to understand. Another barrier in Openembedded is the use of the bit-

18

bake tool for all compilation steps. The bitbake tool is not very well documented
and rather complex. Bitbake interprets build recipes for cross compiling the par-
ticular packages. The syntax of this bitbake recipes is a mixture of Bourne Again
SHell (Bash) and Python code. The main disadvantage of Openembedded is how-
ever the poor support for uClibc in the toolchain. In a test setup it was not possible
to create a working uClibc cross toolchain. For all these reasons the author decided
not to use Openembedded as cross compile environment for ADAM.

3.1.3 CLFS

Linux From Scratch (LFS) [19] is a project, which allows building a minimal
Linux system entirely from the available sources. LFS provides therefore docu-
mentation, which contains step-by-step instructions to achieve the goal. These
instructions are very detailed and every command line, which has to be executed
is exactly explained. Additionally, the purpose of the used software packages and
their initial configuration is described and alternatives for particular software pack-
ages are presented. This allows customising every aspect of the target system. The
Cross Linux From Scratch (CLFS) project is a sub project of LFS, which provides
such instructions for installing a cross toolchain and the necessary tools to build a
minimal Linux system on a different architecture.

One major disadvantage of CLFS is that no automation of the build process is
possible. Being a collection of documentation the LFS and CLFS projects provide
no implementation of a build system. Nevertheless, the LFS and CLFS projects
helped with useful information and hints during the planning and development
of the ADAM build system. In addition, patches containing bug fixes for cross
compilation of packages are provided by the LFS and CLFS projects, some of them
are used also by ADAM.

3.2 Existing Configuration Frameworks

In this section three existing configuration frameworks for WMNs are analysed.
Additionally, one monitoring solution for WMNs is presented.

3.2.1 MAYA

“A Tool For Wireless Mesh Networks Management (MAYA)” [20] is an imple-
mentation of a management solution for WMNs. MAYA is based on the OpenWrt
firmware and the Adhoc On-Demand Vector Routing (AODV) [21] routing proto-
col. MAYA is an extension for OpenWrt, which provides mesh support and config-
uration of multiple nodes for the OpenWrt distribution. The mesh support is added
by using an AODV agent on each node, which configures the routing.

MAYA uses the OpenWrt infrastructure installed on the nodes to configure each
single node. In addition, MAYA provides mechanisms to change network config-
urations of multiple selected nodes. These changes are propagated through the

19

network by either sending a special User Datagram Protocol (UDP) message or by
issuing a remote shell command. MAYA further provides a mechanism to add new
nodes using their Internet Protocol Version 4 (IPv4) address. MAYA requires an ad-
ditional central management server component, where the GUI for administration
tasks is installed.

On one hand MAYA profits from the routing by AODV, new network con-
figurations propagate faster than within the ADAM architecture, which distributes
configurations periodically all two minutes and hop by hop. On the other hand
MAYA depends on a working routing mechanism on the nodes which can also be
regarded as a major disadvantage, if the routing mechanism should also be config-
urable.

In addition, static addresses have to be be configured on the nodes and the
resulting network used for configuration is the same which the mesh clients are
connected to. Moreover, MAYA can neither update software on the nodes automat-
ically nor detect lost or misconfigured nodes.

3.2.2 ATMA

“A Framework for the Management of Large-Scale Wireless Network Testbeds
(ATMA)” [22] is another implementation of a management solution for WMNs.
Like MAYA, ATMA uses the OpenWrt firmware. ATMA is based on a client-server
architecture. The server component is a central management server able to manage
all mesh clients. The server beacons periodically its existence to the clients. This
is achieved using the AODV routing protocol.

The mesh client is a software agent installed on the mesh nodes. This agent
is written in the C programming language. The agent registers itself automatically
to the server component with an IPv4 address from the automatic configuration
range (169.254/16). Once registered to the server each mesh node is remotely
manageable through the server.

ATMA supports four management tools. First the testbed configuration tool
is used configure network parameters on a node in the testbed network. A sec-
ond tool is the interference meter which measures channel interferences on all
nodes. Third, the network monitoring component collects network statistics from
all nodes. Monitoring is achieved by a modified version of Distributed Architec-
ture for Monitoring Multi-hop Mobile Networks (DAMON) [23]. The fourth tool
is the topology control tool, which allows simulating network topology changes
without changing node locations.

Advantages of ATMA are the auto configuration of the mesh clients, the inter-
ference meter and the topology control tool. New clients can be easily added to the
network. Like MAYA, ATMA requires the usage of a proper routing mechanism
on the nodes and does not support software updates.

20

3.2.3 JANUS

“A Framework for Distributed Management of Wireless Mesh Networks (JANUS)”
[24] is a management solution for WMNs implemented with the Java programming
language. The JANUS architecture consists of four components. The first compo-
nent is the mesh node itself, called the managed device. The mesh node runs the
second component, the JANUS agent, a software process which listens on incom-
ing connections. The third component is the mesh knowledge base which holds
information about manageable parameters for the mesh node. The last compo-
nent is the JANUS client, a software process running on the mesh nodes used for
monitoring and controlling network parameters. The client polls the agent and
replies on requests with the corresponding parameters found in mesh knowledge
base. The JANUS architecture is very similar to the one used in Simple Network
Management Protocol (SNMP).

JANUS is fully distributed and uses a peer-to-peer overlay network for commu-
nication. Mesh connectivity is provided by Mesh Connectivity Layer (MCL) [25].
Therefore, in the actual implementation JANUS is not platform independent. In
addition, the JANUS implementation requires a Java virtual machine installed on
the nodes.

3.2.4 DAMON

DAMON [23] is a monitoring solution for WMNs, which is implemented in a
agent-sink architecture. The agents are running on the nodes and broadcast pe-
riodically their presence to the sinks. DAMON is a monitoring framework only,
management of the mesh nodes is not supported. DAMON is used to collect net-
work traffic statistics for later evaluation.

Like MAYA, DAMON uses the AODV routing protocol in the WMN. The
DAMON agent is implemented in the Perl programming language and consists
of collector modules, which send the monitored data to the sinks. The collected
data consists mainly of AODV control messages and data traffic statistics. Like
MAYA, DAMON is not functional without a properly set up routing mechanism
on the nodes. Although being no configuration framework, DAMON is presented
in this section due to its distributed architecture. In addition a modified version of
DAMON is used in the ATMA implementation described in Subsection 3.2.2.

3.3 Discussion

None of the build systems presented fulfils all requirements for the automated build
system needed by ADAM. None of the management solutions analysed is capable
of software updates or service configuration on the nodes as required by ADAM.
Moreover, the shown management solutions are not designed to be independent
from the routing mechanism used in the WMN. In addition, the desired detection of
misconfigured nodes or a safe update procedure for software images are not present

21

Feature OpenWrt Openembedded CLFS
Build front-end make bitbake none
Support for uClibc by default difficult possible
Automated building yes yes no
Documentation quality usable poor only documentation
Package manager required yes no no
Effort for integrating ADAM high acceptable minimal

Table 3.1: Key features of existing build systems

Feature MAYA DAMON ATMA JANUS
Distributed architecture yes yes yes yes
All traffic encrypted yes n/a n/a n/a
Linux distribution used OpenWrt n/a OpenWrt n/a
Programming languages used C, Shell Perl C Java
Monitoring support yes yes yes yes
Support for configuration yes no yes yes
Support for software updates no no no no
Adhoc routing needed yes yes yes n/a
Adhoc routing used AODV AODV AODV n/a
Management server required yes yes (sinks) yes no

Table 3.2: Key features of existing monitoring/management solutions

in any implementation. For completeness, a comparison between the key features
of the inspected build systems and management solutions is shown in Tables 3.1
and 3.2.

3.4 Assets and Drawbacks of SRM

SRM [16] introduced a configuration mechanism based on Cfengine [15] for
WMNs built of PC Engines Alix and Wireless Router Application Platform
(WRAP) nodes. Cfengine is a stable, secure and powerful framework for con-
figuring Linux and UNIX-like systems in general, not only embedded devices.
SRM showed that Cfengine is a modular and extensible solution for secure remote
management of WMNs. Regarding embedded devices, Cfengine and its required
libraries (OpenSSL, Berkeley DB) are relatively big binaries, SRM requires there-
fore node hardware which has at least 8 MByte permanent storage. On smaller
systems no space for user defined software and tools would be left. SRM has
showed some little drawbacks. SRM configuration modules are written in Bash .

22

SRM calculates reachable peers for Cfengine according the network settings of the
nodes. Once a node is misconfigured somehow, its connection to the configuration
system could be lost. Therefore a complicated and time consuming mechanism for
detection of lost nodes and their reintegration in the network is used. Furthermore,
SRM assumes a correct system time on the nodes. Therefore external time sources
like Network Time Protocol (NTP) servers or battery driven real-time clocks are
required. All modifications in network configurations have to be applied tempo-
rary first and checked for stability and reachability of nodes before being applied
permanently. In order to make network configurations permanent the path from the
management node to the reconfigured node has to be traversed at least three times,
once for the propagation of the modifications, once for the answer that they are sta-
ble and temporary accepted, and the last time for the propagation of the message
that the node can make these modifications permanent. This has a heavy impact
on propagation times for network configuration changes and the overall conver-
gence of the network. Moreover, during such network reconfigurations no other
concurrent actions like for example updating firmware are possible.

External automatic address configuration systems like for example Dynamic
Host Configuration Protocol (DHCP) are not fully supported in SRM, at least some
static addresses have to be defined for a functional peer detection. If no static
addresses are configured, no peers can be reached, as no addresses are known in
the network. Moreover, there is neither Internet Protocol Version 6 (IPv6) support
nor configuration of services like NTP or DHCP existing in SRM.

23

Chapter 4

ADAM Build System

The end product of the ADAM build system are appropriate software images for
all supported embedded devices. As described in Chapter 2, a cross toolchain is re-
quired for compiling software for particular embedded devices. The ADAM build
system automates the installation of an appropriate cross toolchain as well as the
cross compilation of the selected software for the target board. The ADAM build
system therefore requires only the source code of the used software, and is there-
fore hardware independent. The ADAM build system consists of two main parts,
the software build process and the image creation process. The first part, the soft-
ware build process simplifies the cross compilation of software for different wire-
less mesh nodes. In this chapter the internal functionality and structure of the
software build process is presented. The installation of the ADAM build system,
its setup procedures for building for a specific platform, the toolchain building and
the usage of the toolchain to cross compile software for the target platform are
shown.

As second part of the ADAM build system, the image creation process, which
generates appropriate software and configuration images for the mesh nodes out of
the cross compiled software is described in detail in Chapter 5. The ADAM build
system requires a recent Linux workstation with accurate performance and root
access. Nothing else is needed, the ADAM build system creates the required soft-
ware images for supported node devices with a few command line invocations.
The ADAM build system is extensible and customisable. Support for new software
packages or new target platforms is added with a small effort.

Once a board is supported by the ADAM build system, it can participate in a
WMN managed by the ADAM configuration framework described in Chapter 6.

4.1 Prerequisites for the Host Platform

The requirements and procedures for building a toolchain, which cross compiles
software packages for mesh nodes were described in a general way in Chapter
2. Two hardware platforms are involved in the build process. The first platform,
the host platform, actually does all computation intensive work from generating a

25

toolchain via cross compiling to image generation. The second platform, the target
platform, is the embedded node device for which the software is cross compiled.
The host platform should be selected by the developer in terms of accurate per-
formance and storage capacity. The prerequisites concerning required tools and
operating system versions for the host system should be as few as possible, which
allows using a wide variety of host platforms.

Some constraints concerning the host platform are however unavoidable. It
should run a recent Linux kernel (version 2.6.22 or higher), older versions were
not tested and therefore not officially supported. The ADAM build system does not
require a special Linux distribution, generally all distributions are supported, but
some development tools and programs are needed by the build system. For example
at least a C compiler has to be installed, it is required to create the intermediate
cross compiler. Other necessary tools and programs have to be installed on the host
system. Table 4.1 shows all these required packages, their minimal version needed
and the functions provided by them. These tools can be installed regularly with
the package manager of the particular distribution. In addition, the development
parts associated to a particular package have to be installed if the distribution uses
such development packages (Debian, Ubuntu, Fedora). The ADAM build system
checks for the existence of all required tools and their minimal versions in the setup
procedure for a specific platform.

4.2 Organisation and Structure

The software build process for a particular embedded system is a complex proce-
dure and requires many dependent tasks to be executed in the correct order. The
goal of the build process is to cross compile software for the embedded target
device using only the available source code. The ADAM build system tries to sim-
plify this process by providing an easy understandable and extensible infrastructure
for configuration and execution of these tasks.

The ADAM build system is therefore organised in three main parts, one com-
mand line build front-end, called build-tool, and the directories buildconfig and
buildscripts, containing all build task configuration data, and the package build
scripts used to execute the different tasks, respectively.

4.2.1 Build-Tool Front-End

The command line front-end of the ADAM build system is build-tool. It is used
to control the whole software build process, from source code to cross compiled
software for a specific target board. The command line front-end build-tool is
therefore the only tool needed by the end user for completing the software build
process, if no further customisation is needed. Such customisation actions for the
ADAM build system are explained in Section 4.4.

26

Package Minimal version Provided programs
Bash 2.05a Shell used by the build system
Binutils 2.12 ELF binary tools
Bison 2.3 Parser generator
Bzip2 1.0.2 Bzip2 compression utilities
Coreutils 5.0 Programs for managing the basic system properties
Diffutils 2.8 Utilities that show the differences between files
Findutils 4.1.20 Programs to find files or directories
Flex 2.5.33 Tool that creates pattern recognition programs
Gawk 3.0 Programs for manipulating text files
GCC 2.95.3 GNU Compiler Collection
Glibc 2.2.5 GNU C library
Grep 2.5 Tools for searching through files
Gzip 1.2.4 Gzip compression utilities
Make 3.79.1 Program for compiling source code
Patch 2.5.4 Tool for modifying or creating files
Sed 3.0.2 Stream editor
Tar 1.14 Tar archive utilities
Curl 7.18 Program for downloading files
Texinfo 4.4 Info documentation utilities
Pkg-config 0.22 Tool for reading package compile information

Table 4.1: Required packages for the host platform

27

Figure 4.1: The three build-tool main modes

If someone wants to build the already supported packages for an already sup-
ported target platform, only three different invocations of build-tool on the com-
mand line are required to achieve this goal and complete the software build process.
These three main modes of build-tool include the following procedures which are
also shown in Figure 4.1. Each procedure requires the successful completion of
the preceding procedure. Listing 4.1 shows the different command line arguments,
which are used to control the three main modes of build-tool.

1. build-tool setup <board>

The setup procedure for a specific target board includes a sanity check of the
host system, adds a build user, sets up its environment and collects the right
build configuration data and copies it in the build users home directory. The
build user is mainly used to provide a clean build environment.

2. build-tool toolchain <board>

The build user and the build configuration data in its home directory are used
to compile and install the cross toolchain packages.

3. build-tool packages <board>

Use the cross toolchain installed for the specified target board to cross com-
pile and install all the needed software packages for the target board.

root@monk:˜/image-builder# ./build-tool
Usage ./build-tool setup <boardname>

./build-tool toolchain <boardname> [package1 package2...]

./build-tool packages <boardname> [package1 package2...]

root@monk:˜/image-builder#

Listing 4.1: Usage of the build-tool front-end

28

4.2.2 Build Users

For each supported target board the ADAM build system utilises a unique user id
on the host system for compilation and installation of the software. Such a user is
called build user and corresponds to a normal user id on the host system. A build
user for a specific target follows a naming convention and is called target-builder.
Due to access permissions, each build user is able to compile and install software
only in its home directory. All processes used for compilation and installation run
with the unprivileged user id of the build user.

