
Virtual Routers: A Tool for Networking Research and
Education

Florian Baumgartner, Torsten Braun, Eveline Kurt, Attila Weyland
Universität Bern, Neubrückstrasse 10, 3012 Bern

Phone/Fax: +41 31 631 4994/3261
[baumgart|braun|kurt|weyland]@iam.unibe.ch]

ABSTRACT

Virtual routers are software entities, i.e. user space processes,
emulating IP routers on one or several (Linux) computers. Virtual
routers can be used for both networking research and education. In
contrast to simulation, virtual routers process packets in real-time
and the virtual router code is similar to code in real routers. In the
case of research, larger network test-beds can be built using a
relatively small number of computers. New functionalities such as
new queuing mechanisms are supported by a modular software
architecture and can be tested in a rather safe environment
compared to kernel space implementations. Virtual routers can
also be used as a tool aiming to allow students to perform virtual
experiments within a computer networks course. Students can
create and experiment with arbitrary virtual IP network
topologies. The web-based user interface allows students to
interact remotely with the emulated routers, but simultaneously it
is very similar to commonly available configuration interfaces of
network devices in reality. This enables students to configure
routers like in the real world but also to experiment in a much
more robust and safe environment.

Categories and Subject Descriptors

C.2.6 Internetworking

General Terms

Management, Measurement, Performance, Design,
Experimentation.

Keywords

Network Emulation, Performance Evaluation, Networking,
Distance Learning

1. Introduction
The strengths and drawbacks of network simulators, like the ns
network simulator [6], lie in the use of a mathematical model to
simulate a network, a node or a link between two nodes. Since
there is no relationship between real time and the time ns uses
internally, ns can be used to run huge simulations with thousands
of nodes and links. The simulation simply will last longer, but is
nevertheless mathematically correct. The use of such a model
includes a rather abstract view of a network consisting of nodes
and links. These properties are sufficient to simulate the traffic
flow of thousands of nodes within a huge network.

For the development of new network protocols, however,
protocol implementations should be closer to real system
environments and real-time packet processing is desirable in order
to support a larger variety of performance evaluations. In
particular, it would be advantageous if new functionalities can be
tested in real environments with typical applications and network
scenarios. Another requirement appears for networking education.
Students should be able to perform practical networking
experiments, but at least for early steps safe and robust laboratory
environments are desirable.

Both of these application scenarios, i.e. research and education, are
supported by a concept called virtual routers. Virtual routers
emulate IP routers and can support flexibility and robustness by a
modular software architecture and user space processing. We
propose to use emulated routers not only for research and
development, but also for distance learning allowing students to
perform computer network experiments remotely and within a
safe environment. This allows students to prepare themselves for
later experiments that are performed remotely with real network
devices [3]. Remote exp eriments are very popular in various areas
such as nano-science [7], engineering [8][9], computer networks
[10] etc.

This paper discusses related work in Section 2. It then introduces
the implementation architecture of virtual routers in Section 3.
Section 4 evaluates the performance of virtual routers using several
different scenarios. Section 5 shows how virtual routers can be
used for networking research and Section 6 shows how students
can use virtual routers in a web-based networking course. Section
7 concludes the paper.

2. Related Work
The emulation of network devices or routers is not new. Emulab
[17] is an ongoing project providing a large test-bed for the
emulation of networks. The test-bed can be accessed remotely and
provides mechanisms to use ns2 scripts [6] for the configuration
of the test network. The Emulab approach is very flexible and
powerful, but requires a large set of computers and network
devices. Similar to the Emulab approach, several other approaches,
even usually on a smaller scale, use single computers to emulate
specific routers [4][5][16]. The Click modular router is a highly
modular and well performing software router implementation,
which allows the emulation of a very flexible, easy to configure
router on a single computer.

To reduce the hardware resource consumption, some of these
approaches support the partitioning of the hardware into multiple
logically completely independent computers using virtual
machines (e.g. VMware), allowing the execution of multiple
routers on a single computer. Another approach is to virtualize a
host’s process network and file-system namespace [22]. In
contrast virtual routers do not require partitioning the hardware
platform, but are designed to be run in parallel in user space and to
use high level communication channels for interconnections. While
this requires a modification of applications, it also allows
providing simpler interfaces.

