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Chapter 1

Introduction

The influence of the Internet on classical kinds of communications is enormous. Orig-
inally designed to allow a small number of academic or military users to access remote
mainframes or to exchange data it has evolved to a nearly omnipresent communication
system. In the 90’s with computers getting cheaper and cheaper and especially with
the development of the World Wide Web nearly everybody in the western world got
the possibility to be connected.

With the increase of available bandwidth even for users at home, the Internet got
also interesting for more classical communication systems like telephony or television.
More and more of these services are using Internet technology. In future decades spe-
cialised networks for telephony or television might disappear and leave one single and
universal medium used for all kinds of communication, the Internet. Unfortunately,
the Internet was never designed to provide support for applications like telephony or
video transmission.

A fundamental design rule within the Internet architecture is to leave as many tasks as
possible to the end systems. Because of scalability issues it is smarter to put the more
complicated algorithms into the computers at the edge with only a small number of
users, instead of building network devices, that have to apply complicated mechanisms
to the data of thousands or millions of users.

The Internet is a packet based network. Each computer connected to the Internet has
a unique address. If a computer wants to send data to another computer, the data
is fragmented into packets of a certain length and put to the network. Each packet
gets a header containing the address of the destination computer and some additional
information. The packet is forwarded through the network and is finally received by
the computer with the destination address. Since a device within the network could
receive more data than it can process, packets can be dropped and get lost.

Beyond sending and receiving packets to and from the network, there is no way for the
end system to influence the way the packet is treated during transmission or whether
at all a packet reaches its destination at all. To provide a reliable data transport, the
end systems run rather complicated protocols, which retransmit packets if there is no
acknowledgement from the receiver. Even if the end systems run complex protocols to
assure a reliable transport of packets, there is no guarantee for a certain transmission
speed or a time the network requires to forward a packet from the sender to the receiver.

1



2 CHAPTER 1. INTRODUCTION

However, for a lot of Internet services this lack of a guaranteed quality is acceptable.
Neither the time it takes for an email to be transmitted nor whether there were changes
in the network delay during the transmission is important. Things look different if
video or audio streams have to be transmitted in real time as it is needed for television,
telephony or audio/video streaming. Insufficient bandwidth or large and changing de-
lays may disturb a transmission. These applications have to rely on certain perfor-
mance parameters like bandwidth or delay to work properly. These requirements have
led to the development of several approaches to add Quality of Service support to the
Internet.

The Internet offers currently only one type of service based on the best-effort model.
With this model and FIFO queueing deployed in the network, any non-adaptive source
can take advantage to grab high bandwidth while depriving others. One can always run
multiple web browsers or start multiple FTP connections and grab a substantial amount
of bandwidth by exploiting the best effort model. Therefore, the Internet is unable to
support applications relying on certain traffic parameters like a minimum bandwidth.
Real time applications like audio or video transmission are especially affected by the
best effort model.

On the other hand this ”simple” packet based technology used by the Internet is also
one of the reasons for its success. Therefore any new technology providing Quality
of Service not only has to be compatible with current Internet standards but has also
to comply the basic design rules. It must be capable to provide a service independent
from the network size and the from number of persons using this service. Besides
the question of the underlying mechanisms to provide Quality of Service the manage-
ment of these services is an open issue as well. Since Quality of Service requires a
proper reservation of resources, mechanisms are required to also perform this tasks in
a scalable manner.

Recently two approaches have been developed to add these Quality of Service capabil-
ities to the Internet. The first one Integrated Services, based on the Resource Reserva-
tion Setup Protocol (RSVP) focuses the setup of appropriate resources per flow, while
the second approach – Differentiated Services – tries to provide services not on a per
flow basis but for large aggregates of flows. Both approaches and their underlying
mechanisms are presented in detail in Chapter 2.

While RSVP is mainly based on well known mechanisms, Differentiated Services is
a rather new concept and introduces new services and technologies. Since some of
these techniques are fundamentally new, their impact and their performance have to
be evaluated. Within Chapter 3, a network simulator is extended to be capable for
Differentiated Services and is then used to evaluate these new aspects. The evaluations
cover various parameter sets and scenarios.

However, simulators always lack a certain realism and tend to neglect small but some-
times important details. Their rather abstract view of a network is an advantage during
the evaluation of huge topologies. For small and medium size networks a more real-
istic tool would be advantageous. To combine the advantages of network simulation
and real test beds, a new concept for the emulation of Internet topologies was devel-
oped and implemented. The new approach allows the integration of real end systems
and therefore the ability to directly evaluate any application available for these end
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systems. Chapter 4 describes this architecture. Section 4.4 proves the power of this
new approach by presenting several experimental results. A special focus is put on
the emulation of Differentiated Services networks and the comparison of the results to
those obtained by the network simulator.

The basic mechanisms studied by simulations and emulations are only one part of a
network wide support for Quality of Service. Using the best effort model, Internet
service providers only had to ensure that packets reach their destination, while in a
Quality of Service enabled network they also have to provide certain guarantees or at
least probabilities for a certain throughput or a maximum delay.

Both approaches for Quality of Service within the Internet have their own advan-
tages and drawbacks. An integration of both concepts would be advantageous. While
RSVP has certain aspects supporting the end user in access networks in particular,
the strengths of Differentiated Services is the good support for Internet backbones.
Chapter 5 illustrates the problems arousing from Quality of Service enabled networks.
Within section 5.3 a concept of integrating both approaches combining their advan-
tages is presented and evaluated.

Services like the mapping between Integrated and Differentiated Services show the
capability of new services added to the network. Unfortunately, the implementation
of new services is an extremely complicated and time consuming process. One prob-
lem are the specific and incompatible configuration interfaces router manufacturers
provide, making management rather complicated and limited. The other more severe
problem is the size of the Internet. A central instance like a management station cannot
supervise thousands of network nodes.

In Chapter 6, a lightweight mechanism is presented allowing the installation of new
services quite rapidly. This includes new functionalities on network devices as well
as simple mechanisms to implement new protocols for signalling purposes. Active
Networks are a possible solution providing the required flexibility. They allow to in-
ject active packets into a network. These packets carry executable code and can be
executed by network devices. An Active Network environment was designed and im-
plemented for Linux and the network emulator mentioned above. This allows to set up
and evaluate large active networks. In contrast to other approaches the environment is
based on the python language allowing to implement new services in a reusable and
understandable programming language.

To evaluate and demonstrate the capabilities of such a service and network manage-
ment approach, different new services were implemented and are presented in section
6.5.1. A presentation of an ”active” approach to integrate different Quality of Service
concepts conclude the presentation of the active network environment.

Chapter 7 summarises the results and gives an outlook on further research topics.
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Chapter 2

Quality of Service in the Internet

The incredible rapid growth of the Internet has resulted in massive increases in demand
for network bandwidth guarantees to support both existing and new applications. In
order to meet these demands, new Quality of Service (QoS) functionalities need to
be introduced to satisfy customer requirements including efficient handling of both
delay critical and bandwidth greedy applications. QoS, therefore, is needed for various
reasons:

• Better control and efficient use of networks resources (e.g. bandwidth).

• Enable users to enjoy multiple levels of service differentiation.

• Special treatment to high priority applications like remote surgery while allow-
ing others to get a fair treatment without interfering with this sensitive traffic.

• Business Communication.

• Virtual Private Networks (VPNs) over IP.

2.1 Adaptive Internet Applications

A pragmatic approach to achieve good quality of service (QoS) is an adaptive design
of the applications to react to changes of the network characteristics (e.g. congestion).

On protocol level this is already done by the TCP protocol. TCP monitors round trip
time and packet loss and reduces bandwidth according to the actual available network
resources. TCP tries to avoid congestion within the network. It is not able to react to
scarce resources in an intelligent manner, but provides only a rather generic reliable
data transmission service without any support for a certain packet delay or a certain
bandwidth.

To provide a more intelligent congestion control an application may reduce the trans-
mission rate by increasing the compression ratio or by modifying the Audio/Video
coding algorithm. For this purpose functions to monitor quality of service are needed.
For example, such functions are provided by the Real-Time Transport Protocol (RTP)

5
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routerrouter receiversender

path tear

path

resv tear

resv

data transfer
Figure 2.1:RSVP signals during
resource reservation set up

[SCFJ96] and the Real-Time Control Protocol (RTCP). A receiver measures the delay
and the rate of the packets received. This information is transmitted to the sender via
RTCP. With this information the sender can detect if there is any congestion in the
network and adjust the transmission rate accordingly. This may affect the coding of
the audio or video data. If only a low data rate is achieved, a coding algorithm requir-
ing less bandwidth has to be chosen. Without this adaptation the packet loss would
increase, making the transmission completely useless. However, rate adaptation is
limited since many applications need a minimum rate to work reasonably.

2.2 Integrated Services

The most obvious solution to provide a certain QoS for a specific packet stream is
to configure all network devices between sender and receiver to guarantee a certain
amount of bandwidth or a maximum delay to packets of this flow. This approach is
called Integrated Services and is based in the Resource Reservation Protocol (RSVP)
[BZB+97]. The RSVP protocol is used to signal QoS requirements to all RSVP ca-
pable routers between a source and a destination. Figure 2.1 shows the setup of a
resource reservation.

A RSVP session starts with apath-message being sent from the host, that wants to
transmit data to the destination. This message has the following tasks:

• determination of the route the data will take later on through the network.

• information about the destination, the traffic characteristics and perhaps the costs

• initialisation of information in each RSVP capable router on the path. Each
router has to know its neighbour routers.

To record the route properly, thepath message has to be sent to the final receiver of
the data. Unfortunately an intermediate router would simply forward such a packet,
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without the special treatment necessary to record the route. To apply this special pro-
cessing of the packet, the Router Alert option [Kat97] is used, signalling a router to
check a packet more intense.

If the receiver agrees the advertised flow, he returns aresv-message, which is trans-
ported from hop by hop via RSVP capable routers towards the sender of thepath-
message. A RSVP router allocates resources and forwards theresv-message if he can
meet the flows requirements, Otherwise he sends aresv-err-message to the sender of
theresv-message.

If the receiver gets theresv-message, the resources are reserved and the data can be
transmitted. To terminate a reservation, anresv-tear-message is transmitted to remove
the resource allocations and apath-tearmessage is sent to delete the path states in
every router on the path.

RSVP has the ability to guarantee a certain QoS, is supported by several user applica-
tions like Microsoft’s Netmeeting and is implemented in most modern routers.

Unfortunately RSVP requires each router to store the flow state for the reservation.
This works great in small LANs with a small number of end systems. In the backbone,
however, it would be extremely difficult if not impossible to store millions of flow
states, even with very powerful processors. Another disadvantage is the time it takes
to set up a reservation and the protocol overhead. For setting up a video transmission
a certain delay to establish the reservation is acceptable, but for short-lived HTTP
connections this causes too much overhead.

2.3 Differentiated Services

To avoid the scalability problems of RSVP, the concept of Differentiated Services (DS)
was developed. In contrast to RSVP Differentiated Services work on an aggregation
of flows by marking each packet and invoking some differentiation mechanism within
the nodes on the packet’s path. There, depending on the marking, the packet is handled
differently. Therefore depending on how the packets of a specific stream are marked
they get a certain Quality of Service [BBH98], [BBEK99].

Such a concept does not require the storage of flow states within each backbone router
as RSVP does, but simply treats each packet according to its mark. As will be de-
scribed later the algorithms for the different packet treatments are not very complicated
and can be applied even at high packet rates.

It depends on the network and the application where packets are marked. It might
make sense to mark packets directly within an application running on the end system
to provide different kinds of Quality of Service for different data. Therefore a video
conference application might send the packet containing the audio data with a better
Quality of Service than the less important video data.

In another scenario the marking may be done by the customers or the Internet Service
Providers (ISPs) border routers. This makes sense if all traffic of a customer should
get a certain Quality of Service. Of course the ISP has to control that the customer
does not send more packets than he is allowed.
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As can be seen Differentiated Services are very flexible, allowing the support of a wide
range of scenarios.

The rather static agreements between a customer and his ISP are a disadvantage.
Therefore, one reservation may exist for several, possibly consecutive connections.

The probability to be able to provide the requested quality of service depends essen-
tially on the dimensions and configuration of the network and its links, i.e. whether
individual links or routers can be overloaded by high priority data traffic. Though this
concept cannot guarantee any QoS parameters as RSVP can, it is more straightforward
to be implemented than continuous resource reservations and it offers a better QoS
than mere best-effort services.

2.3.1 Popular Services of the Differentiated Services Approach

During the work of the IETF’s Differentiated Services working group, several services
were proposed. Even if there were several proposals for different services, there are
currently only two standardised in RFC documents.

Expedited Forwarding: The Expedited Forwarding (EF) service was designed to
provide a kind of leased line service for the Internet. This should allow ISPs to
sell virtual leased lines with a fixed bandwidth and a limited delay to customers.
As more and more companies are using the Internet instead of the originally
leased lines to connect, there is a big demand for such a service.

Negotiating such a service with his ISP allows a customer to send packets at a
specific rate to the ISP’s network. If a packet exceeds this rate it is – in contrast
to Assured Service – dropped. Like a leased line this service defines an upper
limit for the allowed bandwidth but also guarantees the forwarding of packets
up to this limit at a constant delay.

Assured Forwarding: Assured Forwarding (AF) was based on the initially proposed
Assured Service by Clark and Wroclawski [CW97]. The Assured Service pro-
posed, should allow a customer to define a service profile with his ISP, defining
a certain packet rate he is allowed to send higher priority packets with. Pack-
ets exceeding this rate are forwarded with higher drop precedence. Based on
this initial proposal Heinanen defined the Assured Forwarding Service. Assured
Forwarding defines four independent traffic classes, each with three drop prece-
dences. Heinanen writes in [HBWW99a]:

[...], if traffic conditioning actions at the ingress of the provider DS
domain make sure that an AF class in the DS nodes is only moder-
ately loaded by packets with the lowest drop precedence value and is
not overloaded by packets with the two lowest drop precedence val-
ues, then the AF class can offer a high level of forwarding assurance
for packets that are within the subscribed profile (i.e., marked with
the lowest drop precedence value) and offer up to two lower levels of
forwarding assurance for the excess traffic. [...]
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Figure 2.2:The fields of the DS
byte in IPv4 [NBBB98]

Obviously this service does not define a QoS as clear as Expedited Forwarding
does. The end-to-end service depend crucially on proper network provision-
ing. On the other hand this service is capable to use free network resources if
available.

2.3.2 Differentiated Services Marking

Differentiated Services are based on marking single packets. As the IP header can not
be changed due to compatibility reasons, the eight bit wide Type of Service (ToS) field
in the IP header was used to mark packets differently. Six bits of the ToS byte are used
as Differentiated Service Code point (DSCP) as can be seen in Figure 2.2.

Within each Differentiated Services capable router there is a mapping between a DSCP
value and a per hop behaviour (PHB), which defines how a packet is treated within
the router. If a PHB specifies to forward a packet preferential to all others and that
PHB is applied within all routers of a network this would result in a service providing
noticeable better throughput and low delay to all packets with the appropriate DSCP.

The six bit wide DSCP allows to differentiate between26 = 64 different PHBs. To
allow an Internet Service Provider to provide own services only a small number of
DSCPs and PHBs are specified. An ISP might map DSCPs at his border routers to
provide a similar PHB within his own network. Router implementations should sup-
port the recommended code-point-to-PHB mappings. The default PHB, for example,
is 000000, other recommended PHBs will be introduced later.

2.3.3 Per Hop Behaviours

An introduction to Per Hop Behaviours (PHBs) has already been given while dis-
cussing DS byte marking 2.3.2. Further [BW98] writes:”Every PHB is the externally
observable forwarding behaviour applied at a DS capable node to a stream of packets
that have a particular value in the bits of the DS field (DS code point). PHBs can
also be grouped when it is necessary to describe the several forwarding behaviours
simultaneously with respect to some common constraints.”

However, there is no rigid assignments of PHBs to DSCP bit patterns. This has several
reasons:

• There are (or will be) a lot more PHBs defined than DSCPs available, making a
static mapping impossible.
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Drop Precedences AF Code points
Class 1 Class 2 Class 3 Class 4

Low Drop Precedence 001010 010010 011010 100010
Medium Drop Precedence 001100 010100 011100 100100
High Drop Precedence 001110 010110 011110 100110

Table 2.1:The 12 different Assured Forwarding code points

• The understanding of good choices of PHBs is at the beginning.

• It is desirable to have flexibility in the correspondence of PHB values and be-
haviours.

• Every ISP has to be able to create/map PHBs in his Differentiated Services do-
main.

This is why there are no static mappings between DS code points and PHBs. The PHBs
are enumerated as they become defined and can be mapped to every DSCP within a
Differentiated Services domain. As long as the enumeration space contains a large
number of values (232), there is no danger of running out of space to list the PHB
values. This list can be made public for maximum interoperation. Because of this
interaction, mappings between PHBs and DSCPs are proposed, even if every ISP can
choose other mappings for the PHBs in his Differentiated Services domain.

Until now, two PHBs and corresponding DSCPs have been defined.

Assured Forwarding PHB: Based on the current Assured Forwarding PHB (AF)
group [HBWW99b], a provider can provide four independent AF classes with
each class having three drop precedence values. These classes are not aggre-
gated in a DS node and Random Early Detection (RED) [FJ93] is considered
to be the preferred discarding mechanism. This required altogether 12 different
AF code points as given in table 2.1.

In a Differentiated Service (DS) Domain each AF class receives a certain amount
of bandwidth and buffer space in each DS node. Drop precedence indicates rel-
ative importance of the packet within an AF class. During congestion, packets
with higher drop precedence values are discarded first to protect packets with
lower drop precedence values. By having multiple classes and multiple drop
precedences for each class, various levels of forwarding assurances can be of-
fered. For example, Olympic Service can be achieved by mapping three AF
classes to it’s gold, silver and bronze classes. A low loss, low delay, low jitter
service can also be achieved by using this service if the packet arrival rate is
known in advance. AF does not give any delay related service guarantees. How-
ever, it is still possible to say that packets in one AF class have smaller or larger
probability of timely delivery than packets in another AF class. The Assured
Forwarding can be realized with AF PHBs.
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Expedited Forwarding PHB: The forwarding treatment of the Expedited Forward-
ing (EF) PHB [JNP98] offers to provide higher or equal departure rate than the
configurable rate for aggregated traffic. Services which need end-to-end assured
bandwidth and low loss, low latency and low jitter can use EF PHB to meet the
desired requirements. One good example is premium service (or virtual leased
line) which has such requirements. Various mechanisms like Priority Queueing,
Weighted Fair Queueing (WFQ) or Class Based Queueing (CBQ) are suggested
to implement this PHB since they can preempt other traffic and the queue serv-
ing EF packets can be allocated bandwidth equal to the configured rate. The
recommended code point for the EF PHB is 101110.

2.3.4 Per Domain Behaviours and Service Profiles

Administrators of Differentiated Service Domains may freely choose DSCP values for
different PHBs and also provide specific PHBs. On the other hand the mapping of
DSCPs and PHBs within a domain has to be uniform.

For the definition of an end to end service involving multiple Differentiated Service
Domains usually, the packet treatment per domain is a more feasible definition than a
Per Hop Behaviour. Therefore the term Per Domain Behaviour (PDB) was defined in
[NC01]:

Per-Domain Behaviour: the expected treatment that an identifiable or
target group of packets will receive from ”edge to edge” of a DS domain.
A particular PHB (or, if applicable, list of PHBs) and traffic conditioning
requirements are associated with each PDB.

Specification of the transit expectations of packets across a Differentiated Services
domain will support the composition of end-to-end, inter-domain services. Networks
of DS domains can be connected to create end-to-end services by building on the PDB
characteristics without regard to the particular PHBs used. This level of abstraction
makes it easier to compose inter-domain services as well as making it possible to hide
details of a network’s internals while exposing information sufficient to enable QoS.

PDBs are intended to be useful tools in configuring Differentiated Service domains, but
the PDB used by a provider is not expected to be visible to customers any more than
the specific PHBs employed in the provider’s network would be. The configuration of
a PDB might be taken from a Service Level Specification as defined in [Gro01].

A Service Level Specification (SLS) is a set of parameters and their values which to-
gether define the service offered to a traffic stream by a Differentiated Service domain.
It is expected to include specific values or bounds for PDB parameters. Any SLS in-
cludes also a Traffic Conditioning Specification (TCS), which is a set of parameters
and their values which together specify a set of classifier rules and a traffic profile.

The SLS defines the service an Internet Service Provider offers to his customers and
is usually part of an Service Level Agreement (SLA). In contrast to the technical de-
scription provided by SLS and TCS, the SLA is more a contract and may additionally
include information about prices and administrative data.
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Figure 2.3:DS Traffic Conditioning in Enterprise Network (as a set of queues)

Only a static SLA, which usually changes weekly or monthly, is possible with today’s
router implementation. The TCS parameters are set in the router manually to take
appropriate action. Dynamic SLAs change frequently and need to be deployed by
some automated tool which can renegotiate resources between any two nodes.

Such a tool and an according protocol was developed within the CATI [SBP99] project.
An application can contact a bandwidth broker using a special protocol to negotiate a
certain QoS. The bandwidth broker configures the networks devices to provide the
service and to police the users traffic according to the TCS.

2.3.5 Differentiated Services Traffic Conditioning

Traffic conditioners [BBC+98a] are required to instantiate services in Differentiated
Services capable routers and to enforce service allocation policies. These condition-
ers are, in general, composed of one or more of the followings: classifiers, markers,
meters, policers, and shapers. When a traffic stream at the input port of a router is clas-
sified, it then might have to travel through a meter (used where appropriate) to measure
the traffic behaviour against a traffic profile which is a subset of a SLA. The meter clas-
sifies particular packets as IN or OUT-of-profile depending on SLA conformance or
violation. Based on the state of the meter further marking, dropping, or shaping action
is activated.

Traffic Conditioners can be applied at any congested network node (Figure 2.3) when
the total amount of in bound traffic exceeds the output capacity of the switch (or
router). In Figure 2.3 routers between source and destination are modelled as queues
in an enterprise network to show when and where traffic conditioners are needed. For
example, routers may buffer traffic (i.e. shape them by delaying) or mark them to be
discarded later during medium network congestion, but might require to discard pack-
ets (i.e. police traffic) during heavy network congestion when queue buffers fill up.
As the number of routers grows in a network, congestion increases due to expanded
volume of traffic and hence proper traffic conditioning becomes more important.
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Traffic conditioners might not need all four elements. If no traffic profile exists then
packets may only pass through a classifier and a marker.

Classifier: Classifiers categorise packets from a traffic stream based on the content
of some portion of the packet header. It matches received packets to statically
or dynamically allocated service profiles and pass those packets to an element
of a traffic conditioner for further processing. Classifiers must be configured by
some management procedures in accordance with the appropriate TCA.

There are two types of classifiers:

BA Classifier: works on behaviour aggregates and classifies packets based on
patterns of the DS-byte (DSCP) only.

MF classifier: classifies packets based on any combination of the DS field,
protocol ID, source address, destination address, source port, destination port or
even application level protocol information.

Markers: Packet markers set the DS field of a packet to a particular code point, adding
the marked packet to a particular Differentiated Services behaviour aggregate.
The marker can (i) mark all packets which are mapped to a single code point, or
(ii) mark a packet to one of a set of code points to select a PHB in a PHB group,
according to the state of a meter. The approach of Differentiated Services and
especially the Assured Forwarding service with its different drop precedence
levels, requires specialised components.

Meters: After being classified at the input of the boundary router, traffic from each
class is typically passed to a meter. The meter is used to measure the rate (tem-
poral properties) at which traffic of each class is being submitted for transmis-
sion. This is then compared against a traffic profile specified in TCA (negotiated
between the Differentiated Services provider and the Differentiated Services
customer). Based on the comparison some particular packets are considered
conforming to the negotiated profile (IN-profile) or non-conforming (OUT-of-
profile). If a meter passes this state information to other conditioning functions,
an appropriate action is triggered for each packet.

Shapers: Shapers delay some packets in a traffic stream using a token bucket in order
to force the stream into compliance with a traffic profile. A shaper usually has a
finite-size buffer and packets are discarded if there is not sufficient buffer space
to hold the delayed packets. Shapers are generally placed after either type of
classifier. For example, shaping for EF traffic at the interior nodes helps to
improve end to end performance and also prevents the other classes from being
over flooded by a big EF burst. Only either a policer or a shaper is supposed to
appear in the same traffic conditioner.

Policer: When classified packets arrive at the policer it monitors the dynamic be-
haviour of the packets and discards or re-marks some or all of the packets in
order to force the stream into compliance (i.e. force them to comply with con-
figured properties like rate and burst size) with a traffic profile. By setting the
shaper buffer size to zero (or a few packets) a policer can be implemented as a
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special case of a shaper. Like shapers policers can also be placed after either
type of classifier. Policers, in general, are considered suitable to police traffic
between DS domains (e.g. a customer and a provider) and after BA classifiers in
backbone routers. However, most researchers agree that policing should not be
done at interior nodes since it unavoidably involves flow classification. Policers
are usually present in ingress nodes and could be based on simple token bucket
filters.

Especially the Assured Forwarding requires special treatment, because of its three drop
precedence mechanism Heinanen e.a. proposed two meter/marker combinations to
mark packets with different probabilities. Each of this components associates a colour
(red, yellow, green) with a drop precedence.

Two Rate Three Colour Marker

This marker [HG99b] uses four parameters: the peak information rate, the committed
information rate and their associated burst sizes.

(ratepi, burstpi, rateci, burstci)

The burst sizes are usually given in bytes, the rates in bits per second. A packet is
marked red if it exceeds the peak information rateratepi. Otherwise it is marked either
yellow or green depending on whether it exceeds or doesn’t exceed the committed
information Raterateci. This marker is useful for ingress policing of a service, where
a peak rate needs to be enforced separately from a committed rate. This type of marker
is usually implemented using two token bucket filters withratepi andrateci as bucket
rates andburstpi andburstci as bucket sizes.

Single Rate Three Colour Marker

The other marker proposed by Heinanen is the ”Single Rate Three Color Marker”
[HG99a]. In contrast to the ”Two Rate Three Color Marker” only one rate and two
burst sizes are specified. A stream is metered and marked according to three traffic
parameters Committed Information Rate (CIR), Committed Burst Size (CBS), and
Excess Burst Size (EBS) to be either green, yellow, or red.

(rateci, burstc, burste)

A packet is marked green if it doesn’t exceedburstc, yellow if it does exceedburstc,
but notburste and red otherwise. This marking mechanism is useful for ingress polic-
ing of a service, where only the length but not the peak rate of the burst determines
service eligibility.
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2.4 Queueing Components for Quality of Service

In the previous section the functional components of a Differentiated Services routers
were described. Since several of these components are rather generic and can be
used for any kind of resource management in a network, this section will also give
an overview over traffic conditioning components in general.

Quality of Service is a kind of service discrimination. A network component (e.g. a
router) has to handle packets in different manners in order to achieve a certain Quality
of Service for a specific flow or type of packets. This differentiation between packets
may be done on a per flow basis as in RSVP or for an aggregation of packets, distin-
guished by different DSCP values as it is done by Differentiated Services. Within the
Internet the processing speed of network components is assumed high compared to the
bandwidth of the links between them. Congestion occurs when a router has to transmit
more packets over a link than the link’s capacity allows. The router has to discard
packets. All approaches to realise QoS are based on dropping the ”right” packets.

To handle packets differently, an Internet router usually has a queueing system attached
to his outgoing interfaces. Simple queueing systems like FIFO (first in first out) queues
are capable to intercept short bursts of packets exceeding the output bandwidth. More
complicated queueing systems allow to handle packets differently, putting them to
different kind of queues and processing these queues with different priority.

Several mechanisms were developed for various purposes.

2.4.1 Absolute Priority Queueing

In absolute priority queueing (Figure 2.4), the scheduler prefers queues with high
priority, forwarding packets from queues with lower priority only the higher priority
queues are empty. Therefore, the packets put into the queue with the highest priority
achieve the best service, while packets sent to queues with lower priority have to be
satisfied with the left resources.

The basic working mechanism is as follows: the scheduler always scans the queues
from their highest to lowest priority and transmits packets if available. Once a packet
has been sent, the scheduler starts again at the queue with the highest priority.
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This queueing mechanism is useful to give a specific flow or service class the absolute
priority over other traffic, which is important for bandwidth and delay critical data.
As long as high priority packets do not exceed the outgoing bandwidth, the packets
are forwarded with a minimal delay. Setting up Differentiated Services networks, this
algorithm might be used to provide an expedited forwarding service. Of course the
expedited forwarding traffic has to be policed as misbehaving EF senders would be
able to completely starve the bandwidth of traffic classes with less priority.

2.4.2 Weighted Fair Queueing

Weighted fair queueing (WFQ) (figure 2.5) is a discipline that assigns a queue for
each flow. A weight can be assigned to each queue to guarantee a different part of
the network’s bandwidth capacity. As a result, weighted fair queueing can provide
protection against other flows.

WFQ can be configured to give low-volume traffic flows preferential treatment to re-
duce response time and share the remaining bandwidth between high volume traffic
flows in a fair way. With this approach bandwidth hungry flows are prevented from
consuming too much of network resources while depriving other, smaller flows.

WFQ does the job of dynamic configuration since it adapts automatically to the chang-
ing network conditions. TCP congestion control and slow-start features are also en-
hanced by WFQ. The result is predictable throughput and response time for each active
flow.

Even if WFQ was originally designed to support one flow per queue, it can also be
applied for aggregations of flows. This can be used to reserve a certain portion of the
available bandwidth to each Assured Forwarding class, while another portion is left to
best effort traffic.

Based on the initial work of Demers, Keshav e.a. [DS90], several improvements were
developed like ”Worst case fair Weighted Fair Queueing” [BZ96] and ”Worst case fair
Weighted Fair Queueing +” [BZ97].
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2.4.3 Priority Weighted Round Robin

The implementation of a Differentiated Services queueing system usually has to sup-
port six traffic classes: Expedited Forwarding, four classes of Assured Forwarding and
best effort.

Whereas each Assured Forwarding class and the best effort usually get a certain share
of the available bandwidth, the Expedited Forwarding traffic has to be handled prefer-
ential.

This requires a combination of absolute priority queueing for the EF traffic and a
weighted fair queueing like bandwidth sharing mechanism. This is provided by the
priority weighted round robin (PWRR) scheduler [SB00]. This scheduler is able to
handle certain queues preferential as absolute priority queueing does and share re-
maining bandwidth between other queues.

2.4.4 Class Based Queueing (CBQ)

In an environment where bandwidth must be shared proportionally between users,
CBQ [FJ95] (Figure 2.7) provides a very flexible and efficient approach by first clas-
sifying user traffic and then assigning a specified amount of resources to each class of
packets and serving those queues in a round robin fashion.

A class can be an individual flow or aggregation of flows representing different ap-
plications, users, departments or servers. Each CBQ traffic class has a bandwidth
allocation and a priority. In CBQ, a hierarchy of classes (Figure 2.6) is constructed for
link sharing between organisations, protocol families and traffic types. Different links
in the network will have different link sharing structures. The link sharing goals are:

• Each interior or leaf class should receive roughly its allocated link-sharing band-
width over appropriate time intervals.

• If all leaf and interior classes have received at least their allocated link-sharing
bandwidth, the distribution of any excess bandwidth should not be arbitrary but
should follow some set of reasonable guidelines.

The granular level of control in CBQ can be used to manage the bandwidth allocated
across the departments of an enterprise or to provide bandwidth to individual tenants
of an apartment building.
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Other than the classifier that assigns arriving packets to an appropriate class, there
are three other main components that are needed in this CBQ mechanism: scheduler,
rate-limiter (delayer) and estimator.

Scheduler: In a CBQ implementation, the packet scheduler can be implemented with
either a simple round robin, a priority round robin or weighted round robin
scheduler.

While the round robin scheduler will process all classes sequentially, providing
the same service to all classes, priority round robin has different priorities for
the classes and treats packets from the highest priority level preferential. In
weighted round robin scheduling uses weights proportional to a traffic class’s
bandwidth allocation. This weight finally allocates the number of bytes a traffic
class is allowed to send during a round of the scheduler. Each class at each
round gets to send its weighted share in bytes. If a class is underlimit1 but the
packet’s length exceeds the available share, the class might borrow bytes from
future rounds of the scheduler.

Rate-Limiter: If a traffic class is overlimit2 and is unable to borrow from its parent
classes, the scheduler starts the overlimit action which might include simply
dropping arriving packets for such a class or it can also limit overlimit classes
to their allocated bandwidth. The rate-limiter computes the next time that an
overlimit class is allowed to send traffic. Unless this future time has arrived, this
class will not be allowed to send another packet.

Estimator: The estimator estimates the bandwidth used by each traffic class over the
appropriate time interval and determines whether each class is over or under its
allocated bandwidth.

1If a class has used less than a specified fraction of its link sharing bandwidth (in bytes/sec, as averaged
over a specified time interval)

2If a class has recently used more than its allocated link sharing bandwidth (in bytes/sec, as averaged
over a specified time interval)
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2.4.5 Random Early Detection Gateways

Random Early Detection gateways (RED) [FJ93] are designed to avoid congestion by
monitoring traffic load at points in the network and stochastically discarding packets
when congestion starts increasing. By dropping some packets early rather than waiting
until the buffer is full, RED keeps the average queue size low and avoids dropping large
numbers of packets at once to minimise the chances of synchronisation effects within
the network. Thus, RED reduces the chances of tail drop and allows the transmission
line to be used fully at all times. This approach has certain advantages:

• bursts can be handled better, as always a certain queue capacity can be reserved
for incoming packets.

• as filled queues increase the delay of a packet and RED is able to keep the queue
length reasonably short, real-time applications are better supported.

A RED queue has four parameters. A minimum thresholdthmin, a maximum thresh-
old thmax, a valuewq which is used for averaging the queue length and a factormaxp
used to calculate the dropping probability. The average queue lengthavg is calculated
by

avg= (1− wq) · avgold + v · wq

wherev is the actual queue length and avgold the old average value. The dropping
probabilitypb increases linearly from0 tomaxp.

pb = maxp
avg − thmin
thmax − thmin

Additionally the dropping probabilitypb increases with the numbercount of packets
since the last dropped packet. The final dropping probabilitypa is given by:

pa =
pb

1− count · pb

PRED = (thmin, thmax,maxp)

and the queue weightwq. Each parameter has a certain influence on the behaviour of
the RED system.

wq: This value determines how fast the average queue lengthavg follows the value of
the actual queue lengthv. Thus it determines how fast RED reacts to changes of
the bandwidth (e.g. bursts).

maxp: Figure 2.8 shows the dropping probabilitypb for a RED queue. Betweenthmin
andthmax the dropping probability does not increase linearly from zero to one
but from zero tomaxp. The reason for this is TCP congestion control. A TCP
flow can be throttled down by dropping only very few packets of this flow. So it
is sufficient to drop only with the probabilitymaxp. A drawback of this strategy
is that not only TCP conforming flows are transmitted by a RED queue.
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thmin andthmax: These parameters specify in which interval the RED algorithm is
used. Belowthmin no packet is dropped, abovethmax every packet is discarded.

Another element of the algorithm is to increase the dropping probabilitypb with the
numbercount of transmitted packets since the last dropped packet. This way a drop-
ping of sequential packets causing TCP to decrease its transmission rate too much can
be avoided.

If a packet arrives at the RED queue and avg is smaller thanthmin it is stored in the
queue and avg is recalculated. If avg is larger thanthmax the packet is dropped. In the
case of the average queue size falling between the thresholdsthmin < avg< thmax,
the arriving packet is either dropped or queued. Mathematically said, it is dropped
with linearly increasing probability.

RED is very useful for TCP since it has the ability to flexibly specify traffic handling
policies to maximise throughput under congestion conditions. Especially, RED is able
to split bandwidth between TCP data flows in a fair way since lost packets automati-
cally cause a reduction to a TCP data flow’s packet rate. The situation becomes more
problematic if data flows are involved, not conforming the TCP congestion avoiding
mechanisms like UDP based real-time or multicast applications. Flows not reacting
to packet loss have to be handled differently by reducing their data rate to avoid an
overloading of the network.

Since RED cannot make unfair protocols like UDP behaving fair and most Internet
traffic is a mixture of several types of traffic, the improvements gained by RED are
hard to prove. Christiansen et al. [CJODS00] conclude their evaluation of RED with
the statement, that it would be better to spend time on better network provisioning and
use simple queueing mechanisms instead of wasting time for RED.

2.4.6 Random Early Detection for Assured Forwarding

To support Assured Forwarding flows with their different drop precedences, some
modifications of the RED mechanisms were developed. An initial one was the RED
with In and Out (RIO) mechanism proposed by Clark and Wroclawski [CW97]. They
suggested to put the in and out of profile packets into different queues. Since this
approach can change the packet order, it was replaced by a system consisting of one
queue with a modification of the RED mechanism differentiating between the drop
probabilities. With the specification of the Assured Forwarding Per Hop Behaviour,
requirements for the queue were defined also.
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Therefore, the most important properties are also part of the Assured Forwarding RFC
[HBWW99a]:

• The dropping algorithm must be insensitive to the short-term traffic characteris-
tics of the micro flows using an AF class.

• Flows with different short-term burst shapes but identical longer-term packet
rates should have packets discarded with essentially equal probability.

• The dropping algorithm must treat all packets within a single class and prece-
dence level identically.

• The level of packet discard at each drop precedence in relation to congestion,
must be gradual rather than abrupt, to allow the overall system to reach a stable
operating point. The use of a common queue for the different drop precedences
prevents changes of the packet order.

Heinanen also suggests a RED based mechanism to be used to for Assured Forwarding.
The algorithm is similar to the RED algorithm as described in Section 2.4.5. Same as
the standard RED algorithm it uses a weightwq to calculate the average queue length
but defines a parameter set for each of the three drop precedences.


(thmin, thmax,maxp)

high

(thmin, thmax,maxp)
medium

(thmin, thmax,maxp)
low


Figure 2.9 shows a graph of a TRIO queue with the dropping probabilities for each
precedence. The impact of different parameter sets on the behaviour of different flows
will be evaluated in Section 3.2 using thens network simulator.

2.5 Differentiated Service Networks

Beyond the traffic conditioning aspects Differentiates Services require policing, shap-
ing and classification mechanisms within specific devices of a network. The amount
of traffic a customer or an ISP may transmit to another ISP is defined within service
level agreements.
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Therefore any participant is interested and required to control whether the sent and
received traffic exceeds the SLA. ISPs will not simply trust their customers to keep
within the limits of the negotiated SLAs, but police incoming traffic and drop or re-
classify the exceeding packets. On the other hand a customer usually wants to keep
within the SLA but also profit from it as good as possible. To utilise the negotiated
SLA and to keep in within the SLA the customer will apply shaping functions before
the traffic is transmitted to the next ISP.