This has the advantage, that an eventually bad written package build script is
not able to overwrite critical system files on the host system. It further enables the
possibility of multiple simultaneous build processes for different target platforms
on one host system.

But using build users has the disadvantage of a more complex setup procedure.
Build users and their home directories have to be created in this setup procedure
for a specific target platform. Normally adding users requires root privileges and
therefore build-tool requires root rights on the host system at least for this task.

4.2.3 Configuration of the Build Process

The build process for a particular platform is configured with several configuration
files in plain text format. First of all, each supported target platform is described
with a corresponding build profile. It is the most important configuration file and
contains mandatory information about the processor and architecture of the target
board. These build profiles are described in more detail in Subsection 4.2.4. Sec-
ond, in addition to the build profile, a platform dependent Linux kernel and uClibc
configuration file are required for each supported target board. These two configu-
ration files are required to compile a platform dependent Linux kernel and uClibc
library. Third, configuration files can also be patches for a specific software pack-
age. Patches are text files containing user defined changes and fixes for package
source code, mostly in a file format provided by the diff program. All these con-
figuration files used for steering and fine tuning of the build process are contained
in the buildconfig directory. The buildconfig directory therefore contains required
information about the target board, configuration files for particular packages, and
patches for the different software packages. It is organised in several files and
directories, a detailed view of them is also shown in Figure 4.2.

The special directory generic contains build task configuration files common
to all target platforms. In addition, each supported target platform needs a cor-
responding directory containing platform specific configuration files, which are
either not already contained in the generic directory, or which overwrite build
configuration files contained in the generic directory.

This structure behaves like a simple inheritance chain. As long as a specific
build configuration file is not present in the specific directory for the target plat-

29

Figure 4.2: Details of the software build process

30

form, the corresponding file in the generic directory is used. Practically this is
achieved by copying the contents of generic to buildconfig in the home directory
of the build user in a first step. By copying the contents of the target specific di-
rectory in a second step, certain generic build configuration data is overwritten
selectively for the target platform used.

Patches for software packages are located in the patches sub-directory of each
build configuration directory and ordered according the package name and its ver-
sion. Therefore if a patch has to be applied for all platforms, it has to be contained
in the generic/patches sub-directory. If a patch has only to be applied for a par-
ticular platform it has to be located inside the platform specific <board>/patches
sub-directory. Patches are applied to unpacked source code archives with the patch
tool. The ADAM build system provides an internally defined function which col-
lects and applies patches automatically if the version and the name of the package
matches. With this structure new patch files for a particular package version and
target platform have to be copied only to the right patches directory to be automat-
ically applied by the build system.

4.2.4 Build Profiles

As seen in the previous subsection, all attributes of a specific target platform are
contained in a special configuration file. This configuration file is the build profile
for the target platform and mandatory for all supported platforms. A build profile
has to be named buildprofile and is located in the target specific directory inside the
buildconfig directory. The format of the file is plain text and contains assignments
in the form VARIABLENAME=value. Required variables are the name of the target
board, its architecture and processor type and the default selection of software
packages to build for the target board. In addition, a shell function has to be defined
containing the commands to create a bootable kernel image from the generic kernel
image compiled for the platform. Listing 4.2 shows the build profile for the Meraki
[5] board containing the different required parameters.

This is the build profile for the Meraki board

Name of your board
BOARDNAME=meraki
Target triplet
BOARDTARGET=mips-linux-uclibc
Architecture
BOARDARCH=mips
If BOARDARCH=mips, you need to define MIPSLEVEL.
MIPSLEVEL=1

These packages get built by default:
BOARDPACKAGES="zlib openssl curl dropbear openntpd nostromo busybox linux

madwifi wireless-tools module-init-tools iproute2 iputils ipv6calc
iptables flex radvd sudo db cfengine olsrd"

The board-specific function ${BOARDNAME}-genimage.
For meraki this is pretty easy, just gzip and copy

31

${KERNELDIR}/arch/${BOARDARCH}/boot/vmlinux.bin.
meraki-genimage()
{

cp ${KERNELDIR}/arch/${BOARDARCH}/boot/vmlinux.bin ${BOARDNAME}-image-
${1}.bin

gzip -f -9 ${BOARDNAME}-image-${1}.bin
chmod 644 ${BOARDNAME}-image-${1}.bin.gz

}

Listing 4.2: Build profile for the Meraki board (buildprofile)

4.2.5 Build Environment

The ADAM build system uses the shell environment variables of each build user to
create a so called build environment dedicated to a specific target board. A build
environment for a particular target board is created by exporting shell environment
variables to the build users shell. These shell environment variables define the
required parameters used for the build process like the different directories used,
architecture and processor type related information and the default package set
which is built for the given target platform. These environment variables are set up
by the normal Bash initialisation profiles .bash profile and .bashrc located in the
build users home directory. The initialisation profiles have to be generated by the
setup procedure from the information found in the build profile for the the selected
target board. Listings 4.3 and 4.4 show examples of both Bash initialisation profiles
for the meraki-builder build user.

set +h
umask 022
unset CFLAGS
unset CXXFLAGS
export LC_ALL=POSIX
export BUILDDIR="${HOME}"
export BUILDCONFDIR="${BUILDDIR}/buildconfig"
export INSTALLDIR="${BUILDDIR}/target"
export SRCDIR="${BUILDDIR}/sources"
export PATH=${INSTALLDIR}/cross-tools/bin:/bin:/usr/bin
export CROSS_TARGET=mips-linux-uclibc
export BOARDNAME=meraki
export BOARDTARGET=mips-linux-uclibc
export BOARDARCH=mips
export BOARDPACKAGES="zlib openssl curl dropbear openntpd nostromo busybox

linux madwifi wireless-tools module-init-tools iproute2 iputils
ipv6calc iptables flex radvd sudo db cfengine olsrd"

export MIPSLEVEL=1
export CC="mips-linux-uclibc-gcc"
export CXX="mips-linux-uclibc-g++"
export AR="mips-linux-uclibc-ar"
export AS="mips-linux-uclibc-as"
export LD="mips-linux-uclibc-ld"
export RANLIB="mips-linux-uclibc-ranlib"
export READELF="mips-linux-uclibc-readelf"
export STRIP="mips-linux-uclibc-strip"
export BUILD="-mabi=32"

Listing 4.3: Bash initialisation profile (.bashrc)

32

exec env -i HOME=${HOME} TERM=${TERM} PS1=’buildenv:\u:[\w] $ ’ /bin/bash

Listing 4.4: Bash initialisation profile (.bash profile)

4.2.6 Package Build Scripts

A package build script is a Bash shell script with the .sh file extension. Every single
task which has to be executed in the build process is described with a correspond-
ing package build script in the buildscripts directory (e.g. package.sh). Package
build scripts contain the shell commands for downloading, compiling and installing
software packages.

Package build scripts are split up into two categories, toolchain build scripts
and package build scripts. Toolchain build scripts are used for building cross
toolchain related packages and are located in the toolchain sub-directory. Normal
build scripts are used for building all other software packages and are contained in
the packages sub-directory.

The first section of a package build script is used for the definition required
variables, like the version of the package, its download location and a check sum
for its source archive. In addition, some commonly used functions for downloading
and patching the source code are loaded in this section. The second section is the
current task to be performed. The build task for an average package is generally
divided into the following six finer steps.

1. Download of package source archive

Fetch the package source archive from its download location and verify its
integrity by calculating and comparing the check sum. This sub-task can
be done by the internally defined functions download gz(), download bz2()
or download file() for gzip or bzip2 compressed tar archives and other file
formats respectively.

2. Decompression of package source archive

Unpack the source archive and change into the created source directory. Nor-
mally two shell commands are enough to achieve this.

3. Patching package source code

Apply all matching patches found for this package version in the buildcon-
fig directory. This sub-task can be done by the internally defined function
patch src().

4. Package configuration

Configure the package for cross compiling. This sub-task differs from pack-
age to package. It can be very complex and consist of several shell com-
mands or it may be nothing at all.

33

5. Package compilation

Compile the package. Mostly one more or less complex make command
solves this issue.

6. Package installation

Install the package to the right place. This is generally a problem of copying
the right files to the correct destination, which is not as easy as it seems for
some packages. This installation sub-task must consider the image creation
process described in Chapter 5. Cross compiled binaries and libraries have
to be installed to the home directory of the build user inside the target di-
rectory, while configuration files and init scripts have to be installed to the
configuration templates located in the config directory.

These sub-tasks can be individually defined or omitted in the corresponding
package build script. There even exist package build scripts which do not belong
to a particular package, they are used to execute tasks which are not related to any
package, like e.g. cleaning up the build environment after the installation of the
cross toolchain.

An example for a normal package build script is shown in Listing 4.5. It is
the build script for the cross compilation and installation of the commonly used
zlib compression library. The name of the build script is derived from the name
of the package, e.g. zlib.sh. Another example for a package build script is shown
in Listing 4.6. It is a toolchain build script called cross-gcc.sh, which compiles
and installs the final cross compiler during the cross toolchain installation process.
As already seen, it is possible that a build script does not compile software, but
performs other important tasks in the build process. An example for this kind of
a build script is shown in Listing 4.7. It is responsible for cleaning up the build
environment after the cross toolchain installation. Since no package is related to
this build script its file name except for its extension can be chosen freely.

#!/bin/bash

##
. ${BUILDDIR}/buildscripts/functions

VERSION="1.2.3"
SHA1SUM="967e280f284d02284b0cd8872a8e2e04bfdc7283"
URL="http://www.zlib.net"
FALLBACK="http://danielbalsiger.ch/image-builder"
BUILD_DEPS="toolchain"
##

download_bz2 zlib &&

cd ${BUILDDIR} &&
tar -xjvf ${SRCDIR}/zlib-${VERSION}.tar.bz2 &&
cd zlib-${VERSION} &&

patch_src zlib &&

34

sed -e ’s/-O3/-Os/g’ -i configure &&
CC="${CC} -Os -fPIC" ./configure --prefix=/usr --shared &&
make &&

make DESTDIR=${INSTALLDIR} install &&
mv -v ${INSTALLDIR}/usr/lib/libz.so.* ${INSTALLDIR}/lib &&
ln -svf ../../lib/libz.so.1 ${INSTALLDIR}/usr/lib/libz.so &&
ln -svf libz.so.1 ${INSTALLDIR}/lib/libz.so &&

cd ${BUILDDIR} &&
rm -rf zlib-${VERSION}

Listing 4.5: Example of a package build script (zlib.sh)

#!/bin/bash

##
. ${BUILDDIR}/buildscripts/functions

VERSION="4.2.4"
SHA1SUM="bb20efc7750fe0d6172c5945572bf036fe59d3dd"
this is 4.1.2 SHA1SUM="7981b8d1b58b10ddfd7d5142eab16352d9206f3b"
URL="http://ftp.gnu.org/gnu/gcc/gcc-${VERSION}"
FALLBACK="http://danielbalsiger.ch/image-builder"
##

download_bz2 gcc &&

cd ${BUILDDIR} &&
tar -xjvf ${SRCDIR}/gcc-${VERSION}.tar.bz2 &&
cd gcc-${VERSION} &&

patch_src gcc &&

mkdir -v ../gcc-build &&
cd ../gcc-build &&
../gcc-${VERSION}/configure --prefix=${INSTALLDIR}/cross-tools --target=${

CROSS_TARGET} --disable-multilib --with-sysroot=${INSTALLDIR} --
disable-nls --enable-shared --enable-languages=c,c++ --enable-
__cxa_atexit --enable-c99 --enable-long-long --enable-threads=posix --
enable-libssp &&

make &&
make install &&

cd ${BUILDDIR} &&
rm -rf gcc-${VERSION} gcc-build

Listing 4.6: Example of a toolchain build script (cross-gcc.sh)

#!/bin/bash

##
No download, no source
##

echo export CC=\""${CROSS_TARGET}-gcc\"" >> ˜/.bashrc &&
echo export CXX=\""${CROSS_TARGET}-g++\"" >> ˜/.bashrc &&
echo export AR=\""${CROSS_TARGET}-ar\"" >> ˜/.bashrc &&
echo export AS=\""${CROSS_TARGET}-as\"" >> ˜/.bashrc &&
echo export LD=\""${CROSS_TARGET}-ld\"" >> ˜/.bashrc &&

35

echo export RANLIB=\""${CROSS_TARGET}-ranlib\"" >> ˜/.bashrc &&
echo export READELF=\""${CROSS_TARGET}-readelf\"" >> ˜/.bashrc &&
echo export STRIP=\""${CROSS_TARGET}-strip\"" >> ˜/.bashrc &&
if ["${BOARDARCH}" == "mips"] ; then

echo export BUILD=\""-mabi=32\"" >> ˜/.bashrc
fi &&
cd ${BUILDDIR} &&
tar -cjvf toolchain-${BOARDNAME}.tar.bz2 target &&
touch ${BUILDDIR}/.toolchain &&

cd ${BUILDDIR}

Listing 4.7: Example of a task build script (cleanup.sh)

4.3 Building for a Specific Target Platform

In the previous sections the organisation and structure of the build system were
outlined. This section explains in more detail how this structure is used to cross
compile target board software with build-tool in three simple steps. The roles of
the build user, its build environment and the build profile for the target board were
already explained. If such a build profile is available, the build system knows
everything to start the build process for a particular target board. Figure 4.2 shows
the control flow of the three main operations of build-tool and the involved files
and directories.

4.3.1 Target Board Setup Procedure

Before compiling any software or installing a cross toolchain, the host system for
the selected target platform has to be set up. The target board setup procedure, also
shown in Figure 4.2, selects a supported target board and sets up all build parame-
ters for the chosen platform. First of all the setup procedure does the sanity checks
of the host system as already mentioned in Section 4.1, adds the build user and cre-
ates its home directory, if neither the build user nor its home directory are existing.
In a second step the build environment for the build user is created and some nec-
essary directories are made in its home directory, namely target, where the cross
compiled software will be installed and buildlogs, where build logs of each pack-
age are saved. Additionally the setup procedure does create two symbolic links in
the build users home directory to the real buildscripts and sources directories, lo-
cated in the source directory, shown also in Figure 4.2. Therefore the build scripts
and downloaded source archives are shared among all build users, which enables
to reuse already downloaded source archives for other platforms. On the contrary,
each build user gets its own copy of the buildconfig directory for profiting of the
inheritance chain already explained in Subsection 4.2.3. The normal setup proce-
dure for a particular target board is simply performed by executing build-tool with
the mandatory setup and target board arguments, as shown in Listing 4.8.

36

4.3.2 Cross Toolchain Installation

After a successful setup procedure, the build user has been created and its build
environment is set up to compile software for the selected target board. Now the
cross toolchain can be installed, which is achieved with the special toolchain build
scripts described in Subsection 4.2.6. The default toolchain packages and their
installation order is hard-coded, as it is seldom necessary to change neither the used
build scripts nor their order. Nevertheless, the toolchain building behaviour can be
easily adapted. Subsection 4.4.1 outlines this process. The normal procedure for
a toolchain installation is started by build-tool with the mandatory toolchain and
target board arguments, as shown in Listing 4.9. The toolchain is installed to the
target/cross-tools directory located in the build users home directory.