There are other more specific approaches to emulate the typical
behavior of a special network device (e.g. a WAN Router) or a
specific link. NistNet [21] uses Linux kernel modules to emulate
the behavior of a specific link and allows the emulation of WANs
within a standard laboratory LAN.

Another approach to reduce the amount of required equipment has
been proposed by Wang et al. [18]. They use an address mapping
scheme in the kernel to route packets multiple times through the
same host. This allows studying the impact of multiple hops on a
single computer.

Also ns2 [6] supports the interconnection of real network devices
with simulated environments and allows to route packets through
a simulated network. However, since it is a simulator, ns2 has a
completely different architecture and completely different
interfaces than normal IP routers. Especially the completely
different user interface is a drawback in the context of a course
teaching the configuration of IP routers.

The Click [16] router provides a very flexible, modular software
architecture, which consists of packet processing elements, placed
in-line along a forwarding path. The user specifies the elements
and their order on that forwarding path. A packet follows the
forwarding path and is processed by each element on that path.
Although the modular structure allows for a very fine-grained,
highly detailed router configuration process, the system design
(one Click router requires one dedicated running kernel, i.e. one
computer), makes the Click router unsuitable for our distant
learning environment, where we require cost-effective and resource
preserving solutions for configuring multiple routers.

A system for simultaneous utilization of available network
components by different users is presented by X-Bone [19][20].
It is intended for automated deployment, management and
monitoring of IP overlay networks. The separation of the network
components is achieved by introducing the overlays. Access
control of users is done via certificates. Thus different
configuration scenarios can be set up on the same network
components to be used later during exercises by students. Also in
this approach the network components must exist in reality to be
usable. Additionally, the manual configuration of interfaces and
routing tables does not scale well for networks with many
components.

The existing approaches for emulation of network devices in the
literature offer interesting and useful concepts for specific tasks,
while the virtual routers aim to provide an extendable, cost-
effective, and widely usable platform, which has already been used
in active networking and QoS research as well as in hands-on
courses.

3. Virtual Routers

3.1 Virtual Router Networks
Virtual routers are small entities (Unix user space processes) that
are emulating single IP routers [11]. Links that are normally used
to connect real routers are replaced by communication channels
between these entities in order to create larger networks. Each
virtual router runs as an independent process not interfering with
other virtual routers and only exchanging packets by
communication channels.

Figure 1 illustrates the interconnection of several virtual routers
(VR) that are distributed to three different computers. The type of
the communication channels between the virtual routers depend on
whether they run on the same or on different computers. Virtual
routers running on the same computer are interconnected by inter-
process communication channels, while virtual routers running on
different computers are interconnected by channels based on UDP
tunnels. Up to 64 virtual routers have been created on a single
computer for various research experiments [13].

UDP tunnel

Softlink device

VR
VR

VR

VR

VR

VR

VRVR

VR

Figure 1 : Network of Virtual Routers

Virtual routers shall behave like real routers and therefore have to
process traffic in real time. Like normal routers they have to
receive packets, process, and forward them. Virtual routers can
also be connected to real networks. This allows to route traffic
generated by real end systems over a network consisting of both
real and emulated sub-networks. For the interconnection of virtual
routers to real networks, so-called softlink devices (Figure 2) have
been implemented. A softlink device behaves like other network
devices within a computer, e.g. an Ethernet device. However,
packets transmitted over a softlink device are not transmitted over
a real network but to a virtual router that is connected to the
softlink device via file system I/O. In the other direction, packets
from a virtual router can be sent to the IP stack on top of the
softlink device. If in the scenario depicted in Figure 2 a web server
transmits a packet to a remote web client (web browser), the
packet is sent via the socket, TCP/IP stack, and the local softlink

device (sol0). Virtual router 1 receives the packet and forwards it
via an UDP tunnel to virtual router 2. Virtual router 3 receives it
via an inter-process communication channel from virtual router 2
and forwards the packet to virtual router 4, again via an UDP
tunnel. Virtual router 4 delivers the packet to the softlink device at
the receiving end system and the web client receives the packet
from the socket it is connected to.