The concept of Differentiated Services defines several mechanisms usually located at
specific locations within a network. Routers have to be configured to police incoming
traffic to prevent customers exceeding their SLA, shape traffic to utilise a SLA as
good as possible or simply forward packets as far as possible without any additional
functionality.

ingress routers: A Differentiated Services ingress router receives IP packets from a
neighbouring ISP or from customers. Within the SLA between the ISP and
his neighbour, the traffic profile the ISP has to forward is defined. To keep
within the profile policing functions are applied within the ingress router. The
ingress router classifies incoming traffic according to the DSCP values or other
informations like addresses, protocol ids (multifield classification) and drops or
reclassifies packets exceeding the negotiated profile.

egress routers: Before traffic is forwarded to the next ISP it is profitable to apply
shaping mechanisms usually. They guarantee that outgoing traffic conforms the
SLA and that packets arriving in bursts won’t be discarded. Usually the egress
router uses a BA classifier, as any traffic to be processed has passed an ingress
router and got the DSCP values set.

first-hop router A first-hop router has to perform similar functions as an ingress
router. But as it can be seen in the next section, it might also be located within
a customer network. A first-hop router located within the customer network has
the advantage to be usually configured by the customer itself and therefore match
better the Quality of Service demands of the customers network. In smaller net-
works with only one router, the customer’s egress router may be the first-hop
router, so the egress router has to apply MF instead of BA classification.

Of course it is up to the ISP to offer more advanced services to his customers
and provide more first-hop router like functionalities within his ingress border
routers like the marking of packets using higher protocol information or special
treatment for specific end systems.

interior router An interior router (see Figure 2.10) does not perform any marking.
It only (BA)-classifies packets according to their DSCP values and puts them
to the appropriate queues. It is obvious, that an ISP has to ensure, that not
more packets of a specific service can pass its border routers, than his interior
routers can handle. Compared to first hop or ingress routers, interior routers are
relatively simple. This simplicity is important, as these interior routers are used
to set up an ISP’s backbone and have to handle high packet rates.
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Figure 2.11 shows the setup of an ingress, egress or first hop router. The classifier
works either in MF (ingress, first-hop) or BA (egress) mode. After the MF/BA-
classifier the packets are processed by the specialised mechanisms.

Since the queues attached to the AF classes have to handle multiple drop precedences,
TRIO queues are necessary and Expedited Forwarding is processed by a RED queue.
For the best effort traffic, a simple FIFO or a RED queue may be used.

2.5.1 Expedited Forwarding

Expedited Forwarding was proposed to provide a leased line service. This should allow
companies to connect their LANs via a virtual private network with a certain Quality
of Service comparable to the leased line service they are used to connect their head
quarter with distant offices.

For Expedited Forwarding the customer negotiates with his ISP a maximum bandwidth
for sending packets through the ISP’s network. Furthermore, the aggregated flow is
described by the source and destination addresses of the packets or by the address
prefixes to support end to end connections as well as providing QoS for a connection
between two networks.

In Figure 2.12 users and ISPs have agreed on a rate of three packets/s for traffic from
A to B. The user configures the first-hop router in the individual subnet accordingly. In
the example in Figure 2.12 a packet rate of two packets/s is allowed in every first-hop
router. This is reasonable, because

• it can be assumed, that no two end systems will use the full bandwidth of two
packets/s at the same time

• an end system should not be able to allocate the full bandwidth of three packets/s
alone.
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Figure 2.12:Expedited Forwarding in a Differentiated Service network

First-hop routers have the task to classify the packets received from the end systems,
i.e. to analyse if the Expedited Forwarding Service shall be provided to the packets or
not. If yes, the packets are tagged as EF and the data stream is shaped according to
the maximum allowed bandwidth. The user’s border router re-shapes the stream (e.g.
three packets per second) and transmits the packets to the ISP’s border router, which
performs a policing function. For example, it checks whether the user’s border router
remains below the negotiated bandwidth of three packets/s. If each of the two first-
hop routers allows two packets/s, one packet per second will be dropped by shaping or
policing at the border routers. All first-hop and border-routers own two queues, one for
EF-packets and one for all other (see Figure 2.12). If the EF-queue contains packets
these are transmitted prior to others to guarantee Quality of Service.

The leased line like behaviour of Expedited Forwarding provides a service with con-
crete parameters independent from the networks actual state.

2.5.2 Assured Forwarding

A potential disadvantage of Expedited Service is the weak support for bursts and the
fact that a user has to pay even if he is not using the whole bandwidth. Assured
Forwarding tries to offer a service which cannot guarantee bandwidth but provides a
high probability that the ISP transfers high-priority-tagged packets reliably. This can
be compared to buying a minimum Quality of Service with the chance to get more if
there is no congestion on the network. The three dropping precedences per Assured
Forwarding class allow the Internet service provider and the customer to differentiate
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Figure 2.13:Assured Forwarding in a Differentiated Service Network

between two excess bandwidth values.

With the Assured Forwarding the user negotiates a service profile with his service
provider. Such a service profile can contain the maximum packet rate per drop prece-
dence.

The user may tag his packets as high, medium or low priority within the end system
or the first-hop router, i.e. assign them a tag for assured forwarding (AF) (see Figure
2.13). To avoid modifications it is also possible to set up more intelligent first-hop
routers. They can analyse the packets with respect to their IP addresses and UDP/TCP
ports and then assign them the according drop precedence, i.e. set the AF-DSCP for
conforming Assured Forwarding packets.

To ensure that the traffic conforms the profile the customer has to (re-)classify the
packets in his border router.

Nevertheless, the service provider has to check if the user remains below the maximum
rate for high, medium and low priority packets and apply corrective actions such as
policing if necessary.

The example in Figure 2.13 shows a customer A, which is allowed to send two pack-
ets/s with low and two with medium drop precedence. The rest of the packets he wants
to send is marked with high drop probability.

Bursts are supported by shaping the traffic and provide memory capacity to buffer the
packets exceeding the maximal allowed bandwidth. Inside the network, especially in
backbone networks forwarding thousands and millions of flows, bursts can be expected
to equalise.
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2.6 Conclusion

Even if the standardisation process of Differentiated Services is rather completed, the
documents describe mainly the general aspects of the concepts and leave several ques-
tions open.

The proposals for Expedited and Assured Forwarded services define properties, to be
provided by traffic conditioning components. They do not specify exactly which algo-
rithms to use. Since especially Assured Service will depend crucially on proper traffic
conditioning components, algorithms have to be developed or adapted and parameter
sets have to be found. Heinanen proposes a RED based mechanism for Assured Ser-
vice, leaving the question for proper RED parameters open. In the next chapter the
impact of different parameter sets for such a RED based algorithm will be evaluated.

This question is even more interesting, since the traffic forwarded by a router within
the Internet usually consists of different protocols. Even without Differentiated Ser-
vices the interaction of these protocols is not easy to predict. How Differentiated
Services traffic conditioning components influence the interaction of these protocols
is important for providing Quality of Service. Especially the behaviour of flows under
congestion conditions is important, since an ISP sells certain services to his customers
and has to fulfil these contracts.

In the following chapter the network simulator ns will be used to evaluate the behaviour
of Assured Services. New components had to be added to allow the simulation of
Assured Service.



Chapter 3

Evaluation of Assured Forwarding
using thens Network Simulator

To provide Quality of Service to specific flows usually means a discrimination of other
traffic. Any concept providing Quality of Service for the Internet has to distinguish
between packets to be handled preferential and best effort traffic.

RSVP defines a protocol, that allows the end user to reserve resources along a path
through a network. The RSVP protocol will also inform the user whether the desired
resources were set up correctly or not. In the Differentiated Services concept no such
protocol is defined and the Service Level Agreements negotiated with an Internet Ser-
vice Provider are usually more static.

While each flow set up with RSVP is handled separately and requires information to
be stored within each router on the flow’s path, DiffServ works on aggregates. An
intermediate Differentiated Services router has no information about flows or reserva-
tions at all. All the router knows is how to handle the traffic classes, depending on
their DSCP values.

The focus of the evaluations in this chapter is on Assured Forwarding. In contrast to
Expedited Forwarding [JNP99], [DCB+01] the implementation of the Assured For-
warding PHB [BBC+98b] requires fundamentally new queueing methods.

Mechanisms to implement Expedited Forwarding like Absolute Priority Queueing (see
Section 2.4.1) are well known and are deployed within the Internet since years. These
mechanisms are provided by almost all modern routers and are also used by protocols
like RSVP.

Of course Expedited Forwarding works on a behaviour aggregate instead of dealing
with single flows like RSVP does. On the other hand this makes not much difference
for the traffic conditioning components. While packets of a RSVP flow are treated in
a certain manner due to their addresses and port numbers, packets of an EF aggregate
are treated due to their DSCP. The used components are rather the same. Additionally
EF is intended to provide some leased line like quality, so congestion will only occur
as a result of bad network configuration.

Assured Forwarding is different. As described in Section 2.4.6 Assured Forwarding

27
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uses four classes with three drop precedences per class. Each class is handled by a
single queue processing packets of different drop precedences.

Since protocols like TCP react to packet loss and also to changes of the round trip
time1, the reaction of such protocols to a queue treating packets differently is not clear.
To make things even more complicated such a queue will probably forward protocols
of different types, some reacting to packet loss like TCP, others not. Therefore the
behaviour of TCP and more aggressive protocols like UDP with different types of
drop precedences has to be investigated.

Another problem is caused by the RED mechanism (see Section 2.4.5) Heinanen pro-
poses in [BBC+98b] for the implementation of the Assured Forwarding PHB. RED
uses several parameters controlling its behaviour. The parameter set is even enlarged
due to the adaptions necessary for the handling of different drop precedences, making
the proper configuration of RED complicated.

For these evaluations thens network simulator [ns] was used.ns is a TCL/C++ based
simulation package, even allowing an evaluation of large topologies. Although ifns
uses a rather abstract model of a computer network, it is very useful to evaluate traffic
conditioning mechanisms. The chapter starts with a description of thens simulator
and the required modifications [BB99b] to simulate Differentiated Service networks.
First tests concern the impact of different parameter sets for the RED algorithm on
Assured Forwarding. To provide a better control over the time packets are delayed a
new approach is presented and evaluated. Finally the fairness of Assured Service is
evaluated using different protocols. A short conclusion summarises the results of the
experiments.

3.1 Model, Traffic and Topology

For the evaluation a typical network situation as shown in Figure 3.1 was chosen.
A number of users in a branch office will access a set of servers in the company’s
headquarter. Both networks are connected by an Internet Service Provider’s network,
which is slow compared with the local LANs in the offices. To provide a certain
Quality of Service the company has a contract with the ISP. Within its ingress router
the ISP has to mark packets according to the negotiated profile and forward them
accordingly.

The topology of Figure 3.1 with a branch office receiving data from its headquarter’s
servers was implemented inns, resulting in the abstract topology shown in Figure
3.2. The figure shows also the different types of queues being used to simulate a
Differentiated Services network.

Since all links have equal bandwidth capacities, the link betweenI1 and I2 gets a
bottleneck as soon as more than one of the server client pairsSi/Ci starts to send at
full bandwidth.

To simulate the behaviour of Differentiated Services, two additional components were
implemented: a Differentiated Service marker and a ”Red with In and Out” (RIO)

1the time a packet needs to its destination and back
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DSM

Figure 3.3: The upper diagram
shows the marker queue with a
FIFO and the Differentiated Ser-
vices marker algorithm. The
diagram below shows the RIO
queue, capable to handle multi-
ple dropping probabilities.

queue. In contrast to a real network these components are not located within a node,
but are part of the links between the nodes. The marker is located between the server
end systems(Sx) and the nodeI1 (dashed lines) and the RIO queue between the central
nodesI1 andI2. As both LANs were supposed to be fast compared to the end systems,
the links betweenI2 and the clients(Cx) will have no impact on the result and are
simply realized by FIFO queues.

Thens code for such a FIFO queue was also used as a basis for the implementation
of the new components. As can be seen in Figure 3.3 the original FIFO queue was
extended by a preceding Differentiated Service marker algorithm. The RIO queue ex-
tends the usual FIFO mechanism with the capability to differentiate between dropping
probabilities and process the packets according to their DSCP values. Both marker and
RIO queue support two drop precedences following the initial approach of Clark and
Fang [CF97] to use low drop precedence for packets within the negotiated profile and
high drop precedence for the others.

In general, there are two approaches for implementing the RIO technique. Normally a
common queue for in and out of profile packets is used. The higher priority of in profile
packets is realized by lower dropping probabilities. In contrast earlier proposals were
based on different queues for in and out of profile packets. Since multiple queues
might result in changes of the packet order, the simulations presented here will use
common queue for in and out of profile packet. The task of the marker component
is to decide, whether a packet is in or out of the negotiated service profile or not and
to set the according DSCP value. Figure 3.4 shows the probability for a packet to be
marked as ”in profile” dependent on the transmission bandwidth. The graph represents
the negotiated service profile.

For the decision which packet should be marked as in or out of profile two methods
are proposed [IN98].

• The transmitted bandwidth can be calculated from the packet size and the inter
packet time, averaging both values (e.g. exponential weighted moving average
[FJ93]). For a good interaction with TCP/IP it is essential to react only slowly
to changes of the current bandwidth.

• A token bucket filter can be used for tagging a certain share of transmitted pack-
ets.
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Figure 3.4: Probability P for packets been marked as in
profile at 500 kbps assured bandwidth over the sent band-
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Since a comparison of both algorithms did not lead to a significant difference, the
simpler Token Bucket algorithm was used. The bucket capacity allows the aggregation
of one second of assured bandwidth. This allows to describe bursts very easily.

According to the assured bandwidth, certain packets are marked ”in profile”. During
congestion packets are discarded with different probabilities in the RIO queue between
I1 andI2. No packets are discarded at the link betweenI2 andCx, since they have at
least the capacity of the bottleneck linkI1 – I2.

3.2 Influence of RIO Parameters

As previously mentioned the impact of different parameter sets for the RIO (or TRIO)
queue has to be evaluated. In Sections 2.4.5 and 2.4.6 the algorithms used for the
implementation of RED, RIO or TRIO queues were described.

As mentioned there the behaviour of a RIO queue is defined by two sets of RED
parameters

{
(thmin, thmax,maxp)

in

(thmin, thmax,maxp)
out

}

and a common parameterwq, which is used for averaging the queue length. An exam-
ple for such a set is given by Yeom [YR98]. He suggests{50, 100, 0.02} for in and
{20, 40, 0.5} for out packets. The queue weightwq can be supposed to be the default
value of0.002 suggested in [FJ93].
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Type in out bandwidths delays
2× TCP + UDP {0.5, 1.0, 0.02} {0.2, 0.4, 0.02} fig. 3.10 fig. 3.11
3× TCP {0.5, 1.0, 0.02} {0.2, 0.4, 0.02} fig. 3.6 fig. 3.7
2× TCP + UDP {0.5, 1.0, 0.02} {0.2, 0.4, 0.5} fig. 3.12 fig. 3.13
3× TCP {0.5, 1.0, 0.02} {0.2, 0.4, 0.5} fig. 3.8 fig. 3.9
2× TCP + UDP {0.5, 1.0, 0.02} {0.2, 0.5, 0.5} fig. 3.14 fig. 3.15

Table 3.1:Overview over tested RED configurations and parameter set-
tings. In the first line the parameter used by Yeom [YR98] are shown.
Each set of values represents{thmin, thmax,maxp}.
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Figure 3.5:The RIO parameters with the two dropping phases for in and out of profile
packets

The simulations use two drop precedences to investigate the impact of different param-
eter sets. The central queue betweenI1 andI2 is configured with different parameters.
The RED algorithm is assumed to work fine for an aggregate of TCP flows. Unfor-
tunately this does not match the situation in the Internet. Any traffic aggregate will
consist of packets from several different protocols. With applications like video con-
ferencing or streamed audio and their usually UDP based protocols, it is quite sure that
some of the protocols will not react to congestion as TCP does.

Therefore, an aggregate of two congestion avoiding TCP flows and one non-responsive
UDP flow is used and the RIO parameters are varied. All links are configured for a
bandwidth of 1 Mbps and a delay of 1 ms and get different assured bandwidth values.
The two TCP connections get 0.5 Mbps and 0.3 Mbps. The aggressive UDP flow has
no reserved bit rate and is used as some kind of background noise. The values for
thmin andthmax are defined in relation to the complete queue length of 50 packets.

Table 3.1 shows the evaluated configurations. First tests have been done with different
settings of themaxp value for the out of profile queue. After thisthoutmin was adjusted
to thinmin, as can be seen in Figure 3.5, causing the dropping of in profile packets to
start directly after the dropping phase for out of profile packets.

The graphs lead to no unique result. However, a higher value formaxoutp seems to
improve the differentiation between the achieved troughput values (see Figure 3.6 and
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Figure 3.8:Bandwidth of three TCP flows. RIO parameters are:in = {0.5, 1.0, 0.02},
out = {0.2, 0.4, 0.5} andwq = 0.002. Because of the suppression of best effort
traffic the bandwidths of the single flows are more separate those with a lower value
ofmaxoutp (see Figure 3.6)
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Figure 3.9: Latency of three TCP flows. RIO parameters:in = {0.5, 1.0, 0.02},
out = {0.2, 0.4, 0.5} andwq = 0.002
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Figure 3.10:Bandwidth of two TCP and one UDP flows. RIO parameters are:in =
{0.5, 1.0, 0.02}, out = {0.2, 0.4, 0.02} andwq = 0.002
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Figure 3.11: Latency of two TCP and one UDP flow. RIO parameters:in =
{0.5, 1.0, 0.02}, out = {0.2, 0.4, 0.02} andwq = 0.002. Because of lowmaxoutp

belowthoutmax only few best effort packets are dropped causing a drop tail like behaviour.
The lower delay of the best effort UDP packets is obvious.
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Figure 3.12:Bandwidth of two TCP and one UDP flows. RIO parameters are:in =
{0.5, 1.0, 0.02}, out = {0.2, 0.4, 0.5} andwq = 0.002



3.2. INFLUENCE OF RIO PARAMETERS 37

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

[s
]

0 20 40 60 80
[s]

100

TCP
TCP
UDP

Figure 3.13: Latency of two TCP and one UDP flow. RIO parameters:
in:{0.5, 1.0, 0.02} and out:{0.2, 0.4, 0.5}, wq = 0.002.
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Figure 3.14:Bandwidth of two TCP and one UDP flows. RIO parameters are:in =
{0.5, 1.0, 0.02}, out = {0.2, 0.5, 0.5} andwq = 0.002. The UDP best effort flow
disturbs the transmission of TCP traffic. (see Figure 3.12)
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Figure 3.15: Latency of two TCP and one UDP flow. RIO parameters:in =
{0.5, 1.0, 0.02}, out = {0.2, 0.5, 0.5} andwq = 0.002

3.8 for TCP and Figure 3.10 and 3.12 for mixed TCP and UDP traffic). As can be seen
in Figure 3.11, a side effect of dropping out of profile packets, while in profile packets
are still accepted is that out of profile packets reaching their destination have a better
delay than in profile packets.

The problem of RED is the complexity of its parameter interaction and their effects on
different kinds of traffic. On one hand, a small value ofmaxp is quite appropriate for
TCP traffic, because of TCP congestion control. On the other hand it leads to a FIFO
like behaviour of the queue for aggressive UDP flows.

Disregarding the complicated behaviour of the RED algorithm, one result seems ob-
vious: Assured Service is able to protect even congestion avoiding TCP flows against
aggressive UDP traffic.

3.3 Guaranteeing Delay with Assured Service

The original idea of the RIO algorithm [CF97] mentioned two queues, one for each
type of packet. To avoid changing the packet order, RIO has been realized with one
queue only and with different dropping probabilities for each packet type. Since the
delay of packets primarily depends on the queue length the packet experiences on its
way through the network, an in profile packet is delayed in a congestion situation,
even if there is no overload of Assured Service [BB99a]. In reality every out of profile
packet reaching its destination has a shorter delay as an in profile packet.
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Figure 3.16:Bandwidths with two queue RIO and Assured Service

Since it is desired to ensure not only bandwidth but also a certain maximum delay for
in profile packets better than the delay for out of profile packets, a separate queue for
every packet type is implemented allowing better control over the delay of each packet
type.

The scenario is similar to the one used during the evaluation of RIO parameters, except
that different traffic sources are used. A FTP and a telnet session have been mixed with
aggressive constant bit rate UDP traffic. The maximum bandwidth the FTP source is
able to send is 1 Mbps, whereas the telnet source typically produces only very little and
is primarily used for evaluation of the delay. The UDP connection sends at a constant
bit rate of 0.8 Mbps. The FTP connection has an assured bandwidth of 0.5 Mbps,
the telnet connection of (never used) 0.2 Mbps and the UDP traffic has no reserved
bandwidth at all. Figure 3.16 shows the averaged bandwidth values and Figure 3.17
the packet delay.

The queue for in profile packets is emptied first. If there is any packet in the in profile
queue, the packet is transmitted regardless how many packets are in the out of profile
queue. As it can be seen clearly, the in profile packets for FTP and telnet suffer only
a very short delay. In contrast, the delay for the UDP traffic increases. The drawback
using this technique is the permutation of packets, causing worse performance of the
TCP/IP stack.

An extension of the RIO algorithm with two queues is presented in Figure 3.18. The
basic idea is to be able to control the delay for each packet type separately and min-
imise the number of changes in the packet order. The extended RIO queueing mech-
anism uses two different queues for in and out of profile packets. In addition, every
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Figure 3.17:Latencies with two queue RIO and Assured Service

packet is marked with a ”time stamp” with the time it is received by the router, which
makes it possible to reconstruct the packet order at the end of the queues. In reality this
”time stamp” is a simple number representing the order of packet arrivals at the queue.
At the end of the queues a component (re-sequencer) decides whether a packet of the in
or the out of profile queue will be forwarded. In contrast to the algorithms mentioned
before, the router can be configured with a maximum allowed delay for in profile pack-
ets. The re-sequencer uses this allowed latency to forward between the high priority
in profile packets as many out of profile traffic as possible. The re-sequencer stops
transmitting out of profile packets, if an in profile packet with an earlier time stamp is
available or if the next in profile packet would exceed the maximum allowed delay.

So the re-sequencer tries to keep the packet order. If an in-profile packet has to be
forwarded even if does not match the packet order, but it reached the maximum allowed
latency, the packet order will be disturbed. In this case the packet order may either be
reconstructed by dropping all out of profile packets not matching the packet order or a
certain degree of packet dis-ordering is accepted. Of course the packet order should be
preserved, but on the other hand out of profile packets might be dropped, which could
have been forwarded even if not matching the packet order. The following simulations
do not try to preserve the packet order strictly and out of profile packets are only
dropped if the out of profile queue gets full.

Figure 3.19 shows the number of changed packet orders using the traditional two queue
RIO algorithm as proposed by [CF97] and the re-sequencing variant. Since the dis-
turbance of the packet order gets higher the more congestion appears, the original
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approach was evaluated with two different packet rates (800 and 400 kbps). As can
be seen on the graph the mechanism with the re-sequencer disturbed the packet order
much less than the traditional approach.

3.4 Fairness of Assured Service

After the experiments regarding the influence of RIO parameters and the presentation
of a new RIO mechanism to provide better control over packet delays, the bandwidth
of several flows shall be investigated, using different amounts of assured bandwidth
values and different protocols.

For the simulation the setup described in Section 3.1 has to be changed slightly. Instead
of three client/server pairs, ten pairs{(Si, Ci), ..., (S10, C10)} are set up and all links
of the simulation are configured equally to transmit 1.0 Mbps with a delay of one
millisecond.

Different traffic sources have been simulated: constant bit rate UDP flows, several TCP
flows and the mix of both. The ten client/server pairs are transmitting at full bandwidth
causing a tenfold overload on the bottleneck link. A different assured bandwidth is as-
signed to every ServerSi, causing each ”marker” queueSi-I1 to mark another percent-
age of forwarded packets as in profile. Every source sends with the same maximum
bit rate of 1 Mbps. The single sources start delayed to each other. Although there
always is an overload on the bottleneck links, we will change the amount of assured
bandwidth varying the congestion of in profile traffic.

3.4.1 Heavy Overload

First evaluations have been done to simulate heavy overload of in profile traffic on the
bottleneck link betweenI1 and I2. The single flows get assured throughput values
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Figure 3.21:Bandwidth of ten CBR flows causing heavy congestion

from 0 to 450 kbps and start to send at different times. The flow starting to send as
last is configured with the highest assured bandwidth. The total amount of assured
bandwidth is 2.250 Mbps which is more than twice the bandwidth available.

Figure 3.21 shows results using ten constant bit rate UDP-type connections. The first
flow (the one with no assured bandwidth) gets no bandwidth whereas the flow that
started sending as last and with the highest assured bit rate reaches the highest through-
put. Between these two extrema, all other flows share the bandwidth in a relatively fair
way. The second column of table 3.2 shows the percentage of assured bandwidth ac-
tually achieved.

It can be seen, that each UDP flow can achieve about 40 to 55 percent of its assured
bandwidth. Now we use exactly the same topology and assured bandwidth values but
instead of the constant bit rate UDP traffic we use TCP.

Figure 3.22 shows the resulting bandwidth values. The flow without assured band-
width is not able to transmit any data in the congestion situation, whereas the others
perform more or less according to their assured bandwidth. On the other hand, the
single throughput values do not differ as obvious as this was the case with the UDP
flows. The reason for this is the TCP congestion control, causing a source to reduce the
sending bandwidth in an overload situation. The third column in Table 3.2 shows - like
before with constant bit rate UDP - the achieved percentage of assured bandwidth. The
decrease of achieved bandwidth with the amount of assured bit rate is obvious: The
lower the assured bit rate is the higher is the probability that a flow gets this bandwidth.

As a final aspect of the evaluation of Assured Service, the interaction of both types of
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ass. bw UDP TCP UDP or TCP
0 - - -
50 49 % 94 %† 88 %
100 55 % 86 %† 4 % †

150 54 % 86 %† 85 %
200 48 % 57 %† <1 % †

250 48 % 47 %† 80 %
300 49 % 39 %† <1 % †

350 47 % 37 %† 80 %
400 40 % 27 %† <1 % †

450 37 % 28 %† 73 %

Table 3.2:Five TCP, five UDP flows with different assured bandwidth values, causing
heavy congestion. The Table shows the percentage of assured bandwidth reached. The
†marks the TCP flows.
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Figure 3.22:Bandwidth of ten TCP flows causing heavy congestion



3.4. FAIRNESS OF ASSURED SERVICE 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000

UDP flows

TCP flows

[M
bi

t/s
]

[sec]

TCP 0 kbit/s assured
UDP 50 kbit/s assured

TCP 100 kbit/s assured
UDP 150 kbit/s assured
TCP 200 kbit/s assured
UDP 250 kbit/s assured
TCP 300 kbit/s assured
UDP 350 kbit/s assured
TCP 400 kbit/s assured
UDP 450 kbit/s assured

Figure 3.23:Bandwidth of mixed CBR TCP flows causing heavy congestion

traffic has been examined. The constant bit rate UDP traffic is supposed to suppress
the TCP flows during overload. Figure 3.23 shows the graphs confirming this expec-
tation. The total amount of assured bit rates allocated by UDP flows is about 1.250
Mbps. Therefore the very aggressive UDP flows alone lead to a congestion on the bot-
tleneck link, leaving no bandwidth for the TCP connections (see column four on Table
3.2). The suppression of TCP by aggressive UDP flows is not a special problem of
Assured Service but a general problem in the Internet. This is why there is a demand
for mechanisms being able to detect and police aggressive flows.

3.4.2 No Congestion

So far the simulation showed the sharing of bandwidth during an extreme overload
situation. As mentioned before the most important issue for the success of Assured
Service is the proper dimensioning of the network. In the previous section simulations
have been done with more than double the load the bottleneck link is capable to trans-
mit. In this section the interaction of several flows using assured bandwidth values.
The total of the reserved bandwidth must be below the networks capacities.

Figure 3.24 shows the respective graphs. Similar to the previous scenario, different
assured bandwidth values have been allocated for the connections. The sum of assured
bandwidth values is 675 kbps. Therefore, the bottleneck can forward all in profile
packets. Table 3.3 shows the percentage of the assured bandwidth a flow was able to
reach in the last 100 seconds of the simulation. For flows without assured bandwidth
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Figure 3.24:Bandwidths of ten UDP flows causing no congestion

the bit rate achieved is given.

In analogy to the results examining the behaviour under heavy congestion, flows with
small assured bandwidth generally perform better. The constant bit rate of the UDP
flow with only 15 kbps assured bandwidth is exceeded by 220 percent, whereas the
flow with 135 kbps assured bandwidth gains not more than 113 percent (152 kbps).

The results of another experiment with ten TCP flows and low congestion is shown in
Figure 3.25. Figure 3.26 depicts the interaction of mixed UDP and TCP traffic. The bit
rates achieved in the last 100 seconds are listed in Table 3.3. In contrast to the situation
with the sum of in profile traffic exceeding the capacity of the bottleneck link, every
flow now gets at least the assured bandwidth. Of course, the very aggressive constant
bit rate of UDP sources use nearly the whole bandwidth not allocated by assured traffic,
but Assured Service is capable to protect the TCP flows in a way they can meet their
profile.

3.4.3 Assured TCP Flows only

Concluding the evaluation of Assured Service with thens simulator, the capability of
Assured Service to protect TCP flows from aggressive UDP flows shall be evaluated.
For this purpose we use a similar simulation scenario as before, but assign assured bit
rates to the TCP flows only, while the UDP traffic is transported with best effort. In
analogy to the former simulations each traffic source starts sending timely delayed.
Figure 3.27 shows the results of the simulation, table 3.4 the bandwidth each flow
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ass. bw UDP TCP UDP+TCP
0 18 kbps 30 kbps 0 kbps†

15 220 % 379 %† 690 %
30 286 % 230 %† 100 %†

45 219 % 166 %† 273 %
60 175 % 146 %† 100 %†

75 154 % 152 %† 184 %
90 134 % 132 %† 99 %†

105 125 % 128 %† 149 %
120 117 % 125 %† 99 %†

135 113 % 129 %† 131 %

Table 3.3:Five TCP, five UDP flows with different assured bandwidths, causing no
congestion. The Table shows the percentage of assured bandwidth reached. The
† marks the TCP flows.
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Figure 3.25:Bandwidths of ten TCP flows, causing no congestion
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Figure 3.26: Bandwidths of ten mixed UDP and TCP flows with different assured
bandwidths

achieved in the last 100 seconds of the simulation.

Every TCP flows is able to transmit data at least at the corresponding assured band-
width, while the very aggressive constant bit rate UDP flows occupy the rest. As can
be seen on Table 3.4 it is almost impossible for the TCP flows to transmit data with
more than their assured bandwidth.

This shows, that Assured Service is surely able to guarantee at least the assured band-
width of high priority TCP flows, while aggressive best effort traffic blocks each out
of profile TCP transmission.

3.5 Conclusion

The simulations presented in this chapter showed, that Assured Forwarding is able to
differentiate between different levels of Quality of Service. Especially it was proven
that TCP flows can be protected against aggressive traffic.

The evaluation of queueing delays showed a tradeoff between the guaranteed band-
width for in profile packets and their delay, because in profile packets are accepted
even at large queue lengths and while out of profile packets are dropped at short queue
lengths. This leads to high bandwidth and possible long delay for in profile packets
and low bandwidth, but minimum delay for out of profile traffic. To provide more
control over the delays an alternative queueing method was presented and evaluated,
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Figure 3.27:Assigning assured bandwidth to TCP flows only

ass. bw Traffic Type bw in kbps
0 TCP 0
0 UDP 172
30 TCP 30.9
0 UDP 152.6
60 TCP 61.1
0 UDP 136.6
90 TCP 91.0
0 UDP 121.9
120 TCP 121.3
0 UDP 112.1

Table 3.4:Five TCP, five UDP sources. The TCP sources got assured bandwidth. The
Table shows the reached bit rate.
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supporting short delay and high bandwidth for in profile traffic.

The initial evaluation of different parameter sets for the RED based RIO queues led to
no clear result. In contrast to the recent proposals, the experiments used two dropping
probabilities only, therefore a third drop precedence can be expected to make things
even more complicated. As Christiansen e.a. showed in [CJODS00] the tuning of RED
parameters is hard enough for TCP only flows and the additional negative impact of
aggressive protocols like UDP is obvious.

The results of the experiments regarding throughput of Assured Forwarding confirm
other evaluations for lower bandwidth values as performed by Ibanez [IN98] or by
Yeom [YR98]. These results are even more important, since TCP acts differently
for different bandwidth values. Especially with the increasing network capacity that
property has a high significance.

On the other handns is a simulation package and does not necessarily meet the reality,
as it tends to have a very idealistic view of networks. A good example for the limi-
tations of such a toolkit are the constant bit rate senders used during the evaluations.
With a simulation package working on a mathematical basis the implementation of a
constant bit rate sender is simple and packets will be perfectly equidistant. Since com-
puters in reality usually have to deal with processes, interrupts etc. a perfect timing is
nearly impossible. Therefore, traffic generated by real end systems is hard to model
and will hardly conform statistical distributions as used by network simulators. Addi-
tionally the statistical background ofns is not as clean as it may be supposed to, as an
evaluation of thens random number generator revealed [HE02].

Another general disadvantage of simulators likens is the fundamental difference be-
tween a simulation and a real network with single routers and end systems, each with
own routing tables, traffic conditioning mechanisms. Of coursens is very powerful
to simulate the traffic flow through large networks but differs significantly from real
devices regarding configuration and management. For an evaluation scenario focus-
ing not only on the measurement of performance parameters like bandwidth, delay or
jitter, but also including management related tasks, a pure simulation scenario has its
drawbacks.

Since real applications and end systems are exposed to several parameters not to be
calculated like human intervention, an environment allowing the simple and transpar-
ent integration of real hard- and software is required.

Of course the abstract model ofns has also advantages. Huge topologies can be set
up more easily usingns than really wiring routers and network devices. Also the
generation of ans topology by writing a single setup script is much more easy than
configuring real devices. However, this does not count for small and medium size
networks. Here a more ”realistic” environment may be preferred.



Chapter 4

Emulation of IP Networks

The set up of experimental networks is in general an important action during develop-
ment of new concepts and their evaluation. As shown in the previous chapter simula-
tions can be used to test new concepts or queueing mechanisms quite easily and have
a reduced need for hardware resources. The experiments were done with thens net-
work simulator [ns], which has been extended with Differentiated Service components
to mark and queue packets according to their drop precedence.

The strength and drawback of such simulators likens or also Opnet [opn] in general
is the use of a mathematical model to simulate a network, a node or a link between
two nodes. Since there is no relationship between the real time and the timens uses
internally,ns can be used to run huge simulations with thousands of nodes and links.
The simulation simply will take longer, but is nevertheless mathematically correct. The
use of a theoretic model also includes a rather abstract view of a network consisting of
nodes and links.

These properties are sufficient to simulate the traffic flow of thousands of nodes within
a huge network. On the other hand it is rather inconvenient if the components of
the testbed have to work analogous to real devices and an integration of an emulated
network with real components is favoured. Such a combination of real devices like
routers and end systems with an emulated topology has several advantages for the set
up of testbeds and the development of new concepts.

Of course the idea to emulate network devices is not new. So Wang [WK99] proposes
to apply an address mapping scheme and to forward packets repeatedly through the
kernel of the same host. Even if this is rather complicated and does not provide a
real emulation of an Internet router, it is especially capable to emulate the multiple
impact of a specific host on forwarded traffic. Another approach is to add special
kernel components applying special characteristics of a WAN router to a single PC
[nis]. This allows to emulate a set of WAN routers within a laboratory LAN.

• Real end systems allow the use of real applications with the network emulation.
Using a simulator these applications have to be redesigned which usually only
is possible if a proper description of the internals of an application are available.
A network emulator connected to a real network can be used with any type of
application without any changes.

51
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• New traffic conditioning components can be implemented and evaluated in a
convenient emulation environment. The writing of new kernel code and espe-
cially its evaluation is usually rather complicated and time consuming. Never-
theless the new components can be evaluated directly with real applications.

• The network emulation can be used to test applications for real networks. Before
setting up a set of IP routers or other network devices, similar scenarios may be
set up using emulated devices. In contrast to a simulation the emulation can not
only be used for testing the set up with simulated sources but with the real end
systems.

• The front-end of the emulator can be like the one of a real network device. This
might be a drawback during the set up of large topologies yet it is a big advantage
if a typical test network with a few dozens routers has to be set up. The use of
a well known front-end also simplifies the handling of Virtual Routers for new
users and in environments with virtual and real devices.

Some of these tasks can also be accomplished with thens network simulator. The
simulator can be connected to real networks and real packets are forwarded through
the simulator. On the one hand this allows the use of real end systems, but limits also
the size of the simulated network, as real traffic has to be processed in real time. Also
the simulator is still some kind of monolithic block, with a complete different user
front-end than an end system. Since the whole simulation is performed by a single
program, the extensibility is limited, since single network devices can not be shut
down.

Another disadvantage of thens concept are the differences between the configuration
of the simulator and real devices. For a complete emulation of an Internet Router it is
not sufficient to apply similar packet treatments, but also to provide similar front-ends
and configuration concepts.

4.1 Virtual Router Architecture

The basic idea for combining real hardware with an emulated topology is to use single
small entities, each emulating an IP router and to replace the links normally used to
connect routers by communication channels between these entities. Since each of these
entities provides functionalities similar to an IP router but is only software, the term
Virtual Router (VR) is used [BB00a], [BB00b].

To illustrate the interconnection of several Virtual Routers Figure 4.1 shows a set of
Virtual Routers running on different computers. The type of the communication chan-
nels between the Virtual Routers can be different, therefore the Virtual Routers can
either run on a common computer using the Unix inter process communication facil-
ities as channels or can be distributed over multiple computers, using channels based
on UDP tunnels.

Since VRs are to behave like real routers, they have to process traffic in real time.
They have to receive packets, process them and forward them – anything a normal
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Figure 4.2:The Architecture of a Virtual Router with two interfaces and several loaded
components

router does. This has – in contrast to network simulators – to be done in real time,
limiting the number of Virtual Routers per computer due to its CPU power.

The Virtual Routers with their Unix IPC or UDP tunnel based interconnections span
up a network. To connect this network to a real network, an additional special con-
nection type exists allowing a Virtual Router to connect to a computers network layer.
It therefore is possible to route traffic from a computer to and through an emulated
topology and emulate multiple sources, sinks and routers on a single computer.

Each Virtual Router runs as an independent program, not interfering with other Virtual
Routers and only exchanging packets by communication channels. Figure 4.2 shows
the architecture of a Virtual Router. The figure shows also the capability of a Virtual
Router to be extended by loadable modules like a Active Networking environment
(pybar), a graphical user interface or a traffic monitor (dump). The router consists of a
program providing the main functionalities and a mechanism to load further extensions
dynamically during runtime to the Virtual Router. The single components will be
described more in detail in the following sections.
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4.1.1 Interfaces

The main work regarding packet processing is assigned to the interface components of
the VR. The Virtual Router of Figure 4.2 has two of these interfaces. There are several
components within each interface to receive, transmit, queue a packet or to provide
some additional mechanisms like address translation.