4.3.3 Building Software Packages

After a successful cross toolchain installation, the cross compiler for the target
platform is available in the target/cross-tools directory. It is used to cross compile
software packages for the target platform. All these software packages are built and
installed with the help of the package build scripts described in Subsection 4.2.6.
Each package has its corresponding package build script responsible for cross com-
piling and installing its associated binaries and libraries. As seen before the default
package set to build and its order is defined in the build profile of the target board.
Each package build script installs its cross compiled binaries to target/sbin and
target/bin, and shared libraries to target/lib inside the build users home directory,
where they can be found by the image creation process described in Section 5.2.
All other directories in target are not used by the image creation process, especially
the target/usr directory. Therefore development related files, for example compile
information used by the pkg-config program, static libraries, include files and all
documentation should be installed to the target/usr directory. Software packages
are built and installed by executing build-tool with the mandatory packages and
target board arguments, as shown in Listing 4.10.

4.3.4 Configuration Files and Initialisation Scripts

If a package requires special configuration files or init scripts, in short files which
are not cross compiled binaries or libraries, these files have to end up in the con-
figuration images described in Subsection 5.1.2 and therefore have to be treated
specially. Unlike cross compiled software they must not be installed to the target
directory inside the build users home directory, as they are not part of the software
images created out of these directories. Package build scripts do not have to per-
form any action on such configuration files or init scripts. Their installation can
be simply omitted in the installation sub-task of the package build script, they are
only treated in the configuration image creation process described in Section 5.3.
However, it is advisable to check for their existence and correctness in the config-

37

uration templates located in config, when packages are upgraded from one version
to another.

4.3.5 Sample Output of Build-Tool

This section provides some sample output of build-tool during the setup, the cross
toolchain installation and the package installation procedures for the Meraki target
board.

root@monk:˜/image-builder# ./build-tool setup meraki
Your host system should have at least these programs installed,
in the following minimal versions:

Bash-2.05a
Binutils-2.12
Bison-2.3
Bzip2-1.0.2
Coreutils-5.0
Diffutils-2.8
Findutils-4.1.20
Flex-2.5.33
Gawk-3.0
Gcc-2.95.3
Glibc-2.2.5
Grep-2.5
Gzip-1.2.4
Make-3.79.1
Patch-2.5.4
Sed-3.0.2
Tar-1.14
Curl (for downloads, any version)
Texinfo 4.4
Pkg-config 0.9

I will search for them now and print their version:

GNU bash, version 3.2.39(1)-release (i486-pc-linux-gnu)
GNU ld (GNU Binutils for Ubuntu) 2.18.93.20081009
bison (GNU Bison) 2.3
bzip2, a block-sorting file compressor. Version 1.0.5, 10-Dec-2007.
chown (GNU coreutils) 6.10
diff (GNU diffutils) 2.8.1
find (GNU findutils) 4.4.0
flex 2.5.35
GNU Awk 3.1.6
gcc (Ubuntu 4.3.2-1ubuntu12) 4.3.2
GNU C Library development release version 2.8.90, by Roland McGrath et al.
GNU grep 2.5.3
gzip 1.3.12
GNU Make 3.81
patch 2.5.9
GNU sed version 4.1.5
tar (GNU tar) 1.20
curl 7.18.2 (i486-pc-linux-gnu) libcurl/7.18.2 OpenSSL/0.9.8g zlib/1.2.3.3

libidn/1.8
makeinfo (GNU texinfo) 4.11
pkg-config 0.22

If your package version requirements are fulfilled,

38

you may continue with the installation.
Otherwise install the missing tools or choose another host system.
You have been warned!

Press ’y’ to continue installation, ’n’ to abort
y

Checking for build user

Adding user and group meraki-builder:

Setup done for building a meraki toolchain.

root@monk:˜/image-builder#

Listing 4.8: Output of the target board setup procedure

root@monk:˜/image-builder# ./build-tool toolchain meraki

Toolchain mode detected, I will install the following packages in order
from left to right:

base-files linux-headers cross-binutils uclibc-headers cross-gcc-static
uclibc cross-gcc cleanup

Packages will be built in: /home/meraki-builder
Package sources are in: /home/meraki-builder/sources
Extra configuration is in: /home/meraki-builder/buildconfig
Packages will be installed to: /home/meraki-builder/target
Packages get compiled by: /home/meraki-builder/buildscripts/toolchain

/<package>.sh
Buildlog is in: /home/meraki-builder/buildlogs/<package>.

buildlog
Compiler used: gcc
Target system triplet is: mips-linux-uclibc

Are these values reasonable ? Begin installation [y/n]
y

Sat Mar 28 09:03:43 CET 2009: Installing package base-files...
Sat Mar 28 09:03:43 CET 2009: Installing package linux-headers...
Sat Mar 28 09:04:45 CET 2009: Installing package cross-binutils...
Sat Mar 28 09:08:46 CET 2009: Installing package uclibc-headers...
Sat Mar 28 09:08:54 CET 2009: Installing package cross-gcc-static...
Sat Mar 28 09:16:12 CET 2009: Installing package uclibc...
Sat Mar 28 09:17:31 CET 2009: Installing package cross-gcc...
Sat Mar 28 09:28:56 CET 2009: Installing package cleanup...

Sat Mar 28 09:29:35 CET 2009: Toolchain installation of packages base-
files linux-headers cross-binutils uclibc-headers cross-gcc-static
uclibc cross-gcc cleanup completed.

root@monk:˜/image-builder#

Listing 4.9: Output of the cross toolchain installation procedure

39

root@monk:˜/image-builder# ./build-tool packages meraki

This will install the following packages in order from left to right:

zlib openssl curl dropbear openntpd nostromo busybox linux madwifi
wireless-tools module-init-tools iproute2 iputils ipv6calc iptables
flex radvd sudo db cfengine olsrd

Packages will be built in: /home/meraki-builder
Package sources are in: /home/meraki-builder/sources
Extra configuration is in: /home/meraki-builder/buildconfig
Packages will be installed to: /home/meraki-builder/target
Packages get compiled by: /home/meraki-builder/buildscripts/packages

/<package>.sh
Buildlog is in: /home/meraki-builder/buildlogs/<package>.

buildlog
Cross-Compiler used: mips-linux-uclibc-gcc
Target system triplet is: mips-linux-uclibc

Are these values reasonable ? Begin installation [y/n]
y

Sat Mar 28 09:34:07 CET 2009: Installing package zlib...
Sat Mar 28 09:34:10 CET 2009: Installing package openssl...
Sat Mar 28 09:36:52 CET 2009: Installing package curl...
Sat Mar 28 09:37:57 CET 2009: Installing package dropbear...
Sat Mar 28 09:38:38 CET 2009: Installing package openntpd...
Sat Mar 28 09:38:52 CET 2009: Installing package nostromo...
Sat Mar 28 09:38:55 CET 2009: Installing package busybox...
Sat Mar 28 09:40:01 CET 2009: Installing package linux...
Sat Mar 28 09:46:49 CET 2009: Installing package madwifi...
Sat Mar 28 09:47:17 CET 2009: Installing package wireless-tools...
Sat Mar 28 09:47:20 CET 2009: Installing package module-init-tools...
Sat Mar 28 09:47:26 CET 2009: Installing package iproute2...
Sat Mar 28 09:47:49 CET 2009: Installing package iputils...
Sat Mar 28 09:47:52 CET 2009: Installing package ipv6calc...
Sat Mar 28 09:47:59 CET 2009: Installing package iptables...
Sat Mar 28 09:48:13 CET 2009: Installing package flex...
Sat Mar 28 09:48:31 CET 2009: Installing package radvd...
Sat Mar 28 09:48:40 CET 2009: Installing package sudo...
Sat Mar 28 09:48:53 CET 2009: Installing package db...
Sat Mar 28 09:50:09 CET 2009: Installing package cfengine...
Sat Mar 28 09:51:20 CET 2009: Installing package olsrd...

Sat Mar 28 09:51:31 CET 2009: Installation of packages zlib openssl curl
dropbear openntpd nostromo busybox linux madwifi wireless-tools module
-init-tools iproute2 iputils ipv6calc iptables flex radvd sudo db
cfengine olsrd completed.

root@monk:˜/image-builder#

Listing 4.10: Output of the package installation procedure

4.4 Customisation of the Build System

The ADAM build system follows a modular and extensible approach. It has been
developed to be as extensible and configurable as possible, every component can

40

be diversified by the developer according to future needs. Due to its modular de-
sign, practically the whole behaviour of the build procedure can be adjusted. Such
adjustments can be simple tasks as changing the default package selection for a
specific board or the order these packages are built, and more complex tasks, like
adding support for a new package or even a new target platform. This section
outlines the different customisation options of the ADAM build system.

4.4.1 User Defined Package Selection

Each build profile contains the default package selection to be built for a specific
target board. An example is shown in Listing 4.2. The default package selection
can be modified by editing the build profile and adjusting the BOARDPACKAGES
variable which defines the default package list. The build order of packages is
defined by the order of the appearance of the package in the default package list.

However, it is also possible to provide a temporary list of packages including
their build order as command line argument to build-tool. With this technique it is
possible to build any package set in a requested order without needing to change
the default package list defined in the build profile for the board. If for example
packages foo and bar have to be built and installed in this order for the board target
platform , the command line to be executed looks as follows.

build-tool packages board foo bar.
To cross compile and install only a single package, the command line provided

list can also contain only one single package. If the command line provided list is
empty the default package list defined in the build profile is taken. With the same
approach it is possible to change the internally hard-coded set of packages which
is used in the cross toolchain mode of build-tool.

4.4.2 Adding Support for New Packages

Adding support for a new package in the build system is another customisation
option often required by the developer. Therefore only a new package build script
has to be written.

If a new package foo has to be supported, the developer needs to create a new
package build script named foo.sh, which has to be located in the buildscripts/pack-
ages directory. This build script itself has to contain all commands to download,
unpack, patch, configure, cross compile and install the package foo.

These commands have to be defined by the developer, and should do the tasks
described in Subsection 4.2.6 and install all files belonging to the package to the lo-
cations explained in Subsection 4.3.3. Existing build scripts and a special skeleton
build script can provide a basis for writing new build scripts.

Once the build script for the new package has been written, the new package
can be built for any platform supported by the build system. Any new package
build script should be tested on any supported target platform in order to guaran-
tee proper functionality of the build system. Sometimes it is even required to add

41

additional platform dependent patches for the package to ensure a proper compi-
lation on all supported target platforms. In addition, if the package foo uses any
configuration files or special init scripts, the developer should add all these files to
the configuration templates described in Section 5.3.

4.4.3 Adding Support for New Target Platforms

Adding support for new target boards is the most work intensive customisation
action for the build system. In order to support new target boards, the following
three steps are necessary: Creation of a Linux kernel configuration file, a uClibc
configuration file and a build profile.

First of all, a Linux kernel configuration file for the new target board has to
be provided by the developer. Due to the high degree of hardware dependency of
the Linux kernel, this configuration file cannot be generated by the build system.
However, the Linux kernel configuration files for already supported platforms can
be taken as template to create the new configuration file more easily.

For the creation of a functional toolchain for the new target board, a config-
uration file for uClibc must be provided. Depending on the architecture of the
new target board this can be a more or less work intensive task. If a board with
the same processor architecture, e.g. i386 or Microprocessor without Interlocked
Pipeline Stages (MIPS) , is already supported by the build system, the existing
uClibc configuration file for the already supported board can be taken for the new
board. Otherwise the uClibc configuration file has to be created from scratch by
the developer. Like in the case of kernel configuration files, already existing uClibc
configuration files for other architectures can provide a basis for the new configu-
ration file. The Linux kernel as well as the uClibc build procedures provide a menu
based configuration mechanism to create these files.

Since each supported target board requires a build profile, such a build profile
has to be created in a third step. This is no difficult task in general, since only a few
variables have to be defined in the build profile. Once a Linux kernel and uClibc
configuration file as well as the build profile for the target board have been created,
the build system should be able to build a toolchain and all other packages for the
new target platform.

However, a complete test with all available packages should be performed to
validate the build system for the new target board. Maybe some package build
scripts have to be extended to work for the newly defined target board, and addi-
tional patches have to be provided to compile a package successfully.

42

Chapter 5

ADAM Images

The ADAM build system uses different images to deploy software as well as con-
figuration data to the nodes. This chapter will explain the differences between the
images used, their purpose, their creation process and their installation to different
node platforms. Moreover, the boot process of a deployed node is outlined.

5.1 Image Types

Several image types are required for ADAM. A node in an ADAM network uses a
configuration and a software image.

Every node, which is member of a network managed by the
ADAM configuration framework needs configuration information like net-
work settings and keys for a secure communication with other nodes. This
configuration information is vital for a working configuration framework and
differs naturally from one node to another. Further, each node platform should use
exactly the same cross compiled software. For this purpose ADAM provides the
two image types, software images and configuration images.

Software images contain all cross compiled software common to a specific
node platform, while configuration images contain node specific configuration data
which differs from node to node. Therefore one software image per node type and
one configuration image for each particular node has to be provided by the im-
age generation process. The split between node configuration and node software
allows updating software images without influencing the configuration of a par-
ticular node. Without this split it would be necessary to embed all node specific
configuration information directly into the software image and lead to a unique
software image for each node. In this case every image for a single node has to
be distributed inside the network. Software updates would be much more compli-
cated.

An individual configuration image has to be installed on each node to use a
software image. Without a configuration image a software image is not functional,
in fact the node does not even boot properly without it. Since each node has its
own configuration image, there have to be as much configuration images as nodes

43

in the network. Different software images are only needed if different node types
are used, exactly one software image per node type has to be provided.

The size of a software image depends on the target board and the amount of
software packages used. Software images which contain the default package se-
lection have a size of about 5 MByte (e.g. 5.2 MByte on Alix [6], 5.5 MByte on
Meraki [5] nodes). The size of a configuration image is 4 MByte for all node types.
However, the default configuration files stored in the configuration image use less
space (e.g. 400 KByte). On nodes with small storage footprints, it is even required
to install only the contents of the configuration image to the flash partition, as the
configuration image itself would not fit there.

5.1.1 Software Images

Software images contain all the cross compiled software for a specific node plat-
form, including all user space programs, libraries and the Linux kernel. The cross
compiled user space programs and libraries are contained in a compressed initramfs
cpio archive added to the Linux kernel image at compile time. The resulting soft-
ware image is a bootable Linux kernel image for the node platform. The format of
the software image therefore differs for each node platform, it depends on the boot
loader used, which has to be able to read the image to boot correctly. At boot time
the initramfs archive embedded in the software image is mounted read-writable as
root file system by the Linux kernel. All content of the initramfs archive is loaded
into RAM and therefore modifications are not permanent over reboots.

Initramfs archives are provided in a compressed format. This has the advan-
tage, that the uncompressed root file system in RAM is bigger than the correspond-
ing compressed embedded initramfs archive on secondary storage. On nodes with
a small secondary storage capacity like the Meraki, this technique allows using
root file systems whose uncompressed content would not even fit on the available
secondary storage.

If new packages have to be added or existing packages have to be replaced in
a software image, the generation and installation of a whole new software image
is required, which is a disadvantage of all-in-one software images compared to a
package manager based solution, where only the affected package would have been
added or replaced. Concerning space issues on the contrary, the all-in-one software
image approach is preferable, more software can be installed with it. Therefore
ADAM software images use exactly this all-in-one image approach.

5.1.2 Configuration Images

Since the contents of software images cannot be modified individually without in-
stalling a new software image, a node needs a possibility to save individual files
on secondary storage. For this purpose the configuration image is used. A config-
uration image contains all individual node specific configuration files and can be
used to save in principle any file on secondary storage as long as enough space is

44

left there. The contents of a configuration image are made available to a node by
mounting them to a special mount point /mnt/config, and copying them to the root
file system during the boot process. Which files are contained in a configuration
image is defined in the configuration file /etc/configfiles found on the nodes. With
the help of this file, the contents of a configuration image can be dynamically ad-
justed at run time. The init script used at boot time to load the initial contents is as
well used to store and load configuration data to or from the configuration image
at run time.