Web
Browser

Web
Browser

sol0sol0eth0

Web
Server

User Programs

OS kernel

VR4 VR4

sol0sol0eth0

VR2

eth0

VR3

Socket Socket Socket Socket SocketSocket

Ethernet network

VR1 VR1

Figure 2 : Softlink Device

3.2 Implementation Architecture
Figure 3 shows the implementation architecture of a virtual router.
The lower part consists of the core components required for
packet forwarding and routing. IP packets are received and
transmitted via interfaces (dashed boxes). Interfaces consist of
several configurable subcomponents such as network address
translators (NATs), queuing systems (e.g., traffic conditioners for
Differentiated Services, token bucket filters, schedulers etc.), rate
limiters, and interconnection handlers. Interconnection handlers
interconnect a virtual router with other virtual routers or softlink
devices. The packets received from an interface are processed by a
programmable filter and the forwarding unit. Packets might be for-
warded to other interfaces or to higher-layer components /
protocols. A virtual router can be extended by dynamically
loadable objects such as an active router extension (Python Based
Active Router, PyBAR), a graphical user interface (command line
interface), a traffic monitoring component (dump), and virtual
network diagnosis utilities (ping, traceroute).

dump

dynamically loaded components

static system and object loader

gui ifpybar

NAT

NATNAT

NAT

Filter
prog.

Forwarder
Limiter
RateRate

Limiter

Figure 3 : Virtual Router Implementation Architecture

The central unit of each Virtual Router is an event scheduler,
where most of the router’s components are registered and which
takes care of scheduling events in a fair way.

A general problem of running multiple routers on a single
computer is the undesired synchronization between different
processes. Initial tests showed oscillation effects between
different routers, caused by interferences between the operating
system’s process scheduler and the event schedulers of the virtual
routers. It was possible to reduce this effect by increasing the

frequency of context switches, performed by the kernel’s process
scheduler. The most significant improvement to avoid these side
effects however, was the modification of the router’s event
scheduler. Instead of processing events in a fixed order, the
processing order of almost simultaneous events was randomized,
which eliminated the oscillation effects.

Besides handling the interconnections between virtual routers, the
queuing system is another important part of the virtual router
interface. It consists of a set of components such as queues,
filters, shapers, schedulers etc. All these components are
implemented within a framework of C++ classes, which allows the
easy implementation of new types of queues or new schedulers.
These components can be loaded, combined and configured during
run time. This allows replacing the complete queuing system of a
virtual router during runtime without the need to shut down a
running network emulation process. In particular, this has been
used by the active networking mechanisms, but is also useful for
the rapid prototyping of packet schedulers. The current
implementation offers a set of components like a generic classifier,
a token bucket filter, a drop tail queue, a random early detection
queue (RED), a weighted fair queuing scheduler, a simple round
robin scheduler, and a priority round robin scheduler. To allow the
establishment of Differentiated Services networks some additional
components have been developed like a RED queue with three
drop precedence values, a special marker for Differentiated
Services, and a Priority Weighted Fair Queuing scheduler for the
implementation of Expedited [14] and Assured Forwarding [15].

3.3 Application Programming Interface (API)
Virtual routers provide a high degree of flexibility: Interface
components can be created and modified dynamically, higher layer
objects can be loaded dynamically, filters are programmable, and
routing tables can be adapted. To support this flexibility, virtual
routers support different configuration interfaces by API
channels. The configuration program such as a graphical user
interface, has to establish an API channel to the virtual router and
can exchange configuration messages over this duplex channel. The
communication is based on virtual router control blocks (VCRBs)
and virtual router response blocks (VRRBs). A virtual router
receiving a configuration command within a VCRB, parses the
control block, executes the configuration command, and returns the
configuration result via a VRRB. Note that the configuration
program and the virtual router that communicate via an API
channel can run on different computers. Currently implemented
commands support adding and deleting virtual router interfaces,
retrieving interface information, changing interface characteristics
and queuing systems. In addition routing table entries, loadable
objects, filters, and protocol stacks can be added, deleted and read.
Also, IP packets can be delivered for further processing to the
virtual router.