Each interface has to receive or send packets. Usually, this is done over the attached
communication channels.

connections to a softlink device:This type of connection is used to enable the com-
munication between a Virtual Router and a real network. The interface is con-
nected to a softlink device, provided by a Linux kernel module as described in
Section 4.1.9. This allows the Virtual Router to exchange packets with a real
network

connections between VRs via FIFO pipes:This connection type is used to connect
two VRs running on the same computer. It allows to forward packets from one
VR to another and is simply based on Unix pipes between two processes. Since
Unix pipes are simplex, two pipes are used for each connection.

connections between VRs via UDP tunnels:Tunnelling based on UDP is used to
exchange packets between VRs on different computers. IP packets to be for-
warded to another VR are encapsulated within an UDP packet and sent to a spe-
cific port of the remote host. The opposite Virtual Router has to be configured to
listen to this UDP port and read packets from there. Like any other connection it
must be duplex, since the VR’s interfaces on both sides of the connection have
to receive and transmit UDP packets.

logical interfaces (IPIP tunnels): This mode is not no a connection like the others
but is used to establish IP over IP tunnels. The interface does not send the
packet over a communication facility, but encapsulates it into another IP packet
and send the new packet back to the Virtual Routers for new processing. Section
4.1.5 will describe this mechanism in more detail.

Received data is processed by an IP network address translation unit (NAT). This al-
lows to force the routing of packets through an emulated topology by modifying the
destination/source address pair within a VR. Therefore it is possible to set up large
networks on a single computer. The address translation mechanism is powerful but
complex. A more detailed description of the address translation feature will be given
in Section 4.2.2.

Data for transmission is first processed by a NAT component also and then put to a
queueing system. The queueing system is rather flexible supporting Differentiated
Services and other traffic conditioning methods. It will be explained separately in the
next section.

The last two components within a VRs interface are the rate limiter and the intercon-
nection handler. The interface speed of a Virtual Router is not limited like the interface
of a normal router. Therefore the outgoing bandwidth of an interface has to be limited.
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This is done by a token bucket filter. This filter can be configured during run time.
This allos to change the speed of each interface during operation. After passing the
rate limiter, the packets are sent to another Virtual Router or to a softlink device. To
provide an unique mechanism interconnection handler, all functions regarding packet
transport are combined within the interconnection handler.

The number and type of interfaces per Virtual Router are not predefined. Once a
Virtual Router has been started, there are no interfaces. The interfaces first have to be
generated, configured and connected. This can either be done by the command line
interface or by an automatically executed startup script as described in Section 4.2.

4.1.2 The Queueing System

Because of its flexibility the queueing system is one of the most complex parts of the
interface. It consists of a set of components like queues, filters, shapers and sched-
ulers, that can be combined and configured during runtime. Currently the following
components are offered:

• a generic classifier

• a token bucket filter

• a drop tail (FIFO) queue

• a random early detection queue (RED) [FJ93]

• a Weighted Round Robin (WRR) scheduler

• a simple Round Robin scheduler

• a Priority Round Robin (PRR) scheduler

• a TRIO queue [HBWW99a]

• a Differentiated Services marker

• a Priority Weighted Round Robin (PWRR) scheduler

Each Virtual Router interface has an own queueing system attached. It stores and
processes packets put to the interface by the Virtual Router. Every time the interface
is able to transmit, a packet is removed from the queue and sent over the interface
connection.

The queueing system implemented within the Virtual Router consists of several small
basic components as listed above. These components can be linked together to set up
complicated systems favouring certain kinds of packets or limiting the bandwidth of
others.

As can be seen in Figure 4.3, each queueing component has a number of input links
and a number of output links. The number of input and output links depend on the
type of the component. While a FIFO queue will have one input and one output link,
a classifier will have one input and multiple output links. For the set up of a queueing
system the following steps are required:
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creation of components: Since a queueing system will contain multiple queues or to-
ken bucket filters, a component first has to be instantiated. Each instance gets an
unique id, that has to be used as reference to this instance during later operations.

linkage of instances: The instances (referenced by their id numbers) can be linked
together. The number of links allowed for a component depends on its type.

component configuration: Each instance of a queue, a scheduler or any other com-
ponent can be configured separately. Of course it is possible to define some rea-
sonable global default values like FIFO queue lengths. But since the behaviour
of the queueing system will depend on a proper set up of each single component,
bandwidth values and bucket sizes for the token bucket filters can of course be
set separately as well as the weights or priorities of PRR/WRR/PWRR sched-
ulers.

Therefore, complex tasks may be achieved by an appropriate configuration and con-
nection of components. In which way queueing components can be combined to pro-
vide a certain traffic conditioning will be demonstrated in Section 4.2.3 by a set up for
a queueing system to protect TCP flows against UDP traffic.

Implementation of the Queueing System

The basis to link the queueing components is theroot componentas shown in Figure
4.4. A packet forwarded to the interface is sent to the root component. The root
component will forward the packet to the next component.

The root component is also accessed if the interface can send data and has to extract
packets from the queueing system. Therefore, each packet leaving the Virtual Router
has to pass the root component twice. First when sent to the interface and a second
time, when extracted from the queueing system to be transmitted.

The droptail/FIFO queueis a simple queue for buffering packets up to a certain
amount. If the queue is full, new packets are discarded. The only parameter is the
number of packets the queue can hold.

To merge packets coming from different components a scheduler is used. There are
different scheduler algorithms available to be able to achieve different behaviours.
All different scheduler modes are integrated into ageneric scheduler, which can be
switched to either

• Weighted Round Robin
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Figure 4.4: The root compo-
nent is used as first and last
component within a queueing
system

• Round Robin

• Absolute Priority Round Robin

• Priority Weighted Round Robin

The different scheduler modes have been described in the traffic conditioning Section
2.4. Theclassifieris used to distinguish between packets and forward them according
to a set of rules to other components. The classifier might work in MF of BA mode,
checking either various fields of the IP header or only the DSCP value, depending on
the rules set up. The rules consist of a set of the following specifiers:

• source address (specified by IP address and netmask)

• destination address (specified by IP address and netmask)

• Differentiated Services Code Point

• maximum packet size

• protocol type

Of course for a pure BA classifier only rules regarding the DSCP would be applied,
while the other fields are interesting for a multi field classification only. Even without
Differentiated Services a queueing system therefore might assure a certain share of
bandwidth to TCP flows in order to protect them against aggressive protocols.

To reduce the throughput of a component to a certain maximum atoken bucket filter
can be applied. Therefore a combination of a FIFO queue and a token bucket filter
can be used to shape traffic. Since the token bucket filter only acts as limiter, a queue
is needed to drop the packets. Therefore a strict policer will contain a queue with
a minimal queue length and a token bucket filter, to limit the rate the queue can be
emptied with.

The implementation of Differentiated Services requires two additional components: a
Differentiated Service markerand a queue capable to handle multiple drop precedences
as required for Assured Forwarding. The Differentiated Service marker implemented
within a Virtual Router allows to specify a set of rules. These rules include a pattern for
the packets to be marked and a traffic profile. The pattern includes similar parameters
like the multi field classifier.

• source address range (specified by address and netmask)
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• destination address range (specified by address and netmask)

• Differentiated Services Code Point

• protocol type

The profile determines the type of service and additionally required parameters. For
Expedited Forwarding this is simply a bucket rate and a bucket size. Packets matching
a pattern are marked with the EF DSCP up to the specified bandwidth. The bucket size
allows to add a certain acceptance for bursts.

Within an AF class packets have to be marked for different drop precedences. There-
fore a two rate single three colour marker as suggested by Heinanen (see Section 2.3.5)
has been implemented as shown in Figure 4.5. Of course Assured Forwarding requires
a specification about which Assured Forwarding class is to be used.

The second component implemented especially for DiffServ, is the TRIO queue, re-
quired for Assured Forwarding. The TRIO queue has to differentiate between packets
according to their DSCP value and drops Assured Forwarding packets with a high drop
precedence earlier than those with a low one. As shown in Section 2.4.6 the common
algorithm for such a queue is based on RED. Since the benefits of RED to multi proto-
col flows are questionable as shown byns simulations (see Section 3.2), the VR TRIO
queue implementation supports different algorithms.

boolean This is the droptail or FIFO mode. For each drop precedence a threshold is
defined. If a packet arrives and the actual queue lengthl exceeds the according
threshold the packet is discarded. Obviously

thlow > thmedium > thhigh

has to be true for Assured Forwarding to work properly. The probabilityp for
the different drop precedences are:
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plow =

{
0 for l ≤ thlow
1 else

pmedium =

{
0 for l ≤ thmedium
1 else

phigh =

{
0 for l ≤ thhig
1 else

linear A pair of queue lengths(thmin, thmax) is defined for each drop precedence.
Between these two queue lengths the dropping probability is increased linearly.
Instead of using the actual queue lengthl an averaged queue lengthavg is cal-
culated:

avg = (1− wq)avg + l · wq

The value ofwq defines how fast the queue react to bursts.

plow =


0 for avg < thlowmin
avg−thlowmin
thlowmax−thlowmin

for thlowmin ≤ avg < thlowmax

1 for avg ≥ thlowmax

pmedium =


0 for avg < thmediummin

avgl−thmediummin

thmediummax −thmediummin

for thmediummin ≤ avg < thmediummax

1 for avg ≥ thmediummax

phigh =


0 for avg < thhighmin
avg−thhighmin

thhighmax−thhighmin

for thhighmin ≤ avg < thhighmax

1 for avg ≥ thhighmax

The following figure illustrates the dropping probabilities for the different drop
precedences:
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As the graph shows, this mode is some kind of simplified RED. In Section 3.2
was shown, that the choice of good RED parameters is complex and the benefits
of the RED algorithm in a scenario of mixed protocols is questionable. Due to
the lower number of parameters this algorithm can be adapted more easily.

RED This mode provides a TRIO queue based on the original RED algorithm. The
dropping probability is calculated using an exponentially weighted moving av-
erage algorithm (EWMA) as described in Section 2.4.6. This TRIO queue has
to be configured with a set of ten parameters. The probabilityp to drop a packet
of a certain precedenced between the two thresholdsthdmin andthdmax is:

pd =
maxdp

avg−thdmin
thdmax−thdmin

(1− countd) ·maxdp
avg−thdmin
thdmax−thdmin

Obviously the impact of the different parameters is not as obvious as in the
simplified RED version.

The queueing system is designed to provide flexible but powerful mechanisms to han-
dle packets. The implementation allows the configuration, generation or connection of
single components without restarting the VR or even pausing the interface. Also, an
extension by additional components during runtime is possible.

Since the Virtual Router is usually connected with real network devices and hosts, the
possibility to perform even massive changes to components is an absolute must. It is
quite awkward and not handy switch off a router or pause it, while it is connected to a
network and has to transmit data.

4.1.3 Packet Forwarding and Routing

Functions to receive and transmit packets are provided by the interfaces. Additionally,
a central mechanism is needed to handle the received packets, routing them to an
interface or pass them to some local function, if the destination address matches the
VR.

These functions are provided by the central forwarding mechanism. Once a packet
has been received by an interface, it is passed to the central forwarder. The central
forwarder first checks whether the packet has to be forwarded further according to
some routing rules or has to be processed locally by a protocol stack. In the latter case,
packet fragments are reassembled and forwarded to the protocol handlers. Currently
the VR implements two protocol stacks:

ICMP The implemented ICMP stack is rather simple and mainly provides function-
alities to be able to handle services like theping command. Additionally it
provides a set of functions allowing the sending of the appropriate ICMP mes-
sages due to events like

• packet discarded due to exceeded TTL field.
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Figure 4.6:Packet processing by the forwarder and the routing mechanisms.

• port not reachable

• ICMP echo requests (ping command)

Beneath the compatibility to IP routers, these messages are also important as the
traceroute utility, which allows to trace a packet’s path through a network,
relies on them. Later this utility will later be used to illustrate the set up of a
network.

UDP For the implementation of routing protocols or other daemons the UDP protocol
was required. Since a potentially necessary reassembling is handled by the for-
warder itself, the UDP stack is simple and provides mainly functions for upper
level applications to send UDP packets over a certain port or to listen to an UDP
port.

The ICMP and UDP stacks allow a Virtual Router to receive, to process and to send
ICMP and UDP packets. Since no TCP stack is available, it is not possible to set up
TCP connections between Virtual Routers. Of course, this does not affect the transport
of TCP packets through a Virtual Router. Therefore, connections between TCP capable
end systems can be established over a set of Virtual Routers.

Figure 4.6 shows modules a packet has to pass while being processed by a Virtual
Router. Packets to be forwarded are sent through the programmable filter and routed
to an interface afterwards. The figure also shows a special kind of interface, which
can be used to set up IPIP tunnels based on the ”IP Encapsulation within IP” standard
[Per96]. The programmable filter and the IPIP tunnel mechanism will be described in
the following sections.

The routing algorithm used to decide over which interface a packet has to be trans-
mitted works similar to any other routing mechanism. A central table stores a set of
rules, which is searched for the best match. To allow more flexible routing decisions to
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be made, the table does not only contain the destination address/netmask pattern, but
works on multiple fields of the IP header.

• source address / netmask (e.g. 130.92.64.0 and 255.255.255.0)

• destination address / netmask

• protocol type (TCP, UDP, ...)

• DSCP value (EF, AF1, ...,AF4)

Since routing rules can be based on DSCP values, different services can be routed on
different paths throughout the network. Setting up such a rule is dangerous because it
has to be ensured that different drop precedences of the same service are routed in the
same manner.

Like any other component of a Virtual Router, the routing table of the VR can be
modified during operation. The shell like front-end presented in Section 4.1.6 provides
Unix style commands for the set up and the removal of routes.

4.1.4 Programmable Filter

Since the Virtual Router supports an easy implementation of new mechanisms, flex-
ible modules to process packets passing the program have to be provided. The Pro-
grammable Filter accomplishes this task. An application running on the VR can set
up a filter and this filter forwards any packet matching the filter rule to the application.
This simplifies the implementation of daemons significantly and can also be used to
trigger simply a certain action, if a matching packet passes the router. A filter rule is
described by a filter specification:

PFspec =



IPdest, Netmaskdest
IPsource, Netmasksource
Opt,Optval
protocol
DSCP
filter-mode

In addition to the usual destination and source address specifications IP options can
be used to set up a filter. Therefore, packets marked with the Router Alert option as
specified by RFC 2113 [Kat97] can be passed to specialised mechanisms. The concept
of a central programmable filter has the advantage, that an application has to provide
the filter pattern only once rather than processing all incoming data. This simplifies the
set-up of applications as well as speeds up processing of normal traffic being forwarded
by the VR.

There are two main filter modes: copy and move. In the copy mode a packet is for-
warded normally and a copy of it is passed to the application. In the move mode the
packet is not duplicated but only passed to the application. This way, an application
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can process a packet and either re-inject it afterwards or completely discard it. An
application can override queueing systems and forwarding mechanisms of the VR. For
example, a whole queueing system may be applied for a certain type of packet, without
affecting the normal processing of standard IP packets.

It can be seen in Figure 4.6 that the programmable filter can send matching packets
directly to the application or send them first to the reassembler. Therefore, even if
the packets pass the VR as fragments the application does not have to take this into
account. In addition to forward (reassembled) packets to applications according to the
set up of filters, the programmable filter can be configured to process these packets,
collecting statistical information over certain packets only.

4.1.5 IPIP tunnels

In the description of the Virtual Router’s interface UDP tunnels, connecting VRs run-
ning on different computers were mentioned. An IP packet that has to be transmitted
over a ”virtual network cable” to the next Virtual Router is encapsulated into an UDP
packet and sent to the computer the other Virtual Router is running on.

There is also another type of tunnel used in the Internet. For network management rea-
sons it is sometimes profitable to encapsulate an IP packet within another IP packet,
send the new packet to its destination and decapsulate the original packet there. These
tunnels have the advantage, that the ”envelope” packet has the source and destina-
tion address of the start and end point of the tunnel, independently of the packets to
be transported. This simplifies the treatment of packets within an interior router and
supports the set up of distributed intra nets or Virtual Private Networks.

These tunnels are not a speciality of Virtual Routers. One solution to implement these
tunnels is the rather simple IPIP tunnel as defined in RFC 2003 [Per96], encapsulating
packets simply by adding a new IP header to the whole packet.

Virtual Routers can provide this type of tunnels as well. An IPIP tunnel start point is
realized by switching an interface into IPIP tunnel mode. As it can be seen in Figure
4.6 each packet routed to that IPIP tunnel interface is encapsulated into an IP packet
and the new IP packet is routed again. The new IP packet gets the IPIP tunnel interface
IP address as source address. The destination address of the ”envelope” packet has to
be specified and determines the tunnel end point.

The routing table controls what packets are put to the tunnel interface and into the
tunnel. The end point of IPIP tunnels is handled automatically. If an IPIP tunnel
packet arrives at a Virtual Router it is decapsulated automatically.

To illustrate the UDP tunnels used to connect Virtual Routers and IPIP tunnels, Fig-
ure 4.7 shows five Virtual Routers connected by UDP links and a set-up IPIP tunnel
between VR 2 and VR 4. The following list shows the contents of the datagram ex-
changed between the virtual routers and within the VR 3.

1. IPudp(V R1→ V R2)[IP (V R1→ V R5)[...]]

2. IPudp(V R2→ V R3)[IP (V R2→ V R4)[IP (V R1→ V R5)[...]]]
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Figure 4.7: Five Vir-
tual Routers running on
different computers, con-
nected by UDP tunnels
(solid), and an IPIP tun-
nel (dashed):

3. [IP (V R2→ V R4)[IP (V R1→ V R5)[...]]]

4. IPudp(V R3→ V R4)[IP (V R2→ V R4)[IP (V R1→ V R5)[...]]]

5. IPudp(V R4→ V R5)[IP (V R1→ V R5)[...]]

The transport of an IP packet through an IPIP tunnel causes a double encapsulation
between two VRs. The IPIP packet is encapsulated again within UDP to be sent to the
next VR. Even if this mechanism looks rather complex, it is quite simple in reality.

The IPIP tunnel mechanism can also be applied between virtual and real routers.
Therefore it is possible to have an IPIP tunnel start point on a Linux host sending
encapsulated packets to a Virtual Router providing the tunnel endpoint.

4.1.6 Configuration of Virtual Routers

The Application Programming Interface

To keep the Virtual Routers reasonable small and flexible, there is a strict separation
between the Virtual Router core mechanisms and any kind of front-end. Any config-
uration of the VR has to be done by an Application Programming Interface (API). To
support multiple front ends like a graphical user interface, a command line interface
or an agent platform to interact with the Virtual router simultaneously, each API is
represented by a bidirectional communication channel.

To configure the router a command structure has to be generated and sent over this
channel. The router will send back an error code or the requested information. Ap-
pendix A lists the binary configuration commands and results.

The use of API channels allows to attach multiple front-ends as well as an application
to configure the router. This way a graphical user interface might be attached by an API
channel, another can be used by the command line front-end while an agent platform
might use an own channel to interact with the router.
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MicroVar Shell

>ifconfig add if0 10.42.10.1
name: if0
ip-address: 10.42.10.1
netmask: 255.255.255.0
broadcast: 10.42.10.255
bandwidth(bps): 1000000 bucket size(bytes): 2048
drops: 0 errors: 0
rx: 0 tx: 0
rx-t-ip 172.0.0.0 rx-t-nm 255.0.0.0
rx-t-val 10.0.0.0 rx-t-pat 255.0.0.0
tx-t-ip 10.0.0.0 tx-t-nm 255.0.0.0
tx-t-pat 255.0.0.0
connection none

Table 4.1:Virtual Router console with the ifconfig command to set up an interface and
the returned message containing interface informations

Currently, there are two applications using these channels: the command line front-
end and the active router environment which will be described later in detail. The use
of communication channels has an additional advantage: The program controlling a
Virtual Router has not necessarily to run on the same host as the VR itself. Therefore,
remote administration is supported as well as a tool to control multiple Virtual Routers.

The Front-End

The API channels are used to exchange binary messages configuring the VRs or to
query information. To provide a human readable interface, a command line driven
front-end (shell) is provided. This front-end more or less does a simple translation
between the human readable commands and the binary API messages. Table 4.1 shows
the console output directly after starting the VR and adding an interface. In addition to
this interactive mode, the shell will automatically read and execute commands from a
certain file directly, once the VR is started. After this startup file has been red, the shell
switches to interactive mode. These startup files have a simple syntax can therefore be
generated automatically, the configurations for a large Virtual Router topology can be
calculated resulting in a set of startup files. The network emulation can then be started
by simply starting the Virtual Router programs with the according startup files.

As mentioned in the previous section the concept of API channels can also provide
remote access to the router. Even the front-end shell can be configured to listen for
incoming TCP connections. After the VR has been started and the startup script has
been executed, the VR can be configured simply via the telnet command. Nearly all
components of a VR can be configured, added or removed while the Virtual Router is
up and running. This includes especially:

• routing tables: displaying, adding and deleting routes.
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• interfaces: adding interfaces, changing link bandwidths, connecting interfaces
to other VRs/softlink devices

• queueing systems: querying information, adding, modifying, removing, con-
necting and disconnecting components.

• general: loading new objects into the VR, querying statistical information

As far as possible the command line interface uses a Unix like command syntax.
Therefore changes to the routing tables are done by aroute command while in-
terfaces are set up and modified by theifconfig command. For a more detailed list
of available commands see appendix B.

4.1.7 Event Scheduler

The core of a VR is the event scheduler (see Figure 4.1.7). Each component can
register certain events to this central scheduler. This may be

timed events: The central event scheduler can trigger certain functions at specific
times. It is also possible to register certain methods to be executed repeatedly.

IO events: The event scheduler monitors IO channels and reacts to their state changes.
A certain function may be executed if a packet is received on a IO channel, or if
a channel is ready for sending data.

Besides functions for registering and unregistering events, the scheduler also provides
mechanisms to suspend events for a certain period of time.

Each event is associated with a certain method to be called. In idle state the scheduler
monitors the events and when an event occurs, it executes the appropriate function.
Therefore, an interface typically registers events handling its IO channels and provides
a appropriate call back function to read or write packets to the IO channels. The same
mechanism is used to realize the API channels or the command line interface. Events
monitoring the appropriate IO channels are registered at the event scheduler.

An important property of the event scheduler is that events are processed sequentially.
Once an event has been triggered and the appropriate function is executed, only this
function is executed by the Virtual Router1.

How important this property is can be seen, if the API received a command to recon-
figure one of the interfaces. Since the function triggered by that API event is exe-
cuted exclusively the API can not interfere with any other processes within the Virtual
Router.

At a first glance this appears to reduce the performance and a parallel execution of
events should be possible. On the other hand processing of a packet event is very

1As will be explained later, Loadable Modules can be loaded using an own thread running in parallel.
But since the Loadable Objects have to communicate with the VR core via API channels or similar
constructs, Loadable Objects run – from the core’s point of view – also exclusively.
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Figure 4.8:The VR’s central event scheduler

fast and reconfigurations occur infrequently. Also even if the program would allow a
parallel execution the operating system scheduler has to work analogous to the event
scheduler. On computers with multiple CPUs running multiple Virtual Routers, a par-
allelisation is at least achieved for the whole emulation, since different Virtual Routers
run on different CPUs.

Finally, even if performance is of course important an understandable and extensible
design of the Virtual Router counts more.

4.1.8 Extending the Virtual Router

To allow the extension of the Virtual Router with some application level or core level
functionalities, additional code can be loaded to the Virtual Router. This pieces of code
are called Loadable Objects.

• Loadable Objects may be used as a simple transport mechanism to import new
code into the VR core. Since some features of the VR require special functions
to be called, an object containing these functions may be loaded. A filter may be
set up forwarding specific packets to a dynamical loaded function. Such objects
may also contain code to be called by the event scheduler.

• Loadable Objects can contain complete programs running in an own thread,
independently from the VR and its event scheduler. As the event scheduler does
not block these threads, any communication with the VR’s core should be done
via a so called API channel, providing the synchronisation between the threads.



68 CHAPTER 4. EMULATION OF IP NETWORKS

Of course Loadable Objects are not restricted to short pieces of code, but can provide
complete applications. Code for Virtual Router core callbacks might be provided, other
code is executed in parallel and other parts of a Loadable Object are triggered by the
Virtual Router’s event scheduler.

After an object is no longer in use, it is automatically removed from memory. Three
major Loadable Objects have been implemented:

dump is a small tcpdump like program, allowing to trace packets passing the VR. It
was implemented due to debugging purposes and allows to specify a filter via
the command line interface and print a short message for each packet passing
the VR. The dump object simply adds a filter and a call back function to the VR
core.

t-bone is more complicated than dump and was implemented to allow Quality of Ser-
vice Measurements as proposed and evaluated in [Gün01]. The t-bone compo-
nent listens to a specific TCP port to be connected by an external program. Once
connected the t-bone can be configured by sending a filter description, causing
the Virtual Router to forward a copy of each matching packet to the connected
program.

pybar is the python based active router, which will be described later in Chapter 6.2.
This loadable object implements a whole active networking environment, allow-
ing packets to transport code. This code then can be executed by this module
attached to the Virtual Router.

4.1.9 Connections to Real Networks: The Softlink Device

To connect the Virtual Router to the local computer’s network system, a special net-
work device has been implemented. This device is needed to send packets to a Virtual
Router instead of forwarding them to a real network. The component is called Softlink
device and was implemented as a kernel module for Linux (version 2.0.x, 2.1.x and
2.2.x).

The basic task of the kernel module is simple. It acts as an interface between user space
programs like the Virtual Router and the operating system kernel, allowing user space
programs to exchange network packets with the kernel like a network interface card
(NIC). Once loaded into the Linux kernel the module adds a set of network devices
(sol0, ... ) to the operating system’s list of network devices. For the kernel it
does not make a difference whether the interface is a real NIC likeeth0 or a softlink
device likesol0 .

On the user’s side the softlink module provides a set of device files/dev/sol0,
/dev/sol1, ... as shown on Table 4.2. Each device file communicates with the
according network device. If the kernel sends a packet to the network devicesol0 this
packet can be read from the device file/dev/sol0 . Accordingly, packets written to
the device file are processed by the kernel as received by a NIC. The device files can
simply be opened by user space programs using normal file system IO. The softlink
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crw-rw- - - - 1 root vr 63, 0 Apr 15 02:43 /dev/sol0
crw-rw- - - - 1 root vr 63, 1 Apr 15 02:43 /dev/sol1
crw-rw- - - - 1 root vr 63, 2 Apr 15 02:43 /dev/sol2
crw-rw- - - - 1 root vr 63, 3 Apr 15 02:43 /dev/sol3
crw-rw- - - - 1 root vr 63, 4 Apr 15 02:43 /dev/sol4
crw-rw- - - - 1 root vr 63, 5 Apr 15 02:43 /dev/sol5
crw-rw- - - - 1 root vr 63, 6 Apr 15 02:43 /dev/sol6

Table 4.2:The softlink device files in the /dev directory. The usual Unix file permission
system allows to control, which users can access the devices.

device therefore might not only be used by Virtual Routers but is a generic tool, also
supporting high level languages like Java or Python.

A softlink device has to be configured, as any NIC. On Linux this is usually done
using theifconfig command. Table 4.3 shows the list of network devices of a
Linux system including a softlink device.

4.2 Setting up Virtual Router Networks

Using the different connection types allowing to establish connections between VRs
in different manners and the softlink device to connect this topology to a computer’s
network system, various distributions are possible. Additional flexibility is provided
by the address translation mechanism, which allows to set up topologies using only a
single computer, acting both as traffic source and sink.

4.2.1 Distribution of Virtual Routers

The idea of a Virtual Router is to emulate a single router, not an end system. Real end
systems are meant to be used as traffic sources and sinks.

Host A VR 1 VR 2 VR 3 Host B

Figure 4.9:Two end systems connected over three Virtual Routers

The diagram above shows a typical simple set-up of two hosts (A,B) connected via
three VRs (1,2,3), allowing to send traffic (UDP, TCP, ...) from host A to host B and
vice versa. To establish a connection to a computer’s network layer (see Section 4.1.1)
a softlink device has to be used. This requires a VR running on the same computer the
softlink device is installed. Nevertheless, several set-ups are possible.

Diagram 4.10 shows how Virtual Routers may be distributed. On each computer,
which has an interface to be connected to a VR via softlink device, a VR has to be
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eth0 Link encap:Ethernet HWaddr 00:B0:D0:BF:82:98
inet addr:130.92.66.130 Bcast:130.92.66.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:0 overruns:0 carrier:6
collisions:0 txqueuelen:100
RX bytes:0 (0.0 b) TX bytes:360 (360.0 b)
Interrupt:10 Base address:0xfc00

sol0 Link encap:Ethernet HWaddr 00:53:4F:46:54:4C
inet addr:10.42.10.1 Bcast:10.42.10.255 Mask:255.255.255.0
UP BROADCAST RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:513 errors:0 dropped:0 overruns:0 frame:0
TX packets:665592 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:12 errors:0 dropped:0 overruns:0 frame:0
TX packets:12 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:968 (968.0 b) TX bytes:968 (968.0 b)

Table 4.3:Output of the Linuxifconfig command. It shows a listing of network
devices, including one softlink device.
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Host A VR 1 VR 2 VR 3 Host B
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Figure 4.10:Distributing VRs to end systems

started. VR 2 might be placed either on computer 1 or 2 or on an additional computer
3 between.

A concrete set-up would depend on the available processing power of the computers
and the bandwidth of the network the computers are connected with.

VR 3
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VR 1

VR 5

VR 4

Computer 2

Computer 1 Computer 4
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Host A

Host B

Host C

Host D

Figure 4.11:Increasing the number of end systems

The use of separate end systems for each traffic source or sink would cause a significant
demand for computers in a topology of a reasonable size as can be seen in Figure
4.11. Fortunately, IP addresses are usually bound to the network interfaces (or logical
interfaces) of that computer. As mentioned in Section 4.1.1, the softlink device is
an emulation of a normal network interface and like other interfaces it owns an IP
address. Since it is possible to create several softlink devices on a computer (up to
256), a computer may appear at different points in a topology as source and sink at the
same time (see Figure 4.12).

VR 3

Computer 2

VR 4

VR 5 Host D

Host C

Computer 3

VR 1

VR 2Host B

Host A

Computer 1

Figure 4.12:using multiple softlink devices
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Unfortunately it is not simple to use a computer as source and sink simultaneously
and forward traffic from the computer through an emulated topology back to itself. At
least the Linux network layer will detect, that the destination address is one of the local
(softlink) interfaces and will ignore the according entry in the routing table. Without
changes to the network layer, there is no workaround for that behaviour. Fortunately,
there is a way to trick the Linux router to forward the packet to the emulated topology
using the address translation mechanism.

4.2.2 Address Translation

To use a single computer as multiple sources, sinks and also as location for one or a
couple of Virtual Routers the address translation mechanism can be used [BB00b]. In
Figure 4.13 this simple set-up is shown.

Packets on host A shall now be sent through the Virtual Router to host B. The same
computer acts as two different hosts by setting up two softlink devices. The Virtual
Router connecting the hosts runs on the same computer.

If a packet now is directly sent to the addressIPA of host A, the network layer of
the computer will detect thatIPA is an interface of the same computer and process
the packet internally, instead of sending it through the softlink devices and the Virtual
Router.

To cope with this problem, an address translation within the softlink connection is
performed. A packet, which is received by the Virtual Router over a softlink connec-
tion with the source, destination address pair(IPsrc, IPdest) is mapped to a packet
(IPsrc, IP

mapped
dest ).

A packet, which is forwarded by the Virtual Router over a softlink connection to an
end system(IPsrc, IPdest) is mapped to a packet(IPmappedsrc , IPdest).

This mechanism allows to forwarding packets transparently through one or multiple
VRs even, when the destination interface is placed on the same host as the source
interface.

The following sequence shows the translations and the change to packet headers during
the forwarding of the packet.

We use the network shown on the diagram above to demonstrate the mapping. A
packet shall be sent fromA1 oder VR 1 toA2. The packet is now not directly sent to
IPdest but toIPmappeddest .

So the computer sends a packet with the addresses

(IPsrc, IP
mapped
dest )

over interfaceA1. Receiving this packet on a softlink connection, the VR translates
the destination address to the correct destination address.

(IPsrc, IPdest)
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VR

Computer

Host A
10.1.1.1

Host B
10.1.2.1

Figure 4.13:A Virtual Router connected to two host interfaces of the same computer

Assuming the routing tables within the VR are set up correctly, the VR will forward
the packet to the VR-interface connected toA2. Here the source addressIPsrc will be
translated toIPmappedsrc .

(IPmappedsrc , IPdest)

The computer receiving this packet on host interface B can directly reply to the packet
by using theIPmappedsrc as destination address. The same translation will take place in
the other direction.

As the set-up of this address mapping scheme can be quite complicated, the VR maps
in his default set-up any address fitting172.0.0.0/8 to 10.0.0.0/8 , with only
the first byte being replaced. So a packet sent to172.1.19.22 and routed to a VR
is there mapped to a10.1.19.22 . The same is done in the opposite direction. This
settings work fine, if the softlink interface of the hosts (A,B) have addresses of the
10.0.0.0 network.

To illustrate that mechanism a short example shall be given. As shown in Figure 4.13
Host A has the address10.1.1.1 and host B the address10.1.2.1 . Both hosts
are realised by softlink interfaces of the same computer and are connected by a Virtual
Router running on this computer. A packet shall be sent from host A to host B over the
Virtual Router. If the packet would be sent directly to10.1.2.1 it would not pass
the VR but be processed within the computer.

Therefore, the packet is sent to address172.1.2.1 instead of10.1.2.1 . On the
computer a route was set up sending packets for172.1.2.* to the Virtual Router.
When the Virtual Router receives the packet, it translates172.1.2.1 (the destination
address) back to10.1.2.1 and forwards the packet – according to its routing rules
– to host B. Leaving the Virtual Router, the packet’s source address is modified. The
original source address10.1.1.1 of host A is replaced by172.1.1.1 . Being
received by Host B, the packet is now addressed to10.1.2.1 and originates from
172.1.1.1 . The translation of the source address allows a direct answer back to this
address, automatically forcing a routing through the Virtual Router.

Even when this mechanism interacts smoothly with external network devices, it is
complicated and mainly thought to set up small networks for development purposes.
In such a scenario the capability to work on only a single computer is very important.

Since for larger topologies usually at least two computers are used, the address trans-
lation is not necessary.
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Figure 4.14: Throughput Measurements: TCP flow protection through a VR by an
appropriate queueing system.

4.2.3 Setting up Queueing Systems

As described in Section 4.1 the queueing system consists of small components, each of
them performing a well defined task. By plugging components together, various kinds
of traffic handling can be achieved. In this section the concept shall be clarified by a
small example. A queueing system shall be set up to differentiate between UDP and
TCP flows and to prevent the suppression of congestion avoiding TCP flows by aggres-
sive UDP traffic. TCP traffic should be guaranteed a minimum amount of bandwidth
if there is aggressive UDP traffic and should also be able to use the full bandwidth if
available.

The right diagram in Figure 4.14 shows the set-up. Incoming packets are processed by
a classifier checking the packet’s protocol id. TCP traffic is put to queueQ2 while any
other packets are put to queueQ1. The token bucket filterT causesQ1 to drop packets
exceeding a certain packet rate. Finally a scheduler reads packets fromQ2 directly.
Packets fromQ1 are read via the token bucket filter.

The scheduler is switched to absolute priority round robin mode, favouring the queue
with the token bucket filter which is configured to a bucket rate of 2 Mbps.

The left graph in Figure 4.14 shows the achieved throughput values. The interface of
the VR was limited to an overall bandwidth of 4 Mbps. The test starts with TCP traffic
only, which is put toQ2 and processed by the scheduler, achieving the full bandwidth
of 4 Mbps. After a few seconds an UDP source starts sending. The UDP packets are
put to queueQ1 and would suppress TCP’s bandwidth completely, if the token bucket
filter would not limit the rate ofQ1 to 2 Mbps. TCP will then get a certain amount of
bandwidth, even if the scheduler favours the queueQ1, since it is limited by the token
bucket filter. During the test the UDP source was switched on and off repeatedly, to
visualise the impact of UDP on TCP.

Of course this is just an example to demonstrate the mechanism behind the queueing
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Figure 4.15:16 VRs on one and distributed to two computers

system. Obviously, there are simpler methods to achieve a similar or even better be-
haviour. Instead of the absolute priority round robin a simple round robin or a weighted
round robin scheduler might be used, making the token bucket filter superfluous.

4.3 Traffic Measurements

Although the original idea of a Virtual Router was to offer a platform for the develop-
ment and evaluation of distributed mechanisms like network management and Quality
of Service routing, the architecture also offers a suitable testbed for traffic measure-
ments. A first impression was given by the small example in the last section. Since the
VR has to process packets in real time the number of routers emulated on a computer
and the maximum of allowed bandwidth is of course limited, even if the performance
may be increased significantly by multiprocessor computers.

To provide a basis for later measurements, the impact of distribution, the number of
Virtual Routers and the load shall be evaluated.

4.3.1 Distribution and Packet Delay

The most problematic issue during network emulation in a distributed environment is
the time a packet is delayed during forwarding and transmission [BB01]. Since the
packet forwarding requires real processing and is not just simulated, the lower delay
bound per hop is limited by the available processing power as well as by the available
bandwidth and delay of the underlying network.

To measure the delay for an increasing number of routers a chain of 16 VRs was set
up on one2 and on two computers3 (see Figure 4.15). To measure the round trip time
(RTT) a number of pings have been sent to different routers in these router chains.
These experiments have been performed on an unloaded network and with additional
bursty UDP traffic of up to 50 % of the link bandwidth.

The graphs of the Figures 4.16 and 4.17 show RTTs of pings for an increasing number
of hops for the local and the distributed set-up. Figure 4.16 shows the results without
additional traffic in the network, Figure 4.17 the results if additional UDP traffic has
been sent over the 16 Virtual Routers. All graphs show the expected linear correlation
between the number of hops and the RTTs. The RTTs in the distributed emulation are
much higher than in the single computer set-up. Since each VR has been connected
to two VRs on the other computer, the packets suffer additional delay by the UDP

2dual processor 800 MHz PentiumIII, running Linux
3dual processor 800 MHz PentiumIII and a single processor 400 MHz PentiumII, both running Linux
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Figure 4.16:RTTs in an unloaded VR network
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Figure 4.17:RTTs in a a loaded VR network



4.3. TRAFFIC MEASUREMENTS 77

0

2

4

6

8

10

12

0 10 20 30 40 50 60

RTTs with 32 VRs
variance of RTTs with 32 VRs

RTTs with 64 VRs
variance of RTTs with 64 VRs

[m
s]

[routers]

Figure 4.18:RTTs with different numbers of VR entities in an unloaded network

tunnels being used to connect VRs on different computers. The changing load of the
UDP tunnels causes also a higher RTT variance as well.

4.3.2 Topology Size and Packet Delay

Another interesting question is the impact of the number of Virtual Router entities run-
ning on a computer to the RTTs. For this experiment 32 and 64 routers were set up in
a chain on a single computer, in order to evaluate the influence of a distributed emula-
tion. Figure 4.18 shows that as long as there is no additional traffic on the computer,
the RTTs with 32 VRs correspond to the values with 64 routers.

The situation is different, if additional traffic is sent over the router chain as can be
seen in Figure 4.19. The RTTs increase and the variance of the RTTs is significantly
higher as well. On the other hand the graph still shows a linear increase of the RTTs
with the number of hops the ICMP packets have to pass.

The measurement of RTTs gives a good impression about the impact of distribution to
packet delay.

Because a VR has to process and forward packets in real time, it cannot provide a
direct control over the link delay asns can. Packets are forwarded from one VR to
another by some kind of interprocess communication and therefore determined by the
operating system.

Of course the behaviour of a transport medium of a certain (fixed) delay could simply
be emulated by adding a queue with a certain delay between two VRs. However, this
only allows to increase the delay, the smallest possible delay is determined by the
computer’s processing power.