To generate and manage configuration images and their content easily, they
have the same format for all node types. A configuration image is a single loop-
back file containing a Second Extended Filesystem (Ext2), the standard file system
used on Linux systems. This file system holds the current contents of the configu-
ration image. On nodes with enough storage capacity the configuration image can
be directly written to disk or flash, with enough space available it is even possible
to install multiple configuration images, while on nodes with limited storage other
techniques have to be used. On the Meraki platform for example, the contents of
the configuration image are saved in a 1 MByte Journalling Flash File System ver-
sion 2 (JFFS2) partition, as there is no more space left on the device. However, the
only really important point is that a node can make the contents of its configuration
image available by mounting them to /mnt/config. With this approach all nodes
see their configuration information at the same place not regarding the method the
configuration image is stored on the node.

5.1.3 Standalone Images

Standalone images are fully functional as they are and run completely in RAM of
the target platform. They are a special class of software images and require no
additional configuration image to work. Static configuration data is embedded into
standalone images, they contain the whole root file system plus the configuration
data in their initramfs archive and are therefore fully self-contained. They are
perfectly adjusted for testing node hardware without bricking it. It is not necessary
to install a standalone image on the node hardware for a working WMN, these
images are only used to test node hard- and software (mostly the kernel itself) in a
simple and preserving way. Standalone images can even use a Network File System
(NFS) root file system, when the boot loader supports providing a command line to
the Linux kernel.

Some nodes require standalone images for installing the normal software im-
ages on the node’s flash storage. For example the boot loader on Meraki plat-
forms does not support writing files bigger than 5 MByte to its flash storage, so
a standalone image has to be used for this purpose. A standalone image is con-
figured to be easy accessible, it tries to get network setting using a DHCP client
on the wired interface and acts as an adhoc wireless Network Address Translation
(NAT) gateway on one wireless interface. A standalone image does not contain any
keys, therefore it cannot be managed with the configuration framework. Like in all

45

other software images, every change in the root file system of a standalone image
is not permanent over reboots.

5.2 Software Image Creation

Creating software images out of the cross compiled software is a relatively straight-
forward process for the end user. Like build-tool for the build system, a corre-
sponding front-end for the image creation process, called image-tool is used. As
seen before, the resulting software image has to be a bootable kernel image for
the given platform and contains an initramfs archive with the root file system of
the node. Creating such an image therefore consists of generating the initramfs
archive first, and second, a recompilation of the platforms Linux kernel for embed-
ding the previously generated new initramfs archive. The resulting Linux kernel
image has then to be adjusted to a format recognised by the platforms boot loader.
After this procedure the software image is ready for use and gets renamed to a stan-
dardised file name <board>-image-<version>.bin.gz. The details of the software
image creation are also shown in Figure 5.1.

5.2.1 Initramfs Archive Creation

For generating the initramfs archive the cross compiled software as well as
initramfs templates are used. These templates contain an initial directory struc-
ture for the root file system and files required to boot until a configuration image
can be mounted. Initramfs templates are located in the initramfs directory. An
initramfs archive is created by image-tool by the following steps:

1. Creation of temporary directory

This directory is the root for the initramfs archive.

2. Installation of common initramfs templates

Install the initial directory structure found in the common initramfs template
to the temporary directory.

3. Installation of platform specific templates

Copy files found in the platform specific initramfs template to the temporary
directory. This action allows overwriting files from the common initramfs
template with platform specific templates.

4. Installation of cross compiled software

As seen before in Chapter 4, the build system installs all cross compiled soft-
ware for a given target platform to the home directory of the corresponding
build user in target/bin, target/sbin and target/lib. Copy the contents of these
directories to the temporary directory and strip all debugging symbols out of

46

Figure 5.1: Details of the image creation process

47

the binaries, which makes them smaller and saves therefore valuable space
in the software image.

5. Kernel module installation

Install the kernel modules found in target/lib/modules to the temporary di-
rectory, compress them and adjust their dependency file. This saves a lot of
space in the system RAM of the nodes at run time.

6. Initramfs archive generation

Adjust ownership and permissions of all files in the temporary directory and
generate a cpio archive out of it.

7. Installation of initramfs archive

Move the new initramfs archive to the home directory of the platform build
user, where it can be found by the kernel recompilation procedure.

5.2.2 Linux Kernel Recompilation

For embedding the newly created initramfs archive a recompilation of the platform
specific Linux kernel image is needed. For each target platform this is done by a
special package build script in the build system. This build script (e.g. meraki-
image.sh, alix-image.sh) only recompiles the platform specific kernel image from
the kernel sources in the build users home directory. Since a generic kernel image
was already compiled by the build framework, the recompilation of the platform
specific kernel image consists of relinking the already compiled objects and the
new initramfs archive to a new platform specific kernel image.

5.2.3 Parameters for Image-Tool

For each software image to be created, image-tool needs to know the type of the
image (normal or standalone) as well as the node platform the image is for. In
addition a version string for the software image is required to distinguish different
software images from each other. Figure 5.1 shows schematically the creation of
software images out of the cross compiled software and initramfs templates. For
completeness the output of creating software images with image-tool is shown in
Listings 5.1 and 5.2 for a normal software and a standalone image, respectively.

5.3 Configuration Image Creation

Like software images, configuration images are created with the image-tool front-
end. Unlike software images, configuration images contain no cross compiled soft-
ware and therefore their creation is less complex. For creating configuration images
only configuration templates are used. These templates are located in the config di-
rectory and structured like initramfs templates. A generic configuration template,

48

which is shared by all node types, is used to create an initial configuration image.
The contents of this generic template, called common, can be individually over-
written for each node type by using a node type specific configuration template.
The procedure is very similar to the one outlined for initramfs templates. Since
configuration images are loopback files containing a Ext2 file system, image-tool
has to create such an loopback file out of the configuration templates. In order to
create a configuration image image-tool requires the node type for choosing the
right template and the host name of the node, as each node has a dedicated config-
uration image. A sample output of image-tool for configuration image creation is
provided in Listing 5.3.

A configuration image is only complete if an initial network configuration de-
scribed in Section 6.4 has been included. Such a network configuration can be
created manually or it is provided by the ADAM GUI in a compressed tar archive
format, and contains all initial network configuration files and all public/private
key pairs of all nodes. This initial network configuration is injected into config
images with image-tool. Therefore image-tool needs the configuration image of
every node participating in the configured network and the initial network config-
uration. Before injecting the initial network configuration into the configuration
images, image-tool checks for the existence of the required configuration images,
keys and network.conf files of the nodes. A sample output of image-tool for inject-
ing an initial network configuration is provided in Listing 5.4. Figure 5.1 shows
schematically the creation of a configuration image out of configuration templates
and the injection of an initial network configuration.

5.4 Installation and System Booting

Once all necessary images have been created by image-tool, these images have
to be installed on the node hardware. This means at least a software image for
each node hardware platform, and a configuration image for each single node have
to be available. Installing the images to the node hardware is called deployment
and can be a rather complicated procedure depending on the platform used. Boot
loaders have to be configured, second storage has to be partitioned, file systems
have to be made and software as well as configuration images have to be installed
to secondary storage. Due to the high hardware dependency of these tasks the
deployment procedure differs heavily from one platform to another. Therefore au-
tomation is very limited. A README file is provided for each supported target
platform, which contains an exact description of the particular hardware deploy-
ment process. For completeness two particular deployment processes are described
in detail. The first method is designed for devices which can use GRand Unified
Bootloader (GRUB) [26] and have block devices, which can be partitioned, like
hard disks or compact flashes. GRUB is the default boot loader used by the most
modern Linux distributions. A second method treats devices like the Meraki with

49

Figure 5.2: Run time layout of RAM and secondary storage of two platforms

50

custom boot loaders and internal NAND or NOR flash storage. Devices of the first
category are preferable due to the possibility of using a safe update mechanism for
software images with the help of GRUB, described in Subsection 6.6.1. Figure 5.2
shows a schematic run time layout of RAM and secondary storage of two different
deployed target nodes. The layout of the RAM looks the same for both hardware
platforms, which is intended.

5.4.1 GRUB with Normal Block Devices

If a platform can use GRUB and contains secondary storage known to the Linux
kernel as a normal block device, like a hard disk, the deployment process is pretty
straightforward. First of all, the block device has to be partitioned into two par-
titions. These partitions get formatted with an Ext2 file system. The first parti-
tion should be big enough to hold two software images if the safe update mecha-
nism with GRUB described in Subsection 6.6.1 should be used. On both partitions
GRUB configuration and stage files, which are used to read the file system have to
be installed. On the second partition two directories config and state have to be
made. After that, the software image is copied to the first partition in the / direc-
tory and the configuration image to the second partition in the config directory. In
a last step GRUB has to be installed to the Master Boot Record (MBR) of the block
device. Alix and WRAP nodes contain even an interchangeable compact flash card
which allows performing the deployment procedure on another system than the
node itself.

5.4.2 Custom Boot Loader with Flash Storage

The deployment process for systems with secondary storage realised in NAND or
NOR flash storage devices can be very complicated. This kind of flash storage is
known to the Linux kernel as Memory Technology Device (MTD) and treated as
character based, not as block based device. The partitioning and formatting of such
flash storage devices requires mostly special non standardised tools.

However, the Linux kernel allows treating such devices as block devices using
a special block emulation layer. This enables writing data in blocks to NAND or
NOR flashes with the dd tool, but introduces a big emulation overhead. There exist
special file systems supported by the Linux kernel, e.g. JFFS2, which are tailored
for MTD. These file systems provide to most efficient read and write operations
on MTD. Therefore configuration image contents have to be saved in a JFFS2 file
system on this device class.

Moreover, systems with NAND or NOR flash storage often use customised
boot loaders. Some of them are able to partition the flash device, others are not,
some require special Linux kernel image formats, others can boot normal gzip
compressed vmlinux images. An example of a platform which uses internal NAND
flash and a custom boot loader is the Meraki platform. The deployment process for
this platform is done with the help of a standalone image containing special scripts

51

to install the configuration and software image on the device. The unsafe update
mechanism for these devices is explained in Subsection 6.6.2.

5.4.3 Log and State Files

Each node uses special partition for the permanent storage of log and state files like
random seeds or log files. Since log files are rotated on all nodes, the size of these
log and state files can regarded to be constant. A special mount point on the nodes,
/mnt/state is used to access the secondary storage which contains the log and state
files. The partition which is used for this purpose has to be created in the hardware
deployment procedure, and can differ in its file system and its size between the
different platforms.

5.4.4 Booting a Node

The boot process of a node involves several steps until the node is fully operational.
Independent of the hardware type, if a node is powered up, the boot loader loads
the software image into RAM. After having been executed by the boot loader,
the Linux kernel takes over control, initialises hardware devices and mounts its
embedded initramfs archive as root file system and tries to execute the /sbin/init
binary found on the root file system as process with Process IDentfier (PID) 1.
This process starts various so called init scripts, located in the /etc/init.d directory
on the root file system, which take control of the further boot process. Figure 5.3
shows an overview of the init scripts involved, and their execution order.

The first init script executed by /sbin/init is called rc.sysinit and responsible for
mounting virtual file systems and populate the /dev directory with device nodes. It
executes rc.config, which loads the contents of the configuration image to the root
file system. Therefore both scripts rc.sysinit and rc.config must be contained in the
initramfs archive. All other init scripts are contained in the configuration image
and can be used after its successful loading. The first of these init scripts executed
is rc.state which makes available the permanent storage for log and state files on
/mnt/state as mentioned in the previous subsection. The second script rc.services
is a dispatcher script for various other init scripts which start and stop services stat-
ically defined in the configuration file /etc/conf.d/rc.conf. The default setup starts
the syslog, network, dropbear, crond and httpd services, which are required for a
functional configuration framework and remote logins. If the node boots the first
time, keys for the dropbear Secure SHell (SSH) server and a Secure Sockets Layer
(SSL) server certificate for httpd are automatically generated and stored in the con-
figuration image by the init scripts. The special network init script is responsible for
applying all network configuration manageable by the configuration framework.
Therefore the configuration information contained in /etc/conf.d/network.conf is
used. The rc.network script reads the newest version of the /etc/conf.d/network.conf
available and executes the following actions:

52

Figure 5.3: Details of the boot process

53

• Identify the network interfaces which have to be configured.

• Set configured netfilter firewall rules for IPv4 and IPv6.

• If some interfaces are configured by IPv4 DHCP, get the lease information
and write it to /etc/conf.d/network.conf as static information.

• Setup the special configuration IPv6 address described in Section 6.3.2 on
the wireless interface known by its Media Access Control (MAC) address.

• Configure all static IPv4 and IPv6 addresses on the requested interfaces.

• Set static default routes for IPv4 and IPv6.

• Configure static host name resolving in /etc/hosts.

• Configure static Domain Name System (DNS) servers in /etc/resolv.conf.

• Generate the configuration file /etc/ntpd.conf for NTP, and start the corre-
sponding server or client if requested.

• Generate the configuration file /etc/udhcpd.conf for the IPv4 DHCP server
and start the service if requested.

• Generate the configuration file /etc/radvd.conf of the IPv6 router advertise-
ment daemon and start the service if requested.

• Configure adhoc routing services. This feature is only partly implemented at
the moment

The rc.network script is also used by the network configuration module de-
scribed in Subsection 6.5.1. After the script rc.sysinit has exited, the network is
configured according /etc/conf.d/network.conf and static services listed in /etc/-
conf.d/rc.conf are started. The boot process has been completed and cfagent is
started periodically all two minutes by crond. After its first execution a node is fully
functional and self-contained and can be managed by the ADAM configuration
framework described in Chapter 6.

5.5 Sample Output of Image-Tool

This section provides some sample output of image-tool during the creation of
software and configuration images and the application of the initial network con-
figuration to the configuration images.

54

root@monk:˜/image-builder# ./image-tool gen_image meraki 205
20441 blocks

This will install the following packages in order from left to right:

meraki-image

Packages will be built in: /home/meraki-builder
Package sources are in: /home/meraki-builder/sources
Extra configuration is in: /home/meraki-builder/buildconfig
Packages will be installed to: /home/meraki-builder/target
Packages get compiled by: /home/meraki-builder/buildscripts/packages

/<package>.sh
Buildlog is in: /home/meraki-builder/buildlogs/<package>.

buildlog
Cross-Compiler used: mips-linux-uclibc-gcc
Target system triplet is: mips-linux-uclibc

Are these values reasonable ? Begin installation [y/n]
y

Wed Apr 1 16:39:43 CEST 2009: Installing package meraki-image...

Wed Apr 1 16:39:53 CEST 2009: Installation of packages meraki-image
completed.

root@monk:˜/image-builder#

Listing 5.1: Output of the software image creation process

root@monk:˜/image-builder# ./image-tool gen_standalone meraki 205
20743 blocks

This will install the following packages in order from left to right:

meraki-image

Packages will be built in: /home/meraki-builder
Package sources are in: /home/meraki-builder/sources
Extra configuration is in: /home/meraki-builder/buildconfig
Packages will be installed to: /home/meraki-builder/target
Packages get compiled by: /home/meraki-builder/buildscripts/packages

/<package>.sh
Buildlog is in: /home/meraki-builder/buildlogs/<package>.

buildlog
Cross-Compiler used: mips-linux-uclibc-gcc
Target system triplet is: mips-linux-uclibc

Are these values reasonable ? Begin installation [y/n]
y

Wed Apr 1 16:38:35 CEST 2009: Installing package meraki-image...