4. Virtual Router Performance
4.1 Link and Queuing Delay
In contrast to a network simulator a virtual router processes
packets in real time. Therefore, changes to the processing speed or
the load on the computer will directly affect the packet delay.
Special queues can be applied to increase the link delay, but there
is no possibility to decrease it below the value defined by the
computer’s processing power. This is why it is important to keep
link delays as small and constant as possible. Figure 4 provides an
example of measured delays on the Internet. The values were
obtained by measuring the round trip time within the research
networks of Germany (D), Switzerland (CH), two virtual router
networks and in a Linux based Differentiated Services laboratory
network at the University of Bern.

 hops RTT [ms] per hop [ms] congestion
D 15 38 2.53 unknown
D 15 32 2.13 unknown
CH 8 4.5 0.56 Small
VR 8 2.1 0.26 No
VR 16 4.3 0.29 No
Linux-DS 8 75.46 9.433 Heavy

Figure 4 : Delays in different networks

Since the measurements within the virtual router networks were
performed in an unloaded network (i.e., network with a low
traffic) the delay was caused only by the link delay and the packet
forwarding within the virtual routers. However, compared to the
delay values of other measurements shown in Figure 4 the delays
are reasonably small. The delay values for the heavy congested
Linux network demonstrate the impact of queuing delay, causing
obviously much more delay than the link layer.

25

50

45

04

53

30

02

15

0

5

10

sec
Figure 5 : Delay of a virtual router FIFO queue using a 4

Mbps link

Similar to the Linux routers, also the virtual router queuing system
is the main reason for packet delays. To demonstrate that impact,
Figure 5 shows the packet delay caused by the FIFO queue of the
virtual router interface for different transmission rates. The
interface speed was 4 Mbps. While the delay is very small as long
as the queue stays empty, it increases drastically if the incoming
bandwidth increases or exceeds the interface capacity. Since only
slightly more packets are sent than the queue is able to process,

the length of the queue - and therefore the delay - increases slowly
when the experiment proceeds. Once the maximum queue length
has been reached and the queue started to drop packets, the delay
remains constant.

4.2 Impact of Processing Overhead to Delay
Besides the general increase in the link delay due to additional
communication overhead, the current workload of the computer
affects the forwarding delay. Therefore, the number of virtual
routers involved in processing a packet might change the per hop
delay. To measure this delay for an increasing number of routers
and for different connections between virtual routers, a chain of 16
virtual routers has been set up on one (dual processor 800 MHz
Pentium III computer running Linux) and on two computers (dual
processor 800 MHz Pentium III computer plus a single processor
400 MHz Pentium II, both running Linux) as shown in Figure 6.
Ping has been used for the measurement of the round trip times to
different routers.

VR VR VR VR VR VR VR VR

VR VR VR VR VR VR VR VR

ComputerA

VR VR VR VR VR VR VR VR

VR VR VR VR VR VR VR VR

ComputerB

ComputerA

Figure 6 : 16 virtual routers on one computer (upper part)

and on two computers (lower part)

To study the impact of heavier load, the experiments have been
performed for two load scenarios. In the first load scenario, the
virtual router network was unloaded, while in the second load
scenario additional UDP traffic caused some additional processing
load on the virtual routers.

Figure 7 and Figure 8 show the average round trip times and
variances for 100 pings for an increasing number of hops using the
virtual router configurations on one and two computers. In the
scenario without additional workload (Figure 7), a straight linear
correlation between the number of hops and the round trip time,
with a very small variance, can be seen. The round trip times for
the distributed case are higher than the round trip times measured
in the single computer scenario (non distributed), but also increase
linearly. Obviously, virtual routers cause equal link delays during
packet forwarding and packet transport. In the distributed
scenario using two computers, packets have to be additionally
encapsulated into UDP packets and forwarded over a local area
network to the computer hosting the other virtual routers.
Additional packet processing and especially the transport over the
local area network cause higher delays.