Fortunately the time a computer needs to forward packets between two VRs is very
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Figure 4.19:RTTs with different numbers of VR entities in a loaded net

small and an increased delay can be achieved rather simply by delaying packets during
transmission.

Additionally, even for long distances, the delay caused by cables or fibers usually is
very small and in any case constant compared to the delay caused by packet buffering
within the network devices.

An evaluation of delays caused by Virtual Routers and a comparison with real network
devices will be presented in the next section.

4.3.3 Impact of Queues to Packet Delay

It is quite simple to directly compare VRs to real network devices. Measurement data
can be easily obtained using the ping or the traceroute programs. Table 4.4 lists some
result. Each row lists a destination type: either a country (D,CH), a Virtual Router
topology or our local Linux test network. A look on the results for the Linux network
especially reveals the impact of the queueing delay. It can also be seen, that the Virtual
Router only produces very small per hop delays, with nearly constant per hop delay
for the 8 and the 16 hop network. The delays added by Virtual Routers are comparable
to those of real networks as can also be seen on Table 4.5. It shows the output of two
traceroute commands, the first one within the University’s network and the other one
over two Virtual Routers.

The Virtual Router queueing systems have the main impact on a packet’s delay. Figure
4.20 shows the packet delay caused by a four Mbps link with and without congestion.
Dependent on the bandwidth sent over the link, the FIFO queue has to buffer packets.
An overload of five Mbps fills up the FIFO queue and causes a packet delay of ap-
proximately 40 milliseconds. If only 3.0 Mbps is sent, the queue remains empty and
packets are only delayed for 2.4 Mbps.
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hops RTT [ms] per hop [ms] congestion
D 15 38 2.53 unknown
D 15 32 2.13 unknown
CH 8 4.5 0.56 small
VR 8 2.1 0.26 no
VR 16 4.3 0.29 no
Linux-DS 8 75.46 9.433 heavy

Table 4.4:Comparison of delays for different destination/networks

traceroute to www.unibe.ch (130.92.9.60), 30 hops max, 38 byte packets
1 haydn66.unibe.ch (130.92.66.1) 0.644 ms 0.410 ms 0.351 ms
2 toscanini.unibe.ch (130.92.253.250) 0.794 ms 0.610 ms 0.524 ms
3 www.unibe.ch (130.92.9.60) 1.437 ms 0.850 ms 0.838 ms

traceroute to 10.43.10.1 (10.43.10.1), 30 hops max, 38 byte packets
1 10.42.10.2 (10.42.10.2) 0.142 ms 0.111 ms 0.081 ms
2 10.43.1.1 (10.43.1.1) 0.290 ms 0.274 ms 0.259 ms
3 10.43.10.1 (10.43.10.1) 0.308 ms 0.303 ms 0.282 ms

Table 4.5:Unix traceroute within a real network (University of Bern) and through a
virtual topology
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Figure 4.20: The left graph shows the delays caused by the FIFO queue of a 4.0
Mbps link for different bandwidths. The right graph shows the increasing delay due to
increasing queue length, if only slightly more than 4.0 Mbps is sent over the link and
the queue is slowly filled.
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The graph on the right side of Figure 4.20 visualises this impact of queue lengths on
packet delay drastically. Since slightly more packets have been sent than the queue
was able to transmit, the length of the queue and therefore the delay increased slowly
during the experiment. Once the maximum queue length was reached and the queue
started to drop packets, the delay remained constant.

This delay caused by a FIFO queue can also be easily calculated by

dqueue =
Qpkts · pavg
bbytes

with Qpkts being the queue length in bytes,pavg the average length of transmitted
packets andb the bandwidth of the outgoing link in bytes per second. For a queue
length of 20 packets and an average packet size of 1000 bytes, this results in a theoret-
ical delay of 39 ms. The short queue length of 20 packets is a result of the TRIO queue
algorithm. Even if the queue had a capacity of 64 packets, the packets with high drop
precedence used for this experiment would have been dropped at a queue length of 20
packets already.

An example of the behaviour of queue lengths within a chain of routers is given in
Figure 4.21. There the queue length, the delay and the throughput within a chain of 16
Virtual Routers connected by 1.0 Mbps links is illustrated.

tim
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Figure 4.21:Queue lengths, bandwidth and delay in a chain of sixteen VRs, transmit-
ting a TCP flow. The queue lengths for the first, the second and the last Virtual Router
in the chain are displayed.

The graphs show the first queue being filled up with packets, while the queues of the
following routers are empty or store one packet. Since the first Virtual Router is a
bottleneck for the TCP flow, its droptail queue is filled until packets are dropped and
TCP reduces it’s transmission rate to less than 1 Mbps. Since all connections have the
same capacity of 1.0 Mbps, the following routers are capable to transport this amount
of traffic, therefore their queues remain empty.
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Filled up, the first queue also increases the delay of the packets, as can be seen on the
right diagram of Figure 4.21. Almost the complete delay of the packets is caused by
the FIFO queue of the first router. The queue length variance and the delay are caused
by the congestion avoiding mechanism of TCP.

These tests show comparable delays for Virtual Routers and real networks. Virtual
Routers have usually smaller per hop delays than real network devices. If additional
traffic increases the queue lengths, the delay caused by packet queueing is much higher
than any delay caused by packet transmission.

If a certain transmission delay is needed as (e.g. satellite links), additional queues can
delay transmitted packets and achieve the required delays.

4.3.4 Bandwidth Sharing

To conclude the evaluation of Virtual Routers core mechanisms several measurements
regarding the sharing of bandwidth were accomplished.

Different flows of the same protocol have to share available resources like bandwidth
in a fair manner. A Virtual Router receiving packets has to treat them in a way to
achieve a realistic behaviour.

An equal processing of packets seems to be trivial but special problems arouse from
a possible synchronisation between the protocol stacks and Virtual Routers running
on the same computer. Since the Internet is distributed and the computers are not
synchronised, such negative effects are less probable.

This is also not critical in pure simulators like thens network simulator since they do
not cope with an operating systems influence to forwarded traffic and do not work in
real time. Since a simulator usually uses his own time scale and can provide exact
timing, the results will match the theory. In real time this is not possible, since the
operating system might be busy with the processing of routing protocols or execution
of some high priority routines like interrupts, even if it is time to send a packet.

In the special case of a Virtual Router with sender, receiver and router(s) running on
one computer and being therefore synchronised by the operating systems scheduler,
interferences between senders, receivers, routers and the kernel can occur, leading to
an unfair and unrealistic sharing of bandwidth between flows.

A proper handling of incoming packets has to be provided. Since TCP runs congestion
control protocols, it reduces its bandwidth automatically if packets get lost as can be
seen in Figure 4.22.

An imprecise treatment of packets can lead to completely different behaviour than
expected from an IP router. In combination with negative effects of protocol stacks and
routers running on the same host, results might differ significantly from real networks.

Therefore, before evaluating the Differentiated Services on Virtual Routers, some gen-
eral experiments have to be performed, to evaluate the general correct behaviour.

To ensure a fair processing of incoming flows, the Virtual Router uses its own event
based scheduler ensuring a proper fair treatment of multiple interfaces.
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Figure 4.22:Bandwidth sharing between two TCP flows. Both flows run congestion
control mechanisms and react to packet loss, resulting in varying throughput.

For the experiment set up ten end systems are connected over two Virtual Routers. The
aggregate of all incoming traffic exceeds the bandwidth of 4 Mbps the link between
VR A and VR B is capable to transmit. Five end systems and a VR are provided by one
computer. Therefore, five softlink devices per computer are configured and the VRs
are connected with an UDP tunnel. For the queueing systems simple FIFO queues
were used, so all packets should be treated equally.

First measurements using UDP traffic have been performed. Since UDP does not use
any flow control and there is no interaction between different UDP flows, the only crit-
ical point for a statistically fair bandwidth sharing is the Virtual Router. Based on the
topology in Figure 4.23, five UDP flows have been measured. The flows transmitted
UDP packets from:

10.42.n.1 −→ 10.43.n.1 with 10 ≤ n ≤ 14

During the measurements the packet rates of the UDP senders have been changed,
leading to different shares of the achieved throughput values. Figure 4.24 shows three
graphs, each with the measured input and the output bandwidth.

The graphs show that finally each flow achieves the same percentage of its incoming
bandwidth, because the probability for a packet to be dropped is the same for all pack-
ets and interfaces. This is a realistic behaviour for a network device as long there are
no mechanisms applied to favour certain kinds of traffic.

Finally the throughput values achieved by five TCP flows have been evaluated. Due
to the congestion control mechanism not only the achieved throughput values are in-
teresting, but also the reaction of TCP to changes of available bandwidth. The flows
were not started at the same time, but with a delay of 60 seconds. Figure 4.25 shows
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Figure 4.23:Topology used for general Virtual Router evaluation and Differentiated
Services tests. The bottleneck between the two VRs was limited to a bandwidth of four
Mbps

the bandwidth bahaviour and Figure 4.26 the bandwidth achieved during the last 60
seconds of the experiment.

The distribution of bandwidth between the five flows is not absolutely equal. This is
because the flows were not started under equal conditions. Some flows were up for
longer time than others, reacting differently to the congestion situation. However, the
differences are quite small and absolutely comparable to the behaviour of real Internet
scenarios.

Conclusion

In the previous sections the core mechanisms of the Virtual Routers were evaluated
and compared to the behaviour of real network devices. Several experiments show the
compliance of Virtual Routers with normal network devices. The available bandwidth
is equally shared between incoming links and the dropping probability for different
packet rates is also constant. Different flows being forwarded over a network of Virtual
Routers are treated equally and achieve a fair share of the available resources. Also,
the time forwarded packets is delayed is similar to the time caused by real network
equipment. This allows an application to use a Virtual Router topology instead of a
real network without noticing any significant difference.
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Figure 4.27:Simple Differentiated Services queueing system with one Assured For-
warding class and best effort traffic

4.4 Evaluation of Differentiated Services

So far the tests concerning Virtual Router were limited to show the system’s ability to
emulate an IP network device. The experiments covered issues like the impact of the
number of emulated routers per host on the delay, questions like the behaviour during
congestion and general parameters like the delay per VR or bandwidth sharing.

More advanced features like the flexible queueing system, capable to set up complex
systems of queues, schedulers and classifiers will be evaluated in this section by setting
up some experiments for Differentiated Services.

In Chapter 3 the network simulatorns has been used for the evaluation of Assured
Service. To allow a comparison, similar experiments using Virtual Routers have been
performed. As topology we use the same scenario as for the measurements of band-
width sharing shown in Figure 4.23.

Similar to the evaluation usingns, the focus is on Assured Forwarding here as well.
As mentioned before Expedited Forwarding service is no fundamentally new type of
packet treatment but is similar to classical techniques providing a higher priority to
certain flows as done by absolute priority queueing (see Section 2.4.1).

Nevertheless Expedited Forwarding is of course a new concept like Differentiated Ser-
vice in general, but not because of special packet treatment. Differentiated Services
specify a complete framework with policers and shapers at the border routers allow-
ing to provide services like Assured and Expedited Forwarding network wide even if
multiple ISPs are involved. In contrast to Expedited Forwarding, Assured Forwarding
specifies not only an architecture but also new methods of per hop packet treatment.

Figure 4.27 shows the queueing system used during the evaluation. Incoming packets
are checked by the Differentiated Service Marker (DSM) for their destination address
and marked with DSCP values according to a set of rules (see Table 4.6).

Of course this marking needs only to be done in the first VR (A), which is acting
as a kind of ingress router. The second VR (B) has no marker but simply provides
a TRIO and a best effort queue. After passing the marker the packets are put to the
queues by a classifier. The classifier works as BA classifier, simply checking the DSCP
values. Since only the interaction within one Assured Forwarding class is interesting,
the queueing system provides one AF class and also a queue for best effort traffic. The
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Differentiated Services Marker (dsm):
—
source: 10.42.11.0/255.255.255.0 dest: 0.0.0.0/0.0.0.0
proto: 0 tos: 0
service: Assured Forwarding Class 1 with

1.000000 Mbps and a bucketsize of 8192 bytes for low drop precedence
0.500000 Mbps and a bucketsize of 8192 bytes for medium drop precedence

—
source: 10.42.10.0/255.255.255.0 dest: 0.0.0.0/0.0.0.0
proto: 0 tos: 0
service: Assured Forwarding Class 1 with

2.000000 Mbps and a bucketsize of 8192 bytes for low drop precedence
0.500000 Mbps and a bucketsize of 8192 bytes for medium drop precedence

Table 4.6:Shell output as an example for marker rules for the Differentiated Service
Marker within the ingress Virtual Router. Both rules mark packets according to their
source address with the DSCPs of Assured Forwarding Class 1.

scheduler runs in absolute priority mode, favouring packets from the AF TRIO queue.

The network topology with two Virtual Routers displayed in Figure 4.23 and the
queueing system in Figure 4.27 were used to evaluate the behaviour of a couple of
traffic flows being forwarded through that network. During this experiment only two
instead of three dropping probabilities were used because of the following reasons:

• As indicated in the section about the colour markers (Section 2.3.5), the concept
of three dropping probabilities mainly is meant to support bursts in a TCP en-
vironment. As our measurements try to evaluate the capacity of Differentiated
Services to provide a certain bandwidth no bursty TCP or UDP traffic is used.
Therefore using these mechanisms would just complicate the results.

• During the previous evaluations of Differentiated Services with the network sim-
ulator a model with only two different dropping probabilities was used. Using a
similar model allows an easier comparison of the results.

4.4.1 Assured Forwarding and UDP

To evaluate the general capability to allocate a certain bandwidth for a specific flow,
five UDP flows are forwarded through the network. The link of 4 Mbps between the
two Virtual Routers (see Figure 4.23) is a bottleneck for the UDP senders, causing a
heavy congested link, filled up queues and can be seen as some kind of worst case
scenario for Differentiated Services.

The Differentiated Service Marker was configured to mark a different share of band-
width with low dropping precedence for each flow.

Each flow is configured with a different amount of assured bandwidth, e.g. packets up
to a specific bandwidth are marked with a low dropping precedence DSCP. The five
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Figure 4.28:Assured vs. measured bandwidth between five UDP flows in a Virtual
Router network. Each flow had an incoming bandwidth of 2 Mbps. The bottleneck was
4 Mbps.

flows are sent simultaneously, each with the same bandwidth of 2 Mbps, which leads
to a bandwidth aggregate of 10 Mbps, congesting the 4 Mbps bottleneck link between
the two Virtual Routers.

The results are shown in Figure 4.28. Each flow exceptE has a certain share of pack-
ets with low dropping probability. The graph shows the achieved throughput and the
bandwidth up to which packets got a low dropping precedence DSCP.

The achieved bandwidth is of course smaller than the assured one, due to the con-
gestion situation. Certainly such a set up would rarely occur in a good provisioned
network. The maximum amount of traffic with assured low dropping precedence al-
lowed should never exceed the maximum link bandwidth. Even if such a scenario is a
kind of worst case scenario it confirms the ability of Differentiated Services to provide
Quality of Service.

4.4.2 Assured Forwarding with Different Protocols

In Section 3.4 the capability of Differentiated Service was evaluated to protect conges-
tion avoiding TCP against aggressive protocols like UDP. This property is important
for any resource reservation mechanism. The protection of TCP against UDP by the
use of different queueing systems and proper scheduling is the basis for traditional
traffic conditioning mechanisms like class based queueing (see Section 2.4.4). Virtual
Routers can be configured to provide such mechanisms as was shown by a simple ex-
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ample for a queueing system in Section 4.2.3 which allowed to protect TCP flows from
being suppressed completely by UDP.

These mechanisms differ from Assured Forwarding since Assured Forwarding does
not use different queues but tries to achieve a protection of TCP by different dropping
probabilities within a single queue.

The upper graph of Figure 4.29 illustrates the suppression of congestion avoiding TCP
traffic by an aggressive protocol. It shows the reaction of a TCP flow to a couple of
periodically activated UDP senders. This happens within the Virtual Router topology
used for the Evaluation of Differentiated Services using only best effort traffic. Due
to its congestion control, TCP reduces its transmission rate. This results in an unfair
distribution of bandwidth between the TCP and the UDP flows. For a better readability,
the upper graph only shows only the aggregate of the UDP flows. Once the UDP
senders are activated, they dominate TCP completely and TCP uses the bandwidth not
occupied by the UDP streams only. The situation looks different, if a certain amount of
TCP packets is marked with low and medium dropping probability. The lower graph of
Figure 4.29 shows the same Virtual Router experiment as before but now 1.5 Mbps of
the TCP flow are marked with a low dropping and 0.5 Mbps with a medium dropping
precedence DSCP, while UDP gets high dropping probability only. In contrast to the
upper graph, here the throughput values of the single UDP flows are also displayed.

Since 2.0 Mbps of the TCP packets have low and medium dropping precedence, this
share of the TCP bandwidth is ”protected” against the aggressive flow UDP. On the
other hand the TCP flow also consists of packets with high dropping probability.
Therefore, UDP is able to suppress the share of TCP being marked with a high drop-
ping precedence and keeps on controlling this share of the TCP flow reducing the
overall TCP bandwidth to 2 Mbps.

Obviously, the capacity of a service based on Assured Forwarding crucially depends
on a proper differentiation among traffic with different dropping precedences. The
capability to protect congestion avoiding protocols like TCP against aggressive senders
by simply marking TCP packets with a lower dropping precedence is a good proof for
this ability and also for the comparability of results obtained by the Virtual Router with
those from thens network simulator. A direct comparison of these and other results
will be presented in Section 4.4.3.

So far the fair sharing of resources and the capacity of Assured Forwarding to protect
congestion avoiding flows against aggressive traffic was shown. The next experiments
will also take into account the impact of multiple dropping precedences on the achieved
throughput and investigate the bandwidth sharing within a precedence level.

Assured Forwarding defines three dropping precedences. Depending on how an in-
coming flow is marked, the different probabilities shall allow a better support for bursts
and TCP traffic. While one approach only uses one bandwidth specification with two
different bucket sizes, another approach is based on two complete token bucket filters
with two rates and sizes as introduced in Section 2.3.5. Because of the simpler design
and the better flexibility the experiments are based on the latter one allowing to specify
a bucket rate and a bucket size each for the low and medium dropping precedence.

To measure the impact of the three dropping probabilities in a pure TCP environment,
five TCP flows are sent through the Virtual Router network. Per default all packets are



90 CHAPTER 4. EMULATION OF IP NETWORKS

0

1

2

3

4

[M
bp

s]

0 50 100 150 200 250 300 350 400 450 [sec]

udp aggregate
tcp flow without AF

0

1

2

3

4

[M
bp

s]

0 50 100 150 200 250 300 350 400 450 [sec]

udp flow A
udp flow B
udp flow C

udp flow D
udp aggregate 
tcp flow AF1 1.5, 0.5

Figure 4.29:Upper: Suppression of TCP traffic by an aggregate of UDP flows within
a Virtual Router network. UDP absolutely gains control over the available resources
in a bottleneck and suppresses the TCP traffic. Lower: 2.0 Mbps of the TCP packets
are marked with low and medium dropping precedence DSCPs. Since UDP uses high
dropping precedence only, TCP at least is able to achieve a troughput of 2.0 Mbps.
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Figure 4.30:Bandwidth reached by five competing TCP flows and Assured Forwarding
in a Virtual Router Network. Flow A is supported by Assured Forwarding.

marked with the highest drop precedence. So far this set-up is similar to the earlier
measurements regarding the bandwidth sharing of Virtual Routers in Section 4.3.4.
Additionally the Differentiated Service marker is configured to mark packets of flow
A with lower dropping precedences.

bw. in bw. low bw. medium bw. out
A max 4 Mbps 1.5 Mbps 2.0 Mbps 2.29 Mbps
B max 4 Mbps 0 Mbps 0 Mbps 0.37 Mbps
C max 4 Mbps 0 Mbps 0 Mbps 0.37 Mbps
D max 4 Mbps 0 Mbps 0 Mbps 0.42 Mbps
E max 4 Mbps 0 Mbps 0 Mbps 0.26 Mbps

Table 4.7: TCP flows with assured bandwidth values. Up to
1.5 Mbps of flow A are marked with low dropping precedence
DSCPS, another 0.5 Mbps are marked with medium dropping
precedence (see also Figure 4.30).

Table 4.7 shows the amount of bandwidth values of the flows. Packets are marked
with either low or medium drop precedences. Any TCP packet of flow A exceeding
2.0 Mbps is marked with with a high dropping precedence like the packets of the
other flow. To give a better impression of the achieved bandwidth results, Figure 4.30
shows a bar graph based on the table data. The bandwidth of flow A is above the value
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Figure 4.31:Bandwidth reached by five competing TCP flows and Assured Forwarding

configured for medium dropping precedence. The reason for that behaviour is obvious:
Since all other flows are marked with a worse drop precedence, all the packets of flow
A marked with medium drop precedence or better can be forwarded. The remaining
bandwidth is distributed equally between all flows, increasing the bandwidth for flow
A additionally.

The same experiment was evaluated with two instead of one flow supported by As-
sured Forwarding. Table 4.8 shows the measured values, Figure 4.30 the according
bar graph.

bw. in bw. low bw. medium bw. out
A max 4 Mbps 1.5 Mbps 2 Mbps 2.12 Mbps
B max 4 Mbps 0.5 Mbps 1 Mbps 1.23 Mbps
C max 4 Mbps 0 Mbps 0 Mbps 0.37 Mbps
D max 4 Mbps 0 Mbps 0 Mbps 0.42 Mbps
E max 4 Mbps 0 Mbps 0 Mbps 0.26 Mbps

Table 4.8:TCP flows with assured bandwidth values. Packets of
flow A and B are marked with low and medium dropping prece-
dence (see also Figure 4.31).

The results are similar to the previous experiment. Both flows A and B can achieve
slightly more than the bandwidth marked with at least medium dropping precedence.
The remaining bandwidth that is not used by low or medium dropping precedence
packets is shared among all flows. Since only TCP is involved, the remaining band-
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bw. in bw. low bw. medium bw. out
TCP max 4 Mbps 2 Mbps 2.5 Mbps 2.14 Mbps
TCP max 4 Mbps 1 Mbps 1.5 Mbps 1.32 Mbps
TCP max 4 Mbps 0 Mbps 0 Mbps 0 Mbps
TCP max 4 Mbps 0 Mbps 0 Mbps 0 Mbps
TCP max 4 Mbps 0 Mbps 0 Mbps 0 Mbps
UDP 2 Mbps 0 Mbps 0 Mbps 0.20 Mbps
UDP 2 Mbps 0 Mbps 0 Mbps 0.19 Mbps
UDP 2 Mbps 0 Mbps 0 Mbps 0.19 Mbps

Table 4.9: TCP and UDP flows. The TCP flows A and B are
supported by Assured Forwarding, the remaining bandwidth is
shared between the UDP flows. (see also Figure 4.32).

width is shared fairly among all flows.

To conclude the evaluation of Differentiated Services the bandwidth achieved by dif-
ferent protocols shall be studied. Instead of using TCP flows only a mix of five TCP
and three UDP flows is sent through a Virtual Router network. Table 4.9 shows the
assured and measured bandwidth values.

Two of the five TCP flows were marked with low and medium dropping precedences.
All other flows used high dropping precedences. Figure 4.32 displays the achieved
bandwidth of the table above graphically.

The complete suppression of TCP flows without support by Assured Forwarding con-
firms previous experiences regarding the impact of UDP on TCP traffic. On the other
hand the TCP flows supported by Assured Forwarding are able to achieve approx-
imately their assured bandwidth values. In the previous experiment the flows with
better drop precedences were also able to benefit from the bandwidth sharing of the
remaining bandwidth that was not used by low and medium drop precedence traffic,
achieving finally more bandwidth than assured.

In contrast in the new experiment the remaining bandwidth is used completely by UDP
traffic suppressing the TCP packets with the same dropping precedence. Since TCP
has to decrease its packet rate due to packet loss when it tries to exceed the medium
dropping precedence bandwidth, the overall performance is less than the bandwidth
allowed for medium dropping precedence traffic.

In the following section the results of the evaluations based on the Virtual Router
Architecture shall be compared with results from experiments with thens network
simulator as performed in Chapter 3.

4.4.3 Comparison of Virtual Routers andns

The scenario used for the experiments with the Virtual Routers (see Figure 4.23) is
rather similar to the topologies set up for thens network simulator (see Figure 3.1
and 3.2). The only differences are the number of nodes and the link bandwidth values.
While the Virtual Router used higher link capacities (2.0 and 4.0 Mbps) thens scenario
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Figure 4.32:Bandwidth reached by five competing TCP flows and Assured Forwarding

was based on 1.0 Mbps links, but used ten instead of five end system pairs. Even if that
makes a direct comparison of measurement values difficult the qualitative behaviour
can be compared nevertheless.

Figure 4.33 shows two graphs. The left one was obtained by measurements with the
Virtual Router, the right one using thens network simulator. Both scenarios show the
sharing of bandwidth among different TCP flows and the different assured bandwidth
values they achieved. To allow a comparison even due to the different throughput
values and link capacities, the ratio between the achieved and the assured bandwidth
values was calculated:

Raf =
achieved bandwidth
assured bandwidth

This value expresses how much percent of its assured bandwidth a flow was able to
achieve. Even if the bandwidth values and the number of flows are different, the cal-
culated valueRaf of the Virtual Router experiment behaves similar to those values
calculated from measurements withns. In both graphs in Figure 4.33Raf nearly
stays constant for all flows with a trend for small flows to perform better. It can be
assumed that TCP congestion control is a main reason for this behaviour. In a case of
packet loss TCP decreases its bandwidth much more than it increases its bandwidth if
enough capacity is available. This is why TCP flows with small bandwidth values in
general perform better.

Accordingly this effect is much less significant in a scenario using UDP instead of
TCP (see Figure 4.34). TheoreticallyRaf should be perfectly constant for UDP flows,
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Figure 4.33:TCP flows supported by Assured Forwarding. The left graph shows five
flows using three dropping precedences and a VR topology, the right graph some re-
sults from usingns (see Chapter 3)

since each packet should have the same probability of being discarded. Why the mea-
surements withns do not meet that expectations is unclear. Recent evaluations of
ns [HE02] showed the weakness of the random number generator used within thens
implementation, possibly causing this variation.

To conclude the comparison ofns and Virtual Routers the protection of TCP against
aggressive UDP flows shall be evaluated. Figure 4.35 shows the effect of aggressive
UDP traffic on TCP. The Virtual Router set-up (left diagram) shows four UDP and one
TCP flow. Each UDP flow was able achieve a throughput nearly equal to its maximum
bandwidth. The TCP flow used the remaining link capacity. Thens simulator (right
diagram) used five UDP and five TCP flows. In contrast to the Virtual Router network,
the UDP flows transmit more packets than the bottleneck link is able to forward, caus-
ing heavy congestion. While the UDP flows in the Virtual Router set-up left a certain
bandwidth to the TCP flow, in thens experiment the TCP flows are suppressed com-
pletely by the aggressive UDP flows. However, the main effect is identical. Real UDP
traffic forwarded through a Virtual Router topology is as aggressive as simulated UDP
traffic usingns. Obviously an increase of the UDP packet rate would cause a complete
suppression of TCP in the Virtual Router experiment similar to that usingns.

In contrast Figure 4.36 shows measurement values assuring bandwidth to TCP flows
only. Similar to the previous graphs the right diagram shows results obtained byns
and the left one by an emulated network. The results are more or less identical. In both
experiments TCP was able to approximately achieve the assured bandwidth while UDP
suppressed traffic that was not supported by Assured Forwarding.
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Figure 4.34:UDP flows supported by Assured Forwarding. The left graph shows five
flows using VRs, the right graph results usingns (see Chapter 3)
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Figure 4.35:Suppression of TCP by UDP in a Virtual Router scenario (left) and in a
ns experiment (right).
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Figure 4.36:Protecting TCP flows against aggressive UDP traffic

4.5 Virtual Routers for Network Emulation

The Virtual Router architecture and implementation have been presented in this chap-
ter. Virtual Routers were developed to allow the simple and quick set-up of test net-
works for development purposes. Using Virtual Routers, an appropriate evaluation
network is available without any need for expensive hardware. Virtual Routers allow
to set up large emulated network topologies on a small number of computers.

Virtual Routers do not only provide a static network emulation. In contrast to the
traditional configure→ run→ evaluate scheme of network simulators, Virtual Routers
provide a much more flexible environment. Each single Virtual Router can be started,
configured and shut down independently from other network nodes. The command
line front-end accepts commands likeroute and ifconfig that are well known
from standard Unix interfaces and allows to reconfigure the router without requiring a
restart of the complete emulation or even a single Virtual Router.

The emulated network can be connected to a real network. Using the softlink Linux
kernel module providing a network interface card like device, a computer can route
traffic to that network device and so access the emulated topology. For an application
running on the computer there is no difference between the emulated network and
a real one. This allows the use of standard applications which can be used with an
emulated network evaluating new protocols or traffic conditioning components.

Because Virtual Routers can run completely in user space and provide simple and open
interfaces for new components, VRs themselves offer a very convenient environment
for the rapid implementation of prototypes, which can be evaluated directly. Usually
the extension of Virtual Routers is much faster and less annoying than programming
operating system code.

Since Virtual Routers have to comply in their behaviour common network simula-
tors and of course real networks, several experiments were performed. The impact of
topology size and distribution on packet delay was measured as well as more general
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aspects like the bandwidth sharing between several input links.

Results from the previous chapter evaluating Differentiated Services with thens net-
work simulator were compared to a Differentiated Services network set up with Virtual
Routers. In contrast tons which required to process the simulation log files to get the
results, the Virtual Router network allowed the direct use of standard measurement
programs like ttcp. Nevertheless, a comparison of the results showed a similar be-
haviour.

Virtual Routers can provide a simple and quick tool and evaluation platform for the de-
velopment of new protocols or traffic conditioning components. Especially the capa-
bility to provide Quality of Service by Differentiated Services offers interesting fields
of applications. In the following section the Virtual Router architecture will be used to
investigate concepts for the management of Quality of Service in large IP networks.



Chapter 5

Managing Quality of Service

The evaluation of Differentiated Services within the previous chapters showed the ca-
pability to provide Quality of Service but also illustrated the dependency on good net-
work provisioning. Since DiffServ does not reserve resources per flow but for traffic
aggregates and since there is no RSVP like signalling, a customer has to rely on the
Service Level Agreement negotiated with its Internet Service Provider.

While for the customer RSVP has the advantage of signalling an individual flow reser-
vation, an Internet Service Provider will probably prefer Differentiated Services be-
cause of scalability issues. This is why a combination of both services would be
advantageous, providing Integrated Services to the customer by using Differentiated
Services in the backbone [BBBG00].

Within this chapter a concept to integrate both RSVP and Differentiated Services will
be presented and evaluated.

5.1 Network Provisioning

The amount of resources required by a certain service is defined more or less precisely.
Therefore it is complicated for an ISP to exactly measure the available resources left
within his network. While a service like Expedited Forwarding provides a leased line
like service and usually has fixed source and destination addresses or at least net-
works, an Assured Forwarding like service is more likely to provide a general service
improvement, independent from a particular destination address.

Therefore EF will allow to calculate precisely the amount of required resources at
each point within the network, while Assured Forwarding requires some estimation
by the ISP. The ISP in Figure 5.1 can sell two leased line like services each with 100
Mbps between the customers (A, C) and the customers (B, D), even if his internal link
bandwidth is not capable to carry the traffic of both. Since the leased lines are using
different paths through the network, they will not interfere. Obviously this is only
possible if the committed service agreement defines exactly the source and destination
addresses.

Without this information an ISP can either sell bandwidth only up to his internal link
capacity (2 x 77.5 Mbps in our example) or rely on statistics, selling more than he can

99
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Figure 5.1:An Internet Service Provider with his customers

provide and hoping the overall traffic will not exceed his resources. Within a large
network with a huge number of Service Level Agreements the ISP will probably use
some statistics estimating the available resources for a connection.

Several proposals how to manage these resources efficiently have been made. One
solution is to control the allocated resources within a network by central instance called
bandwidth broker [SBP99], [SBB01]. A customer can negotiate with the broker, that
configures the network devices accordingly. This negotiation of a SLA may take place
using a WWW interface or some setup protocol allowing the user to automatically
setup the required resources.

Another approach is to monitor the resource consumption within the network (e.g. at
the ingress border routers) and to reconfigure the network automatically. Of course
this reconfiguration is limited to the network capacity. Also intelligent mechanisms
may be used to optimise the load sharing within the network. Packets may not only be
routed according to their destination addresses but also dependent on their service.

The simplest solution to solve that problem may be to provide more resources than are
required probably (over provisioning). If SLAs are changing infrequently only static
resource reservations within the network can work quite well.

Since RSVP is flow based, an integration of RSVP and Differentiated Services can
cause changes of SLAs and therefore requires a reconfiguration of the network. This
is why the approach presented in Section 5.3 will use a central bandwidth broker to
manage the resources within the Differentiated Services network.

5.2 Network Device Configuration

For the configuration of network devices the Simple Network Management Protocol
(SNMP) is usually used. This works quite well as long as the network is small or
the frequency of reconfigurations is low. In larger networks with frequently changing
configurations a central instance like a broker faces scalability problems.

SNMP [CFSD90] provides a systematic method for the monitoring and configuration
of a network. The development on SNMP started under the basic condition to create
a simple protocol. Unfortunately, the final protocol does not meet this requirement.
SNMP defines mechanisms to control and monitor specific variables (objects) within
a network device. Also a network device can notify management stations of certain
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events as link failure or hardware faults. The management station can signal the prob-
lem to the system administrator or also automatically set up backup mechanisms.

To monitor and configure network devices SNMP uses a Management Information
Base (MIB) (e.g. [BCS01]) containing the variables and events, which can be con-
trolled and configured. These MIBs are part of the network devices firmware and do
not allow the creation of complete new services.

Another drawback of SNMP is the architecture based on central management stations,
collecting data and reconfiguring the controlled devices. Such a mechanism is great
for small networks or a low demand of reconfigurations. To provide dynamica Quality
of Service to a customer network reconfiguration will be necessary more frequently
increasing the management overhead.

Other frequent mechanisms to configure and access network devices are their com-
mand line interfaces. Modern devices even provide complete HTTP servers, allowing
to change settings using a standard web browser. Of course command line interfaces
and HTTP servers can be used not only by humans, but also by programs. Instead of
using SNMP an automatic login into the network device is often the simpler solution.

Especially to communicate network traffic policy information to network devices the
Common Open Policy Service (COPS) was developed. COPS is able to provide ad-
mission control and in combination with RSVP to ensure adequate bandwidth, jitter
and delay bounds for time-sensitive traffic such as voice transmission [BCD+99].

5.3 Interoperation of Integrated and Differentiated
Services

5.3.1 Basic Concepts

Two alternatives for inter-operation between Integrated Services and Differentiated
Services were mentioned in [BYBZ98].

The first option assumes to run Integrated and Differentiated Services independently
of each other. Some flows such as real-time traffic might get an Integrated Service
reservation while others are supported by Differentiated Services mechanisms. This
operation is simple but limits the use of RSVP [BZB+97] to a small number of flows.
In this mode, each node within the Differentiated Service network may also be a RSVP
capable node.

The second approach assumes a model in which peripheral stub networks are RSVP
and Integrated Service aware. These are interconnected by Differentiated Services
networks that appear as a single network link to the RSVP nodes. Hosts attached to
the peripheral Integrated Service networks signal to each other per-flow resource re-
quests across the Differentiated Services networks. Standard RSVP processing is ap-
plied within the Integrated Service peripheral networks. RSVP signalling messages
are carried transparently through the Differentiated Services networks. Devices at
the boundaries between the Integrated Service networks and the Differentiated Ser-
vices networks process the RSVP messages and provide admission control based on
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the availability of appropriate resources within the Differentiated Services network
[BYBZ98].

This model is based on the availability of services within the Differentiated Services
network. Multiple Integrated Service micro-flows which exist in peripheral networks
are aggregated into a behaviour aggregate at the boundary of the Differentiated Service
network. When a RSVP request for an Integrated Service arrives at the boundary of a
Differentiated Services network, admission control is applied based on the amount of
resources requested in the Integrated Service Flow Spec and the availability of Differ-
entiated Service at the corresponding service level. If admission control succeeds, the
originating host or the aggregating router marks packets of the signalled micro-flow
according to the appropriate Differentiated Services level. RSVP/Integrated Service
over DiffServ is especially suitable for providing quantitative end-to-end services.

However, for any approach integrating RSVP and Differentiated Services should meet
some central requirements;

• In the access networks a parallel operation of Integrated Service and Differenti-
ated Services should be possible. It should be left to an application which type
of resource reservation is used. Especially the Assured Forwarding service with
its different drop probabilities may be profitable for applications dealing with
data of different importance, like multimedia services. Currently such a service
can only be provided by Differentiated Services.

• The approach of mapping RSVP to a more scalable kind of resource reservation,
should not be limited to Differentiated Services, because the method of resource
reservation in the backbone may vary. In addition to the favoured Differentiated
Services a mapping (and aggregation) of different RSVP flows to ATM PVCs
may be chosen as well as a mapping to different IP tunnels.

• The used architecture should not require a modification, neither of RSVP capa-
ble applications nor of the end systems’ RSVP daemons.

• The technology used for resource reservation in the backbone should conform
to the standard framework for Differentiated Services [BBC+98b].

5.3.2 RSVP Signalling and its Extensions

Figure 5.2 shows a standard scenario with several ISP clouds and two access networks.
In the ingress router between an Internet Service Provider and an access network the
RSVP flows have to be mapped to Differentiated Services classes.

This mapping task can be split into two parts. The first one is the RSVP signalling,
which is of course used for the resource reservation in the access networks and also
for triggering resource reservations within the ISPs.

The second one is the technique of aggregating flows and reserving bandwidth inside
the ISP’s networks. We propose a central instance in the ISP called bandwidth broker,
which can be queried whether there is bandwidth available within the ISP network
and which supervises the ISP’s resource management. How an ISP finally allocates
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Figure 5.2:Internet Service Provider (ISP) with Access Networks

resources is left to the ISP. We propose Differentiated Services for the resource man-
agement in the ISP’s backbone, another choice might be the mapping and aggregation
of RSVP reservations within ATM VCs.

Since Differentiated Services provides scalable support for Quality of Service the ulti-
mate goal of RSVP/Differentiated Services integration is to avoid any RSVP resource
reservation between the ISP’s border routers.

The information about administrative permissions and Service Level Agreements are
located in the Bandwidth Brokers database. For a mapping the bandwidth broker has
to be queried, whether the reservation can be set up. This requires interaction between
the mapping component and the broker.

In the following paragraphs two different modifications to RSVP signalling to meet
the requirements of the approach using a central bandwidth broker are presented and
discussed. The methods react directly on single reservation requests using either the
pathor theresvmessage.

Bandwidth allocation using the RSVPpath-message

As mentioned in the beginning of Section 2.2 the RSVP resource setup process in-
cludes the exchange of several messages through the network. Thepath-message is
the first step of a RSVP reservation (see also Figure 2.1). The RSVPpath-message
contains information about the flow requirements. So it can be used to query the bro-
ker. This one then decides whether the resources can be allocated and will configure
the backbone accordingly. The aggregation of flows can be done by mapping the dif-
ferent RSVP flows to IP tunnels with a certain QoS or ideally directly to Differentiated
Services classes. Figure 5.3 shows the required signalling.