Wed Apr 1 16:38:49 CEST 2009: Installation of packages meraki-image
completed.

root@monk:˜/image-builder#

Listing 5.2: Output of the standalone image creation process

55

root@monk:˜/image-builder# ./image-tool gen_config meraki meraki0
root@monk:˜/image-builder# ./image-tool gen_config meraki meraki1
root@monk:˜/image-builder# ./image-tool gen_config meraki meraki2
root@monk:˜/image-builder# ./image-tool gen_config alix alix0
root@monk:˜/image-builder#

Listing 5.3: Output of the creation of several configuration images

root@monk:˜/image-builder# ./image-tool inject_config testcfg.tar.gz .
root@monk:˜/image-builder#

Listing 5.4: Output of the injection of an initial network configuration

56

Chapter 6

ADAM Configuration Framework

This chapter focuses on the ADAM configuration framework which is used to con-
figure the particular nodes in the network after deployment. After deploying node
hardware, each node has a software image matching its architecture and a configu-
ration image injected with an initial network configuration installed. Henceforward
each node can be physically installed to its dedicated location, and is then managed
remotely by the ADAM configuration framework without needing further physical
access to it. The newly implemented ADAM configuration framework is a com-
pletely redesigned solution of some basic ideas found in SRM [16], it is more
flexible due its modularity, has full support for IPv6, shows faster propagation
times for network configuration changes and features a more stable peer detection
mechanism.

6.1 Requirements

The redesigned ADAM configuration framework should therefore meet the follow-
ing requirements:

• The configuration framework aims to be fully distributed and decentralised.
It should be possible to configure any node in the network from any other
arbitrary selected node.

• Nodes should never loose connectivity to each other. Only physical circum-
stances, not misconfiguration are responsible for loosing connectivity to a
node.

• The web based ADAM GUI should provide only an extension to offer a more
user-friendly way to the management framework than editing text files on a
normal node which has no GUI installed. The configuration framework does
not make differences between normal and management nodes, in terms of
functionality, all nodes in the network behave the same.

• All communication has to be encrypted and only be allowed between au-
thenticated nodes in the network.

57

• It is very important for the configuration framework not to rely on any exter-
nal dependency for a proper functionality. Such dependencies include time
sources like NTP servers or hardware clocks, name services like Domain
Name System (DNS) servers and automatic address configuration systems
like DHCP. Nevertheless it should be possible to use such external depen-
dencies on demand without disturbing the ADAM configuration framework.

• The framework has to be modular and extensible in terms of the manageable
parameters on the nodes. It should be easily possible to redefine or add
configuration parameters and the corresponding actions.

• The configuration framework has to be portable since it has to run on differ-
ent node hardware platforms.

• All shell scripts used in the configuration framework have to be written com-
patible for the Busybox based ash shell used by the nodes. Since ash syntax
is Bash compatible but not vice versa, all shell scripts in the configuration
framework are written in ash syntax to be compatible with both shells.

• The ADAM configuration framework has to fully support IPv6 in addition
to IPv4. This requires all networking tools, clients and servers being both
IPv6 and IPv4 capable.

6.2 Overview

Like the SRM configuration system the ADAM configuration framework architec-
ture is based on Cfengine [15]. The ADAM configuration framework is imple-
mented from scratch using Busybox shell compatible scripts installed on the nodes.

All configuration framework communication between the nodes is handled by
the Cfengine server cfservd and the corresponding agent cfagent. Communica-
tion of these two components is encrypted with a public/private key mechanism.
ADAM is configured to allow only encrypted traffic between cfagent and cfservd.
In addition, a node needs all public keys of all other nodes before communication
with their cfservd is possible. Therefore ADAM allows communication only to
already authenticated nodes, whose public key is already available.

ADAM uses a dedicated IPv6 network according Request For Comment
(RFC) 4193 [27] for all Cfengine connections. Addresses in this network are cal-
culated from a given prefix and the Media Access Control (MAC) address of the
node’s network interface. In the ADAM architecture, each node knows this com-
mon prefix and one MAC addresses of all other nodes. Therefore the address of
each other node in the dedicated IPv6 network can be calculated and used for peer
detection.

On each node cfagent fetches periodically the newest configuration files
from all detected peers. Once the newest configuration files are available,
cfagent processes their contents and configures the node accordingly. The

58

ADAM configuration framework allows configuring IPv4 and IPv6 network set-
tings and services of all nodes on any arbitrary selected node in the network and
is therefore fully distributed. Additionally the ADAM configuration framework al-
lows updating software images, extending existing ADAM WMNs with new node
hardware and executing user defined commands on selected nodes in the network.

6.3 Core Architecture

The provided implementation of the ADAM configuration framework fulfils all the
requirements shown in Section 6.1. Being fully distributed and autonomous, every
participating node offers exactly the same minimal functionality. The core com-
ponents used on the nodes are cfservd, the server part and cfagent the agent which
handles all current configuration actions and is executed periodically by the cron
daemon. Every time cfagent is executed by cron on a particular node, it connects
to the cfservd of every reachable peer and fetches new configuration information
from them. This new configuration information is then processed by the different
ADAM configuration modules invoked by cfagent, described in detail in Section
6.5. In addition, an SSL and IPv6 capable web server and client are required for
the special system time synchronisation procedure required to guarantee a proper
functionality of the ADAM configuration framework.

For secure communication cfagent and cfservd use an asymmetric public/pri-
vate key mechanism. In the actual implementation cfagent and cfservd are config-
ured to allow connections only if the corresponding keys are already known to the
node. This setup makes it impossible to join a network without having the required
keys and therefore prevents from man-in-the-middle attacks.

6.3.1 Interaction of Cfagent and Cfservd

The principle of interaction between cfagent and cfservd on the different nodes
is very simple. On each node cfagent is executed periodically all two minutes
by the cron daemon, connects to cfservd of all currently reachable nodes in its
neighbourhood. The procedure is shown in Figure 6.1 for one dedicated node in
the network. Every time cfagent is executed it performs the following actions:

1. Wait a random time period between 0 and 60 seconds. This prohibits the
different nodes from connecting all at the same time and flattens out network
traffic peaks.

2. Detect reachable peers. This is described in more detail in Subsection 6.3.3.

3. Synchronise the local system clock with the newest value found on all reach-
able peers. The detailed procedure and why it is crucial for a working solu-
tion is outlined in Subsection 6.3.4.

59

Figure 6.1: Interaction of cfagent and cfservd

60

4. If at least one peer could have been reached, start the local cfservd to allow
future connections from the remote peer’s cfagent. If no peer is found stop
an eventually running local cfservd.

5. Connect to all reachable peers cfservd and check for a newer Cfengine con-
figuration. If such a configuration is found, apply it.

6. Once again connect to all reachable peers cfservd and get the newest config-
uration information found among them.

7. Run the various local configuration modules according to the newest config-
uration information available. The configuration modules are described in
Section 6.5.

8. Clean up old and useless files and temporary directories, check and correct
local file permissions and verify the existence of vital processes (e.g. crond,
httpd).

6.3.2 Dedicated IPv6 Cfengine Network

The dedicated IPv6 network for Cfengine consists of an IPv6 prefix, a so called
Locally Assigned Global ID according to Internet Engineering Task Force
(IETF) RFC 4193 [27]. This prefix is generated once for each network accord-
ing to the algorithm described in the RFC and it is the same for all nodes partic-
ipating in the network. To calculate the IPv6 address used for the dedicated net-
work, the MAC address of one wireless interface per node and the previously gen-
erated IPv6 prefix is needed. The resulting address is a Unique Local IPv6 Unicast
Address according to RFC 4193. If every node knows this previously generated
IPv6 prefix for the configuration network and the MAC address of a wireless inter-
face on each node, it can calculate the dedicated IPv6 address of each other node on
the fly, which makes peer detection simpler and much more stable, than depending
on a manual network configuration.

6.3.3 Reachable Peer Detection

ADAM introduces a peer detection which is fully independent of the current con-
figurable network settings of a node. Every node participating in the configuration
framework has configured an IPv6 address according the technique described in the
previous subsection. The configuration framework guarantees that each node has
at least one interface configured for this special IPv6 network at any time. Since all
nodes are aware of these special IPv6 addresses of each other (they can be cal-
culated from the known prefix and the MAC address of a node), the dedicated
IPv6 network is used for cfagent and cfservd connections. Every node has at least
one address configured for the dedicated IPv6 network any time, therefore unreach-
able nodes due to wrong network configurations are impossible. Only physical cir-

61

cumstances (e.g. insufficient signal strength) can be responsible for not reaching a
particular node.

Using the dedicated IPv6 network addresses reachable peers can be detected
very easily. All possible peers (all nodes in the network) are known through
their special IPv6 addresses in the dedicated IPv6 network. Detecting the currently
reachable peers from the group of all possible peers is simply done by tracerout-
ing their address in the dedicated IPv6 network. Normally this peer detection with
traceroute works over one hop, but can be configured to detect peers more than one
hop away, if routing is set up accordingly. This outlines a major advantage of the
new ADAM solution by which no routing has to be set for a working configuration
framework. This actually allows even the configuration of routing mechanisms
through the configuration framework, without influencing the framework itself.

Since it is easily possible to assign multiple addresses to a single network in-
terface in Linux, this new solution has only the same limitations in network con-
figuration possibilities as the usual physical constraints given for wireless commu-
nication. The communicating parties have to share the same Extended Service Set
IDentifier (ESSID), the same channel and the transmission power has to be suffi-
ciently high. For issues with such wireless settings and their influence on config-
uration framework connectivity see Subsection 6.3.6. The new solution has there-
fore no more need for a time consuming and complicated detection mechanism for
lost nodes like used in SRM. In addition, the new solution allows automatic address
configuration for all interfaces on all nodes in the network and therefore no static
addresses have to be known at deployment time.

6.3.4 System Clock Issues

Both cfagent and cfservd are very sensitive on system clock differences between
two connecting nodes. Very sensitive means, differences bigger than one minute
influence the proper functionality of the used Cfengine configuration, differences
much bigger than a minute can even prevent cfservd from accepting incoming con-
nections at all. This could be for example the case when a new deployed node
without hardware clock boots (its system clock is probably set back in January
1970), and wants to connect to nodes in the network which have a correct system
clock. Due to the requirements of complete autonomy and a distributed design,
synchronisation with external NTP servers is no possible solution, as no successful
clock synchronisation may be guaranteed in any case. Synchronisation with battery
driven hardware clocks is no adequate solution as well, since some nodes may ac-
tually not even have such a hardware device. Therefore a hardware and Cfengine
independent solution for system clock synchronisation between the nodes is re-
quired.

The synchronisation solution is implemented with a Common Gateway Inter-
face (CGI) script running on the SSL and IPv6 capable web server, and a corre-
sponding client for connecting to the CGI script. Figure 6.2 (a) shows a newly

62

(a) Appearance of new node (b) Clock synchronisation requests of new node

(c) Clock synchronisation replies of two peers

Figure 6.2: Synchronising system clocks between nodes

63

appearing node, which has no valid system clock. Each node connects with the
curl client to the web server of all its peers, shown for the new node without a
valid clock in Figure 6.2 (b). The CGI script on each peer returns the actual system
clock as UNIX time stamp and the sha1 hash of this time stamp combined with the
public key of the node the CGI script is executed on. This is shown for the peers
of the new node without valid clock in Figure 6.2 (c). According to the received
hash value a client node decides if the reply is from an authorised node or not. This
mechanism prevents from man-in-the-middle attacks. If the received hash value
belongs to an authorised node, the local system clock is set to the received time
stamp only if it is bigger than the one calculated from the local system clock. This
policy ensures that the system clocks are monotonic increasing functions in time.
A node synchronises its local system clock therefore always to the newest system
clock found among all its peers.

Since system clocks can drift to the future, a configurable parameter
DRIFTTIME, which is set in the network.conf file of each node defines the number
of seconds a clock can maximally drift to the future between two synchronisation
requests. The local system clock is set only to a maximum value of the received
remote time stamp minus the value of DRIFTTIME. Since time synchronisation
is done with all remote peers every time cfagent is executed (all two minutes), a
value of one second is generally enough for DRIFTTIME. Without this mecha-
nism, one system clock drifting to the future would lead to a drifting system clock
on all nodes in the network. But the mechanism implies an additional difference
of DRIFTTIME seconds between the system clocks of two different nodes. With
values less than five seconds for DRIFTTIME, there is no influence on Cfengine
connections, and no system clock should drift more than five seconds in two min-
utes. The chosen implementation takes also into account, that a local system clock
has to be synchronised before connecting to any other node with cfagent and before
accepting any connections to cfservd from other nodes.

6.3.5 Configuration Distribution

Cfagent and cfservd provide all the functionality for distributing the whole config-
uration. Even the configuration of the cfagent and cfservd components themselves
can be altered on the fly for the whole network. Configuration distribution with cfa-
gent for either Cfengine components or for the configuration framework is achieved
by getting the newest files from cfservd of all actual remote peers. This mechanism
behaves like a directory or file shared in the network, where every node has a lo-
cal copy of it, which is overwritten always with the newest version found among
all remote peers. Therefore removing a file in such a directory causes cfagent to
fetch it again from another peer. When such a file has really to be removed, it is
enough to replace it with a zero size one and cfagent will remove it when it is older
than a day. The configuration distribution and the files and directories involved are
shown in Figure 6.3. Here is a list of current directories shared on each node and

64

Figure 6.3: Configuration distribution with cfagent and cfservd.

the purpose for their sharing.

• The directories /var/cfengine/{inputs,modules,bin} are used for internal con-
figuration of cfagent and cfservd and contain the configuration modules
themselves.

• /etc/network.d contains all network configuration used by the network con-
figuration module described in Subsection 6.5.1.

• /var/cfengine/newkeys contains public keys of new nodes used by the new
node module described in Subsection 6.5.2.

• /var/cfengine/commands contains commands and their data used by the com-
mand module described in Subsection 6.5.4.

• /var/lib/update contains new software images and update information which
is used by the image update module described in Subsection 6.5.3.

6.3.6 Detection of Misconfigured Nodes

There are two possible scenarios where a node cannot reach its peers anymore, even
when its network interface is configured properly for participating in the dedicated
IPv6 Cfengine network introduced in Subsection 6.3.2. First, the administrator
may manually set a too low transmission power manually, which could cause the

65

loss of connectivity to all peers. Second, the administrator can configure another
wireless protocol (802.11a, b or g) than the one used by all other peers.

These settings cannot be automatically adjusted by the network configuration
scripts. Therefore a simple detection mechanism for such misconfiguration is used.
When a node reaches no peers within a timeout defined in /etc/conf.d/network.conf,
it regards itself as misconfigured and resets the transmission power and wireless
protocol to sane values. The default value for the timeout is 24 hours, transmission
power is reset to an automatic maximum and the wireless protocol set to 802.11g,
which all nodes support. Except for these two scenarios, it should not be possible to
loose connectivity to the configuration framework in any way, since one interface
is always configured for participating in the dedicated IPv6 Cfengine network.

6.4 Initial Network Configuration

As seen in Subsection 6.3.5 each node participating in the ADAM configuration
framework shares the /etc/network.d directory with all other nodes. This directory
includes a configuration file for each node containing all the parameters relevant for
the ADAM configuration framework. The collection of all these node configura-
tion files, the public/private key-pair of all nodes and a root password for the nodes
is called a network configuration. An initial network configuration is provided in
form of a single gzip compressed tar archive, which is used by image-tool to inject
configuration images with it, as explained in Chapter 5. An initial configuration
archive can be created on each node with a text editor and the Cfengine cfkey tool,
or it is created by the ADAM GUI on a management node. The injection mecha-
nism is used to install an initial network configuration into the configuration images
before deploying the node hardware. This procedure ensures that all nodes have
only their own private key, but all public keys and configuration files of all other
participating nodes installed at deployment time, which are needed for a work-
ing configuration framework. After this point all node configuration actions like
changing network and services parameters, image updates, custom commands and
adding new nodes are made with help of the configuration modules.