0

1

2

3

4

5

10 12 14 16

RTTs nondistributed
variance of RTTs nondistributed

RTTs distributed
variance of RTTs distributed

hops

0 2 4 6 8

Figure 7 : round trip times in an unloaded virtual router

network

0

1

2

3

4

5

10 12 14 16

RTTs nondistributed
variance of RTTs nondistributed

RTTs distributed
variance of RTTs distributed

hops

20 4 6 8

Figure 8 : round trip times in a loaded virtual router network

As it can be seen in Figure 8, the correlation between the hop
count and the round trip time is nearly linear, even if the workload
on the virtual routers (and of the whole computer) changes due to
additional traffic. The round trip times are slightly increasing
compared to Figure 7, because of the need to transport additional
packets. In addition, Figure 8 shows a small increase in variance.
The linear correlation between the number of hops and the round
trip times is important, since it shows that the individual virtual
routers run rather independently from each other, causing similar
link and packet forwarding delays and not interfering with other
routers on the same computer. Comparing the delays in the
different scenarios, constant per hop delays for the different
scenarios are discovered, even if the absolute delay values between
the scenarios vary. Since virtual router delays depend on the
processing power, the workload of the computer and the speed of
the local area network, an absolute guarantee for fixed delays is not
possible. However, since the delays and their variances are small
this limitation is acceptable. Furthermore, additional buffering
between the virtual routers can increase the delay between virtual
routers to a specific value and might also be used to compensate
variances.

To examine the impact of the topology size on packet forwarding
and link delay, similar router chains were established but with 16,
32 and 64 routers. As before, the round trip times were measured
first using an unloaded environment. Only the single computer

scenario with running all virtual routers on one computer has been
evaluated. Figure 9 shows increasing round trip times and
variances for the 16, the 32 and the 64 virtual router chain. The
three graphs showing the round trip times match perfectly (the
graphs overlap) and show nearly no variances. Obviously, the
number of running entities does not significantly affect the link
and the packet forwarding delay. Similarly to the previous
experiments, now additional traffic has been sent over the network
and the round trip times were measured again. Figure 10 shows the
measured delays and variance values for the different chains. In
contrast to the experiment described above, the larger topology
causes a longer per hop delay than networks with 16 and 32
virtual routers. Moreover, larger workload increases the variance
of the round trip times. It is not surprising that the largest
variances occur in the network with 64 virtual routers, since the
additional packets to be forwarded have a stronger impact.

This behavior limits of course the number of virtual routers, which
can be emulated on a single host. The maximum number not only
depends on the processing power but also on the traffic load
within the emulated network, the bandwidth of virtual router
interfaces, the complexity of their queuing systems and of course
on the required accuracy of the results. The concrete number of
virtual routers differs significantly with the type of experiment. A
higher link bandwidth between the virtual routers or more load on
the emulated network will reduce this number. Therefore it is
important to design experiments in a way that allows controlling
the impact of the shared platform the virtual routers are running
on.

Although, virtual routers can not provide the perfect predictive
behavior as a pure simulation can do, processing speed and CPU
load also might have an impact on real network devices. Therefore,
a less idealized and less predictive evaluation scenario might be
more realistic. In any case, the results show, that the behavior of
virtual routers is realistic enough to use them a useful tool for
research or educational experiments or for development purposes.