1. The ISPs ingress router receives thepathmessage and extracts information about
the requested resources, the source and destination address.

2. The ingress router queries the bandwidth broker, whether the request can be met.

3. The bandwidth broker checks its database about the available resources and in-
forms the border router.
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Figure 5.3:RDG Signalling using thepath-message

4. If successful the path message is forwarded, if not aresv-errmessage is replied.

5. The standard RSVPresv-negotiation takes place.

One of the big advantages of this concept is the independent location of the component
contacting the broker. It may be located in the ISP’s ingress or in the egress router.
Since RSVP favours a ’the receiver pays’ scheme, a location on the egress border
router may be preferred.

Unfortunately, the information about the requested resources included in thepath-
message are only preliminary. A user might modify this reservation or discard it
completely. Another problem is the receiver pays scheme of RSVP. At the time the
path-message has to be processed by the ingress or egress router, the receiver has not
yet agreed to take over the costs for the reservation.

Bandwidth allocation Using the RSVPresv-message

The arrival of theresv-message at the ingress border router (see Figure 5.4) can also
be used to trigger resource reservations in the ISP’s network,

1. The ISPs ingress router receives thepath-message, processes it and forwards it
to the next router.

2. After thepath-message has reached the receiver, aresv-message is generated
and transported hop by hop to the sender of thepath-message. It is assumed,
that there are no RSVP capable routers in the ISP’s backbone or the processing
of RSVP signals is omitted by setting up tunnels between the border routers.

3. Theresv-message reaches the ingress border router. This router is now respon-
sible for setting up resources between the two border routers. So it queries the
bandwidth broker, whether the flow conforms to the SLA or not.
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Figure 5.4:Usage of theresv-message for bandwidth broker signalling

4. The broker decides upon the reservation, replies the result to the ingress border
router and sets up appropriate resources within the ISP’s network.

5. If the reservation is accepted, theresv-message is forwarded, else anresv-err-
message is generated and replied to the sender of theresv-message.

In contrast to thepath-message as used in Section 5.3.2 to trigger the ISP’s resource
reservation mechanisms, theresv-message contains reliable information about the re-
quested resources and is sent by the receiver, who has to take over the costs.

Even if thepath-message is sent earlier during RSVP negotiation, theresv-message
offers a much more reliable and facile way to trigger resource allocation in the back-
bone. The overhead to exchangepath-messages, even if the broker finally rejects the
resource reservation, does not carry weight. So for the implementationresv-messages
were used to trigger reservations.

5.3.3 Prototype Implementation

For the prototype implementation commercial routers have been used. To provide QoS
inside the ISP’s network tunnels with a certain QoS shall be setup between the border
routers. Since the RSVP daemon of Differentiated Services routers lacks functionali-
ties to provide the required interaction with the bandwidth broker, each Differentiated
Services router was supported by a Linux router running a modified RSVP daemon to
manage the signalling. Figure 5.5 shows the equipment and the topology of the test
and demonstration network.

The two Differentiated Services routers together with the Linux ingress routers re-
alise the ISP’s border routers. For QoS provisioning within the ISPs network the
routers use VPN tunnels based on the concept of Differentiated Services as described
in [BBC+98b]. The two Linux machines outside the Differentiated Service routers
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have to keep track of RSVP signalling, the reservation of local resources and the inter-
action with the bandwidth broker, which configures/monitors the Differentiated Ser-
vice routers. The configuration daemons (CD) between the broker and Differentiated
Service routers are used as some kind of adaptation layer. So the broker can use a
”platform independent router configuration language” to configure the Differentiated
Service routers. This shall allow the easy exchange of the router platform (see also
[GBK99], [BBB+99]).

Because of simplicity the implemented version of the RSVP Differentiated Service
Gateway (RDG) directly connects to the ISP’s bandwidth broker. In reality the RDG
may connect the broker of his local network, which then will negotiate with the ISP’s
bandwidth broker if necessary.

The RSVP Daemon’s Extension

As mentioned in Section 5.3.2 the concept based on the use ofresv-messages to trigger
the ISP’s resource reservations was chosen. From the Linux routers point of view the
whole ISP network can be treated as a huge extension of its local queueing system. The
RSVP daemon provided by the Information Science Institute (ISI) and ported to Linux
by Werner Almersberger [Alm] was used as a basis for this implementation. Since
it was designed for a high portability to different router platforms, there is a suitable
interface between the queueing system (under Linux based on the programs/libs tc and
ip) and the RSVP-daemon itself.

We used this interface to add the required functionality for the interaction with the
bandwidth broker. Every time local resources are reserved, released or modified also
some routines are called, querying the Bandwidth Broker as shown in Figure 5.3.3.
By this a reservation is only successful, if the local traffic control system and the
broker agreed. Another advantage is the full transparency of the extension, because no
RSVP user outside the ISP will have to change anything or even consider a RSVP to
Differentiated Service mapping occurred.

Interaction between RDG and Bandwidth Broker
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Boyle, Black e.a [BCD+99] propose to forward the RSVP objects are directly to a
common open policy servive (COPS) without any further processing. The RSVP Dif-
ferentiated Services gateway presented here extracts the required information out of
the RSVP objects and uses a couple of human readable commands to communicate
with the broker. This simplifies debugging during development and performance eval-
uation. It also enables a simple interaction between different platforms. The actual
used set of commands contains terms for user authentication, setup, deletion and mod-
ification of reservations.

During resource setup the extended RSVP daemon uses these commands to negotiate
with the bandwidth broker as shown in step 4 in Figure 5.4).

Commands used for the RDG/Bandwidth Broker communication
hereis used by the RDG to log in the broker and to ex-

change fundamental information like addresses and
authorisation keys

newflow tells the broker to set up the reservation for a new
flow. The flow is specified by source and destina-
tion addresses or networks. The broker will return
whether the reservation was successful or not.

delflow tears down a previously set up reservation
modflow modifies the bandwidth of an existing flow

Another advantage of such a simple protocol is the easy conversion from RDG requests
to router configuration commands the Bandwidth Broker has to perform.

It should be mentioned that the RDG does no further internal processing, except the
interaction with the broker. It simply waits for the answer of the broker and admits
or rejects the flow accordingly. So only the broker decides how the request has to be
handled. This includes:
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Policy Control: Is the source or destination permitted to perform the request? The
RDG may of course store some information about the SLA’s of the according
user to prevent broker interaction for each single reservation and do some over
provisioning in allocating resources to gain more local autonomy.

Accounting: How much has the user to pay for the reservation ?

Reservation Method: In most cases the reserved flows are aggregated to large tunnels
between the border routers, but it is also possible to map a reservation to an own
tunnel.

Resizing of tunnels: The RDG might have different strategies in allocating resources
at the ISP. So the RDG might not query the bandwidth broker for every single
reservation, but allocate more bandwidth than actually needed. So he can meet
reservation requests without negotiating with the broker.

Bandwidth Reservation in the Backbone

The mechanisms used to communicate between the RDG and the broker are com-
pletely independent from the concepts used for the final bandwidth reservation in the
backbone. In the prototype IP tunnels with a certain QoS are established between
the two routers. These tunnels are set up once, but reconfigured due to the actual re-
quirements. The resource reservation for the tunnels is accomplished by Differentiated
Services.

5.3.4 Evaluation

The graph in Figure 5.7 shows the achieved bandwidth of an UDP flow, transmitted
over a RDG through a Differentiated Service domain as shown in Figure 5.5. The
resource reservation was triggered by RSVP requests with several modifications of the
reservation. The flow got the reserved bandwidth despite a parallel UDP flow causing
heavy congestion. The two pictures in Figure 5.8 show the influence of bandwidth
reservation on a motion jpeg video transmission. The left picture was transmitted
with, the right one without bandwidth reservation. The lower picture quality, resulting
from missing UDP packets is obvious.

5.4 Limitations of Classical Service Management

Integrated Services allow per micro-flow resource allocation, but do not scale to the
core Internet. Resource reservation in the core is more likely to be deployed using the
Differentiated Services architecture. However, the requirements of user applications
are better met by Integrated Services. To address this conflict mechanisms can be
installed within the network mapping RSVP to Differentiated Services reservations.
This requires an extended RSVP daemon (the RSVP-Differentiated Service gateway -
RDG) monitoring the RSVP signals and interacting with a central bandwidth broker
to set up the requires resources. The measurements showed such a mechanism is able
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to map and aggregate incoming RSVP to scalable Differentiated Services. However,
such an approach raises some problems:

• A central bandwidth broker does not scale well. Within larger networks a central
management might become impossible. A distribution of brokers is complex,
because network reconfigurations might interfere.

• Even if the frequency of tunnel reconfigurations may be decreased by over provi-
sioning, at least periodic adaptions of the tunnels are necessary. Since even Dif-
ferentiated Services supported tunnels might require adaptions of a core router’s
configuration, the overhead would be tremendous. A broker would have to cal-
culate the path a tunnel takes through the network and configure the involved
routers.

• To determine the current resource consumption at a certain router on a path
through the network, the traffic would have to be measured. Current mech-
anisms are heavy weighted and increase the overhead further by transporting
measurement data over the network.

• It’s not trivial to distribute a central instance like a bandwidth broker, since con-
current configuration requests have to be coordinated to prohibit interferences
between multiple brokers.

• To cope with the scalability behaviour a more autonomous behaviour would be
convenient. Several activities could be solved locally and a central instance only
queried, if absolutely necessary.

To configure large networks a mechanism is required, allowing to configure devices
along a specific path, without negotiating with a central instance. Such a mechanism
should be able to support heterogeneous platforms and allow to set up functionalities
required to map reservation types or to set up tunnels automatically with no knowledge
of the entire network.



Chapter 6

Active Quality of Service
Management

The limitations of current management mechanisms to provide an adaptable system to
configure and control services within an IP network enforce the development of new
strategies of network management.

The supervision of a network from a central point is not feasible for networks of a
large scale. In a network with several thousands nodes a higher degree of autonomous
behaviour from the network itself would be desirable.

Especially to process tasks as local as possible without or with a minimum of control
from a central instance only would simplify the supervision of networks significantly.
Of course not all tasks can be performed on a local level, since a high degree of control
may be necessary or a network wide synchronisation is inevitable.

On the other hand in large networks necessary adaptations may only affect a rather
small part of the network, reconfigurations for different parts can therefore be done
in parallel. A central instance would either have to perform configuration requests
sequentially or to determine which adaptations might interfere to allow a parallel ex-
ecution. In addition to the high computational overhead, a central topology database
would be necessary, which is not feasible for large networks.

Furthermore a less central management of resources, mechanisms are needed to add
new services dynamically to the network. For competing Internet Service Providers
the time needed to provide a new service to their customers is essential. This is why
an architecture allowing the dynamic and quick establishment of new Internet services
is important.

To be more concrete the following points show the tasks to be covered by such a
system. Of course this is just a short list focused on Quality of Service issues. A gen-
eral approach for Quality of Service Management will also support other management
functionalities.

Information collection During SLA negotiation and admission control it is necessary
to get concrete information about the available resources at certain nodes within
a network. Since the data usually depends on the current load and of course on

111
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the network topology, a central database can only be used within small networks.
A central approach would also require continuous monitoring causing a large
overhead due to the transmission of measurement data.

The Service Level Agreement for a leased line like service provided by Expe-
dited Forwarding contains usually the source and destination addresses of the
connection. Since only a small part of an Internet Service Provider’s network
has to be checked, a mechanism collecting information along a specific path
through an ISPs network would be profitable.

Network Configuration As described in the previous chapter the setup of tunnels
can be a convenient way for the aggregation of traffic simplifying the resource
provisioning in the network’s core. The setup of tunnels and their occasional
reconfiguration also takes place only along a certain path through the network.
Therefore either the tunnel start and end points interact with a bandwidth/tunnel
broker configuring the network devices or become active by themselves by sig-
nalling directly the necessary reconfigurations along the tunnel path. While the
use of a central broker requires a database with the network topology and a lot
of top down communication between broker and the network, signalling along
the tunnel path can provide a much more light weight solution.

Even if the Resource Reservation Setup Protocol is also based on device configurations
along a specific network path, there are several important differences:

• RSVP stores flow state information within each router of the core network. For
millions of flows RSVP will not work properly. Using Differentiated Services no
flow information within the intermediate routers has to be stored. The signalling
just takes place only occasionally to adjust settings within the core routers, in-
dependently from the number of flows.

• RSVP is rather inflexible. For the creation of new services or a smart mapping
between different reservation types, a more flexible mechanism should be cho-
sen, that allows to add new functionalities without changing network devices.
A flexible and extensible approach could integrate signalling, tunnel set up pro-
cesses and also provide the algorithms used in the involved systems.

The most obvious way to provide such flexible systems is the exchange of program
code between the network’s nodes. The program code is executed by a network device,
reconfiguring the router, collecting information or sending data and program code to
other devices. Networks providing such mechanisms are called ”Active Networks”. In
the following chapter an overview over the different types of Active Networks shall
be given. Such an approach is even more powerful since the differences between
classical network management and signalling get smaller. Active Networks can not
only be used to provide a high degree of control over the network but can easily be
used to implement lightweight signalling mechanisms, needed for the control of large
networks.
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6.1 Active Networking

From the Internet end systems point of view the actual design of the Internet forms
some kind of black box. End systems simply transmit and receive passive data pack-
ets. Network devices between the end systems check the destination addresses of the
packets and forward the packets according to an internal routing table. There is no
control whether a packet gets lost or is delayed.

Of course there are protocols like OSPF or BGP4 to synchronise the routing tables
between the Internet routers, but there are either very limited mechanisms to control
packet forwarding within the core network or none at all. The treatment of packets is
rather static and there are no simple mechanisms to add new types of services. There-
fore even due to the complicated protocols running on core routers, the treatment of
single packets is rather ”dumb”.

Following this concept most of the ”intelligence” is located in the end systems of the
network. If a reliable connection has to be set up both end systems have to care about
duplicated or lost packets, retransmission timeouts, connection setup or tear down.

This has a lot of advantages regarding scalability as there are a lot of end systems and
a very limited number of core routers. Unfortunately, the lack of flexibility of core
routers complicates the creation and establishment of additional services.

In contrast to todays Internet, Active Networks do not just forward packets, but may
apply very specific packet treatments. There are several approaches for active net-
working with several degrees of ”activity”.

The capsule approach as presented by Tennenhouse [Ten97] uses packets consisting of
a short piece of code and of additional payload. An active router receives the capsule
and executes the code. This code may simply be used to route the capsule to the
destination or to configure the active router on the path. Also new functionalities can
be added to the device.

On the other hand approaches like the ”programmable switch” focus mainly on mech-
anisms for better signalling and device configuration [Ale97].

The execution of code on network devices causes several problems. Especially the
capsule approach raises two main problems, that are described in the following sec-
tions.

6.1.1 Performance

In the current Internet the core network devices are optimised to perform a couple of
very simple functionalities at a very high speed. Therefore a core router allows to
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handle multiple interfaces and speeds of several millions packets per second.

Even if there are approaches to build high speed active networking switches as de-
scribed by [DPC+99], such a device has to perform much more generic calculations
than a common switch, increasing the complexity and therefore the price for such a
device.

As an alternative, a mixture of active and passive packets can be transported. The
passive packets are forwarded by the switch using the highly optimised mechanisms,
whereas active packets are processed separately. The processing of active packets may
even be done outside the switch itself by an additional device. This approach has two
advantages:

• Active Networks offer unique methods of network management. This can make
current signalling and management traffic superfluous, because such tasks can
be handled smarter and simpler by Active Networking methods.

• If only a small part of the data to be forwarded by an Internet router is active,
the overhead of processing these active packets will be acceptable.

This hybrid approach has also the advantage, that active packet processing does not
need to be performed within the forwarding device, but can be accomplished by an
additional component. Also this active components may only be located at important
points of the network.

6.1.2 Security

Another, more sensible problem is the security of a node and of the whole network.

There is a wide range of Active Networking concepts. Some allow end users to inject
mobile code, while others apply AN for management tasks only. Dependent on the
degree of ”activity”, the security problems vary. Figure 6.1 illustrates different types of
safe programs and therefore emphasises of security problems arising within an Active
Network.

node security: A node has to control the amount of memory and CPU load a active
packet requires for its execution. Additionally, both authorisation and authen-
tification of a capsule have to be checked.
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network security: Misbehaving code may damage the network even if this code be-
haves correct on the node itself. Therefore a distributed permission and resource
control mechanism has to be installed on the network level.

capsule security: A capsule has to be save against manipulations by the node itself.
Capsules may contain encryption keys or other confidential information. In con-
trast to normal packets, which might be encrypted to prevent eavesdropping,
active packets need to be executed making encryption complicated.

Of course the impact of these problems depends on the type of AN. In a ”pure” active
network with end systems sending active packets through the network, the security
issues are much more crucial than in a scenario where AN technology is just applied
for network management and therefore only accessible for network administrators or
very privileged users.

However, several approaches to cope with the security issues exist. Brunner suggests
in [BS99] to create Virtual Active Networks on top of a network. As in virtual private
networks (VPNs), a customer can ”rent” such a virtual active network. Within its
active network, the customer (e.g. a company) can exploit AN technology but has no
access to the other virtual networks.

A similar but even more general approach is the X-Bone [Tou00]. The X-Bone is
a software system that configures overlay networks also known as VPNs. It uses a
web-based user interface to discover, configure and deploy an overlay network. The X-
Bone installs routes, configures interfaces, updates DNS entries and installs encryption
keys. Similar to the approach of Virtual Active Networks, the X-Bone allows to set up
a virtual network topology that can be used as a basis for an Active Network.

A secure active network environment (SANE) is proposed in [AAKS98], focusing
on a trust architecture covering even more fundamental security issues like a secure
bootstrap mode. It checks also a node’s runtime system to provide a trustworthy active
node.

An application of Active Networking which is interesting yet today is the application
of AN methods for Network Management and especially for Quality of Service issues.
There are several good arguments for the use of active networks in that area.

Performance: The overhead required for active networking is compensated by sav-
ing network resources currently used for management. Also, the ratio ”ac-
tive/passive” traffic is very small.

Scalability: Active Networks can provide scalable solutions, for which traditional In-
ternet techniques can not be used.

Security: Since active code is used only for management and is therefore restricted to
authorised people, simple security mechanisms can be applied to restrict access
to vulnerable functionalities.

Flexibility: The active components can be used for adding new functionalities to the
network. Therefore the network can evolve during operation.
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ANEP Header

Version Flags Type id
ANEP Header Length ANEP Packet Length
Options
Payload

ANEP Header Options

FLG Option Type Option Length
Option Payload

Table 6.1:Header and option format of the Active Networking Encap-
sulation Protocol (ANEP)

Heterogeneity: Since active packets can adapt to different platforms, different devices
can be integrated and managed by the same network.

6.1.3 Active Packet Formats

The choice of an appropriate packet format is very important for the capabilities or to
extend the system later. The following paragraphs will present the Active Networking
Encapsulation Protocol (ANEP) [Ale], which was designed to support different Active
Networking Systems.

Table 6.1 shows the header format used by the Active Networking Encapsulation Pro-
tocol.

The ANEP header usually is encapsulated in an IP header during transport. A router
may receive ANEP packets directly sent to it or packets forwarded with the router
alert option. The format of the options is obvious. The FLG field in the options header
signals that the option is an implementation specific option an shall be ignored by other
systems.

Even if the ANEP protocol is rather flexible it contains several header fields, that re-
quire a special parsing. Since the header was designed to allow a simple processing by
native code written in C or C++, ANEP is not very convenient for the use within high
level active networking languages. Therefore, the active network system presented
later in this chapter will use a different header format, providing more flexibility, but
it can be extended to support also ANEP.

6.1.4 Interpreted and Native Code

As already mentioned in the introduction to this chapter, the system allows the trans-
port, installation and execution of native code.

The dynamic installation of code is based on loading pre-compiled C++ classes to the
runtime system, similar to the proposal of Hjálmtýsson [HG98]. In addition to speed
and performance, the use of native code can offer platform dependent programs that
are required to add specific frequently used mechanisms to network devices.
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The fundamental idea is not only the configuration of routers on specific routes through
a network or the configuration of certain hosts. Because of performance reasons it is
important to offer a possibility to enhance network devices with functionalities that
can only be provided by native code.

One or more binary objects can be encapsulated within a packet, which may be trans-
ported through the network. A short piece of code checks, which type of program is
required and installs the appropriate module. It is of course also possible to provide
a platform independent default version of such a module. This way it is possible to
provide a solution for any active device within a network. Either a proper native piece
of code is available or the slow platform independent version is used.

6.2 The Python Based Active Router

In this chapter a lightweight but powerful Active Networking platform shall be pre-
sented. The architecture is based on the object oriented language Python, offering
flexible and powerful mechanisms for a good integration into a device’s operating sys-
tem.

6.2.1 The Python Programming Language

The properties of a language suitable for active networking are still under discussion.
A well known and frequently used language for agent systems is Sun Microsystems
Java. Several Active Networking platforms like the Active Network Transport System
(ANTS) [WGT98] have been written in Java. There are several reasons for Java to be
used as a platform dealing with mobile code.

Security: In contrast to many other languages, Java provides internal security mech-
anisms. Programs are prohibited to damage the local machine. The access to
the local computer programs can be restricted. Especially for a system that has
to execute foreign code, access restriction is absolutely fundamental. Java pro-
vides such mechanisms allowing to block the access to certain resources like file
systems.

Platform independence: Java is based on a virtual machine executing the programs
and controlling the access to system resources. This allows any Java program to
be executable without any re-compilation on any other Java capable platform.
Unfortunately this portability suffers from version updates and not perfectly
compatible virtual machines causing some Java programs to run only on cer-
tain platforms with special versions of Java virtual machines. Fortunately this
lack of compatibility usually does not affect the Java core mechanisms providing
good portability for standard programs.

Network Support: The need of a language with direct support of computer networks
was one of the reasons leading to the development of Java. All standard Internet
protocols are supported by Java.
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Unfortunately Java has also a couple of drawbacks, which cause problems especially
for tasks concerning the management of network devices.

Platform Interaction: Because of the system independence as a central design rule,
a direct interaction with the operating system is complicated. Even if the Java
Native Interface (JNI) allows to combine native code with Java programs, the
interaction is not as seamless as desired and does not allow to change the be-
haviour of Java itself. For an active networking platform intended to configure
network devices a simple and flexible interaction with the router hardware itself
is required.

Network Support: Since the domain of Java is more the application area, Java was
not especially designed to handle low level data like raw IP packets. Java sup-
ports higher level protocols very well, but is limited if a procession of packets
on IP level is required.

Resource Consumption:Another drawback of Java is the excessive resource con-
sumption. The comparison in [Lef00] especially criticises the memory con-
sumption of Java requiring lots of memory even for small programs. Such a
behaviour is not acceptable, especially if small pieces of code within Internet
devices with probably rather scarce resources have to be executed.

C++ like Syntax: Even if user friendly interfaces might exist, network management
will require humans to at least adapt short programs. Java uses a C++ style
syntax, which is great for writing large applications but is not suited to create
short configuration scripts.

Fortunately another programming language called Python is available. Python com-
bines several aspects of Java with much more flexibility and more possibilities for
the developer to adapt the language to her specific needs. In the following, a short
overview over the capabilities of Python will be given (see also [WRA96]).

Interpreted: Python [pyt] is a dynamically interpreted language that supports byte
compilation. Python code is platform independent, allowing to exchange appli-
cations or code between different platforms.

Object Orientation: Python is an object oriented language. It supports class struc-
tures with multiple inheritance and late bindings. Python also offers an applica-
tion mechanism to modify Python’s own fundamental mechanisms. Therefore
an application might define an alternate object model or add and replace new
implementations for each fundamental component.

Dynamic: Dynamic typing and dynamic name resolution allows to reduce program
size, simplifies debugging and makes code reusable.

Orthogonal structure: In contrast to other languages Python just uses a very small
set of powerful constructs. These constructs allow programmers to understand
foreign code more easily. Of course this also allows to learn the Python language
very quickly.



6.2. THE PYTHON BASED ACTIVE ROUTER 119

Extensibility: One of the biggest advantages of Python is its extensibility. Python
allows to integrate external libraries or data types by modules. These modules
may either be written in Python or in an other programming language like C or
C++. There are hundreds of modules available providing special functionalities
like WWW or database access, mathematical calculations, etc.

Even if just one module written in Python itself preserves platform indepen-
dence most of the modules written in other languages can be made available by
a simple compilation on the new platform.

On the other hand these platform specific modules also have two significant
advantages:

Platform Access: Other languages using virtual machines prohibit access to
the local computer or at least make it very complicated. Python allows
to be extended by native modules allowing any access to the computer a
language like C or C++ can give.

Speed: For time consuming calculations, modules providing native code can
increase the performance dramatically. Python also offers the flexibility to
use native modules if available and use pure Python modules as a fall back.

Embeddable: Python offers an application programming interface which allows the
programmer to embed Python easily in own applications and use it as a general
purpose scripting language or control tool.

Security First of all, Python code is executed by a Virtual machine, limiting the dam-
age a Python program can do to the machine. Additionally, Python support
restricted execution environments, allowing to define a ”cell” and execute for-
eign code within this environment. Interaction with the local computer has to
follow rules the designer of the environment has defined in advance.

Compatibility: Even if the development of Python is ongoing, the changes of the
language’s core are always compatible to programs written for older versions of
Python. Also, most of the updates do not primarily affect the core.

Portability: Python itself is written in C and is easily portable to all platforms using
Posix conventions. Currently, Python is available for all major operating systems
including systems with very limited resources like palm tops.

Freely available: Regarding the copyright, Aaron Watters writes in his book ”Internet
Programming with Python” [WRA96]:

The Python copyright essentially protects the authors from legal jeopardy and
prevents malicious users from attempting to hijack the copyright. Aside from
that, Python programmers and users may use Python in source or binary form
just about anyway they please. In particular, programmers may create products
that use Python and release the product in binary-only form with all Python
modules in byte-compiled-only form, and they may sell or give away the result
in any manner they think will make them the wealthiest, or the most famous.
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Of course there are a lot of similarities between Python and other platform indepen-
dent languages like Java, TCL, Perl or shell scripts and there is probably no particular
reason to use Python. However, there are some arguments favouring Python:

• Java is object oriented only, while TCL cannot provide any object orientation
without extensions. Python allows both. While for smaller programs script like
programs may be used object oriented structures are also provided.

• Python forces the programmer to use a special source code layout, as whitespace
characters and text indents are used to mark program blocks and data structures
as the short ”Hello World” program demonstrates.

def HelloWorld():
print ’Hello World’

HelloWorld()

The short program defines and calls a function printing the ’Hello World’ string.
At a first glance the use of whitespace characters might appear strange to pro-
grammers used to other languages. On the other hand the format expected by
Python fits mostly the style experienced programmers will use anyway and in-
creases the readability of the source code significantly. Therefore the source
code of other programmers can usually be understood and reused quite easily.

• The embedding and extension of Python is simpler, more flexible and never-
theless rather straightforward than the Java Native Interface or the mechanisms
provided by TCL. The overhead to use C, C++, libraries or program code with
Python is minimal. This is also the reason, why there are a large number of C
or C++ bindings already available for Python, reaching from image manipula-
tion and mathematical libraries to graphical front-ends. These bindings allow to
perform even time consuming data processing with Python.

• Besides the strange source code format, the Python uses a more scripting lan-
guage like style but nevertheless provides all functionalities of a modern lan-
guage.

The architecture proposed here uses the active networking concept to distribute
small programs performing mainly controlling and monitoring tasks. Light
weight short scripts as possible with Python are perfectly suited for that tasks,
while Java with its rather C++ like syntax is too over sized.

• The final, perhaps most striking reason to choose Python is its comparable low
resource consumption. On a computer running the Solaris operating system even
the start up of the Java virtual machine consumes more than 32 Megabyte of
memory, while Python only requires five Megabytes of memory. The availability
of Python for palm top devices with only 2 Megabytes of total memory shows
the capacity to minimise Python’s resource consumption.
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A detailed performance comparison between Python and Java is presented in
[Lef00]. Since Python is an interpreted language like Java, both languages can
provide a very limited performance only. The evaluations of [Lef00] revealed
that unfortunately the IO performance is one of Java’s weakest points. Of course
there are other points like the general speed of code execution or object seriali-
sation, where Java slightly outperforms Python.

Since especially fast input and output is important for network devices, the
Python language seems to be the better choice, especially if high level functions
frequently used by active packets are provided by native code.

During the design of the system, the central goal was neither the development of a
multi purpose architecture allowing any participant in a network to distribute code
and implement special services, nor the implementation of a high level Mobile Agent
platform. The focus of the work described here is the management of networks and
especially the support of quality of service. This specialisation of course affects the
design of the system.

6.2.2 Outline of the Active Network System

Before describing the system in more detail, a short overview of the capabilities and
limitations of the proposed and implemented architecture shall be given.

Execution of Mobile Code: This is a self evident property of any Active Networking
system. The developed system allows to transport and execute platform independent
byte code mixed with native code proprietary to a certain platform. The platform
dependency of native code can be handled by the provision of multiple pieces of code,
each for a specific platform. The different code segments can be included within the
same active packet, providing efficient code for different platforms. Such a packet may
also include a platform independent Python version of the same algorithm, which can
be used as default.

Authentication of Code by Encryption Mechanisms: To block access for not au-
thorised users, the system allows the use of encryption mechanisms. This encryption
is provided by a special module allowing the flexible use of high speed built in func-
tions. The transported code itself has influence on which parts of the code has to be
encoded or might be seen by third persons on the network. The system provides both
encryption and authentification by digital signatures.

Access to System Resources for Network Management:To accomplish its tasks,
executed code requires access to the network device internals. Even if the program
code is portable between platforms, the design of network equipment might differ sig-
nificantly. Because of the evolving capabilities of network devices, a unified interface
seems to be quite impossible. Instead of providing such a heavy weight programming
interface, specialised libraries can be installed by mobile code. For example a library
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for the simple set up and control of Differentiated Services flows can be installed on
heterogeneous platforms, providing a unique interface to other programs.

Low Level IO Functionality for Portability and Performance: Since the setup
of connections during the forwarding of a packet is time consuming, the transport of
code is done connectionless either using raw IP or a protocol like UDP. The risk of
packet loss can be minimised by the use of a specialised Differentiated Services traffic
class with high priority. The maximum allowed packet size of 64 Kbyte is absolutely
sufficient because Python code is reasonably small. Larger programs can be split up
into several parts or previously installed libraries can be used.

Piggy backed Transport of Data: The active packets sent over the network can be
used to transport any kind of data by appending the data to the active part of the packet.
This allows the simple transport of measurement data or program code. This powerful
and flexible mechanism may be used for various applications:

• Native code can easily be installed to certain hosts. The packet may contain
multiple versions for different platforms.

• The executable head of the packet can contain some routing mechanism to force
the packet to a special path through the network. That allows to route special
data along a certain path without changing the routing tables on each router.

• Extensions for the active platform can be transported and installed.

Since the task of the system is not the secure execution of code provided by end users,
but to provide mechanisms for management related issues, the system has of course
some limitations.

• The system provides detailed access control to system resources. Authorised
code is allowed to access any system resource. Of course it would be possible to
restrict system resources to specific groups. The implemented system is thought
of as a tool to allow a simple and efficient configuration of network devices and
to apply special services the systems. It is not designed to be used by end users.
Unauthorised access to the system is blocked by encryption mechanisms.

• The Python language provides ”restricted execution environments”, which allow
to limit the (OS-) functions code can access. As the group of users allowed to
access the system is equal to the group having access to the network devices
itself, the examples in this chapter will not use these mechanisms.

6.2.3 The PyBAR Architecture

The design of the Active Network platform tries to separate the active components as
far as possible from the conventional router functionalities. Such a separation ensures
portability, scalability and also allows the integration of existing devices.
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Figure 6.2:A network with active routers. The active component of a router may either
be run directly on the hardware (e.g. Linux) or be attached externally.

Therefore the active part communicates with the routing and forwarding mechanism
over a single duplex channel only. Figure 6.2 shows that the processing of active
packets can either take place directly within the network device or externally in a
specific host, being connected to the router with such a communication channel. This
allows to set up even clustered processors, providing ”activity” to multiple routers in
the network.

The PyBAR active router is designed to be portable easily for different platforms. As
mentioned before the goal is not to provide a multi purpose platform but a framework
or toolkit to be adapted to the actual needs.

The system consists of several parts, which will be presented in the next paragraphs.
The PyBAR is based on the standard Python virtual machine. Additionally the standard
Python command set was extended by several modules written in C. These extension
modules provide optimised mechanisms for frequently used operations like encryption
or also for packet processing. While Python provides flexibility, the C extensions add
the required speed. Those extensions are not limited to C functions but can provide
complete data types. Data types are important, since the programs have to be small and
readable. For example an IP packet data type is provided by a C extension module,
which simplifies and speeds up the analysis and processing of incoming IP packets.

For the programmer it does not matter, whether such an extension module consists of
Python code or whether it is written in C. No specific initialisation is needed, neither
to load the C, nor to load the Python module. If C and Python versions of the same
module are available, an active packet can use these modules without taking care about
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Figure 6.3:Basic architecture
of the PyBAR system.

calling a C or a Python function. Of course such extension modules can be added
dynamically to the PyBAR system, making new data types and functions available.

Figure 6.3 shows the general architecture. The platform adaptor is an extension mod-
ule written in C and provides communication facilities for the PyBAR core and the
extension modules. The core processes incoming (active) packets and is supported by
a library of extension modules. The following paragraphs will describe the compo-
nents in detail.

The Platform Adaptor

The Platform Adaptor serves as a kind of node operating system and has entirely been
implemented in C. It provides a set of Python commands and data structures.

The commands provided by this layer are rather fundamental and might also be plat-
form dependent. The platform adaptor supports the PyBAR environment with spe-
cialised data types and methods, simplifying and speeding up the processing of re-
ceived data.

This layer also controls and manages the communication with the router below. The
router is set up to forward specific packets to the PyBAR. Of course the PyBAR can
control which packets are sent allowing to filter and process certain packet streams.
Basically the system will be interested in packets containing code to be executed by
the PyBAR. As a default three types of addressing will be supported:

Direct Addressing: The packet has one of the router’s addresses and is forwarded
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to the PyBAR for further processing. This mechanism is especially useful to
address specific end systems or to send an active packet directly to a special
active router.

Router Alert: The router alert option is an IP option, indicating a router to treat the
packet in a special way. There is no information in the Router Alert option how
the packet shall be processed in special. The Router Alert option was introduced
in conjunction with the RSVP protocol and has the purpose to send a packet to
a specific destination and trigger certain functionalities in the path.

An IP packet with the IP router alert option set and an ANEP payload will be
forwarded hop by hop to the destination of the IP packet like any normal packet.
But instead of being only forwarded to the destination, the packet is processed
by each active router.

DSCP: Since the processing of IP options decreases the performance in conventional
network devices, a special DSCP value can be used instead of the Router Alert
option. Active routers forward these packets to the active components while
conventional devices will simply ignore this DSCP. Besides performance this
has another advantage. Since packets with such a DSCP can be handled prefer-
ential by Differentiated Service routers, the loss of active packets can be omitted.
Of course multiple DSCPs may be used as well. As an example there might be a
DSCP value for active signalling packets and another for active packets carrying
data.

Of course other addressing mechanisms can be used, forcing the platform adaptor to
look out for broad– or multicast addresses or for other packet properties.

The Platform Adaptor provides a set of mechanisms allowing the core to interact with
the platform. Table 6.2 lists some of the implemented commands.

Of course the table does not show the complete command set, but as can be seen there
are different commands to access the traffic conditioning components for Linux or
Virtual Routers. Programs which want to modify these components have to check what
commands are available. Another possibility is to use a library installed previously
providing uniform commands.

The PyBAR Core

The core is responsible for the treatment of received packets. As it will be described
in Section 6.2.7, not all active packets have to contain executable code, but may only
require some processing by a module of the PyBAR.

This core is mainly a kind of framework, which can be adapted to different needs and
allows to provide very different mechanisms.

Within the system type described here in more detail, the core performs the following
mechanisms:

• The core checks the type of the incoming packet and handles it accordingly.
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command Linux VR Description

version yes yes returns information about the platform
the system is currently running on

getCaps yes yes returns capabilities of the Internet
router, the PyBAR is attached to

attach yes yes connects the PyBAR system to an In-
ternet routing device

getInterfaces yes yes returns a list of interfaces.
getRoutingtable yes yes returns a list of routes.
addRoute yes yes adds a routing rule to the routing table
delRoute yes yes deletes a route from the routing table
getQcomps no yes query information about the traffic con-

ditioning system
addQcomp no yes add a queueing component
linkQcomp no yes connect two queueing components
queryQcomp no yes query information for a specific com-

ponent
configQcomp no yes configure a component
configTC yes no configuration of the traffic conditioning

components

Table 6.2:Examples for commands provided by the Platform Adaptor. For the Virtual
Router queueing commands see also Section 4.1.2
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• Executable packets are decrypted and decompressed. If the decryption was suc-
cessful, the code in the packet is executed. For the de- and encryption a special
cryptography module is used. To provide a powerful but nevertheless easy way
to use the mechanism, a special Python module (PyRSA) was implemented,
providing RSA based cryptography. Section 6.2.5 will provide a more detailed
description of this module.

• If a received packet contains executable code, the core supervises the execution
of the capsule. The core also performs a set of simple checks during the execu-
tion to avoid malicious behaviour. These checks provide no perfect security, but
are merely thought to limit the damage caused by program errors.

• A small central database or stack is provided to allow capsules the storage of
data for a longer time.

• Functions to install and replace modules within the library are provided.

In the description of the Python language the ”high level” of the Python language
was mentioned. Even if some of the tasks like cryptography require rather complex
algorithms, which usually make things more complicated, the core itself is very simply.
Complex functions like cryptography or the packet analyser are implemented as an
extension module (written in C) and provide a very high level interface to the user.

This separation into modules emphasises the framework character of the PyBAR sys-
tem. The core itself is a kind of default only, which can be adapted or extended to the
actual needs. Of course adaptions and extensions can be performed by the core itself.

6.2.4 Extension Modules

Since the hard coded commands provided by the PyBAR only cover very fundamental
tasks and additionally depend on the type of platform the PyBAR is attached to, more
complex issues can be covered by extension modules.

Extension modules can be written in C or in Python. Of course modules written in C
are platform dependent and may require re-compilation. However, any of these mod-
ules can be added, replaced, or removed dynamically by active network mechanisms.
Therefore a module can be distributed in several ways:

• An extension module may be part of the system itself and is included in the
basic installation. For example the PyRSA module used for cryptography is
such a module.

• Capsules processed by the PyBAR may include extension modules that are
added to the system and provide functions, data types or information used by
other programs.

• The core can provide mechanisms to download modules on demand and add
them to the local module library.

A rather high level extension module to provide a uniform interface to setup resources
will be presented in Section 6.4.
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6.2.5 Security

As mentioned earlier, security is one of the biggest problems by building active net-
works. The security problems get extremely complicated if users are allowed to inject
code into the network.

The PyBAR system is not intended to be used by the end user but by network admin-
istrators or automated monitoring systems only. This reduces the security problems
significantly. Network administrators are usually authorised to have full access to net-
work devices and can be assumed to be experienced enough to avoid configurations or
activities damaging the network.