6.5 Configuration Modules

The configuration framework consists of different modules which are executed by
cfagent according to the newest configuration information available in the shared
directories on the nodes. This modular architecture allows writing new modules for
new configuration tasks rapidly and integrate them in the configuration framework
easily. In the current implementation four modules are used for configuration tasks
on the nodes, which are explained the following.

66

6.5.1 Network Configuration Module

The network configuration modules is the most important module used in the
framework. It is responsible for configuring and adjusting the settings of each
node according the parameters defined in the node’s configuration file found in the
shared directory /etc/network.d. These configuration files follow a simple naming
convention and are called /etc/network.d/<node>.conf, where <node> is the host
name of the node. In addition, each node has a non-shared local copy of its config-
uration file in /etc/conf.d/network.conf which represents the current configuration,
which the node has applied at the moment.

The network configuration module detects differences between the actual ap-
plied parameters from /etc/conf.d/network.conf and parameters defined in a new
node configuration file found in /etc/network.d/<node>.conf. Detected changes
can be applied immediately by the module, since the connectivity with the config-
uration framework is not influenced. The configuration file of every node can be
changed in the /etc/network.d directory on any arbitrary selected node. This file
is then newer than the corresponding one found on any other remote node, and
the desired changes are propagated through the network automatically with help of
cfagent and cfservd.

This works also for dynamic settings like for example DHCP acquired
IPv4 addresses. If a node receives for example a new parameter in
/etc/network.d/<node>.conf to configure the IPv4 address on one interface with
help of an external DHCP server, it can even react on the answer of the
DHCP server. If a lease was obtained, the lease values are written back to
/etc/network.d/<node>.conf and shared in this way with other nodes.

The propagation of these network configurations is shown in Figure 6.4, where
a new network configuration is defined at a management node in /etc/network.d.
Figure 6.4 (a) shows the situation after 2 minutes, where each cfagent of the 1-
hop neighbours has connected to cfservd of the management node. After a further
step all 2-hop neighbours of the management node have fetched the new network
configurations as shown in Figure 6.4 (b). The network configurations are propa-
gating from node to node with help of cfagent and cfservd, and are immediately
applied by the network configuration module on each node. The propagation after
four steps (eight minutes) is depicted in Figure 6.4 (c). The distribution has been
completed after n steps in a network with depth n, shown in Figure 6.4 (d) for the
network with n = 5.

The node configuration file found in /etc/network.d/<node>.conf and /etc/-
conf.d/network.conf respectively contains all configurable parameters for a node,
like static and dynamic network settings and service configuration. The format of
the configuration file is plain text and consists of comment lines beginning with
and assignments in the form VARIABLENAME=”value”. For completeness, a
sample configuration file for an Alix node is shown in Section 6.8 at the end of this
chapter. At the moment the network configuration module allows configuring the

67

(a) Distributed to 1-hop neighbours (t=1) (b) Distributed to 2-hop neighbours (t=2)

(c) Distributed to 4-hop neighbours while node
availability changes (t=4)

(d) Distribution complete (t=5)

Figure 6.4: Network configuration distribution

68

following parameters for a node:

• Static IPv4 and IPv6 address configuration.

• Static name resolving for statically assigned IPv4 and IPv6 addresses.

• Definition of static IPv4 and IPv6 default routes.

• Definition of static external Domain Name System (DNS) servers for name
resolution.

• Definition of static external NTP servers for time synchronisation.

• Dynamic IPv4 address configuration with DHCP. Even DNS servers, default
IPv4 routes and NTP servers obtained by DHCP are supported.

• Dynamic IPv6 address configuration with router advertisement daemon.

• Configuration for a DHCP server running on the node.

• Configuration for an NTP server running on the node.

• Configuration for adhoc routing daemons. At the moment only a statically
configurable olsrd variant is supported.

• Configuration for IPv4 and IPv6 netfilter firewall including
IPv4/IPv6 forwarding and NAT for IPv4.

6.5.2 New Node Module

As described in Section 6.3 the used configuration of Cfengine only allows com-
munication between nodes whose public key is already known to the communica-
tion partner. The integration of newly deployed nodes, whose public key and node
configuration file are not yet known in the network is done with the new node mod-
ule. If new node hardware is purchased and should be integrated into an existing
network, first of all a software and configuration image has to be created for the
the new nodes. In addition, the initial network configuration has to be extended
with the new key pair and the configuration file for the new node, before injecting
it to the configuration image for the new node. After injection the software and
configuration images have to be installed to the new node hardware. Now the new
node knows all other nodes by the keys and configuration files in its configuration
image, but none of the nodes in the network knows the new node, as its public
key and configuration file are not available in the network. Distributing these new
public keys and node configuration files is the job of the new node module.

Distributing new configuration files is pretty straightforward, the new file can
simply be copied to the /etc/network.d directory, where it gets distributed to the
network. The only thing the new node module has to do is to check if every node

69

configuration file in /etc/network.d is available in the configuration image of the
node too, in case the node reboots or reloads its configuration image.

The same thing happens with new public keys and the directory
/var/cfengine/newkeys. For security reasons, not the real key directory
/var/cfengine/ppkeys is shared over the network. Existing key files in the real key
directory are never overwritten with a new key from /var/cfengine/newkeys, only
non-existing keys are installed. Checking for existence of all public keys in the
configuration image has to be done in the same way as for node configuration files.

The procedure of adding a new node whose key and configuration file are not
yet known in the network is shown in Figure 6.5. Figure 6.5 (a) shows the moment
when the new public key and node configuration file are placed on the management
node for distribution. After one cycle (2 minutes) all peers of the management
node have fetched and saved the new files. This is shown in Figure 6.5 (b). The
propagation of the new files is done with cfagent and cfservd. When the new files
reach a direct neighbour of the newly deployed node, this direct neighbour will be
able to connect to the new node in the next cycle, as shown in Figure 6.5 (c). After
all nodes have fetched the new key and network configuration files, the new node
can be regarded as fully integrated, since all nodes can possibly connect to the new
node. This situation is depicted in Figure 6.5 (d).

6.5.3 Image Update Module

The image update module is used to install new available software images on
the nodes. New software images are distributed to the network in the shared
/var/lib/update directory together with a file called update. This file contains the
detailed information for the specific update action, like node type, update version
and a sha1 hash of the image file. The module checks if the new software image
announced in /var/lib/update/update matches the node type it is running on. If the
correct node type and version are detected, the image update module calls one of
the node type specific update procedures described in Section 6.6.

New software images for different node types should be distributed in a serial
way, avoiding that one node has to hold more than one software image at once in
RAM, which is not possible on small nodes like the Meraki. Therefore the file
size of existing images in the /var/lib/update directories has to be set to zero by the
administrator or the GUI, before copying a new image to this directory. For this
reason only one software image for one node type can be distributed and installed
with one update action at the same time. When all nodes of a specific type were
updated, an new update action for another type can be issued.

Configuration images are node specific, each node has its own configuration
image. Moreover, configuration images are stored in a different way on each node
platform due to the different secondary storage used on it. Configuration images
of all nodes are very similar, the differences between two configuration images
of two nodes are little compared to their size (4 MByte). For these three reasons

70

(a) New node and key deployed (t=0) (b) Key distribution to 1-hop neighbours (t=1)

(c) Key reaches neighbour (t=3) (d) New node fully integrated (t=5)

Figure 6.5: Integration of a new node to an existing network

71

configuration images are not distributed in whole like software images.
The configuration images installed on the nodes have therefore to be altered

in another way than distributing whole new configuration images for every node
in the network. Adding, removing or changing files in the configuration images
on the nodes is done with the command module described in the next subsection.
Changing configuration image contents using the command module reduces net-
work overhead compared to distributing whole configuration images. If a new file
has to be added to all configuration images, the command module only distributes
the new file and the shell command, which saves the file to the configuration image.
The generated traffic is negligible compared to distribute a 4 MByte configuration
image for every participating node.

6.5.4 Command Module

With the three modules already described in the last subsections, network configu-
rations, software image updates and integration of newly deployed nodes is done.
These three modules fulfil a clearly defined role and are difficult to extend. For
being as flexible as possible the ADAM configuration framework provides a gen-
eral purpose configuration module, the command module. The command module
is used to execute arbitrary user-defined commands on a predefined set of nodes.
Such a command can be specified with a command definition file, which contains
the command string and a selection of nodes by their type or host name. These
command definition files have the file extension .cmd and are distributed over the
network in the /var/cfengine/commands directory. Moreover it is possible to sup-
ply user defined data to a command definition file and distribute it over the network
in the /var/cfengine/commands/data directory. The command string can be either a
binary already available on the nodes, or even a program or script contained in the
user defined data.

When the command module is executed on a particular node by cfagent, it
inspects each found command definition file, decides if the command has to be
executed on the node, and executes the commands defined, if it was not executed
already. If a command is executed on a node by the command module, a file named
node-command.reply in /var/cfengine/commands/reply is created, containing the
execution time, the exit status and possible output of the command.

The command module is very powerful and can be used for a wide variety of
administration actions, like for example distributing new configuration files or init
scripts to the nodes or their configuration images, as described in the previous sub-
section. An example of a command definition file is shown in Listing 6.1. This
command definition file uses a script as command string, which is contained in the
user defined data. The script copies a sample init script and sample configuration
file, which are also contained in the user defined data, to the nodes and their con-
figuration images. The script is shown in Listing 6.2. A corresponding node reply
file is shown in Listing 6.3.

72

this defines a command to execute once on defined nodes
COMMAND="${DATADIR}/command.sh"

the data directory related to this command is internally
defined and generally not needed to redefine.
DATADIR=/var/cfengine/commands/data/<cmd>.data

run on these nodetypes
RUN_ON_TYPES="alix"

run on these specific nodes
RUN_ON_NODES="meraki0"

Listing 6.1: Example of a command definition file (test.cmd)

#!/bin/sh

This is an example for copying an initscript as well as a configuration
file to the nodes root file system and to the configuration image.

copy to root fs
echo "Copying files to root filesystem..."
install -m 755 ${DATADIR}/rc.initscript /etc/init.d/
install -m 644 ${DATADIR}/sample.conf /etc/
echo "Proof of existence after copy:"
ls -la /etc/sample.conf
ls -la /etc/init.d/rc.initscript

copy to configuration image
mount /mnt/config
echo "Copying files to configuration image..."
install -m 755 ${DATADIR}/rc.initscript /mnt/config/etc/init.d/
install -m 644 ${DATADIR}/sample.conf /mnt/config/etc/
echo "Proof of existence after copy:"
ls -la /mnt/config/etc/sample.conf
ls -la /mnt/config/etc/init.d/rc.initscript
umount /mnt/config

Listing 6.2: Example of a script executed on defined nodes (command.sh)

Command: /var/cfengine/commands/data/test.data/command.sh
Node: meraki0
Date: Sun Apr 26 23:43:27 CEST 2009
Output:
Copying files to root filesystem...
Proof of existence after copy:
-rw-r--r-- 1 root root 42 Apr 26 23:43 /etc/sample.conf
-rwxr-xr-x 1 root root 37 Apr 26 23:43 /etc/init.d/rc.initscript
Copying files to configuration image...
Proof of existence after copy:
-rw-r--r-- 1 root root 42 Apr 26 23:43 /mnt/config/etc/sample.conf
-rwxr-xr-x 1 root root 37 Apr 26 23:43 /mnt/config/etc/init.d/rc.

initscript

Exitstatus: 0

Listing 6.3: Example of a node reply file (meraki0-test.reply)

73

6.6 Updating Software Images

Updating software images on all nodes is controlled by the image update module
mentioned in Subsection 6.5.3. However, the real installation procedure triggered
by the module is different on each node platform. It has to take into account the
platforms boot loader and secondary storage used and the technical way the soft-
ware image has to be installed to it. Mainly there are two different procedures
implemented on the supported node hardware the safe and the unsafe method. Un-
safe updates cannot guarantee that a node reboots in a sane state, while safe updates
have a fallback mechanism which uses the old image in case the new one is faulty
or not bootable.

6.6.1 Safe Update with GRUB

If a node platform can use GRUB and has a block device as secondary storage,
which can be partitioned and is big enough for storing two software images, the
special safe update mechanism for software images can be used. Figure 6.6 shows
the four possible states of the boot block and the GRUB configuration file on the
block device of the node. The GRUB boot loader is able to rewrite the MBR at
boot time to boot another partition the next time the system is started. GRUB is
configured by a configuration file on each bootable partition, which is accessible
and changeable through the operating system. These two features enable the im-
plementation of the safe update mechanism, which includes three main procedures.
These three procedures default operation, successful update and faulty update get
explained in more detail with help of the four states (a) through (d), shown in Fig-
ure 6.6.

• Default operation
(a)→reboot→(a)

The boot block is setup as depicted in state (a). The default image is booted.
When no changes are made to GRUB configuration files, the boot block is
still in state (a) and the default image is loaded again at the next reboot.

• Successful update
(a)→initialise update→(b)→move update to default→(c)→reboot→(a)

The boot block is setup as depicted in state (a). An update is ini-
tialised by copying the update image to the first partition and adjusting the
GRUB configuration file on the first partition to boot entry 1. As soon as the
system is rebooted the node is in state (b). Therefore the update image is
booted. After successful booting of the update image, the default image is
replaced with the update image and the GRUB configuration file on the first
partition is readjusted to boot entry 0. After a reboot the node resides in state
(c) and the update image is installed as default. Rebooting once more causes
the node to stay permanently in state (a) which is default operation again.

74

(a) Default operation (b) Update initialised

(c) Successful update (d) Failed update

Figure 6.6: Safe update with GRUB

• Failed update
(a)→initialise update→(b)→automatic reboot→(d)→remove update→(a)

The boot block is setup as depicted in state (a). An update is ini-
tialised by copying the update image to the first partition and adjusting the
GRUB configuration file on the first partition to boot entry 1. At reboot the
node is in state (b). Therefore the update image is booted. An automatic
reboot is triggered if the image is corrupt, causes kernel panics or cannot
boot at all. Since no adjustments to the GRUB configuration file on the
first partition could have been made the node is in state (d) and loads the
old default image as fallback. The faulty update image is removed and the
GRUB configuration file on the first partition is adjusted to boot entry 0. Af-
ter the next reboot the node is again in state (a) which is default operation.

6.6.2 Unsafe Update with Custom Boot Loader

Nodes which cannot use GRUB or do not have enough secondary storage for two
software images do not profit from the safe update mechanism shown in the pre-
vious subsection. E.g. the Meraki node does not fulfil any of these conditions. Its
boot loader can only boot one image from flash and is not configurable through
the operating system. Moreover, the size of the flash storage does not allow using

75

more than one software image. It further requires the installation of the software
image to the flash with the dd program, which takes a very long time due to a block
emulation overhead in the kernel. The installation method takes up to 45 minutes
and causes a heavy load on the node. For reducing the load while the dd program is
running, the configuration engine processes have to be temporary stopped. A wait
time of three minutes between the arrival of an new software image and its instal-
lation ensures the further propagation of the software image to other nodes before
the configuration engine is temporary interrupted and the dd program is started.

There is also no possibility for an automatic recovery to an old working image
once a faulty Meraki software image was distributed in the network and has been
installed on a node. Physical access to the nodes would be needed for the re-
installation of a working software image. Therefore, it is advisable to check new
software images for Meraki nodes on a well accessible test node before distributing
them with the image update module. The software image installation method used
on Meraki nodes is therefore intentionally called unsafe.