To control the behaviour of capsules the core can run a monitoring task supervising the
resource consumption of capsules and terminate tasks consuming too much resources.

However there have to be some mechanisms to keep other persons from sending code
to the network or inspect the content of active packets. Another important capability
of such a system is to limit the damage program errors can cause.

To prevent unauthorised persons to send code to the network, a RSA based asymmetric
encryption and signature system is used. Each active node will check the signature of
an incoming capsule and discard the capsule immediately if the signature is not correct.
Additionally the program code within the capsule may be encrypted.

For the authentification mechanism secure signatures based on the MD5 message di-
gest algorithm and the RSA [RSA78] algorithm is used.

All those mechanisms are provided by the PyRSA [Bau00] Python extension module,
which was implemented especially for the PyBAR system and provides high level ac-
cess to cryptographic mechanisms. Since cryptographic mechanisms require a rather
high processing speed, the module was implemented in C and uses the free RSA toolkit
[Lab94]. This solution provides high usability with good performance due to the un-
derlying C implementation.

The RSAREF library used for the implementation provides several cryptographic al-
gorithms:

• RSA encryption and key generation, as defined by RSA Laboratories’ Public
Key Cryptography Standards (PKCS)

• MD2 and MD5 message digests

• DES (Data Encryption Standard) in cipher-block chaining mode

• Diffie-Hellman key agreement

• DESX, RSA Data Security’s efficient, secure DES enhancement

• Triple-DES, for added security with three DES operations

Even if designed for it, the module is rather independent from the PyBAR system and
might therefore also be used in other applications. The PyBAR system mainly uses
authentification mechanisms provided by the system:
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generatekeypair(...) Two RSAKEYobjects are returned containing the private and
the public key. The only parameterkeylen specifies the length of the keys
(max. 1024 bit).

sign(...) returns a signature for the data in string, based on the private key and the
digest algorithmdigest . Currently allowed values for digest are"MD5" ,
"MD2" .

verify(...) checks whether a digital signature is valid.

encode(...)generates a symmetrical key and encodes the data instring with this key
and the specified encoding algorithm. The symmetrical key is then encoded by
the RSA algorithm. Allowed values foralg are: "des" , "desx" , "des2"
and "des3" . This function returns the encrypted symmetric keykeyenc and
the encoded datastringcoded.

decode(...)decodes the enciphered data instringcoded based on the algorithmalg.
enckey is a list containing(ivinit, keyenc)

Even if the security mechanisms can not avoid programs to behave malicious, it is able
to restrict secure access to a system to authorised users. Additionally the monitoring
of tasks running on the active node can provide a reasonable level of stability against
incorrect programs.

The implementation and design of the PyRSA module are good examples for the ex-
tensibility of the PyBAR platform. In a similar manner modules for the processing of
special packet types may be developed and installed to the active routers. Instead of
implementing the security mechanisms into the Platform Adapter directly a separate
module is used, allowing to replace PyRSA by another module.

6.2.6 Packet Processing

Figure 6.4 shows the major steps during packet processing. Not all packets received
by the PyBAR contain code, which has to be executed. Comparable to router plug-
ins [DDPP98] certain modules can be installed for processing certain streams directly.
These modules may be realised using the Python language itself or by native pro-
grams. While Python might be sufficient for monitoring, tasks requiring more pro-
cessing power have to be performed by native code.

If a packet contains a program to be executed the entire packet has to pass consis-
tence and authentification checks. While in the first step basic properties of the packet
are controlled, the second one covers digital signatures and encryption related issues.
After the packet has passed the consistence and authentication tests an execution envi-
ronment is initialised and the code within the packet is executed.

Usually, the processing of executable packets is much slower and time consuming
than the simple processing of a packet’s payload. Furthermore, the treatment of such
streams can be accomplished completely by the platform adaptor. If the code process-
ing the stream packet is provided by a native module, the complete treatment of such
a packet is ”Python-free” and therefore reasonably fast.
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Figure 6.4:Packet processing by the PyBAR

A good performance is important for typical active network applications like video
transcoding or reliable multicast. However, also Python based modules or modules
using both native and Python code may be used for processing of certain packets.
Even if the processing speed of Python is comparably slow compared to native code,
it might be absolutely sufficient for less time consuming or time critical tasks. For an
application specific dropping of packets (see Section 6.5.1) or network management
related tasks like the set up of tunnels (see Section 6.5.3) the performance of Python is
absolutely sufficient.

6.2.7 PyBAR Packet Format

In the section about active networking the Active Network Encapsulation Protocol
(ANEP) format was also presented. Even if the ANEP header is flexible and may be
used for different kinds of active network systems, the PyBAR system uses a different
header, due to three reasons:

• The ANEP header was designed to support many different kinds of active net-
work systems. For a rather specialised system the header does not fit very well
and specific mechanisms of the PyBAR system are not supported very well.

• As mentioned before, the PyBAR system is thought as a framework or a toolkit
and is therefore easily adaptable in various ways. Therefore the processing of
ANEP headers can be added without great effort but should not be accomplished
by the static components of the PyBAR system. For our rather specific system
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Figure 6.5:PyBAR IP/UDP payload and a PyBAR code block. Several code blocks
might be attached to the packet

an ANEP header would cause too much overhead. A later version of PyBAR
covering more general aspects might provide ANEP header processing.

• The ANEP header would be a static part of the active network system. Since
most of it would be processed reasonably within the C based platform the flex-
ibility of the active networking system would be limited. A more fundamental
header leaves more possibilities about the packet format to the active networking
system itself.

Therefore, the required PyBAR header is exactly four bytes long as can be seen in
Figure 6.5 and can be encapsulated either in raw IP or in UDP. It only contains an
eight bit wide field with version information and a 24 bit wide active service identifier.
The latter one allows to notify which module of the PyBAR system shall be applied to
the rest of the IP packet’s payload.

A special service identifier with the value 0 is used if the rest of the packet contains
executable code. Since this header is very small and simple, a stream packet has only
be checked for the active service id and can be forwarded to the corresponding module
responsible for this type of service. In section 6.5.1 a system will presented using this
mechanism to provide smart packet dropping for a video application.

To signal the router that the packets have to be treated in a special way by the PyBAR
system three mechanisms can be used:

Router Alert Option: This IP option signals a router to apply a special treatment to
a packet. Packets with this option set could be checked for a packet containing
an Active Service ID. Unfortunately, the Router Alert Option is already used
for protocols like RSVP. Therefore the protocol id in the IP header has to be
checked additionally.
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Packet Filtering: The Active Router can set up filters listening to packets of specific
protocols and addresses. Also some information of higher level protocols like
UDP port numbers can be used. Besides the rather heavy weighted filter algo-
rithms this does not provide a general mechanism to signal the router the special
packet type, but it can be used by special PyBAR modules to process specific
streams.

DSCP value: The use of specific DSCP value in the IP header can provide a unique
signal for the router to check the packet for the special payload. The parsing
of the special DSCP value is simple and since an ISP is allowed to use its own
DSCP values, this mechanism conforms also the Differentiated Services Stan-
dard. In contrast to the Router Alert Option, this also allows to mark any packet
for an ”active” treatment.

Which of those mechanisms is used is left to the PyBAR system. While for applica-
tions like smart packet dropping the use of a special DSCP value to trigger the special
treatment of a packet is advantageous, the Router Alert Option can be used to exchange
code or install additional modules to the router.

If the active service identifier signals an ”active” payload the rest of the payload has to
consist of at least one code block. A code consists of a 16 bit wide length field and the
code block’s content only. Multiple code blocks may be contained within a packet.

The PyBAR system expects the first code block to contain executable code. The other
code blocks are not processed. There are mainly performance and flexibility reasons
for the use of multiple code blocks.

• The translation of binary data to Python byte-code is time consuming (as it is for
Java byte-code). Since the packet might contain executable code and some pay-
load a processing of the entire packet would be a waste of resources. Therefore,
just the first code block is processed and executed.

• The PyBAR handles the format of executable code blocks within the python
based core, providing the maximal possible flexibility.

Besides the code, the first executable code block also contains additional information
like a signature. The payload format of the first code block is completely handled by
the PyBAR system itself and can therefore be adjusted easily.

Of course the platform adaptor provides mechanisms allowing to access and manipu-
late the other code blocks in the packet. This includes the execution of code blocks
and their installation as PyBAR library modules.

6.3 Injecting Active Packets: A Graphical Front-End

In the previous section the packet format required by the PyBAR system was presented.
In addition to a very short header, active packets contain at least one code block. While
the first code block has to contain executable data, the other code blocks can be used
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Figure 6.6:Python and Tkinter based front-end for the injection and reception of Mo-
bile Code

to transport any payload. This mechanism is convenient for the installation of new
library modules to active routers. Attached code blocks might contain modules written
in native code for various platforms.

Of course this strategy might also be used to encapsulate other data or packets into an
active packet.

To provide a convenient mechanism to compose and inject active packets with several
code blocks an application based on Python and the Tkinter [tki] graphical toolkit was
developed. Figure 6.6 shows a screen-shot of the program. The application allows to

• edit and compile the source code for executable code objects. Since at least the
first code block of an active packet has to contain some executable code, the
Injector program allows to load, to modify and to compile a piece of mobile
code. The compilation is used to create platform independent Python byte-code.

• compose code blocks with extension modules. For the distribution of extension
modules, the code block has to contain not only the code of the extension module
but also a list of several objects, including the code and digital signatures. This
”encapsulation” of an extension module within such a structure is supported by
the Injector program.
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Figure 6.7:Architecture used by the Linux tc implementation

• add a signature to code objects to provide security. The signature of code blocks
containing executable code or extension modules is checked before the code is
executed or installed. These signatures can be created easily with the Injector
program.

• compose a whole packet from single code blocks.

• receive and process feedback data. A capsule sent out to the network might
collect data and send it data back to the Injector program. The Injector program
can display this feedback data. Currently, this functionality is limited to showing
some short text messages but can simply be extended to also show graphical
information.

• configure the packet sender to send active packet repeatedly over the network.

• be easily adapted to other tasks. Since most of the application is written in
Python and the same modules and functions are used as by the PyBAR itself,
new mechanisms may be added easily.

6.4 Differentiated Services Support

A central problem within the Internet is the lack of a homogeneous configuration in-
terface to network devices. Dependent from the vendor very different interfaces are
provided.

Even more problematic than the interfaces are the fundamental design differences of
devices. A good example for such different design concepts are traffic conditioning
components. Linux usually uses the tc traffic control implementation [Alm99].

The architecture of the Linux traffic control system uses a system of nested boxes.
Each box can contain other boxes. In contrast to such an approach other systems are
more list oriented or use a graph like layout of their traffic conditioning components
like the Virtual Router does.

These different concepts prohibit the use of low level configuration commands within
a network. Instead of trying to design a multi purpose router configuration language
the PyBAR system simply offers different commands for different types of platforms.
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init() sets up the complete traffic conditioning components
required for DiffServ, with a an appropriate sched-
uler, EF and AF queues, Token bucket filters

setClassShares(...)configures the bandwidth shares for the different
traffic types

mark(...) configures the Differentiated Services marker to
mark specific flows with certain DSCPs

unmark(..) removes a marker rule

Table 6.3:Commands provided by the DiffServ module for the configuration of Differ-
entiated Services resources.

Since a capsule might be executed on multiple hosts and a distinction among the dif-
ferent command sets is not feasible, those low level commands are usually not used
but library modules are installed on the system in advance.

A module providing methods to set up and maintain Differentiate Services on a router
can map a command set to the low level configuration scripts. The functions provided
by such a module may be on a rather high level.

• Functions to initialise and configure the basic system have to be provided. Some
kind of init() function may set up the complete set of queues, schedulers and
classifiers needed to provide Differentiated Services. Parameters of the init func-
tion may define whether an ingress, egress or intermediate router has to be set
up.

• The marker mechanisms have to be configured to mark packets with different
DSCPs. Functions to add or remove flow descriptions at the ingress routers
have to be provided. Obviously, the mechanisms to apply such flow descriptions
to the router may vary significantly. Therefore a high level interface would be
beneficial.

• Since the Differentiated Services concept requires a separate handling of the dif-
ferent traffic classes, each traffic class has to be configured for a certain share of
the link bandwidth. Therefore also these parameters are important for a general
interface

Obviously such a description can never meet all aspects of Differentiated Services or
of any other Quality of Service providing mechanism. Therefore the PyBAR does not
even try to provide such a general interface or even a multipurpose module providing
such a functionality.

Therefore, a module integrating DiffServ configurations for Virtual Routers and for
Linux was implemented, providing a convenient small set of commands as listed on
Table 6.3.

The module is written in Python and might be extended to provide more control and
advanced features rather easily. This is important, because the set of commands pro-
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vided by an appropriate Differentiated Services module depends on the services an
Internet Service Provider wants to provide and control.

Therefore a light weight mechanism to install modules on different platforms and to
adapt extension modules for new purposes is much more important than the attempt to
provide a really generic interface.

The mechanisms to install such modules is provided by the PyBAR platform. An
active packet may transport and install code within each suitable node of a network,
on a single device only or on any machine along a certain path. Even the attachment
of multiple code objects is possible, whereas each code object is to be installed on the
matching router hardware.

The adaptability of the extension modules is provided by the python language itself.
The combination of readable source code, a high level syntax and convenient data types
allow the quick adaptation of mappings between the extension module’s uniform com-
mand set provided to other programs and the router hardware dependent commands.

6.5 Adding Active Services to a Network

The active service id field in the PyBAR header provides an easy mechanism to add
various packet treatments. Since the processing can completely be provided by native
code, the required processing power keeps reasonably low, even for more complex
algorithms.

A possible application for such active services can be the support for video applications
or to provide support for management related tasks, like:

• A smart dropping mechanism using an application specific dropping algorithm
for better performance.

• A lightweight multicast algorithm to send a packet to multiple destinations with-
out transmitting one packet per destination.

• a framework to set up tunnels within a network

The first two applications have been evaluated with a video application, capable to
transport real time traffic.

The video application is running on Linux, using a frame grabber device. Each grabbed
frame is encoded into a JPEG picture and transmitted over the network. A client pro-
gram receives the frames and displays them. Both tools were developed as a basis for
any kind of experiment requiring a video stream and therefore are highly configurable.
The C++ based implementation also allows to add new functions and mechanisms
quite easily.

Figure 6.8 shows the front-end of the video application with its controller window. The
application is able to handle television broadcast as well as other video sources like
cameras. The controller window allows to adjust the video source, the television tuner
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Figure 6.8:The Video application with the controller window to set up frame rates,
window dimensions and parameters for the frame grabber device

and other parameters of the frame grabber device. Besides parameters like contrast
and brightness, the resolution of the grabber can also be adjusted.

Since real time traffic is transported, the connectionless UDP protocol is used. This
prevents delays due to packet retransmissions but requires a video application capable
to handle missing packets.

Even at small resolutions the size of a single frame is usually larger than the maximum
allowed packet size. This is why a JPEG compressed frame has to be fragmented into
several packets. Similar to protocols like RTP [SCFJ96] each fragment carries a frame
id and other information.

6.5.1 Application Specific Packet Dropping

To provide an adaptation of the video sender to available resources within a network
an additional signalling would be required. The sender and the receiver would have to
exchange information about the number of frames or packet lost during transmission.
Reacting to such information the sender can adjust its packet rate or change its coding
algorithm.

Another approach is to add mechanisms to the network supporting specific applica-
tions, applying a more intelligent or at least specialised dropping mechanism to net-
work devices.
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Figure 6.10:Network with Virtual Routers used to evaluate the smart dropping algo-
rithm

Figure 6.9 shows the basic concept. Since each frame is distributed to several packets,
a discarded packet will damage the whole frame. During heavy congestion this might
result in each frame to be damaged. To allow a reassembling of packets to complete
frames, either all packets must have reached the destination or a sophisticated video
format is required, which is able to tolerate a certain packet loss.

In an alternative to the random dropping of packets, a more specialised component will
check the frame number contained in each packet. If congestion occurs, all packets of
a frame are dropped, instead of discarding only a few packets of each frame.

As can be seen in Figure 6.9, this will decrease the frame rate reaching the receiver,
but can increase the number of frames reaching their destination without damage.

The capacity of such a simple algorithm has been evaluated in a network consisting of
Virtual Routers and Linux systems. The setup can be seen in Figure 6.10. The video
stream is sent from the video server to the video client through the network of five
routers. The additional workstation connected to the Linux router is used to produce
congestion within the network.

Table 6.4 shows the path of packets from the video server to the video client with the
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traceroute to 10.42.14.2 (10.42.14.2), 30 hops max, 38 byte packets
1 atlas.cnds.unibe.ch (130.92.70.30) 0.220 ms 0.156 ms 0.151 ms
2 10.42.10.2 (10.42.10.2) 0.664 ms 0.172 ms 0.168 ms
3 10.42.11.2 (10.42.11.2) 0.260 ms 0.243 ms 0.234 ms
4 10.42.12.2 (10.42.12.2) 0.510 ms 0.417 ms 0.403 ms
5 10.42.13.2 (10.42.13.2) 0.520 ms 0.493 ms 0.470 ms
6 10.42.14.2 (10.42.14.2) 0.522 ms 0.514 ms 0.527 ms

Table 6.4:A traceroute from the video server to the video client (10.42.14.2) shows the
path of the packets through the network

address (10.42.14.2). The addresses 10.42.10.2 - 10.42.14.1 belong to Virtual Routers,
atlas.cnds.unibe.ch is the Linux Router. While for the links between the workstations
and the Linux router 100 Mbps Ethernet is used, the links between the Virtual Routers
have a bandwidth of 4 Mbps.

The Injector program of Section 6.3 has been used to create the active packet which
contains a short program and the service handler. This capsule is transmitted through
the network and the short program is executed on the active routers to install the service
handler. The service handler monitors the number of packets in the interface queues
and calculates an exponentially weighted moving average (EWMA) similar to that
used by the RED mechanism.

avg = (1− w)avg + w · queuelength

The parameterw controls how fast the average queue length is adapted to the current
queue length. If the average queue length exceeds a certain limit, the algorithm starts
to drop packets belonging to frames with odd frame numbers. This algorithm is very
simple and mainly intended to demonstrate the basic mechanism. In reality, frames
would probably be discarded more smoothly instead of abruptly dropping each second
frame as it is done in the experiment.

To force an active processing of the video packets, the video application has been
modified to send packets in the PyBAR packet format and to set certain DSCP values
to its packets. Since the PyBAR packet format is simple (see Figure 6.5), just the
version and the active service id field had to be added.

The special DSCP value is used to signal that an active processing of this packets is
required. The PyBAR core checks the active service id of the packets and passes them
to the appropriate, previously installed service handler.

For the evaluation, a video flow has been set up and the number of correct transmit-
ted video frames has been recorded. After 30 seconds a set of UDP senders has been
activated, producing an overall UDP bandwidth between two and 3.5 Mbps. The ex-
periment was performed twice: with and without the special dropping algorithm.
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Figure 6.11:Frame rates achieved with and without adaption to available resources.

bandwidth (Mbps) frames per second
without app. spec. dropping 0.81 1.17
with app. spec. dropping 0.72 13.02

Table 6.5:Frame rates and bandwidth with and with application specific packet drop-
ping

The results of both experiments are shown in Figure 6.11. It shows the rate of frames
reaching the destination with and without application specific dropping. To be able
to compare the results better, also graphs showing the full and the half frame rate are
included.

Without special support for the video stream the frame rate during congestion nearly
drops to zero, while with the help of the algorithm at least half the frame rate was able
to be achieved. After the UDP senders stop the data transmission, the receivers get the
full frame rate of 25 frames per second in both experiments.

Table 6.5 illustrates the difference between bandwidth consumption and frame rate.
During the experiment without active support, more packets have been received, but
less frames could have been reassembled. Due to the discarding of complete frames the
specialised dropping algorithm uses less bandwidth than the simple best effort method
but achieves a more than a tenfold rate of correct frames.

Of course the algorithm used to adapt the frame rate to the current available resources
is rather simple. Therefore it is questionable whether the simple discarding of every
second frame is the best solution. On the other hand TCP also reacts to packet loss by
halving its bandwidth.

Also Differentiated Services can be used to mark frames with different drop prece-
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Figure 6.12:processing of a packet with multiple addresses

dences within an Assured Forwarding class. Even if this would allow to forward a
certain frame rate with a high probability, the three drop precedences can only pro-
vide an adaptation to three different frame rates while an application specific dropping
mechanism can be much more flexible.

However, the experiment shows, that even simple mechanisms specialised to certain
kinds of traffic can improve the performance significantly. The algorithm used for
this evaluation is therefore less complex than a standard RED queue but improves the
performance of this video application tremendously. Another big advantage of such
active services is that they can also be applied on the fly to quickly react to some certain
network problem, since convenient methods to establish these services are provided.

6.5.2 A Simple Active Multicast Service

Another example for an application using the active services is the provisioning of a
simple active multicast mechanism. Instead of signalling to drop packets according
to some specific frames, the active service id signals the existence of additional IP
addresses in the packet’s payload.

Such an approach is similar to the Explicit Multicast (Xcast) proposal by Boivie e.a.
[BFI+01] and is of course only suitable for small groups. Within large groups the
number of IP addresses within each packet would exceed the packet size and also the
processing of the additional addresses would also cause too much overhead. Therefore,
for large groups the classical multicast approach has to be used.

Figure 6.12 illustrates the packet processing. A server has to send identical data to
multiple addresses. Instead of transmitting one packet via unicast to each destination,
one packet is sent, containing multiple addresses.
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Figure 6.13: Eight end sys-
tems (black) with routers
(white) in a binary tree like
network.

An active router on the path detects the packet due to a special DSCP values checks
the active service id and extracts the list of addresses. If all addresses are routed over
the same interface, the original packet is forwarded, otherwise the packet is converted
into several packets, each carrying the addresses of the clients routed over the same
interface. The saved resources are evident.

Within a simple binary tree like network as shown in Figure 6.13, a unicast based
approach would result in

tuni = 2n · n

packet transmissions per datagram sent by the video server.n is the depth of the tree.
This number of overall packet transmissions is reduced to

tsmc =
n∑
i=1

2i

with a multicast approach. The following table lists the numbers of packet transmis-
sions required for each packet sent out by the source with and without the simple
multicast approach.

receivers packet transmissions bandwidth values
unicast simple multicast unicast simple multicast

4 8 6 4.8 Mbps 1.22 Mbps
8 24 14 9.6 Mbps 1.24 Mbps
16 64 30 19.2 Mbps 1.28 Mbps
32 160 62 38.4 Mbps 1.35 Mbps

The table also includes the bandwidth values reached by the sender in both cases with
the video application described above. While in the unicast situation the sender has
to transmit up to 40 Mbps to reach the 32 receivers, the bandwidth with the simple
multicast algorithm is only increased slightly due to the additional addresses in the
packet’s payload.
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class MiniMulticast(ARservicehandler):
def forward(self,pkt):

# extract address list from first code block
alist=cPickle.loads(pkt.cb(0))
ifcs={}
# scan address list and create interface/address-list structure
for i in alist:

interface=pad.queryRoute(i)[’if’]
if not ifcs.haskey(interface):

ifcs[interface]=[]
ifcs[interface].append(i)

# scan interface/address-list structure and send packets
for i in ifcs.keys():

p=pad.Packet()
p.cb(0)=cPickle.dumps(ifcs[i])
p.cb(1)=pkt.cb(1)
p.send({’dest’:ifcs[i][0], ’ptype’:pkt})

return

Table 6.6:The complete code of the service handler providing a simple multicast ser-
vice

Table 6.6 lists the complete Python code required for the service handler. An active
packet for installing this service handler will usually consist of a short installation
script to register the service and the service handler code itself. The code is rather
simple and very short, since Python provides very powerful internal types.

The implementation uses the PyBAR packet format. A multicast packet consists out
of two code blocks (see Figure 6.5) The first code block contains the address list, the
second one the payload of the packet.

As a simplification the addresses are realised by a Python list. The addresses within
this list are scanned and for each address it is checked, which interface would be used
to reach that address.

With the results a dictionary is set up, storing a list of addresses for each interface. In
a final step new packets are generated and transmitted.

The pad.* functions are provided by the platform adapter. Once a packet for a specific
service handler arrives the forward() function of this service handler class is called
with the packet as parameter. The forward() function extracts the address list from the
first code block of the packet (cPickle), scans the addresses, sets up the dictionary and
finally creates and sends the new packets. The destination address of a new packet for
a certain interface is chosen from the list of addresses routed over that interface.

Table 6.7 shows the performance1 of the code on a single router for different numbers
of addresses contained within a packet. The bandwidth calculation was based on the
execution speed of the Python code and an average packet size of 1000 bytes. For

1measured on a Linux PentiumII with 400 MHz
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addresses time incoming bandwidth max. bandwidth out
4 1 ms 8 Mbps 32 Mbps
8 1.7 ms 4.7 Mbps 37 Mbps
16 2.2 ms 3.36 Mbps 58 Mbps

Table 6.7:Performance of the simple multicast service

the output bandwidth it was assumed, that each packet is split up completely and each
address has to be routed over a different interface.

Of course the performance can not cope with any implementation using native code.
On the other hand the input bandwidth is sufficient for multiple video flows. However,
the code performance can definitively be increased by using a less time consuming
format for the address list. Finally there is still the possibility to provide such a mech-
anism by native code.

6.5.3 Active Setup of Tunnels

IP tunnels are an enabling technology for the application of new services as could be
seen in chapter 5. Even if the basic mechanism, an simple encapsulation of a packet
into another packet as proposed by [Per96] is simple, more complex tasks may be
realised:

• The encryption and decryption of packets at the tunnel start and end point can
provide end to end security. This way flows can be transmitted securely without
the danger that a not trustworthy service provider might eavesdrop.

• Since all packets transmitted through the tunnel get a new header with the tunnel
start and the tunnel end point addresses, traffic conditioning mechanisms can be
applied quite easily for all packets in the tunnel, even if the encapsulated packets
have different source and destination addresses.

• Since the original packets are within the payload of the new tunnel packets,
interferences with network devices forwarding the tunnel packets can be omit-
ted. Therefore, signals can be transported transparently through an ISPs network
without triggering any mechanisms like resource setup.

Obviously for the setup of tunnels an appropriate start and end point is required if
certain special services like encryption are required. But even for a simple IP in IP
encapsulation, an end point needs to be capable to handle the decapsulation of packets.

As the setup of a tunnel is usually sender driven, the general problem is to detect an
appropriate end point. This is even more complicated, since the end point often can
not be specified easily. Therefore to set up tunnels between border routers, the ingress
router usually does not know the address of the appropriate border router.

An active network allows to trigger the set up of tunnels automatically without the
demand of any additional protocol. Since an active packet allows to define a kind
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Figure 6.14: A small net-
work with routers capable
to tunnel packets (grey) and
routers without that mecha-
nisms (white).

of ”search pattern” for an end point and can simply be send downstream towards the
destination, the setup of a tunnel can be simplified and also the exchange of keys might
be accomplished.

Setup of IP tunnels

Figure 6.14 shows a small network with a set of grey routers capable to handle tunnels
and white end system without this support. Node A wants a tunnel to be set up as
close as possible to point B. To find out an appropriate end node, an active packet
addressed to node B can be injected into the network. The packet will pass the nodes
along the path and check whether the node is an appropriate tunnel end point or not.
Similar to the traceroute program reporting each passed router, the active packet can
report each possible candidate for a tunnel end point to node A. If simple IPIP tunnels,
not requiring a specific set up of the tunnel end point, are used, node A simply uses
the most appropriate candidate as end point and sends the encapsulated packets to this
address.

Table 6.8 shows a example of Python code to check whether a device can handle an
IPIP tunnel. The whole packet consists of the first code block containing this exe-
cutable program and a second code block containing information about the tunnel start
point (srcinfo) like the address and the port number to that the feedback packet has to
be sent to.

This search for an end point is of course not only determined by the simple capability
to provide the decapsulation of tunnelled packets, but may also be used to find nodes
capable of certain encryption techniques.

Active tunnels

The mechanisms to provide a proper encapsulation and decapsulation may also be
transported within an active packet. Of course it would be possible to add a small
program header to each packet, decapsulating the embedded original packet near the
destination and thereby create a tunnel. This might work for the transport of single
signals, but for any reasonable flow the performance would suffer.

On the other hand active packets might provide tunnel start and endpoints. A simple
tunnel end point using an active service id to trigger decapsulation is shown on Table
6.9. If an active packet with the according service id reaches an active router which
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class DiscoverEP(ARpacket):
def init (self,acpkt):

# get a list of router properties/services
c=pad.getCaps()
# if IPIP available, extract information from
# code block and send feedback packet
if c.count(’IPIP’):

src info=cPickle.loads(acpkt.cb(1))
# generate and send feedback packet
p=pad.UDPPacket()
p.source=pad.hostip
p.dest=srcinfo[’tunnel start’]
p.destport=srcinfo[’portnumber’]
p.payload=cPickle.dumps({’service’:’IPIP’,

’tunnel end’:pad.hostip, ’time’:pad.time})
p.send()

# forward original active packet
acpkt.send()
return

Table 6.8:Active Packet code to discover a device, able to handle IPIP tunnel end-
points

has this service handler installed, the packet encapsulated in the single code block (see
Figure 6.15) will be extracted and forwarded.

In contrast to conventional tunnels, needing a specific tunnel end point, such tunnels
may even work without. For example such service handlers might be located at the
border routers of an ISP and decapsulate any active packet with this service id. The
processing by an active router can be triggered as before by setting a specific DSCP. Of
course such a mechanism is mainly useful to keep the encapsulated packets from in-
teracting with other network components. The advantage of tunnels supporting traffic
conditioning mechanisms by their fixed start and end point addresses is lost.

class ANtunnelEP(ARservicehandler):
def forward(self,pkt):

# generate new packet from first code block
p=pad.Packet()
p.from string(pkt.cb(0))
# send the decapsulated packet
p.send()

return

Table 6.9:Code for a service handler to provide a tunnel end point
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Figure 6.15:Encapsulation of the packet into a PyBAR code block

Of course the code on Table 6.9 will also work if active packets are addressed to
the tunnel end point directly. Instead of triggering processing by each active router,
no special DSCP is used causing intermediate (active) routers to forward the tunnel
packet like normal IP packets. Therefore, the mechanism is similar to a normal IP
tunnel, even if the code to establish the tunnel end points can be installed dynamically.

Similar to the simple multicast scenario the performance of such a high level imple-
mentation of a tunnel end point is limited. However, since the packet data type is
implemented in C, this endpoint is at least able to process about 25000 packets per
second2.

Of course if tunnel endpoints with dedicated addresses have to be set up, similar prob-
lems as for the configuration of conventional tunnels would occur and active packets
may have to be used to discover proper locations for end points.

Conclusion

The services described in this chapter show the power of active components within
a network. Both mechanisms are simple but can increase the performance of net-
work based applications tremendously. Of course such services can also be applied
to routers and network devices statically or can be realized by specific protocols. On
the other hand protocols used for video transmissions might change and new applica-
tions will require other mechanisms. Therefore, a flexible mechanism to provide such
components is required.

The setup of tunnels illustrates the capabilities of mechanisms allowing to simply ex-
change information. Especially if used for signalling only, the performance is abso-
lutely sufficient. But even if the performance of interpreted code is generally limited,
simple functionalities like the decapsulation of packets can be provided, at least for
services, which are not used very frequently or have to be established quickly.

6.6 Active Network Support for Quality of Service

In the previous chapter the capacity of the Active Network approach to create new
network services has been shown. Specific applications have been supported by mech-
anisms dynamically distributed within the network.

2measured on a PentiumII, 400 MHz
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Additionally to application specific services, Active Networks can also be used to sup-
port the traditional Quality of Service concepts RSVP and Differentiated Services. In
chapter 5 a system for the mapping between Differentiated and Integrated Services has
been presented. The concept was based on aggregating RSVP reservations to tunnels
supported by Differentiated Services.

The architecture used a RSVP/Differentiated Services gateway located at the ISP bor-
der routers and a central bandwidth broker instance. The gateway negotiated with the
bandwidth broker about the tunnels to be set up. The bandwidth broker configured the
tunnels and the involved traffic conditioning components.

Even if such an architecture will work for small and medium size networks, the cen-
tral bandwidth broker with its topology database causes scalability problems in large
networks. Also a disadvantage is the additional mapping component required within
border routers.

Besides the creation of new services like the application specific packet dropping,
active network mechanisms can also be used to support Quality of Service. This com-
bination has several advantages:

• Since active packets follow the same path as normal traffic, a central topol-
ogy database can be omitted. The RSVP/Differentiated Services architecture
presented in Chapter 5 required a central bandwidth broker to set up tunnels
between border routers. Therefore knowledge about the corresponding border
routers and of the intermediate network devices was required, which was stored
in a central database. Using active packets, the configuration code will automat-
ically pass all involved network devices.

• There are numerous border router pairs between tunnels that might have to be
established. A central instance will either have to process the configurations se-
quentially or in parallel. Sequential processing can be very slow since remote
devices have to be configured. For a parallelisation a central instance has to
check whether the configuration requests do interfere. This requires a central
topology database and rather intense computation. Since an active environment
will process configurations more locally, interfering configurations are less prob-
able and can be solved for each host separately.

• Active networks can provide more flexibility and simplify the creation of new
services. As mentioned in Chapter 2, an Internet Service Provider might mark
packets in his ingress routers for his customers. This is rather simple as long as
IP header fields only are used. Active Networks can be used to provide more ap-
plication specific packet classification. Similar to the application specific packet
dropping (see Chapter 6.5.1), mechanisms marking packets more intelligently
may be installed.

Of course any of these tasks could be achieved without active elements, each requiring
an own specific protocol. On the other hand active networks can be used to imple-
ment these services rather easily and provide an extremely flexible platform for future
services.
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In this chapter mechanisms for the support of Quality of Service based on active net-
working technology will be presented. In contrast to the architecture of chapter 5 it will
follow a more general approach, supporting different kinds of resource reservations as
well as autonomous interactions between different Internet Service Providers.

6.6.1 Reservation Domains and ISP Service Mapping

In the previous chapters the Internet Service Provider networks were assumed to be
rather homogeneous. Mechanisms to support different Quality of Service concepts
were applied at their border routers.

An ISP’s network is not necessarily homogeneous, even with a concept using mobile
code to configure networks to provide Quality of Service issues and establish new
services. There might be administrative or technical reasons splitting the ISP network
into several regions supporting different protocols.

Of course the network devices within such a region have to provide active network
support and the execution of active code is probably limited to the own active packets
due to security reasons. Also regions supporting the same Quality of Service concept
appear of special interest.

Therefore a network may be divided into several reservation domains, which are de-
fined by several parameters:

Active network environment: Within such a domain a unique active network envi-
ronment has to be supported, allowing to execute code and install new services
at specific locations. Whether all devices have to be active network capable or
only the devices at the borders of such a domain depends on the service to be
applied. It might not be necessary for a network core to support active packets,
if the service only requires a mapping at the border routers.

Reservation method: Within a reservation domain a unique reservation method has
to be supported. The reservation domain also depends on the type of an incom-
ing reservation. Therefore, a RSVP to Differentiates Services conversion might
be desirable at an ISP’s border router to prevent his backbone routers from the
RSVP processing load, while a mapping to Differentiated Services is neces-
sary when entering the ISP’s backbone using some specific reservation scheme
[TH98].

Authorisation: A general problem of active networking is that ISPs will not accept
foreign code to be executed on their network devices. Therefore, active packets
may only be used within a network owned by the same ISP or within networks
of ISPs with a certain mutual trust. This is why the size of reservation domains
may also be limited to certain networks.

The size and shape of a reservation domain results in the activities of the active network
system itself. Code is sent to the network, installing service handlers at the edges of
reservation domains. The code of course contains parameters and algorithms to detect
those edges by checking whether certain services like RSVP or Differentiated Services



150 CHAPTER 6. ACTIVE QUALITY OF SERVICE MANAGEMENT

ISP B

ISP A

Figure 6.16:Two ISPs as reservation domains with their border routers (white)

are available or not. Therefore, size and shape of a reservation domain are not specified
centrally, but more a result of service mechanisms distribution.

Figure 6.16 shows two Internet Service Providers as reservation domains with their
interior routers (black) and the border routers (white). Typically, the used reservation
methods change at the border router of an ISP, therefore a reservation for a flow for-
warded from ISP A to ISP B might have to be mapped at the border routers (white).
Furthermore, these methods do not have to be implemented by each Internet Service
Provider, even the DSCP values for the same service may change from ISP to ISP.
Therefore, at the border of a reservation domain several mappings may be necessary.

Unfortunately, the translation of a resource reservation type at the border of a reserva-
tion domain (RD) faces some general problems.

Incompatible Resource Specification:Information about the amount and type of re-
quested resources might get lost during mapping, because of incompatibilities
in traffic specifications. Therefore, as few mappings as possible should be ap-
plied to a flow or aggregate during its transport over several reservation domains.
RSVP uses for example a detailed description of a single reservation, while
Differentiated Services only acts on aggregates. Therefore information about
a specific flow may get lost, when mapping RSVP to Differentiated Services.
Unfortunately, there is no general description of a reservation being compatible
with the Differentiated Services and the Integrated Services approach. RSVP
uses for example quite a detailed flow specificationflowspec [Wro97]

flowspec = {r, b, p,m,M}

with the token bucket Rater, the token bucket sizeb, the peak data ratep,
the minimum policed unitm and the maximum packet sizeM . Unfortunately,
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Figure 6.17:reservation domains with Agents located at the RD borders

the Differentiated Services framework does not describe services as detailed as
RSVP. Services are defined by a per hop behaviour like Expedited or Assured
Forwarding.

Router Configuration: A new mapping may require a configuration of intermediate
routers as a setup of certain queueing disciplines. A central approach would
have to determine the path causing a lot of management overhead, while an
ingress router may simply launch a capsule to the egress point configuring the
devices on its way through the network, reducing management overhead. Cer-
tain reservation mapping methods also require a specific setup of a router pair.
Therefore a cooperation of two routers is necessary to set up a tunnel through an
ISPs network (e.g. aggregated RSVP [GBH97]).

Of course, such reservation domains are more a construct to illustrate the architecture.
Active packets containing code for a new service can simply detect the border routers
where mapping functions have to be applied and will install the required mechanisms.
This detection can simply be achieved by matching the router’s parameters against
some profile contained within the active packet. This is how active packets define the
reservation domain as can be seen in Figure 6.17.

The reservation mapping itself might either be a simple configuration as required to
map different DSCPs or the installation of a more complicated component as needed
for RSVP signalling message processing.

However, even if the mapping only means to replace a certain DSCP value with another
one, an active packet might additionally install some monitoring agent responsible for
automatic reconfigurations within the network.

6.6.2 Active Mapping between Differentiated Services Domains

Probably the mapping between different Differentiated Services at the border of reser-
vation domains requires rather a reconfiguration of a marker component than the in-
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stallation of any active code. While this mapping itself is simple and can be done by
the Differentiated Services router itself, the negotiation about a matching service might
be complex.

The Differentiated Services framework [BBC+98b] leaves it to the ISP, which services
it wants to provide to its customers and neighbouring ISPs. Therefore, it depends on
the ISP whether a specific service is available or not. Even if the Differentiated Ser-
vices framework recommends to provide at least the standardised set of Expedited
Forwarding and Assured Forwarding, the mapping of more advanced services is an
open issue. Furthermore, a standardised service like Assured Forwarding may also
cause problems, since it depends on a set of not standardised configuration parameters
and may behave differently for different ISPs. Therefore, a mapping does not only de-
pend on the service type, but also on the neighbouring ISP. There are several methods
to determine an appropriate translation:

encoding: The proper mapping scheme is encoded in the mobile code itself. It re-
quires an update of the mobile code, if DSCPs are changed. Since the mapping
itself is done by a router component usually, the configuration code has to set up
a list of DSCP/DSCP translations. Fortunately, the translations can be assumed
to be rather static.

central DSCP database:The mechanisms installed into appropriate network devices
do not only set up a set of mapping rules, but also initiate mechanisms to peri-
odically query a central database.

negotiation: The most elegant yet unfortunately most complicated approach is a ne-
gotiation between two reservation domains (probably ISPs) about the most ap-
propriate mapping scheme. To achieve this the agents need some knowledge
about the PHBs behind the DSCPs and methods to determine corresponding
PHBs.

Each of this techniques has its advantages. The simplest one is probably to encode
the DSCPs into the configuring capsule itself. Periodical requests at a central database
cause similar overhead as re-sending an updated configuration capsule, especially as
new services might also require also a reconfiguration of intermediate devices, which
can be accomplished by the same capsule.

The approach using an automatic negotiation to determine an appropriate mapping
would require a general description for a service. A simple description using a RSVP
flow specification can work for services like Expedited Forwarding but can not de-
scribe Assured Forwarding with its multiple drop precedences.

Since Differentiated Services are able provide Quality of Service even at high packet
rate, any component for the mapping of different DSCP values has to be part of the
Differentiated Services router itself, rather than being provided by interpreted code.
Active Network techniques can be used for the installation of such mechanisms and
their configuration. Also infrequently tasks like signalling or the processing of special
events can be provided by active packets.
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6.6.3 Active Mapping for RSVP and Differentiated Services

The simplest active support for RSVP/Differentiated Services mapping would be the
use of an active network system to install a RSVP/Differentiated Services gateway
(RDG) as described in chapter 5. Of course this would not deploy the power of the
active network approach, since an active network system can also be used to provide
a more scalable solution for the setup of tunnels and the reconfiguring intermediate
devices.

Similar to the RDG some mechanisms are required for listening to the RSVP signalling
and to trigger network configurations. The RSVP/Differentiated Services gateway of
chapter 5 was based on the ISI RSVP implementation, which was modified to support
the required additional support for a central bandwidth broker. The use of a complete
RSVP implementation would be a rather heavy weight solution. In contrast to provide
the complete RSVP signalling, the Active Network will only provide a small set of
functions supporting RSVP.

While in the concept presented in Section 5.3 both ingress and egress border routers
provided full RSVP functionality, a more lightweight approach will only process sig-
nals required for the setup of resources in the reservation domain:

processing ofpath-message:Since thepath-message is used to investigate the path
through the network and therefore also determines the routers to be involved in
the exchange of theresv-message, the ingress router has to process this signal.
The ingress router stores the flow-id of the message and the address of the last
RSVP capable router contained in it. After that it replaces this address by its
own and forwards the packet. This ensures for followingresv-messages sent
hop by hop to pass this ingress router.

processing ofresv-message:Theresv-message contains the flow specifications of the
reservation to be set up. This message is important, since it contains detailed
information about the flow to be set up. If the resource setup is successful, aresv
message is sent upstream to the next RSVP capable router formerly determined
by thepath-message.

Both mechanisms are rather light weight and do not require much processing power.
Therefore the required code could be provided by mobile code itself, even if native
code would of course perform better.

Table 6.10 shows the main code elements of an RSVP/Differentiated Services map-
ping service. Incoming RSVP reservations are used to trigger a configuration of the
Differentiated Service marker.

The approach using Active Networks to manage a RSVP to Differentiated Service
translation can provide much more flexibility than a static protocol based solution as
described in chapter 5. Since ISPs networks are different, flexible and adaptable ap-
proaches for the integration of services are required.

The information collected within the ingress router can now be used to accomplish
resource reservation within the reservation domain. Tunnels can be set up to aggregate
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def pathprocess(pathpkt):
# extract address of previous router from path
# and get flowid
adr=extractpath(pathpkt)
fid=extractflowid(pathpkt)

# put our own address in path message
stamppath(pathpkt,pad.hostip)
if flows.haskey(‘fid‘):

# if flow is already registered, update the time only
flows[‘fid‘][’time’]=pad.time;

else:
# if flow is new, remember time and prev. router
flows[‘fid‘]= {’time’:pad.time, ’prev’:adr, ’fspec’:[]}

# forward the path message to the next router
pathpkt.send()
return

def resvprocess(resvpkt):
# get the flow id drom the RSVP message
fid=extractflowid(resvpkt)

# if there is no path information ,,,
if not flows.haskey(‘fid‘):

return

# if it is the first reservation message for this flow
if flows[‘fid‘][’fspec’] == []:

flows[‘fid‘][’fspec’]=extract flowspec(resvpkt);
# set up diffserv resources
# dsrule takes list with [source, srcport, dest, destport, flowspec]
dsrule=[fid[0],fid[1],fid[2], fid[3], flows[‘fid‘][’fspec’]]
diffserv.mark(dsrule)

# send a reservation message further upstream
resvpkt.dest=flows[‘fid‘][’prev’]
resvpkt.send()

return

Table 6.10:Processing of RSVP messages in the Python based RSVP/DiffServ mapping
mechanism. For accessing the DiffServ components the DiffServ module (see Section
6.4) is used.
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traffic between ingress and egress routers or traffic simply mapped to Differentiated
Services classes.

While the architecture based on two RSVP/Differentiated Services Gateways used tun-
nels to aggregate reservations, a direct mapping to DiffServ is favoured here.

Resource Estimation:

The RSVP protocol requires a periodical update of the resources. This involves a
repetition of the setup process with apath-andresv-message. Usually this process is
repeated every 30 seconds. This interval can be changed to provide better support for
routes changing frequently. If nopath-or resv-message has been received for at least
90 seconds, a router can tear down the reservation.

A mapping to Differentiated Services classes automatically standardises the very spe-
cific RSVP flow descriptions to a small set of services. A detailed flow description
with rates, bucket sizes, peak rates, etc. has to be reduced ton Mbps of ServiceX.
Therefore, the large set of possible different flow specifications is mapped to a very
limited number of service classes.

The RSVP capable ingress router has to accumulate all RSVP flows. Besides the
unique identifier for a RSVP flow (session number) the type and amount of service
has to be stored. Based on this information the required amount of each Differentiated
Services PHB can be calculated.

Of course an ingress router will have some policy based on a SLA limiting the amount
of each service. When a reservation has to be set up, the ingress router will check
whether the new reservation will exceed the maximum allowed bandwidth for this
service or not and transmit anresv-tear-message instead of adding this flow to his
internal tables.

Adaptation of Differentiated Services Core Router:

The adaptation of core routers will occur very infrequently. The ingress routers map
the traffic to different service classes and this aggregates are forwarded by the Differ-
entiated Services capable core routers. Since the core routers just handle the different
traffic classes and do not have to deal with single flows, their setup can be rather static.

Any configuration of core routers faces a problem: packets with the same ingress-
egress router pair do not necessarily follow the same path through the domain. This
was one of the reasons, whit the RDG based approach used tunnels to aggregate RSVP
flows between border routers.

Within an active network, active packets can be send along the path, the later packets
will use without any need for a central topology database. In contrast to an approach
using a central bandwidth broker this will have several advantages:

• there is a rather local processing of data since only network components along
this path are involved.

• no knowledge about the topology is needed. The configuration packet will sim-
ply follow the path.
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Figure 6.18:Tunnels set up by Agents at Ingress points using capsules to configure
QoS tunnels through a RD

• a parallel operation of several ingress router is supported, since no central com-
ponent has to synchronise the configuration requests.

Within the core routers no information about single flows has to be stored. Just the
rather seldom passing reconfiguration packets have to be processed, which is done by
the Active Network platform.

6.6.4 Resource Setup with Multiple Service Providers

In Section 5.3 tunnels were proposed to aggregate flows within a reservation domain
and to provide better control about the resource consumption within a domain.

While active networks can provide functionalities to set up and maintain tunnels, these
mechanisms usually are limited to a network being operated by the same Internet Ser-
vice Provider [BB00c]. There are similar problems for the setup of resource reserva-
tions.

As can be seen in Figure 6.17 ideally on both sides of an Internet Service Provider (or
a reservation domain) border agents based on active network technology have been in-
stalled to provide the reservation translation according to their own and to their neigh-
bours needs. Until now any communication of agents at each side of such a border was
neglected. All functionality applied to traffic was either the mapping between DSCPs
or the aggregation of flows to tunnels between ISPs border routers.

Depending on the type of resource reservation mechanism used, this may cause a re-
peated encapsulation and decapsulation of packets at the border routers as illustrated
in Figure 6.18.

To provide services spanning multiple Internet Service Provider two approaches are
self-evident:
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1. Interaction between central instances like bandwidth (or more general) service
brokers.

2. A signalling along the path like RSVP does for the setup of resources.

The first approach was proposed and implemented as a part of the project ”Charging
and Accounting Technology for the Internet (CATI)” [SBP99] and works well for small
and medium size networks. For larger networks a signalling along the path would be
advantageous, since central components automatically limit the scalability of such an
approach. In contrast to RSVP, which requires processing by each router along the
path and is therefore also not suited for large networks as well, an alternative solution
may only involve the ISPs border routers within such a setup process and leave it to
the ISP how to provide the services.

Regarding Active Networks, such an approach has another fundamental advantage.
Since security within active networks is hard to provide and an ISP will therefore not
tolerate foreign code within its network, active packets have to be limited to a single
ISP network.

To provide active services and simultaneously limit the activity of packets to a certain
domain, interfaces at border routers have to be provided, that are accepting certain
configuration commands and map them to a local management architecture.

An active packet can be sent out within an ISP to establish a tunnel with a certain
Quality of Service. When the packet reaches the border router it can use such an
interface to initiate the establishment of a decapsulation endpoint within the next ISP.
How the next ISP provides such a service is left to the ISP.

Multiple tunnels as shown in Figure 6.18 can be avoided. If an agent atB starts to set
up a tunnel, it forwards the according active packet as described in section 6.6.3. When
the packet reaches the egress border router, it negotiates with an interface atF about
an appropriate mapping scheme. IfF considers an optimal endpoint for the tunnel to
be located atG, it might proposes this toE. E transmits the new tunnel endpoint to
B, setting up the proper encapsulation methods. Even if the tunnel is now spread over
multiple Reservation Domains, the underlying resource reservation methods are tasks
of each specific ISP.

Such a rather simple mechanism allows to set up tunnels spanning multiple ISPs as
shown in Figure 6.19, completely driven by the tunnel start point. The tunnel start
point even does not need to know, in which ISP network the end point is located.
Also, the required negotiations between ISPs is minimised. Since an ISP has only to
negotiate with its direct neighbours, an establishment of SLAs also covering the setup
of Quality of Service supported tunnels would be feasible.

Tunnel Setup Process

Such an interface mechanism to set up Quality of Service enabled tunnels over multiple
ISPs was implemented with the PyBAR active network system. When a Quality of
Service tunnel has to be set up, the tunnel start point transmits an active packet towards
the flow’s destination. The tunnels to be set up comply the standard IPIP tunnels



158 CHAPTER 6. ACTIVE QUALITY OF SERVICE MANAGEMENT

B

H

A

C

D

E

F

G

Figure 6.19:Tunnels set up by Agents at Ingress points using capsules to configure
QoS tunnels through a RD

[Per96]. Therefore, the required encapsulation and decapsulation can be provided by
the routers themselves and the active packets are used to accomplish the required setup
only. The setup process follows these steps:

1. the tunnel start point transmits an active packet towards the destination of the
tunnel. The active packet contains code to set up the tunnel endpoint, if the end-
point is within the authority of the active network system and some functionality
to negotiate with an appropriate interface, if the tunnel endpoint lies outside the
ISP.

2. (a) if the packet directly reaches a possible tunnel end point this end point is
configured and an acknowledgement is sent back to the tunnel start point.

(b) if the active packet reaches a border router, it contacts the interface to ini-
tiate the further setup of the tunnel end point within the next ISP. If the
interface signals a successful setup of the tunnel endpoint, an acknowl-
edgement is sent back to the tunnel start point.

3. if the tunnel start point receives the acknowledgement the encapsulation mech-
anisms are installed. Using IPIP tunnels, this requires the setup of a tunnel
interface and an appropriate routing table entry.

4. optionally, the tunnel start point configures the resources along the tunnel path
by sending an active packet with configuration information along the path. If
the tunnel spans multiple ISPs the resource configuration of remote ISPs was
already provided during the negotiation in step 2b.

Of course it would be also possible to negotiate again with the border router interface
as well to set up the resources for the tunnel instead of initiating the tunnel and the
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Figure 6.20:Code blocks used for multi ISP tunnel setup

resources simultaneously as done in step 2b. On the other hand this requires two
negotiations and even if the remote ISP may agree to set up the tunnel this does not
mean automatically that it is willing to provide the resources. Therefore a combined
request for the tunnel and the resources is the better solution.

Table 6.11 shows the code of an appropriate active packet and Figure 6.20 the active
packet with the two code blocks. Similar to the example in Section 6.5.3 an UDP
packet is used to provide the required feedback to the tunnel start point. Also, a similar
packet format was chosen with the first code block containing the executable code and
the second code block containing information about the tunnel start point and about
the desired Quality of Service.

The method querynextISP(self,pkt) is called to accomplish the negotiation with the
next ISP. How this is handled in detail depends on the mechanisms provided by the
next ISP.

When the tunnel start point receives the UDP acknowledgement, it will set up IPIP
components and if needed, transmit an active packet adapting configured resources
between the start point and the border router.

Interface Design

The interfaces accepting the configuration requests have to provide a rather generic
data format to support a broad range of services and to allow an easy extension. Due
to security reasons the data sent to the interface contains no code to be executed. There-
fore, a flexible solution might be the use of some text based negotiation with the advan-
tages of platform independence, simple extensibility and human readability for control
purposes.

An alternative may be to provide multiple methods for an interaction. The next ISP
then may provide a central broker like interface, which can be contacted to determine
the tunnel end point, or the opposite border router serves as access points.

The mechanisms used to provide tunnels spanning multiple ISPs can of course also be
used to trigger any kind of setup process requiring flow specific negotiations between
ISPs.
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class MultiTunnelEP(ARpacket):
def init (sefl,pkt):

return

def run(self,acpkt):
c=pad.getCaps()
m=pad.managedips()
# if the destination is in the list of supervised hosts and this
# host can handle IPIP tunnels send feedback packet
if m.count(acpkt.dest) and c.count(’IPIP’):

self.sendfeedback(self,acpkt,pad.hostip)
return

# is this a border router ?
if c.count(’BORDER’):

# query result from next ISP
result=self.querynextISP(acpkt)
if not result == ”:

# return feedback packet with the address of the tunnel
# end point in one of the next ISPs
self.sendfeedback(acpkt,result)
return

# no answer from next ISP, the border router has to
# handle the tunnel end point
self.sendfeedback(acpkt,pad.hostip)
return

# this is neither end point, nor border, forward the active packet
# to the next host
acpkt.send()
return

def sendfeedback(self,pkt,tendpoint):
src info=cPickle.loads(pkt.cb(1));
p=pad.UDPPacket()
p.source=pad.hostip
p.dest=pkt.dest
p.destport=srcinfo[’portnumber’]
p.payload=cPickle.dumps({’service’:’IPIP’,

’tunnel end’:t endpoint, ’time’:pad.time()})
p.send()
return

def querynextISP(self,pkt):
# negotiate with some instance of the next ISP and
# return ip address of end point on sucess
# e.g. send serialised python objects
return ”

Table 6.11:An active packet looking for a tunnel end point and triggering negotiation
with the next ISP
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In contrast to RSVP these mechanisms do not require core routers to store per flow
information and also the active packets used to adapt settings within the core routers
may only be sent if the requested resources exceed a certain limit. The system provides
a high degree of flexibility.

The range of services to be supported by such an approach is endless and does not
have to cope with the security issues often mentioned against active networks, since
no foreign active code has to be executed.

6.7 Conclusion

In this Chapter the Python based active router (PyBAR) has been presented. Python is
a modern, object oriented platform independent computer language. Python especially
is able to be easily extended using either Python based components or modules written
in C or C++. This capability allows Python also to access low level functionalities of
an operating system, as required for an Active Network environment.

On the other hand this combination of native and high level Python code can pro-
vide good performance and high flexibility at the same time. The PyBAR system was
implemented for the Virtual Router platform presented in Chapter 4 and for Linux
routers.

Therefore, Active Network topologies consisting of Virtual and Linux routers can be
set up, allowing the evaluation of classical network functionalities as well as experi-
ments with active networks.

Since the PyBAR does not address end users but is intended to provide a platform for
the implementation of new network services, it is rather a toolkit than a ready to use
application. Special modules have been implemented for the PyBAR like the PyRSA
module providing RSA based encryption mechanisms.

Based on the PyBAR platform new services have been implemented for example a
mechanism for an application specific packet dropping, a simple multicast service and
mechanisms realising tunnels. Of course the performance of interpreted code is lim-
ited, but nevertheless allows to provide mechanisms requiring little processing power.
New mechanisms can be dynamically loaded to specific network devices, increasing
the performance of applications. The ability to implement lightweight mechanisms for
the detection of tunnel end points can also be exploited by other, not active compo-
nents.

In Section 6.6 the capacity of the PyBAR platform for signalling has been further dis-
cussed. Since signalling takes place rather infrequently, performance issues are not as
important as for packet processing. Similar to the integration architecture for RSVP
and Differentiated Services in Chapter 5 an active network based architecture was pre-
sented, providing similar functionality. In contrast to the approach of Chapter 5 which
requires a central bandwidth broker component, active networks can provide similar
functionality without the need of central instances. This is why active mechanisms can
provide a better scalability.

Another application of active networks was the establishment of Quality of Service
supported tunnels spanning multiple ISPs. Even in such a scenario active network
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mechanisms can be used to provide mechanisms working without the need of central
instances like topology databases and therefore can work in parallel.



Chapter 7

Summary and Conclusion

The thesis focuses on mechanisms providing Quality of Service for the Internet. Be-
sides the basic concepts like Differentiated and Integrated Services, management re-
lated tasks are also addressed. Especially the concept of Differentiated Services as
proposed by the IETF plays a central role. In contrast to Integrated Services with
the Resource Setup Protocol, Differentiated Services are especially suited to provide
scalable Quality of Service in heavy loaded Internet backbones.

Evaluation of Differentiated Services

Since the performance of Differentiated Services depends on traffic conditioning com-
ponents, thens network simulator has been used to evaluate several scenarios. A
special Differentiated Services extension of the simulator has been implemented and
is described in Section 3.1 providing the needed DiffServ traffic conditioning com-
ponents. The simulations performed withns in the first place concern the Assured
Forwarding service. In contrast to other Differentiated Services, Assured Forward-
ing requires fundamentally new traffic conditioning components (like the RIO and the
TRIO queue). The components have to be evaluated appropriately. A first set of ex-
periments focused on the impact of different parameter sets for the RIO queue (see
Section3.2). Due to the design of the RED based RIO and TRIO queues (see Section
2.4.6), specific influence of particular parameters is hardly to determine. Since RED
has been designed to work with TCP only, an aggregate of different protocols makes
a proper choice of RED parameters nearly impossible. But even if the concrete be-
haviour of the RED based RIO component is complicated, the differentiation between
different service levels is evident.

The proposed RIO traffic conditioning components for Assured Forwarding have some
drawbacks and therefore, a new queueing mechanism has been presented in Section
3.3. The new component has the advantage of providing a better control over packet
delay than the standard mechanisms and allows a simpler configuration. The new
algorithm has been evaluated within different scenarios demonstrating the improved
delay control. The new mechanism allows to exactly specify the maximum upper
delay of a high priority packet. To minimise the changes to the packet order arising
from such an approach, packet re-sequencing is applied.

163



164 CHAPTER 7. SUMMARY AND CONCLUSION

Concluding thens experiments, tests regarding the fairness of Assured Forwarding
have been performed. The results show clearly the need for proper network provision-
ing but also prove the capability of DiffServ to provide Quality of Service. Especially
DiffServ is able to protect congestion avoiding TCP flows against aggressive UDP traf-
fic. Between identical protocols a fair sharing of bandwidth resources can be achieved.

The experiences with the network simulator initiated the development of a concept for
the emulation of networks (see Chapter 4). It is based on Virtual Router (VR) pro-
grams emulating Internet routers, which can be connected to set up large topologies.
The architecture allows to distribute a network emulation over several computers with
multiple Virtual Routers per computer. Virtual Routers can be connected to real end
systems, which allows to set up networks consisting of real and emulated network
devices.

Compared to simulation programs, this approach has the advantage that no traffic gen-
erators and protocol stacks have to be implemented for a simulator, but a real end
system can be integrated into the emulated network. Since the emulated network be-
haves similar to a real one, any application can be used to send traffic through that
topology.

Since the Virtual Routers do not require any modification of the operating system ker-
nel like other approaches, they can run completely in user space. Even the emulation
of several separated networks on a single computer is possible. For the configuration
of VRs a command line interface is available, providing commands similar to those of
a Linux router. Of course an API is provided as well.

Because Virtual Routers have to process packets in real time, the number of VRs per
computer must of course be limited. Also distributing them to multiple computers
increases the delay of packets exchanged between VRs on different computers (see
Section 4.3). The result of several tests shows that Virtual Routers produce similar
packet delays and the same linear dependency of Round Trip Time on the number of
hops as known from real networks.

Many mechanisms available in Internet routers have been implemented for Virtual
Routers, for example flexible traffic conditioning components (Section 4.1.2), routing
(Section 4.1.3) and tunnelling mechanisms (Section 4.1.5).

Based on the Virtual Router traffic conditioning components, Differentiated Services
networks have been emulated and evaluated. A comparison of the results with the
ns experiments shows a similar behaviour of both evaluation tools and confirm the
capacity of the Differentiated Services approach to provide Quality of Service. Since
Virtual Routers do not need any traffic generators or sinks like simulators but use real
end systems, the obtained results meet the reality more closely. Due to the concept
of emulating a network, the simple integration and evaluation of standard applications
like web servers and browsers is also supported and provides the possibility to use
measurement programs, originally designed for real networks.

Virtual Routers are a rather open environment providing a basis for various experi-
ments. Therefore, besides the experiments presented here, Virtual Routers have also
been used for the evaluation of a Software Agent based monitoring system [Gün01].
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Quality of Service Management

The results of the evaluations show the dependency of Differentiated Services on
good network provisioning and a proper configuration of network devices. Special
techniques are required to manage and reserve resources within a Differentiated Ser-
vices network and to configure network devices. Besides manual configurations using
SNMP or telnet, an automatic resource management and provisioning within DiffServ
based core networks can be achieved. Since the Resource Reservation Protocol pro-
vides good end user support but lacks scalability within Internet backbones and since
Differentiated Services can provide exactly this scalability an integration of both con-
cepts is proposed.

The proposed architecture is based on a RSVP/DiffServ Gateway (RDG), which su-
pervises RSVP reservation setup requests. The RDG reacts to these signals by setting
up tunnels through the DiffServ network, aggregating multiple RSVP flows. Quality
of Service is provided to the tunnels by Differentiated Services. The main benefit of
the RDG approach is the ability to combine the strengths of both the RSVP and the
Differentiated Services concept. RSVP provides the signalling to set up the resources
in the access networks and also provides feedback to the customer, whether resources
have been set up correctly. On the other hand the core network does not have to process
single RSVP flows but can handle the aggregate tunnels efficiently using Differentiated
Services.

The set up of the tunnels and the configuration of the DiffServ devices is provided by
a central bandwidth broker instance. This instance also controls, whether a reservation
requests is permitted or denied.

Active Quality of Service Management

Even if the developed integration concept for RSVP and Differentiated Services works
fine for small and medium size networks, the need for a central bandwidth broker
instance causes scalability problems in large networks.

Due to the shortcomings of classical network management, a concept to use Active
Networks for the support of new Internet services is proposed (see Chapter 6). Active
Networks allow to send small programs through a network, which are executed by
active routers forwarding the packets containing the programs. An active network
environment using the Python programming language has been implemented. Python
has a lot of similarities with Java like object orientation and platform independent code,
but can be adapted more easily to specific needs and also allows the simple integration
of native code elements.

The Python based active router (PyBAR) has been implemented for Virtual Routers
and for Linux Routers. For the PyBAR environment, a set of modules providing con-
venient, frequently used mechanisms like encryption and authentification has been
implemented (see Section 6.2.5). An advantage of the PyBAR system is the com-
bination of a high level interpreted language with extension mechanisms, which can
be provided by native code. The high level language provides the required platform
independence, a simple syntax and flexibility, while the dynamic loadable extension
modules provide the required speed.
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Based on the PyBAR environment a set of active services has been implemented.
These are application specific dropping mechanisms, a simple active multicast ser-
vice supporting a video streaming application and an active service allowing to handle
active tunnels. These services show the power of an Active Network approach to es-
tablish rapidly new services and also to provide general purpose management support.
Such active services can support applications as well as reduce resource consumption
within the network (see Section 6.5.1). Since active services can be installed or up-
dated very easily, they can be adapted quickly to new applications and be installed on
active network devices.

The PyBAR system was used to develop a general approach of active Quality of Ser-
vice management. Such an approach can provide more autonomy and support for net-
work management by distributing management to the network itself and decrease the
need for central instances like management stations or bandwidth brokers. Configura-
tions can be processed more locally, also allowing the management of large networks.
Similar to the RSVP/DiffServ gateway, components mapping different resource reser-
vation schemes can be established (see Section 6.6.3). These schemes do not require
central instances but can configure network resources by active packets. The power of
active networks for signalling purposes can also be used to establish services spanning
multiple Internet Service Providers. Such a mechanism allows to dynamically set up
Quality of Service supported tunnels (see Section 6.6.4). A special advantage of this
approach is the capability of an active packet to behave more intelligent than stan-
dard signalling procedures can do. Additionally to the simple adaptability, reasonable
default fallback solutions can be provided.

Outlook

The Virtual Router approach is still at its beginning. Within this thesis Virtual Routers
were mainly used to emulate Quality of Service and Active Networks, but several other
purposes are obvious:

• Since the communication channels to exchange packets may be disconnected
and established during run time, node mobility can be emulated. Similar to
a wireless network with an end system leaving the range of a base station, a
communication channel can be disconnected and established to another VR.

Besides Quality of Service aspects, this can also allow the evaluation of (active)
routing protocols, or the evaluation of mechanisms used to establish mobile ad
hoc networks.

• Virtual Routers emulate Internet routers and therefore provide similar function-
alities. These similarities are not restricted to packet forwarding, but also cover
the syntax of command line interfaces. This makes VRs a useful tool for student
exercises, since students can set up and operate IP networks without any need
for physical network devices. The capability to be configured via telnet or from
a front-end via an API may also enable the set up of remote exercises.

• Of course other protocols might be ported to Virtual Routers as well, for ex-
ample RSVP, Internet routing protocols, or multicast. Also, the implementation
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of additional protocol stacks is a possibility to enhance the usability of Virtual
Routers. Supported by the convenient development and evaluation environment
provided by Virtual Routers allows a rapid prototyping and evaluation is possi-
ble.

• The Active Network system provided for the Virtual Router and Linux may
also be extended and used for other kinds of purposes. The general ability to
provide simple multicast services has already been shown. A possible extension
may be the integration of classic and explicit multicast. Active components can
map explicit multicast packets to classical multicast groups and vice versa. This
way explicit multicast may be used within networks not capable to provide a
classic multicast service. This idea might also be useful, since classic multicast
is a rather heavy weight concept and for networks with only a small number of
receivers explicit multicast may be prefered. Active components can be used to
perform the required signalling and to configure the network devices.

• Another task for the Active Network environment might be the implementation
of flexible and autonomous monitoring tools. Active Nodes can monitor traffic
and react intelligent on exceptional traffic situations. The interaction of various
nodes and the exchange of informations can be used to provide scalable solutions
for tasks like the tracking of Denial of Service attacks.
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Appendix A

Virtual Router API

This document describes the interface between the Virtual Router’s (VR) core mecha-
nisms and an application running on top of the VR. The application may use either the
loadable object mechanism to access the Virtual Router or is run as an external process
using a communication channel to interact with the Virtual Router.

A.1 API channels and VRCB handles

A Virtual Router may have several APIs each used by another application like a shell,
a packet monitor or a graphical front end. Each API establishes an API channel, a
duplex connection between the Virtual Router and the program.
Since only this channel is used for the communication, the program may also access a
Virtual Router on a remote computer.
The communication is based on Virtual Router Control Blocks (VRCBs) and Virtual
Router Result Blocks (VRRBs). The Virtual Router receives a control block, parses
it, executes the command and returns an appropriate result block. There are several
control and result blocks for different commands and the according results. All data
types are in network byte order. A ulong specifies a four byte, a ushort a two byte wide
integer.
To allow a simple parsing of the control and result blocks a hierarchy of control block
exists. Each block starts with a generic header (VRCB/VRRB) and is followed by
command dependent data. A specifier at the beginning of the control block defines
the format of the following data. Additionally, the basic VRCB contains a handle and
information about the control block lengths.

VRCB Control Block
ushort Handle of the control block, it will be referenced in the re-

turned result block
ushort total length of control block
ushort VRCB command specifier

The handle is unique and referenced by the returned result block. This allows a sim-
ple mapping between commands and the according results. Currently, the following
VRCB command specifiers are defined:

169
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VRCB command specifiers
1 add an interface to the Virtual Router
2 delete an interface
3 get list of interfaces. This will return a list of num-

bers used to reference an interface
4 query an interface by its name.
10 changing interface parameters (bandwidth, ...), mod-

ify the queueing system
20 list, add and delete routing table entries
21 query the event handler and return the event status

of scheduled events or devices like interfaces
30 setup, list and remove filter setup
31 add a new protocol stack to the Virtual Router
40 list, add and remove loadable objects
50 send an IP packet to the Virtual Router

The Virtual Router returns a specific Virtual Router Control Block according to the
received control block. Each result block starts with a basic VRRB.

VRRB Result Block
ushort handle referencing the according control block
ushort type of the returned result block
ushort total length of the result block

It references the according VRCB by a handle. The result block type is important
to process asynchronous events. Usually a control block is directly responded by the
according result block (type 0). Some configurations can cause the Virtual Router to
send additional information asynchronously over the API channel. Therefore this field
is set to signal the type of result block received. Currently the following values are
defined:

Result Block Types
0 synchronous RB sent as an answer to a CB
1 filtered packet
2 packet for protocol stack

If a filtered packet is sent over the API channel, the handle of the result block refers
to the handle of the control block sent to set up the filter. The API guarantees that
there are no asynchronous packets sent between a control block and its synchronous
answer. However there might be some asynchronous packets still in the line. Therefore
incoming datagrams should be checked for their handle and result block type.
This control block - result block mechanism is used for all types of configuration.
The control blocks are structured. Additionally to the VRCB command specifier there
might be additional command specifiers controlling certain parts of a component (e.g.
control of the queueing system of an interface).
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A.2 Adding an Interface

To add an interface a special VRCB has to be sent over the API. This VRCB contains
fundamental information about the interface to be added.

IF ADDINTERFACE CB Control Block
VRCB control block with handle, length and base command spec-

ifier
byte[10] name of the interface. The string has to be followed by a

0-byte
ulong ip address in network byte order as returned by

inet addr()
ulong netmask in network byte order
ulong broadcast address

The name field has to be terminated by a null byte. A different name should be used
for each interface. The Virtual Router will return block containing information about
the interface.

IF INFORMATION RB Result Block
VRRB result block with the reference handle and the length
byte the internal number of the interface within the VR. This pa-

rameter is set to 0xffff if the request fails.
byte[10] the name of the interface
ulong ip address
ulong netmask
ulong broadcast address
ulong number of received packets (rx)
ulong number of transmitted packets (tx)
ulong errors during transmission/reception
ulong packets dropped by the interfaces queueing system
ulong bandwidth in bytes per second
ulong bucket size of the interface’s rate limiter in bytes
ulong bucket level of the limiter in bytes
ulong ip translation for outgoing packets: address
ulong ip translation for outgoing packets: netmask
ulong ip translation for outgoing packets: new address
ulong ip translation for outgoing packets: pattern
ulong ip translation for incoming packets: address
ulong ip translation for incoming packets: netmask
ulong ip translation for incoming packets: new address
ulong ip translation for incoming packets: pattern
byte connection type; 0: not connected, 1: softlink, 2: udp-

tunnel, 3: local link (FIFO), 4: ipip tunnel (logical inter-
face)

ulong[3] connection parameters

On error the interface number field is set to 0xffff. See table on page A.6.2 for a
description of connection parameters.
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A.3 Deleting Interfaces

IF DELETEINTERFACE CB Control Block
VRCB the control block header
ushort the number of the interface to be deleted

As a response to this control block the Virtual Router returns:

IF DELETEINTERFACE RB Result Block
VRRB result block header
ushort number of the deleted interface, 0xffff on error

A.4 Querying Interface Numbers

To query a list of existing interface numbers, a VRCB with the according VRCB com-
mand specifier is sent to the VR. The VR will return a result block with a list of valid
interface numbers.

IF IDQUERY CB Result Block
VRRB result block header
byte[] returns a list of interface numbers

The length field in the result block header can be used to calculate the number of
returned interface numbers.

A.5 Query Interface by Name

The special command here is to query the interface id by the name of the interface.
The according control block is:

IF IDNAMEQUERY CB Control Block
VRCB control block header
byte[10] name of the interface the number has to be queried

The Virtual Router will return an interface information result block as described on
page 171. If there is no matching interface within the Virtual Router the number field
of the returned result block will be set to 0xffff.

A.6 Configuration of a specific Interface

There are several interface specific parameters or commands. Each control block ad-
dressing a specific interface starts with an extended VRCB called IFVRCB providing
the number of the interface and an interface specific command code.
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IF VRCB Control Block
VRCB the control block header
ushort interface number
ushort interface specific command

The interface specific command determines also the format of the rest of the control
block. The following table lists the currently defined command codes.

interface specific command codes and their parameters
1 - query interface information (see sec-

tion A.6.1)
2 - reset all counters of an interface

(rx,tx,dropped packets, errors)
101 byte[10] set the interface name. The string

should be ended by a 0 byte
102 3 x ulong change of ip-address, netmask, broad-

cast (see section A.6.2)
105 2 x ulong configure the interface bandwidth

(bytes per s) and bucket size (bytes)
(see section A.6.2)

107 4 x ulong set up of translation table for received
packets (ip address, netmask, new
value, pattern)

108 4 x ulong set up of translation table for packets
to be sent (ip address, netmask, new
value, pattern)

109 byte + ulong + 2x ushort connect or disconnect the interface (see
section A.6.2)

120 ... configuration of the interface’s queue-
ing (see section A.7)

A.6.1 Querying Interface Configuration

This interface command takes no arguments. An IFVRCB with the according com-
mand value 1 is passed to the Virtual Router. The Virtual Router returns an IFINFOR-
MATION RB as described on page 171. If an error occurs the field of the result block
containing the interface number is set to 0xffff.

A.6.2 Setting of Interface Parameters

As can be seen in the previous table several parameters of the interface can be modified.
Each of these configurations is done by an IFVRCB with the appropriate command
specifiers and some additional command dependent data.
Any of this requests will be answered by a returned IFINFORMATION RB with the
interface number field set to 0xffff if an error occurred. The following list will briefly
describe the commands and the required parameters.
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interface bandwidth/bucket size (105):The first parameter specifies the bandwidth
in bytes per second, the second one the bucket size in bytes. If the second
parameter is set to 0xffffffff the bandwidth only is modified.

ip, netmask and broadcast addresses (102):This API call requires three parame-
ters. If a parameter is set to 0xffffffff, the according value of the interface is
not changed. Each address has to be provided in network by order as returned
by theinet addr() function.

(dis)connect a Virtual Router interface (109): Since a Virtual Router interface may
be connected in different manners this control block takes a set of parameters.
The meaning of this parameters depend on the type of the connection.

IF CONNECTION CB Control Block
IF VRCB interface control block header
byte connection type
ulong[3] connection parameters

The connection parameters and their meaning are defined in the following table.

Connection Types and Parameters
type [0] [1] [2]

disconnected 0 - - -
Softlink 1 - #no -
IPC 2 - #no 1/2
UDP 3 destination address tx port rx port
IPIP tunnel 4 destination addressR- MTU

VR A

if1 if1if0

if0

if2

VR B

if0 if1 if0 if1

Host A

eth0 if1

if4

sol0
eth0 eth0

VR D

Host C

if0

VR C

if2

Host D

sol0 sol1

et
h0

Host B

VR E

network connection
FIFO (IPC)

Softlink

Tunnel

The Virtual Router will return an result block with interface informations as
described on page 171. According to the type of error either the interface number
field is set to 0xffff or the connection parameters shows a (dis)connected device.

A.7 Modifying the Queueing System

The queueing system consists of a set of components like FIFO queues, schedulers and
classifiers which can be connected to set up complex and powerful queueing systems.
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Root 
Component

DropTail

TBF

The root component is the basis for
all other components and connects the
queueing system with the interface

Each different component type has an type id as listed on the following table. This id
is used to signal a components type within the control and result blocks.

Component types and ids
component type id
0 the root component itself
1 droptail queue, a simple FIFO queue
2 Token Bucket Filter to limit bandwidths with vari-

able rate and bucket size
3 generic multi field classifier
4 generic scheduler with RR, WRR and PWRR sup-

port
5 trio queue for differentiated services
6 a packet marker as required for differentiated ser-

vices

The components listed in the table may be created, connected, disconnected and re-
moved. All commands for the queueing system or queueing components start with
If Q VRCB extending the IFVRCB control block used for interface configuration.
To access the queueing system the appropriate command specifiers have to be set in
the VRCB, the IFVRCB and in the IFQ VRCB. The following table lists the com-
mand specifiers for the IFQ VRCB.

IF Q VRCB Control Block
IF VRCB the interface specific control block, containing also the fun-

damental VRCB
ushort queueing system specific command

The table lists the command set which can be sent to an interface’s queueing sys-
tem. This set covers mainly tasks concerning all components. To configure a single
component the command specifier #10 provides direct access to a component. The
configuration of specific components depends of course crucially on the component’s
type requiring special control and result blocks as will be described in the next section.
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basic queueing system commands
1 - list all components (section A.7.1)
2 - list all connections (section A.7.2)
3 ushort create component (section A.7.3)
4 ushort remove component
5 2 x ushort connect two components (section A.7.5)
6 2 x ushort disconnect two components (section A.7.6)
10 ... component specific configuration

A.7.1 Query List of Components

To request a list of components the IFQ VRCB does only contain the command spec-
ifier, and no additional data is needed. The returned result block looks like this:

Result Block
VRRB the result block header
ushort[] list of (c-id/c-type) pairs

Each list element has two fields. The first one specifies the component’s id, the second
one the type of the component. As mentioned previously, each component in the
queueing system has an unique id used to address the component. To calculate the
number of components contained in the result block, the length field within the VRCB
can be used.

A.7.2 Query list of Connections

A control block with the queueing command specifier #2 will return a result block with
a listing of all connections between the components.