6.7 Node System Information Web Interface

Since an IPv6 and SSL capable web server is already installed and used for sys-
tem clock synchronisation between nodes, a little system information CGI script
is available on the nodes. This CGI script provides statistics and crucial node sys-
tem information, like reachable peers or actual network settings in a read-only web
page. Furthermore the geturl.sh CGI script is provided, which can display a defined
web document from an other node. Using geturl.sh recursively allows an admin-
istrator to view important configuration parameters of all nodes fast, needing only
access to one node’s web interface. One drawback is that the current path through
the network has to be provided by the administrator. Since the system information
CGI script provides information on reachable peers, this path can also be calcu-
lated recursively by the administrator. An example of such a recursive usage of the
geturl.sh CGI script and the resulting web document is shown in Figure 6.7.

6.8 Sample Network Configuration File

For completeness, a sample network configuration file for an Alix node (net-
work.conf) is listed here to show what configuration parameters are exactly sup-
ported by the network configuration module.

76

(a) System information of meraki1

(b) System information of alix

Figure 6.7: Node system information web interface

77

/etc/conf.d/network.conf
Each node needs this file and and copy of it in
/etc/network.d, which holds the network.confs of all nodes.

##
Static section: this gets set __once__ by the GUI.
Changes in this section should generally not be made.
##

System type, this determines the image type.
Supported are: alix wrap and meraki.
GLOBAL_SYSTYPE="alix"

Available hardware devices on platform.
Use the device names the kernel sees.
AVAIL_DEVICES="eth0 ath0 ath1"

Which devices are WIFI capaple.
GLOBAL_WIFI_DEVICES="ath0 ath1"

Update type, this determines what firmware update
mechanism is used. Supported are: none, safe, unsafe.
GLOBAL_UPDATE_TYPE="safe"

If this particular node is a mgmt node.
GLOBAL_MGMT="no"

REQUIRED !!!
Cfengine ipv6 configuration net prefix.
GLOBAL_CFNET_PREFIX="fd49:3799:623e"

REQUIRED !!!
The MAC address of one interface in GLOBAL_WIFI_DEVICES.
GLOBAL_CFNET_MAC="01:02:03:04:05:06"

##
Dynamic section:
All values below here can be configured as wished.
##

Over how many hops the node should search
for cfengine peers.
GLOBAL_CFHOPS="1"

When a node has seen no peers in the last GLOBAL_LOSTTIMEOUT
hours, it regards itself as misconfigured.
GLOBAL_LOSTTIMEOUT="24"

Devices to setup by /etc/init.d/rc.network.
Only devices listed here get setup by initscripts.
GLOBAL_DEVICES="eth0 ath0"

Static routing.
GLOBAL_GW6=""
GLOBAL_GW6_IF=""
GLOBAL_GW=""
GLOBAL_GW_IF=""

DNS servers.
GLOBAL_DNS0=""
GLOBAL_DNS1=""

78

ADHOC routing.
GLOBAL_ADHOCROUTING="olsr"
GLOBAL_ADHOCROUTING_DEVICES=""

Network time protocol.
Is this node an ntp server?
GLOBAL_NTP_BE_SERVER="no"
Is this node an ntp client?
GLOBAL_NTP_BE_CLIENT="no"
If it is client, use a server pool to get the time.
GLOBAL_NTP_POOL="no"
If it is client, use this server or server pool.
GLOBAL_NTP_SERVER=""

IPv6 router advertisement daemon.
GLOBAL_RADVD_START="no"

IPv4 DHCP server.
Start a DHCP server?
GLOBAL_UDHCPD_START="no"
Only one device is supported at the moment.
GLOBAL_UDHCPD_DEVICE=""
Start IP of the leases pool.
GLOBAL_UDHCPD_LEASE_START=""
End IP of the leases pool.
GLOBAL_UDHCPD_LEASE_END=""

Syslog server.
Only IPv4 adresses supported by busybox.
GLOBAL_SYSLOG=""

Netfilter section.
You can use both Ipv4 and/or IPv6 netfilter.
IP forwarding (4 and 6) is disabled by default in /etc/sysctl.conf.
Enable logging of all dropped pakets in IPv6 and IPv4 filters?
NETFILTER_LOG="yes"
Start netfilter IPv4?
NETFILTER_START="no"
IPv4 input.
NETFILTER_ALLOW_LOCAL_IN_TCP="22 443"
NETFILTER_ALLOW_LOCAL_IN_UDP="67 123"
IPv4 output.
NETFILTER_ALLOW_LOCAL_OUT="yes"
IPv4 forward.
NETFILTER_ALLOW_FORWARD="yes"
Device for SNAT.
NETFILTER_SNAT_TO_IF=""
Start netfilter IPv6?
NETFILTER6_START="no"
IPv6 input (https cfservd tracroute6 are needed).
NETFILTER6_ALLOW_LOCAL_IN_TCP="22 443 5308"
NETFILTER6_ALLOW_LOCAL_IN_UDP="123 33434:33999"
IPv6 output.
NETFILTER6_ALLOW_LOCAL_OUT="yes"
IPv6 forward.
NETFILTER6_ALLOW_FORWARD="yes"

###
Network device section.
Each device in GLOBAL_DEVICES needs a device section.
###

79

Device eth0.
Use a DHCP client for v4 setup.
eth0_DHCP="no"
Let DHCP overide GLOBAL_GW.
eth0_OVERRIDE_ROUTE="yes"
Let DHCP overide GLOBAL_DNS.
eth0_OVERRIDE_DNS="yes"
Let DHCP overide GLOBAL_NTP_SERVER.
eth0_OVERRIDE_NTP="yes"
Static IPv4 address and netmask.
eth0_IP=""
eth0_MASK=""
IPv4 domain for static resolving.
eth0_DOMAIN=""
Static IPv6 address and netmask.
eth0_IP6=""
eth0_MASK6=""
IPvv6 domain for static resolving.
eth0_DOMAIN6=""
IPv6 radvd prefix.
eth0_RADVD_PREFIX=""

Device ath0.
ath0_DHCP="no"
ath0_OVERRIDE_ROUTE="no"
ath0_OVERRIDE_DNS="no"
ath0_OVERRIDE_NTP="no"
ath0_IP=""
ath0_MASK=""
ath0_DOMAIN=""
ath0_IP6=""
ath0_MASK6=""
ath0_DOMAIN6=""
ath0_RADVD_PREFIX=""
802.11 standard a,b,g,n or auto.
ath0_STANDARD="g"
802.11 essid.
ath0_ESSID=""
Positive integer in mW, auto means adjust automatically.
ath0_TXPOWER="auto"
Channel integer from 1 to 11
ath0_CHANNEL="1"

Device ath1.
ath1_DHCP="no"
ath1_OVERRIDE_ROUTE="no"
ath1_OVERRIDE_DNS="no"
ath1_OVERRIDE_NTP="no"
ath1_IP=""
ath1_MASK=""
ath1_DOMAIN=""
ath1_IP6=""
ath1_MASK6=""
ath1_DOMAIN6=""
ath1_RADVD_PREFIX=""
ath1_STANDARD="g"
ath1_ESSID=""
ath1_TXPOWER="auto"
ath1_CHANNEL="5"

Listing 6.4: Sample network configuration file (network.conf)

80

Chapter 7

Evaluation

The evaluation of ADAM framework is divided in two parts. First the ADAM build
system is evaluated using the three supported platforms. The second part consists
of a detailed evaluation test procedure for the ADAM configuration framework.

7.1 Evaluation of the ADAM Build System

This section focuses on the evaluation of the ADAM build system for the three
supported platforms, and includes the evaluation of image creation and deployment
procedures. Moreover, the extensibility of the ADAM build system is evaluated by
adding support for new packages and target platforms.

7.1.1 Build System

The evaluation of the build system is a difficult task since every cross compiled
binary or library has to be tested. These binaries or libraries have to be tested on
all three involved platforms. Therefore only the minimal package selection for the
devices is built and not every single binary is tested. All the functionality needed
for a working configuration framework is crucial and therefore the test procedures
outlined in Section 7.2 are regarded as sufficient tests for the cross compiled soft-
ware. The test procedures outlined use the most installed cross compiled software
anyway, a defect in an important software component would be detected. The
evaluation tests which can be made for testing the build system include therefore a
cross compilation of the default software selection for all three involved hardware
platforms with build-tool. If build-tool successfully returns from the target board
setup, toolchain installation and package build procedures for all three platforms
the test can be regarded as successful.

7.1.2 Image Creation

Evaluating the image creation process consists mainly of manually inspecting the
resulting images. Therefore configuration images can be mounted as loopback

81

Package Version Purpose
Hostapd 0.6.4 Tools for a wireless access point
Wpa-supplicant 0.6.4 Tools for a wireless client
PHP 5.2.6 PHP Hypertext Parser
Lighttpd 1.4.20 Lightweight web server with PHP support
Ipsec-tools 0.7 Linux IPSec utilities
Hotplug2 0.9 Removable device management

Table 7.1: Additional packages

file on any Linux system. Software images are in binary form, therefore only
the embedded initramfs archive can be inspected by unpacking it with the cpio
program. First, the image creation framework is used to generate software and
standalone images for all three involved platforms. Second, configuration images
for the test network described in Chapter 7.2 are created. In a third step the the
initial network configuration also described in Chapter 7.2 is injected. After build-
tool has successfully returned from all these procedures the manual inspection of
the images is done as described above.

7.1.3 Deployment

The hardware deployment process is evaluated as follows. Deployment of the re-
sulting images on the involved nodes is achieved according to the available de-
ployment documentation in README.board. This is heavily depending on the
node hardware and each supported node has its own deployment documentation.
Deployment is exactly done as described in these README files.

7.1.4 Additional Packages

To evaluate the extensibility of the ADAM build system, it is crucial to test the
support for building additional software packages. Additional packages have been
successfully built with ADAM for the three supported platforms. An incomplete
list of these additional packages is shown in Table 7.1.

7.2 Evaluation of the ADAM Configuration Framework

For the evaluation of the ADAM configuration framework a test network is needed.
The network used for the evaluation tests consists of four nodes, one Alix and three
Meraki nodes (e.g. alix, meraki0, meraki1 and meraki2). In the default setup all
nodes are located in a way, that they are able to reach any other node (e.g. in one

82

Figure 7.1: Default setup of the test network

room). This default setup of the test network is shown in Figure 7.1. All evaluation
tests were made with subversion 225 of the ADAM configuration framework.

7.2.1 Setup

The initial network configuration for the four nodes is created manually by the ad-
ministrator and looks the same for all nodes, except for the MAC address of the
wireless interface used by Cfengine and platform specific settings like node or up-
date type. The initial network configuration used is minimal, neither static IPv4 or
IPv6 addresses nor routing is configured for the nodes. This allows evaluating the
dedicated IPv6 network used for cfagent and cfservd connections. Moreover, the
Alix node is additionally configured to set up its wired network interface by DHCP.
This allows the administrator to login on the alix node with an SSH client. First,
only two Meraki nodes (meraki0 and meraki1) are deployed, meraki2 is kept back
for testing the new node module later.

The alix node is booted first. If connected to a network, which provides In-
ternet access, the alix node tries to synchronise its system clock with an external
NTP server. If no Internet access is available, the administrator can set the time
also manually on the alix node with the date command. Setting the system clock
is optional, the configuration framework works without it. Nevertheless it is useful
to have a reasonably accurate time on the nodes. Once the alix node is up, the
administrator logs in with an SSH client or over a serial console and is able to read
the system log files. Moreover, the administrator can use the system information
web interface on the alix node to inspect crucial system information.

If logged into the alix node, the administrator starts the different test proce-
dures. The following subsections describe these different test procedures and Table
7.2 shows their duration on the different nodes, respectively.

83

7.2.2 Peer Detection

Evaluating the peer detection mechanism used by the ADAM configuration frame-
work works as follows. The not yet booted nodes (meraki0, meraki1) are powered
on by the administrator. After the boot procedure of the two nodes has been com-
pleted, and each node’s cfagent has been started at least once, each node has two
peers. This can be verified using the system information web interface on the alix
node or by logging into the nodes. The actual calculated peers are listed in the
/tmp/cfpeers file on any node or shown directly in their web interface. Table 7.2
shows the boot times (from power on to login prompt) and the duration from the
end of the boot process until the node has found the two peers.

7.2.3 System Clock Synchronisation

Evaluating the system clock synchronisation mechanism is easy. Being already
peers of each other, all nodes have their system clock therefore already synchro-
nised. The system clock on any node in the network can be evaluated by issuing
the date command. For further evaluation of the system clock synchronisation a
Meraki node is rebooted. After the first run of cfagent on the rebooted node, the
system clock is set to the correct time again. This can be verified also by inspecting
the system log file on the node. Table 7.2 shows the duration from the end of the
boot process until the system clock is synchronised.

7.2.4 Misconfigured Nodes

The proper functionality of the detection mechanism for misconfigured nodes is
evaluated as follows. A randomly selected node in the network is configured with
a too low transmission power for reaching other nodes. As configured, one day
later the node has rebooted and the transmission power settings have been restored
as described in Subsection 6.3.6. In addition the location of a randomly selected
node is changed, until no other node is reachable. As expected, on the node the
mechanism for misconfigured nodes is also triggered, as long as it cannot reach any
other the node it is rebooted every day. This procedure takes 24 hours as defined
in the default configuration. This value is adjustable in every node’s network.conf
file and can be set to one hour for a faster test procedure. Table 7.2 shows the
duration from the setting of transmission power until the automatic re-appearance
of the node.

7.2.5 Network Configuration Module

For testing the network configuration module, static IPv4 and static IPv6 addresses
as well as static host name resolving is configured on the nodes. Therefore all net-
work configuration files for the nodes in /etc/network.d have to be adjusted. The
adjustments can be done on any arbitrary selected node. The successful distribu-
tion of the new configurations, can be verified by pinging all configured IPv4 and

84

IPv6 or host names respectively. Table 7.2 shows the duration from deploying the
new configuration until the node’s newly configured address is reachable.

7.2.6 New Node Module

The kept back node meraki2 is now deployed as new node and powered on af-
terwords. After deployment and a completed boot process meraki2 has already all
keys and network.conf files of the other nodes. Therefore it has already valid peers,
which can be verified by inspecting its /tmp/cfpeers file. Since the other nodes have
neither a key nor a network configuration file of meraki2, it will not be contained in
their /tmp/cfpeers file. To distribute the new key and the network configuration file,
the new key root-meraki2.cfdomain.pub is copied to /var/cfengine/newkeys and the
new network configuration file meraki2.conf to /var/cfengine/newkeys. This can
be done on any of the other nodes (meraki0, meraki1 and alix). The successful
integration is verified by inspecting the /tmp/cfpeers found on meraki0, meraki1
and alix, respectively. Table 7.2 shows the duration from deploying new the key
and configuration file until the new node is in the list of current peers.

7.2.7 System Update Module

The system update module is tested by updating the alix node with a new working
software image first. Second, software images of the Meraki nodes are updated. In
a third step the alix node is updated with a faulty software image to verify the safe
update mechanism. Therefore new working software images for both the Meraki
and the Alix platform have been generated with the ADAM build system. A faulty
image for the alix node is made by creating a file from /dev/zero, 5 MByte in size.
The images have to be distributed in a serial way. The working alix image has
to be copied to /var/cfengine/update for being distributed. After the the update
on all nodes of the corresponding type has been completed, the image is replaced
with a file, which size is zero. Then the working meraki image can be copied to
/var/cfengine/update to be distributed. The procedure is repeated with the faulty
image for the alix node, after all Meraki nodes have been updated. Table 7.2 shows
the duration from deploying the new image until the node is up again.