Result Block
VRRB the result block header
ushort[] list of [c-id/c-type, c-id/c-type] tuples

Each list elements contains information for both components a connection. Therefore
four values are included For each end point a c-id/c-type pair is provided. The first
pair specifies the start point of the connection, the last one the end point. As usual the
length field in the VRRB can be used to calculate the number of connections.

A.7.3 Create a new Component

A new component is created by sending the component type to the API.

Control Block
IF Q VRCB the queueing system header block
ushort type of component to be created

The API answers with an ip/type tuple.
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Result Block
VRRB the common result block header
ushort the component id of the created component
ushort the type of the created component

On error the component id is set to0xffff . In future releases the component type
may be used for further error codes.

A.7.4 Remove a Component

For the removal of a component the component has to be disconnected first. If the
component is not connected the following control block will remove the component.

Control Block
IF Q VRCB the queueing system header block
ushort the id of the component to be deleted

The API answers with an ip/type tuple.

Result Block
VRRB the common result block header
ushort the component id of the removed component
ushort the type of the removed component

The component id is obsolete after the removal of a component and might be re-used if
other new components are created. On error the returned component id is set to 0xffff,
the component type field indicates the error more precisely as listed on the following
table.

Error codes during component removal
component id component type

0xffff 1 cannot delete root component
0xffff 2 no such component
0xffff 3 component busy

A.7.5 Connect two Components

A connection between two components allows to pass packets from one component
to the next. A component may have multiple connections to other components, as for
example a classifiers puts packets to different queues. Whether a component allows
multiple connections or not is determined by the component itself. The TBF has one
input and one output slot. Therefore a TBF can have two connections:

→ tbf The tbf is the end point of a connection and receives packets from another
componennt.

tbf ← The tbf is the start point of a connection and sends packets to the nect compo-
nent.
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Any additional connection for a Token Bucket Filter would result in an error.

Control Block
IF Q VRCB the queueing system header
ushort component id 1
ushort component id 2

The Virtual Router returns a result block with a pair of both component ids.

Result Block
VRRB the result block header
ushort component id 1
ushort component id 2

Both component ids are also used to indicate errors as shown on the following table.

Error codes during Component Connection
id 1 id 2 description

0xffff 1 first id invalid, no such component
0xffff 2 second id invalid, no such component
0xffff 3 connection to next failed, component busy
0xffff 4 connection to previous failed, component busy
0xffff 5 invalid length

A.7.6 Disconnect two Components

The disconnection requires a similar data format as used for the connection of queueing
components. Also the error codes returned within the result block if an error occurs
are similar to those used during component connection.

A.7.7 Component Configuration

The commands dealing with the queueing system presented so far covered tasks more
general like the creation of queueing components and their connection.
In this section the configuration of specific queueing components will be described.
As explained before each component has an unique identifier. To address a specific
component the previously introduced IFQ VRCB control block is extended to an
IF QS VRCB.

IF QS VRCB Control Block
IF Q VRCB queueing system control block header
ushort component id of the addressed queueing component
ushort component specific command
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As mentioned before the control blocks follow some kind of hierarchy. Therefore, the
IF Q VRCB header contains other control block headers. To illustrate that hierarchy,
the following table lists a complete IFQS VRCB.

IF QS VRCB Control Block
ushort control block handle
ushort length of the control block
ushort VRCB command specifier = 10
ushort interface number
ushort interface specific command (IFVRCB) = 120
ushort queueing system command = 10
ushort component id of the addressed queueing component
ushort component specific command

Theoretically a component specific command code might have different meanings for
different components. Since there are enough command specifiers available and a mul-
tiple usage of the same value would make things more complicated, different compo-
nent command codes were defined. As can be seen in the following table, component
specific codes of a value less than 100 are dedicated to functionalities common to all
components like the information query or the resetting of statistical counters. The
meaning of command codes over 100 may differ for different components.

Command codes for specific queueing components
code component
1 all reset the statistical counters of the component
2 all information request
210 2 configure Token Bucket Filter
310 1 configure Droptail (FIFO) queue
410 4 change the scheduler mode
411 4 modify a scheduler weight/priority
511 3 adding a classifier rule
512 3 removing a classifier rule
611 6 add a rule to the Differentiated Services marker
612 6 delete a rule within the Differentiated Services marker
710 5 configure the Differentiated Services TRIO queue

Of course each of the component dependent commands requires a specific configura-
tion datagram. The control blocks have only the IFQS VRCB part in common.

Reset the Counters of a Component

A resetting of a component affects all statistical counters of this component. The
function is common to all components of the queueing system. An IFQS VRCB
with the appropriate command code is sent to the API. As result an empty VRRB is
returned.
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Query a Component’s Status

For a request of component parameters and statistic counters an IFQS VRCB control
block with the appropriate command code only is necessary. Obviously, the amount
and type of data returned depends crucially on the component type. However, each
result block returned starts with:

QS STAT VRRB Result Block
VRRB the general result block header
ushort component id
ushort component type

The rest of the result block depends on the component. The following list described
the result blocks returned by each component.

Droptail Queue: contains information about the only parameter of a droptail queue,
the queue length and statistical information, how many packets passed the queue,
how many packets were dropped a.s.o.

Result Block
QS STAT VRRB common statistical header
ushort length of queue in packets
ulong dropped packets
ulong deque requests
ulong deque hits
ulong deque fails

Root Component: Since all packets sent to the queueing system pass the root com-
ponent, the statistical data in this datagram gives a very global impression about
the queueing system’s activities.

Result Block
QS STAT VRRB common statistical header
ulong enqued packets
ulong dequed packets
ulong packets stored in the queueing system
ulong packets dropped by the queueing system

Token Bucket filter: The token bucket filter is defined by a token rate and a bucket
allowing to buffer a certain amount of tokens.
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Result Block
QS STAT VRRB common statistical header
ulong bucket rate in bytes per second
ulong bucket size in bytes
ulong enque hits (internal)
ulong enque fails (internal)
ulong enque empty (internal)
ulong deque hits (internal)
ulong deque fails (internal)
ulong deque empty (internal)
ulong bucket overflows

Generic Scheduler: The generic scheduler can have multiple components connected,
it receives packets from and one outgoing component. How incoming packets
are treated depends on the scheduler mode. A query for statistical data reveals
data for each connected component. Each component sending data to the sched-
uler is described by a GENSCHEDREC.

GEN SCHED REC Data Record
ushort type of preceding component
ushort id of the preceding component
ulong successful deque events
ushort priority/weight (depends on scheduler mode)

These records and also additional information about the current scheduler mode
are contained in the result block returned following to an information request.

Result Block
QS STAT VRRB common statistical header
ushort type of next component
ushort id of next component
ushort scheduler mode (PPR, WRR, PWRR)
GEN SCHEDREC[] the scheduler records

Classifier: The status information of the classifier mainly contains information about
the rules used to forward packets to other components. The VRRB contains a
record for each outgoing component. These records are appended to the result
block header.

Result Block
QS STAT VRRB common statistical header
ulong deque events
ulong enque events
QS CLASS REC[] the classifier’s records
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QS CLASS REC Data Record
ushort component type
ushort component id
ulong source ip address
ulong source netmask
ulong destination address
ulong destination netmask
ushort ToS byte, use 0xffff to ignore this field
ushort protocol, use 0xffff to ignore this field

Differentiated Services Marker: The Differentiated Services marker returns the fol-
lowing structure with statistical information. The structure contains overall in-
formation about the marking and the remarking the component has performed
and information about each marker rule.

Result Block
QS STAT VRRB common statistical header
ulong enqueued packets
ulong new marks set by the marker
ulong packet kept old mark
DSM REC[] the records with the marker rules

This structure is followed by a number of DSMRECs. These records are related
to the marker rules set up by preceding control blocks.

DSM REC Data Record
ulong source ip address
ulong source netmask
ulong destination address
ulong destination netmask
ushort ToS byte, use 0xffff to ignore this field
ushort protocol, use 0xffff to ignore this field
ushort the service type: EF, AF, ..
ulong service dependent parameters

The precise number of DSMRECs depends of course on the number of set up
rules. The number of records contained within the control block can be calcu-
lated by the control block’s size.

TRIO queue: The datagram contains mainly data about the queue lengths set for each
dropping precedence. Additionally to some statistical information the mode the
TRIO queue is currently working in is returned.
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Result Block
ushort the mode of the TRIO queue: linear, boolean, red
ushort[3] three queue lengths
ushort packets currently in the queue
ulong[3] packets dropped with the different drop probabilities
ulong deque requests
ulong deque hits
ulong deque fails

Configuration of Token Bucket Filters

Control Block
IF QS VRCB control block header for the queueing system
ulong bandwidth in bits per second
ulong bucket size in bits

This datagram changes the settings of a token bucket filter component. The two only
parameter are the bandwidth and the bucket size. The bandwidth is measured in bits
per second, the bucket size in bits. If a parameter is set to 0xffffffff, the API will
not change the according token bucket filter parameter. The Virtual Router returns a
datagram with statistical information about the token bucket filter as described on page
180.

Configuration of the Droptail Queue

Control Block
IF QS VRCB control block header for the queueing system
ushort new queue length

This allows to modify the maximum number of allowed packets in the droptail or FIFO
queue. The control block starts with the usual IFQS VRCB and contains an additional
field for the queue length only. The Virtual Router returns the statistical result block
for the droptail component.

Modify Scheduler Weights/Prios

Control Block
IF QS VRCB control block header for the queueing system
ushort component id of the incoming component
ushort new weight/priority

Weights and priorities of the scheduler determine – dependent on the scheduler – mode
the amount of bandwidth the connected component can achieve. In weighted round
robin (WRR) mode the shares of a componentx is calculated by:
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swrrx =
wx∑N
i=0wi

In the PWRR mode the component with the heightest weightx = 0 is processed if a
packet is available. The shares for the other componentsx > 0 can be calculated by:

spwrrx =
wx∑N
i=1wi

In the Round Robin mode the weight of the components is ignored, in the Priority
Round Robin mode incoming packets are processed in order of their component’s
weight. The Virtual Router returns a result block containing the changed record (GEN-
SCHEDREC) (see page 181). If an error occurs (e.g. there is no such outgoing

component) a plain VRRB will be returned.

Change Scheduler Mode

The mode of the scheduler is changed by this datagram.

Control Block
IF QS VRCB control block header for the queueing system
ushort new mode

The VR returns statistical data for the scheduler (see page 181) but without the records
for the connected components. The appropriate mode values are 0 for Priority Round
Robin, 1 for Weighted Round Robin, 2 for Round Robin and 3 for Priority Weighted
Round Robin. A change of the mode parameter does not affect the connected com-
ponents. The weights used during weighted fair queueing are interpreted as priorities
during RR, PRR and PWRR. So the mode may be switched without reconfiguring the
weights/priorities.

Adding a Classifier rule

Control Block
IF QS VRCB control block header for the queueing system
ushort id of the outgoing component
ulong source address
ulong netmask for source address
ulong destination address
ulong netmask for destination address
ushort protocol
ushort ToS

This datagram adds a filter rule for an outgoing component. To avoid a filtering by
protocol or ToS value set according values might be set to 0xffff. The Virtual Router
returns an information block for the classifier with the added record appended has
explained on page 181.
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Removing a Classifier rule

Control Block
IF QS VRCB control block header for the queueing system
ushort id of the outgoing component
ulong source address
ulong netmask for source address
ulong destination address
ulong netmask for destination address
ushort protocol
ushort ToS

This datagram allows to delete a filter rule. The first rule matching the datagram will
be removed from the classifier’s table. If multiple matching rules exist, this datagram
has to be used repeatedly. The Virtual Router returns a result block with classifier
statistics and the deleted record GENCLASS REC appended (see page 181).

Adding a Differentiated Services Marker Rule

Control Block
IF QS VRCB control block header for the queueing system
ulong source address
ulong netmask for source address
ulong destination address
ulong netmask for destination address
ushort protocol
ushort Differentiated Service Code Point (DSCP)
ushort new DSCP
ulong[4] parameters

The datagram allows to add a rule to the Differentiated Service marker. The addresses
and netmasks allow to specify a set of flows. If the values for the protocol and the
DSCP are to be ignored, those fields in the datagram might be set to 0xffff. The API
returns a statistical block with the added rule (DSMREC) appended as explained on
page 182. The parameter block (ulong[4]) depends on the service type. If the service
type is EF the parameter block might remain empty. Using the Assured Forwarding
service the block has the following meaning:

Service Parameters for Assured Forwarding
#0 max bandwidth in bytes for low drop precedence
#1 bucket size in bytes for low drop precedence
#2 max bandwidth in bytes for medium drop precedence
#3 bucket size in bytes for medium drop precedence
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Removing a Differentiated Services Marker Rule

Control Block
IF QS VRCB control block header for the queueing system
ulong source address
ulong netmask for source address
ulong destination address
ulong netmask for destination address
ushort protocol
ushort ToS
ushort new ToS value

The datagram allows to remove a previously set rule from the Differentiated Service
marker’s internal table. The API returns a block containing statistics about the marker
and the record with the removed rule(see page 182).

Modifying the TRIO queue

Control Block
IF QS VRCB control block header for the queueing system
ushort mode
ushort queue length 1
ushort queue length 2
ushort queue length 3 (maximum queue length)

The TRIO queue has two ranges of drop probabilities defined by the three queue length
parameters. The last queue length variable (3) also defines the overall length of the
queue, while the two others define the dropping probabilities for packets with low and
medium drop precedences. Also important is:

q1 ≤ q2 ≤ q3

The value of the mode field influences the behaviour of the queue. There are several
values defined:

0 (hard): This is the droptail mode. The queue lengths define a fixed limit for the
packets of a certain packet type. Therefore packets with high drop precedence
are not put into the queue if the queue length is longer thanq2 and packets with
medium drop precedence are discared if the queue length exceedsq1.

plow =

{
0 for l ≤ q3

1 else

pmedium =

{
0 for l ≤ q2

1 else

phigh =

{
0 for q ≤ q1

1 else
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1 (linear): The dropping probability is increased linearly between the values for the
queue lengths. This is a simple version of the RIO mechanism.

plow =


0 for l < q2
l−q2
q3−q2 for q2 ≤ l < q3

1 for l ≥ q3

pmedium =


0 for l < q1
l−q1
q2−q1 for q1 ≤ l < q2

1 for l ≥ q2

phigh =

{
l
q1

for 0 ≤ l < q1

1 for l ≥ q1

If certain parameters of the TRIO queue should be changed only, the other ones can be
set to 0xffff. The API will ignore this fields.

A.8 Routing

This section specifies the data structures used to set up and query the routes used to
forward IP packets to specific interfaces. Like the interface configuration the con-
figuration is done by VRCBs and VRRBs as described on page 169. Similar to the
interface configuration a generic control block is defined to access the routing system.

ROUTE VRCB Control Block
byte routing specific command

The routing system needs three different commands only:

Routing Command Codes
1 add a route to the routing table
2 delete a route from the routing table
3 list all routes of the table

A route is represented by a ROUTEREC datagram, which is used by all control blocks
dealing with routing table entries.

ROUTE REC Data Record
ulong source address, 0x0 to disable source based routing
ulong source netmask
ulong destination address, 0x0 to ignore disable destination based

routing (any practical use ?)
ulong destination netmask
ushort protocol, 0xffff to ignore this field
ushort DSCP value, 0xffff to ignore
ushort number of interface, the packet shall be routed over
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A.8.1 Adding routes

The control block to add a route is:

ROUTE RECORD VRCB Control Block
ROUTE VRCB routing control block header
ROUTE REC routing record

The fields to be ignored by the routing mechanism have to be set to the default values.
For a normal ”unix-like” routing, only the destination based routing entries have to be
set. The interface id can be queried as described in A.5. The Virtual Router will return
a result block like:

ROUTE RECORD VRRB Result Block
VRRB result block header
ROUTE REC routing record

On error, the interface number is set to 0xffff. The DSCP field may then be used for
more detailed error codes.

A.8.2 Deleting Routes

The deleting of routes works in the same way as the adding of routes. Only the sub-
command specifier is different.

A.8.3 Querying Routes

To query the routes a ROUTEVRCB with the appropriate subcommand specifier has
to be sent over the API. The Virtual Router returns a list of ROUTERECs. The length
field on the VRRB header has to be used to calculate for the number of returned routes.

Result Block
VRRB result block header
ROUTE REC[] records of the routing table

A.9 Filter Setup

Filters are applied to the central forwarding mechanism. Each filter has a couple of
fields specifying the wanted packets, a reference to the object where matching packets
shall be sent to and a priority. The priority defines in which order the filters are applied
to the transported packets. This is important as a filter might remove a matching packet
from the network. As a consequence the packet will not reach the following filters.
After all filters have been applied, the packet is processed by the internal routing sys-
tem. The following commands are defined to setup, list, modify and remove filters.

Filter specific command codes
0 get a list of filters
2 add a filter
3 remove a filter
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A filter is represented by a FILTERREC structure:

FILTER REC Data Record
ulong address of an appropriate ForwarderIF class
ushort position the filter has to be applied
ulong source ip address, NAK is 0xfffffffffd
ulong netmask of the source address
ulong destination address, NAK is 0xffffffff
ulong netmask of the destination address
ushort Type of Service, 0xffff to ignore
ushort protocol 0xffff to ignore
ushort IP options type
ushort ip options value
ushort filter mode copy / move
byte[32] name of the filter
ushort handle of the control block the filter was created with

The following list describes the variables in detailed:

address is a four byte wide pointer to an appropriate forwarder class. If the filter
is initialised by a loadable module, the loadable module can define a function,
which is directly called which an matching packet a argument. If this pointer
is set to 0, the filtered packets are sent over the API channel as asynchronous
VRRBs.

filter position defines in which order the filters are applied . This can be important
as filters can also remove packets. The filters are processed in the order of their
position. If a filter with a low position removes a packet, this packet is lost for
all filters with higher positions.

source ip and source netmaskspecify the type of source addresses to be matched by
the filter. The addresses have to be specified in network byte order. If no source
filtering has to be applied use 0 and 0xffffffff as values.

destination ip and netmask same as the above for the destination address.

Type of Service the Type of Service byte to match the filter. 0xffff disables this filter
parameter.

protocol This allows to filter all packets of a specific protocol (e.g. UDP, TCP, ICMP
...). 0xffff disables this filter function.

ip option type and value allows to react on special options in the IP header. (e.g.
router alert). Set both to 0 to switch this feature off.

filter mode if this field is set to 0 only a copy of the packet is put to the filter. If it is
set to 1 the entire packet is removed from the forwarder and put to the filter.

The appropriate control blocks to remove, list and add filters are described in the fol-
lowing sections.
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A.9.1 Adding and Removing Filters

To add or remove a filter an appropriate VRCB has to be sent to the API. The VRCB
contains the usual handle, the length field and the command to specify whether the
filter has to be removed or added.

Control Block
VRCB the control block header with command specifier = 30
ushort filter specific command
FILTER REC filter to be removed or added

The returned structure repeats the FILTERREC contained in the according control
block. On error the call back pointer is set to 0 and the name string of the FILTERREC
contains some short error string.

A.9.2 Query List of Installed Filters

This function can be used to query the actual installed filters. The structure FIL-
TER CB with the command code0 results in a list of applied filters.

Result Block
VRRB the result block header
FILTER REC[] a list of filter records

As usual the length field within the VRRB header can be used to calculate the number
of attached filter records.

A.9.3 Adding a Protocol Stack

Protocol stacks are accessed like filters. Either a call back function is specified within
the control block or packets matching the protocol id are passed asynchronously via
the API channel.

Control Block
VRCB the control block header with command specifier = 31
ulong pointer to the call back function
ushort protocol id

The Virtual Router result block contains:

Result Block
VRRB the result block header
ushort protocol

On error the protocol field is set to 0;
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A.10 Loadable Objects

This type of API calls allow the integration of Loadable Objects (LOBs) into the VR
core. These objects are based on a class, derived from the virtual class LOB and
are stored in a separate file. For some information about the commands used to load
objects from the standard shell see chapter B.4. The Virtual Router distribution also
containes some examples for Loadable Objects, like two different version of a ”Hello
World” program and an example for a packet filter.
The loadable object specific commands are listed in the table below:

Loadable object specific command codes
1 load object from file
2 unload object with specific id

10 get list of information blocks

A central data structure for loadable objects is the LOBINFO BLOCK . This is a
special structure containing all data about a specific loadable object. This structure is
used for API calls querying information or is returned after the loading or unloading
of an object.

LOB INFO BLOCK Data Record
ushort an unique id number for the loadable object
ushort the mode of the loadable object
ulong the size of the object code
ulong the time in seconds since the module was loaded
byte[32] the loadable object’s name

If an error occurs the loadable object id field contains 0xffff and the objects name field
a short error string.

A.10.1 Loading an Object

To load an object the filename of the object kernel is forwarded to the API. The API
then loads the object and executes its constructor. The API (and therefore also the event
scheduler) is blocked as long as the constructor is executed. So no time consuming or
blocking code can be executed in the constructor.
The following control block tells the API to load the according loadable object. Since
it is possible to pass command line parameters to the loadable object, the control block
contains a list of 0-byte separated strings, each token representing a parameter. The
first token is the name of the object. If the first token contains a simple filename only,
the Virtual Router automatically adds the appropriate pathname and loadable object
extension. If the filename contains a ’/’ or a ’.’, the VR will assume, that an absolute
pathname is given and will look for the file at the specified location.
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Control Block
VRCB the usual control block header
ushort lob specific command, value has to be 1 for the loading of

an object
ushort flags to be passed to the object
byte[] null-byte separated list of command line arguments for the

lob, the first token is the filename

The API will answer this call by a VRRB containing a LOBINFO BLOCK.

Result Block
VRRB result block header
LOB INFO BLOCK the record with information about the object

Errors are signalled as described above. Since a loadable object might use the API
channel it was loaded by during its construction, any loadable object has to be imple-
mented carefully as any synchronisation problem within the object’s constructor might
harm the later communication on the API channel.

A.10.2 Querying LOB Information

To get some information about the currently loaded modules, a result block contain-
ing data about all loaded objects can be queried. This result block contains a list of
LOB INFO BLOCKs.

Result Block
VRRB result block header
LOB INFO BLOCK[] list of information blocks

The length field of the result block header can be used to get the number of loaded
objects as usual.

A.11 Querying Scheduler Status

This command requests information about the internal event handler. This is a read
only command, therefore (so far) no modification of the central event handling system
is possible. However this command at least is useful for debugging purposes.
A VRCB with the command id 21 results in a VRRB containing information about all
currently registered events. The structure of the result block looks like:

Result Block
VRRB result block header
EVENT REC one record per registered event

The records containing the event information have the following format:
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EVENT REC Data Record
ushort event type (READ,WRITE)
ushort actual active flags
ushort the time in 1/1000 seconds, the event is suspended, 0 if ac-

tive
ushort associated read file handle
ushort associated write file handle
byte[16] id string of the event (e.g. an interface name)
ushort true if event execution is forced

A.12 Passing IP packets to the Router

Control Block
VRCB control block with id 50
ushort flags concerning the packet handling
ushort specifies how the packet is treated
ushort mode dependent parameter
ip packet the packet to be sent

The API also provides a mechanism to pass IP packets directly to the Virtual Router.
For that purpose the IP packet has to be encapsulated into an VRCB. Since there are
several possibilities the Virtual Router can handle the packet, a mode parameter has
to be specified. Therefore a packet may either be sent using the VR’s internal routing
rules (see A.8) or an interface is defined to transmit the packet.

Modes for sending IP packets
0 The packet is directly processed by the Virtual

Router’s routing procedures and put to the accord-
ing interface.

1 The packet is analysed as any other packet that is
received by the Virtual Router. The packet is pro-
cessed by the Virtual Router’s protocol stacks and is
also analysed and processed by the filters.

2 The Virtual Router puts the received packet directly
to the specified interface. The parameter field has to
contain a valid Virtual Router interface number.

Additionally, the VRCB contains information about whether an IP packet shall be sent
’as is’ or if the Virtual Router shall add certain information within the IP header and
recalculate the CRC. The behaviour can be configured by setting certain flags in the
flags parameter. The following list gives a description of the currently used flags.
Multiple flags may be set.
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Flags for special IP treatment
1 The Virtual Router will control, whether the IP

header of the received packet is valid or not. If the
header does not comply the standard the packet will
be dropped and an error will be returned.

2 The checksum of the packet header will be set cor-
rectly

4 The Time To Live field in the packet header will be
set by the Virtual Router using its default value.

8 The Virtual Router’s address is used as source ad-
dress of the packet.

16 The received packet will be treated as not frag-
mented and the header fields will be set accordingly.
The Virtual Router will fragment oversized packets
in any case, therefore the packet sent over the API
can be up to 0xffff bytes.

After the control block with the encapsulated packet has been sent to the Virtual Router
a result block is sent back containing information about how the packet was processed
and whether any error occurred.

Result Block
VRRB result block header
ushort result code

Since the type of error depends on the mode the packet was sent with, the result code
field can have multiple values.

Result Codes R for the various modes
0 R = 0xfff routing error, no route found
0 R< 0xfff packet was routed to interface number R
0 R = 0xffff not an IP packet
1 0≤ R≤ 0xfff packet routed to interface number R
1 R = 0xfff routing error, no route found
1 R = 0x1000 packet processed by local protocol stack
1 R = 0x1001 no matching local protocol stack
1 R = 0x2000 packet dropped due to TTL
1 R = 0xffff not an IP packet
2 R = 0xfff no such interface
2 R =≤ 0xfff packet sent to interface number R
2 R = 0xffff not an IP packet
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The Internal Shell

In addition to the described binary format, the VR also provides a parser to process
human readable commands and to produce readable ASCII format. In this chapter the
available commands and their output will be presented. It should be mentioned here,
that these interfaces do not provide an alternative access to the base forwarding layer.
These interface functions only parse a command string and translate it to appropriate
binary data. The binary data is sent to the base forwarding layer over an API channel.
Vice versa output received on the API channel is translated to a human readable for-
mat. It is strongly recommended to use the binary format for automatic configuration
because these human readable commands may change frequently.

B.1 ifconfig

This command covers all configurations of and VRs interfaces. Each interface has an
unique name, which is used to identify the interface to be configured. The length of the
name is limited to 9 chars. In the following section it will be described, how interfaces
are set up and configured.

Command Syntax:

ifconfig help:

ifconfig
ifconfig add <ifname> <ip-address> [netmask] [broadcast]
ifconfig <ifname>
ifconfig <ifname> reset
ifconfig <ifname> if <newid>
ifconfig <ifname> bw <bandwidth> [buckettime]
ifconfig <ifname> address <ip> [netmask] [broadcast]
ifconfig <ifname> connect ...
ifconfig <ifname> ttx ...
ifconfig <ifname> trx ...
ifconfig <ifname> qs
ifconfig <ifname> qs conns
ifconfig <ifname> qs list
ifconfig <ifname> qs create [droptail|tbf|scheduler|classifier]
ifconfig <ifname> connect sol <#no>
ifconfig <ifname> connect fifo <#no> <{l|r}>
ifconfig <ifname> connect tunnel <hostname> <dest_port> <src_port>
ifconfig <ifname> connect ipip <hostname> [mtu]

195
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ifconfig <ifname> qs chain <component id1> <component id2>
ifconfig <ifname> qs <component id> reset
ifconfig <ifname> qs <component id> status
ifconfig <ifname> qs <tbf-id> bw <bandwidth> [bucket size]
ifconfig <ifname> qs <droptail-id> ql <queuelen>
ifconfig <ifname> qs <scheduler-id> wt <component id> <weight>
ifconfig <ifname> qs <dsmarker-id> mark ... as ...
ifconfig <ifname> qs <dsmarker-id> erase ... as ...
ifconfig <ifname> qs <trio-id> ql len0 len1 len2
ifconfig <ifname> qs <trio-id> mode {hard|linear}
ifconfig <ifname> qs <scheduler-id> mode {wfq|prr|rr|pwfq}

Interface configuration, which is supported by the API can be done by this command.
The command without any arguments results in a listing of all configured interfaces
with their parameters.

B.1.1 Creating a new Interface
> ifconfig add if0 10.1.1.1
ip-address: 10.1.1.1
netmask: 255.255.255.0
broadcast: 10.1.1.255
bandwidth(bps): 1000000 bucket size(bytes): 125000
drops: 0 errors: 0
rx: 0 tx: 0
rx-t-ip 172.0.0.0 rx-t-nm 255.0.0.0
rx-t-val 10.0.0.0 rx-t-pat 255.0.0.0
tx-t-ip 10.0.0.0 tx-t-nm 255.0.0.0
tx-t-pat 255.0.0.0
connection none

This interface was added without any parameters except the interface nameif0 and
the IP address10.1.1.1 . The rest of the parameters are the default values.

B.1.2 Connecting an Interface

Also the connection of interfaces is handled by the ifconfig command. There are three
ways for connecting interfaces:

• Connections between VRs running on the same host (IPC). These connections
can be established by submitting the link number and the ”end” of the cable to
the ifconfig command. (see also 4.1.1)

ifconfig <ifname> connect fifo #no {l|r}

These connections are mapped to the appropriate FIFO queues on the system.
The ”left” end of the ”cable” is associated with the end id0, whereas the ”right”
end has the id1.

• Connections between VRS on different hosts.

ifconfig <ifname> connect tunnel remotehost tx_port rx_port

To establish a connection between two VRs on different hosts UDP tunnels are
used. These connections require the specification of the remote host and two port
numbers. The port is the port, where the packets are sent to, the second number
specifies the port, where incoming packets from these hosts are accepted.
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• A connection to a Softlink device can be established by the command.

ifconfig <ifname> connect sol #no

The number specifies the softlink device on the system.

• Setting up IP over IP tunnels

ifconfig <ifname> connect ipip 10.42.10.43 1200

The tunnel connection mentioned above is used to connect the interfaces of two
virtual routers. This tunnel is comparable to an Ethernet cable connecting two
real routers. In contrast there is a possibility to encapsulate IP packets within
other IP packets and tunnel them through a network to another router. This
mechanism is also called IP over IP tunnels. Setting up an ipip connection,
packets routed to that interface are encapsulated within an IP packet and for-
warded to the specified destination address. These destination address can also
be a remote (not neighbouring) router. A router receiving these packets will
decapsulate the packet and treat its payload as a normal IP packet.

B.1.3 Configuring an Interface’s Queueing System

Each interface has an own queueing system attached. This queueing system may con-
sist of several components connected to each other. A more detailed description about
the single components is provided in Chapter 4.1.2. The minimum queueing system
consists out of a single droptail queue. One from a couple of components may be
chosen and instantiated using the command

ifconfig <if> qs create <component type>

where<if> is the name of the interface the queueing system is attached to and the
name of the component type to be instantiated is given by<component type> . See
the above mentioned Chapter 4.1.2 about the queueing system for a list of available
component types. The command returns an id for the newly created component. All
configuration commands will use this id as reference for the component.
The next step is to connect this component to other components. Each component
gets packets from at least one other component and has at least one component it may
forward packets to. Other component-types (e.g. schedulers) allow to receive packets
from several other components, other ones allow to forward packets to multiple other
components.
To tell a component with the id 3 to send packets to the component 17 the command

ifconfig <if> qs chain 3 17

is used. If the component 3 allows to forward packets to additional components, the
same command may be used again. So an additional

ifconfig <if> qs chain 3 19
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allows component 3 to forward packets to both components 17 and 19. Which packet
is forwarded to which component is not affected by this configuration. This decision
depends only on the internal mechanisms of number 3 and may have to be configured
separately.
The other case, that a component received packets from multiple other components
may be configured analogous.
As the queueing systems set up might have to be adapted these links between the
components might be also removed by the command:

ifconfig <if> qs unchain <id1> <id2>

Several commands are available to maintain the instantiated components and the links
between them.

ifconfig <if > qs avail shows a list with all available component types.

ifconfig <if > qs list will show a short list of all instantiated components
with their component id and their type.

ifconfig <if > qs conns lists all connections between components. For each
component the type and the id is shown.

ifconfig <if > qs <id > status shows the configuration and the status of
the component with id<id> . Dependent on the component type the information
printed here might be more or less detailed.

ifconfig <if > qs <id > reset resets all statistical counters for the ele-
ment. These are mainly counters for in and outgoing packets.

As mentioned above the links between the single quite generic modules of the queue-
ing system define only the basic layout. For final behaviour also the configuration of
the single components is important. The following list gives a short description of the
configurable parameters for each component.

token bucket filter (tbf): The following command allows to modify the bandwidth
and (optional) the bucket size of a token bucket filter.

ifconfig <if> qs <id> bw <bandwidth> [bucket size]

The<id> value has to be the id of a tbf component. The command expects the
bandwidth in Mbps (e.g. 2.0 for 2 Megabit per second) and the bucket size in
Megabit.

droptail queue (droptail): At the moment the only parameter available, which can
be set at the droptail queue is the queuelen. This value determines how many
packets might be stored in the queue.

ifconfig <if> qs <dpt-id> ql <queuelen>
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generic scheduler (scheduler):The generic scheduler allows more parameter to be
set. Since the scheduler may operate in different modes, these mode may be
changed. For a detailed description of modes see Chapter 4.1.2.

ifconfig <if> qs <sched-id> mode {wfq|rr|prr|pwfq}

Dependent on the mode an additional parameter is necessary. This parameter
is called weight and might be interpreted as bandwidth share, as a priority or is
simply ignored by the scheduler.

ifconfig <if> qs <sched-id> wt <id> <wt>

The weight value can be set for each component preceding the scheduler (a
scheduler has usually several incoming links), so the second<id> value speci-
fies which weight shall be set.

classifier: The classifier has usually multiple follow up components. The classifier
allows to set rules, specifying which packet is forwarded to which component.
The syntax to set up such a rule is:

ifconfig <if> qs <cls-id> <dip/nm> <sip/nm>
[<p>] [<t>] to <id>

The <dip/nm> and<sip/nm> specify a range of destination and source IP
addresses. If the netmask is omitted the netmask255.255.255.255. is as-
sumed. The specification of the protocol id and the ToS byte value are optional.
The<id> following the key wordto specifies the component packets matching
this filter will be forwarded. There may be multiple such rules pointing to the
same component.

Rules defined at the classifier can be removed by:

ifconfig <if> qs <cls-id> del <dip/nm> <sip/nm> [<p>] [<t>]

DiffServ Marker

The Differentiated Services Marker component can be configured with a set of
rules, specifying which flow shall be marked with which DSCP up to which
bandwidth.

ifconfig <if> qs <dsms-id> mark [source a.b.c.d/n]
[dest a.b.c.d/n] [proto p] [tos t] as <service>

The command allows to specify the flow by source and destination addresses,
the protocol and the ToS Byte value. The service specifies which DSCP shall
be set. The service can simply be EF for the Expedited Forwarding service of a
term like

af[1|2|3|4]:bw1[:bs1]:bw2:[bs2]
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for Assured Forwarding. The initial af1, af2, af3, or af4 specifies the AF class.
This parameter has to be followed either by two or by four other parameters, set-
ting either the maximum allowed bandwidths for low and medium drop prece-
dence or the bandwidth values and the bucket sizes of the according Token
Bucket filters.

TRIO queue

The TRIO queue is a special queue design for the AF service by dropping pack-
ets with specific DSCPs with different probability. This behaviour can be in-
fluenced by setting different queue lengths for the dropping probabilities. The
command

ifconfig <if> qs <trio-id> ql 10 20 30

will configure a TRIO queue to a maximum queuelength of 30 packets. Packets
with high drop precedence are dropped if the queuelength exceeds 10 packets,
whereas packets with medium drop precedence are dropped only if the queue
exceeds 20 packets. There is an additional parameter to influence the algorithm
used to calculate the dropping probability. This parameter can be set by

ifconfig <if> qs <trio-id> mode {hard|linear}

The different algorithms are described in section A.7.7.

B.2 route

This command allows to add, list and delete static routes in the base layer’s routing
table. Even when the base layer’s routing rules support source, protocol and ToS
based routing and the binary API also allows to set up those routes, the ASCII based
command front end currently only supports the set up of ”standard” routing rules.

Command Syntax:

route help:
route
route add <ip/nmb> <interface>
route add <ip> <nm> <interface>

B.3 sys

The system commands offer a possibility of access general access to system informa-
tion, as the central scheduler or the module loader.

Command Syntax:
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sys help:

sys events
sys filters
sys lobs

sys events:lists the registered scheduler events. A typical output for a shell and two
interfaces looks somewhat like:

shell susp 0.0 type R thrown - read 0 write 0 hits 6
if0 susp inf type RW thrown - read 3 write 3 hits 1
if1 susp inf type RW thrown - read 5 write 4 hits 1

sys filters: not yet implemented

sys lobs: this command allows to list all currently loaded objects.

name hellot, id 0, mode THREAD , size 10 kb, up 110.10 min
name pyan, id 3, mode THREAD , size 90 kb, up 3.10 min

B.4 load

This command allows the loading of additional modules, so called Loadable Objects
into the VR kernel. The command syntax is simple and allows to pass additional
command line arguments to the LOB.

load help:

load <lob> [arg1] [arg2] [arg3] [...]

The shell replies with some information about the loaded object or an error code.
A typical output might look like:

object ’hellot’ loaded, id is 0, mode is THREAD
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List of Abbreviations

AF Assured Forwarding
ANEP Active Network Encapsulation Protocol
AN Active Network
ANTS Active Node Transfer System
API Application Programming Interface
ASCII American Standard Code for Information Interchange
ATM Asynchronous Transfer Mode
BA classifier behaviour aggregate classifier
BB Bandwidth Broker
BGP Border Gateway Protocol
CATI Charging and Accounting for the Internet
CBQ Class Based Queueing
COPS Common Open Policy Service
DES Data Encryption Standard
DiffServ Differentiated Services
DSCP Differentiated Services Code Point
EF Expedited Forwarding
EWMA Exponentially Weighted Moving Average
FIFO First In First Out
GUI Graphical User Interface
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IP Internet Protocol
IPIP IP Encapsulation within IP
IPC Inter Process Communication
ISP Internet Service Provider
JNI Java Native Interface
JPEG Joint Photographic Experts Group
LAN Local Area Network
MD5 Message Digest 5
MF classifier multifield classifier
MIB Management Information Base
OSPF Open Shortest Path First
PAD Platform Adaptor
PDB Per Domain Behaviour
PHB Per Hop Behaviour
PVC Private Virtual Circuit
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PWRR Priority Weighted Round Robin
PyBAR Python Based Active Router
RDG RSVP/DiffServ Gateway
RED Random Early Detection Gateway
RFC Request for Comment
RIO RED with In and Out
RR Round Robin
RSA Rivest, Shamir, and Adelman Algorithm
RSAREF RSA reference implementation library
RSVP Resource Reservation Protocol
RTP Real Time Protocol
RTCP Real Time Control Protocol
RTT Round Trip Time
SLA Service Level Agreement
SLS Service Level Specification
SNMP Simple Network Management Protocol
tc traffic control (Linux)
TCP Transmission Control Protocol
TCS Traffic Conditioning Specification
TRIO Three drop precedence RIO
UDP User Datagram Protocol
VC Virtual Channel
VPN Virtual Private Network
VR Virtual Router
VAN Virtual Active Network
VAR Virtual Active Routers
WAN Wide Area Network
WFQ Weighted Fair Queueing
WRR Weighted Round Robin
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