7.2.8 Command Module

The command definition file shown in Listing 6.1 is taken to test the functional-
ity of the command module. The script defined in this command definition file
copies a sample init script and a sample configuration file to all Alix nodes and
one dedicated Meraki node (meraki0) as shown in Listing 6.2. The command def-
inition file is now altered, that the script is executed on all nodes, and copied to
the /var/cfengine/commands directory together with the script and the sample files.
The proper execution of the script is then evaluated by inspecting the correspond-
ing node reply file. Table 7.2 shows the duration from deploying the command

85

Figure 7.2: Linear setup of the test network

until the node executes it and the duration from deploying the command until the
node’s reply file is available.

7.2.9 Distribution over Multiple Hops

To evaluate distribution over multiple hops the topology of the test network has
to be adjusted. Therefore the four nodes are aligned in a chain (alix, meraki0,
meraki1, meraki2), that one node has only the direct neighbour in the chain as peer.
This linear setup of the test network is shown in Figure 7.2. With this setup the
evaluation tests for the command module are repeated to measure the configuration
distribution from one end of the chain (alix) to the other (meraki2). Table 7.2
shows the duration from deploying the command until the node executes it and the
durations from deploying the command until the node’s reply file is available.

86

Node alix meraki0 meraki1 meraki2
Core architecture
Image loaded by boot loader 2 sec 3:57 min 3:59 min n/a
Boot procedure (first time) 32 sec 5:08 min 5:11 min n/a
Boot procedure (default) 22 sec 4:20 min 4:18 min n/a
Two peers found 1:38 min 1:00 min 1:26 min n/a
System clock synchronised 1:41 min 1:01 min 1:27 min n/a
Misconfigured node up again 24 hours n/a 24 hours n/a
Network configuration module
Reply from new address 23 sec 1:53 min 1:20 min n/a
New node module
New node (meraki2) found 1:30 min 56 sec 1:47 min n/a
System update module
Reachable after successful update 59 sec 50:34min 51:02 min 50:40 min
Reachable after faulty update 45 sec n/a n/a n/a
Command module
Command executed 50 sec 1:20 sec 21 sec 1:40 min
Reply file received on alix 50 sec 2:56 min 2:56 min 2:56 min
Distribution over multiple hops
Command executed 1:02 min 41 sec 3:36 min 4:54 min
Reply file received on alix 1:02 min 1:06 min 4:32 min 6:46 min

Table 7.2: Evaluated durations for the different test procedures

87

Chapter 8

Conclusion and Future Work

This chapter tries to concentrate the experiences made while developing and testing
the ADAM software framework.

8.1 Conclusion

The new software suite is a user-friendly, easy to understand, simply extensible
framework to build customised Linux software images for embedded devices with
limited storage capacities like for example nodes of a wireless mesh network. The
complex and time-consuming process from the setup for a specific target platform
over creating a cross compilation toolchain and compiling software packages to
image creation is done with two easy to handle front-ends build-tool and image-
tool. The prerequisites for using the software suite for the system used as host
platform are minimal. The new implementation is designed to support a growing
number of target devices and is therefore easily extensible to other embedded sys-
tem hardware. In addition it provides a configuration framework for a resulting
heterogeneous wireless mesh network consisting of the different node hardware
platforms.

8.1.1 ADAM Build System

The ADAM build system handled by build-tool is clearly designed and heavily
tested with many platforms and software packages. Being as flexible as possible
regarding packages selection and possible target platforms as well as the mini-
mal prerequisites for the host platform are major advantages of the ADAM build
system. Currently, the ADAM build system meets all requirements to support the
successful deployment and operation of WMN. The build system is very powerful
and many packages can be built for many different hardware platforms. Neverthe-
less, many new features and enhancements are imaginable for an even better build
system.

89

8.1.2 Creation of ADAM Images

The creation of the different images handled by image-tool is very simple, its struc-
ture is designed with the all-in-one software image in mind. The image creation
process satisfies the needs for small embedded devices and a manageable amount
of packages. If e.g. a package manager is used the image creation process has to
be adapted and requires a design change. However, more software can be installed
on the nodes with the all-in-one software image, than with any package manager
based solution. The idea of a per device configuration image separated from the
actual software image works well and has clear advantages for the update and con-
figuration procedures. Software images can be updated much faster since they are
the same for one node type.

8.1.3 ADAM Configuration Framework

The integration of the configuration framework based on Cfengine in the build sys-
tem and image creation process worked well, and it was the right decision to write
a new build system for this purpose. Cfengine can serve as a basic configuration
system for wireless mesh nodes, which can easily be adjusted to future needs. The
use of Cfengine only has disadvantages when really small embedded devices are
targeted. Devices smaller than the Meraki Mini (32 MByte RAM and 8 MByte
flash storage) are not in the focus of the ADAM framework. The new implemen-
tation of the ADAM configuration framework has clear advantages over the one
proposed by SRM, as it removes the dependencies from network configurations.

8.2 Future Work

Any suggestions for enhancing the ADAM framework are very welcome. The
ADAM framework is used in several projects of the research group Computer
Networks and Distributed Systems (CNDS) at the Institute of Computer Sci-
ence and Applied Mathematics of the University of Bern. The author and the
CNDS research group provide the software in a public subversion repository avail-
able at https://guest:guest@subversion.cnds.unibe.ch/svn/adam.

90

Index of Acronyms

ADAM Administration and Deployment of Adhoc Mesh, 1, 3, 4, 6, 10, 12, 13, 17–21, 25,
26, 28, 31, 32, 40, 43, 44, 49, 54, 57–59, 61, 62, 66, 72, 81–83, 85, 89, 90

AODV Adhoc On-Demand Vector Routing, 19–21
ARM Advanced RISC Machine, 4
ATMA Framework for the Management of Large-Scale Wireless Network Testbeds, 20,

21

Bash Bourne Again SHell, 18, 22, 32, 33, 58

CGI Common Gateway Interface, 62, 76
CLFS Cross Linux From Scratch, 19
CNDS Computer Networks and Distributed Systems, 90
CPU Central Processing Unit, 3, 12

DAMON Distributed Architecture for Monitoring Multi-hop Mobile Networks, 20, 21
DHCP Dynamic Host Configuration Protocol, 23, 45, 54, 57, 67, 69, 83
DNS Domain Name System, 54, 57, 69

ELF Executable and Linkable Format, 11
ESSID Extended Service Set IDentifier, 62
Ext2 Second Extended Filesystem, 45, 48, 51

GCC GNU Compiler Collection, 12
Glibc GNU C library, 12
GNU GNU is Not Unix, 9, 11
GRUB GRand Unified Bootloader, 49, 51, 74, 75
GSM Global System for Mobile communications, 2
GUI Graphical User Interface, 1, 19, 49, 57, 66, 70

IEEE Institute of Electrical and Electronics Engineers, 2
IETF Internet Engineering Task Force, 61
IPv4 Internet Protocol Version 4, 19, 20, 54, 58, 67, 69, 83, 84
IPv6 Internet Protocol Version 6, 23, 54, 57–59, 61, 62, 65, 66, 69, 76, 83, 84

91

JANUS Framework for Distributed Management of Wireless Mesh Networks, 20, 21
JFFS2 Journalling Flash File System version 2, 45, 51

LFS Linux From Scratch, 19

MAC Media Access Control, 54, 58, 61, 83
MAYA Tool For Wireless Mesh Networks Management, 19–21
MBR Master Boot Record, 51, 74
MCL Mesh Connectivity Layer, 21
MIPS Microprocessor without Interlocked Pipeline Stages, 4, 42
MTD Memory Technology Device, 51

NAT Network Address Translation, 45, 69
NFS Network File System, 45
NTP Network Time Protocol, 22, 23, 54, 57, 62, 69, 83

PHP PHP Hypertext Parser, 14
PID Process IDentfier, 52

RAM Random-Access Memory, 3, 6, 9, 12, 13, 18, 44, 45, 48, 49, 52, 70, 90
RFC Request For Comment, 58, 61

SNMP Simple Network Management Protocol, 20
SoC System on a Chip, 3
SRM Secure Remote Management and Software Distribution for Wireless Mesh Net-

works, 17, 22, 23, 57, 58, 62, 90
SSH Secure SHell, 52, 83
SSL Secure Sockets Layer, 52, 59, 62, 76

UDP User Datagram Protocol, 19

WMN Wireless Mesh Network, 1–3, 6, 9, 21, 25, 45, 89
WMNs Wireless Mesh Networks, 1–3, 6, 9, 10, 17, 19–22, 58
WRAP Wireless Router Application Platform, 3, 4, 22, 51

92

Bibliography

[1] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,” Commu-
nications Magazine, IEEE, vol. 43, no. 9, pp. S23–S30, 2005.

[2] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,”
Computer Networks Journal (Elsevier), vol. 47, no. 4, pp. 445–487, 15 March
2005.

[3] R. Bruno, M. Conti, and E. Gregori, “Mesh networks: commodity multihop
ad hoc networks,” IEEE Communications Magazine, vol. 43, no. 3, pp. 123–
131, March 2005.

[4] M. L. Sichitiu, “Wireless mesh networks: Opportunities and challenges,” in
Wireless World Congress, Palo Alto, California, USA, May 2005.

[5] Meraki Networks, Inc., “The Meraki Mini / Indoor Wireless Platform,”
http://meraki.com, 2007.

[6] PC Engines GmbH , “Alix Platform (Alix),” http://www.pcengines.ch, 2007.

[7] PC Engines GmbH, “Wireless Router Application Platform (WRAP),”
http://www.pcengines.ch, 2006.

[8] Openmoko, Inc., “The NEO Freerunner,”
http://openmoko.com/product.html, 2008.

[9] Ikanos Communications, Inc., “Fusiv Vx180 Highly Integrated VDSL Gate-
way Processor,” http://www.ikanos.com/products/vdsl/cpe-chipsets/fusiv-
vx180/, 2008.

[10] L. Torvalds, “The Linux 2.6 Kernel,” http://kernel.org, 2004.

[11] GCC Steering Comitee, “GNU Compiler Collection (GCC),”
http://gcc.gnu.org, 2007.

[12] Roland McGrath et al., “GNU C Library stable release (Glibc),”
http://www.gnu.org/software/libc, 2007.

[13] E. Andersen, “uClibc,” http://www.ulibc.org, 2006.

93

[14] R. Landley, “Busybox,” http://www.busybox.net, 2006.

[15] M. Burgess, “Cfengine: a system configuration engine,”
http://www.cfengine.org, 1993.

[16] T. Staub, D. Balsiger, M. Lustenberger, and T. Braun, “Secure Remote Man-
agement and Software Distribution for Wireless Mesh Networks,” in 7th
International Workshop on Applications and Services in Wireless Networks
(ASWN 2007), Santander, Spain, May 2007, pp. 47–54.

[17] M. Baker, G. Rozema, I. Kaloz, N. Thill, F. Fainelli, F. Fietkau, M. Albon,
and T. Yardley, “OpenWrt,” http://openwrt.org, 2006.

[18] H. H. P. Freyther, K. Kooi, D. Vollmann, J. Lenehan, M. Juszkiewicz, and
R. Leggewie, “Openembedded,” http://openembedded.org, 2006.

[19] G. Beekmans, “Linux From Scratch (LFS),”
http://www.linuxfromscratch.org, 2006.

[20] D. Manzano, J.-C. Cano, C. Calafate, and P. Manzoni, “Maya: A tool for
wireless mesh networks management,” Mobile Adhoc and Sensor Systems,
2007. MASS 2007. IEEE Internatonal Conference, pp. 1–6, Oct. 2007.

[21] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance
Vector (AODV) Routing,” IETF RFC 3561, July 2003.

[22] K. N. Ramachandran, K. C.Almeroth, and E. M. Belding-Royer, “A frame-
work for the management of large-scale wireless network testbeds,” in 1st
Workshop on Wireless Network Measurements (WiNMee 2005), Riva del
Garda, Trentino, Italy, April 3 2005.

[23] K. N. Ramachandran, E. M. Belding-Royer, and K. C. AImeroth, “Damon: a
distributed architecture for monitoring multi-hop mobile networks,” in First
Annual IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks (IEEE SECON 2004), Santa Clara, CA,
USA, October 4 - 7 2004, pp. 601–609.

[24] R. Riggio, N. Scalabrino, D. Miorandi, and I. Chlamtac, “JANUS: A frame-
work for distributed management of wireless mesh networks,” Testbeds and
Research Infrastructure for the Development of Networks and Communi-
ties, 2007. TridentCom 2007. 3rd International Conference on, pp. 1–7, May
2007.

[25] Microsoft, “Mesh Connectivity Layer (MCL),”
http://research.microsoft.com/mesh/, 2009.

[26] Yoshinori K. Okuji, “GNU GRand Unified Bootloader (GRUB),”
http://www.gnu.org/software/grub/, 1999.

94

[27] R. Hinden and B. Haberman, “Unique Local IPv6 Unicast Addresses,” IETF
RFC 4193, October 2005.

95

	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Wireless Mesh Networks
	Hardware
	Software
	Configuration

	Software for Embedded Systems
	Linux on Embedded Systems
	Cross Compiling Software
	Requirements for a Build System
	Cross Toolchain
	Compiler
	C Library
	C++ Support

	Software Packages for the Target Platform
	Storage Limitations
	Used Software Packages

	Related Work
	Existing Build Systems
	OpenWrt
	Openembedded
	CLFS

	Existing Configuration Frameworks
	MAYA
	ATMA
	JANUS
	DAMON

	Discussion
	Assets and Drawbacks of SRM

	ADAM Build System
	Prerequisites for the Host Platform
	Organisation and Structure
	Build-Tool Front-End
	Build Users
	Configuration of the Build Process
	Build Profiles
	Build Environment
	Package Build Scripts

	Building for a Specific Target Platform
	Target Board Setup Procedure
	Cross Toolchain Installation
	Building Software Packages
	Configuration Files and Initialisation Scripts
	Sample Output of Build-Tool

	Customisation of the Build System
	User Defined Package Selection
	Adding Support for New Packages
	Adding Support for New Target Platforms

	ADAM Images
	Image Types
	Software Images
	Configuration Images
	Standalone Images

	Software Image Creation
	Initramfs Archive Creation
	Linux Kernel Recompilation
	Parameters for Image-Tool

	Configuration Image Creation
	Installation and System Booting
	GRUB with Normal Block Devices
	Custom Boot Loader with Flash Storage
	Log and State Files
	Booting a Node

	Sample Output of Image-Tool

	ADAM Configuration Framework
	Requirements
	Overview
	Core Architecture
	Interaction of Cfagent and Cfservd
	Dedicated IPv6 Cfengine Network
	Reachable Peer Detection
	System Clock Issues
	Configuration Distribution
	Detection of Misconfigured Nodes

	Initial Network Configuration
	Configuration Modules
	Network Configuration Module
	New Node Module
	Image Update Module
	Command Module

	Updating Software Images
	Safe Update with GRUB
	Unsafe Update with Custom Boot Loader

	Node System Information Web Interface
	Sample Network Configuration File

	Evaluation
	Evaluation of the ADAM Build System
	Build System
	Image Creation
	Deployment
	Additional Packages

	Evaluation of the ADAM Configuration Framework
	Setup
	Peer Detection
	System Clock Synchronisation
	Misconfigured Nodes
	Network Configuration Module
	New Node Module
	System Update Module
	Command Module
	Distribution over Multiple Hops

	Conclusion and Future Work
	Conclusion
	ADAM Build System
	Creation of ADAM Images
	ADAM Configuration Framework

	Future Work

	Index of Acronyms
	Bibliography