RTTs with 16 VRs
variance of RTTs with 16 VRs

RTTs with 32 VRs
variance of RTTs with 32 VRs

RTTs with 64 VRs
variance of RTTs with 64 VRs

0

2

4

6

8

 10

 12

 14

0 10 20 30 40 50 60 70
hops

Figure 9 : round trip times with different numbers of virtual
router entities in an unloaded network

RTTs with 16 VRs
variance of RTTs with 16 VRs

RTTs with 32 VRs
variance of RTTs with 32 VRs

RTTs with 64 VRs
variance of RTTs with 64 VRs

0

2

4

6

8

 10

 12

 14

0 10 20 30 40 50 60 70
hops

Figure 10 : round trip times with different numbers of
virtual router entities in a loaded network

5. Virtual Routers for Networking Research
5.1 Evaluation of Queuing Components
The queuing components of a virtual router can be used to
configure Differentiated Services networks or to establish
mechanisms to protect certain flows against others. Figure 11
shows how several queuing components can be combined to set
up a specific traffic conditioning system to protect TCP flows
against aggressive UDP traffic. Incoming packets are processed by
a classifier checking the packet’s protocol identifier. TCP traffic is
put to queue 1 while any other packets are put to queue 2. The
token bucket filter causes queue 1 _to drop packets when exceeding
a certain packet rate. The scheduler reads packets from queue 2
directly. The scheduler applies absolute priority for queue 1,
which is configured with a token bucket rate of 2 Mbps. Figure 11
shows the achieved throughput values. The interface of the virtual
router was limited to a total bandwidth of 4 Mbps. The test starts
with TCP traffic only, after a few seconds, a UDP source starts
transmission. During the test the UDP source was switched on
and off repeatedly in order to visualize the impact of UDP on
TCP. The UDP packets would have suppressed the TCP flows
bandwidth completely without the sophisticated queuing system.
Due to the queuing system, however, the TCP flows get at least 2
Mbps bandwidth.

Q 2 Q1

C

S

T

4

3

2

1

0
0 5 10 15 20 25 30 [sec]

TCP flow
UDP flow

Figure 11 : Protection of TCP flows by the virtual router

queuing system

Although the original idea of virtual routers was to provide a
platform for the development and evaluation of mechanisms such
as network management and Quality of Service routing, the

architecture also offers a suitable test-bed for traffic
measurements. In [13] we have shown that performance
evaluation results achieved with virtual routers are quite similar to
results obtained using simulation with ns.

5.2 Active Networking
Another application area for virtual routers is the development of
new networking mechanisms and protocols. In particular, we have
used the open and extensible platform for implementing an active
network architecture and testing that in a virtual router based test-
bed. The active router platform developed is based on the Python
language and is called Python Based Active Router (PyBAR) [12].
The PyBAR architecture is based on the standard Python virtual
machine and can be connected to several network nodes, e.g. Linux
routers but also to virtual routers. In addition to a rather thin
NodeOS (platform adaptor) layer written in C++, the system
consists of a set of native or interpreted library and extension
modules and a central core written in Python to execute received
code. Received packets are forwarded either to a specific service
handler, provided by an extension module, or are processed by the
core. The NodeOS provides communication facilities for the
PyBAR core and the extension modules. The PyBAR core and
extension modules can be loaded dynamically as an object
according to Figure 3. The NodeOS provides several interfaces to
the routers based on Python’s ability to use native code. This
allows the addition of new functions like traffic conditioning,
encapsulation or monitoring components directly to the IP routers
kernel. In case of running PyBAR on top of a virtual router,
PyBAR can take advantage from the large set of virtual router
traffic conditioning functions and the flexibility to configure
arbitrary queuing components at the virtual router interfaces.
Figure 13 shows examples for commands provided by the
platform adaptor interface. These commands can be called by a
program executed by PyBAR.

Platform Adaptor (NodeOS)

IP Router

Core
PyBAR Modules

extension

(Python&
native)

Figure 12 : Python Based Active Router

command Description

version returns information about the platform the
system is currently running on

getCaps returns capabilities of the Internet router,
the PyBAR is attached to

attach connects the PyBAR system to Internet
routing device

getInterfaces returns a list of interfaces

getRoutingtable returns a list of routes

addRoute adds a routing rule to routing table

delRoute deletes a route from the routing table

getQcomps query information about the traffic
conditioning system

addQcomp add a queuing component
linkQcomp connect two queuing components
queryQcomp query information for a specific

component
configQcomp configure a component
configTC configuration of the traffic conditioning

components

Figure 13 : Platform adaptor interface for virtual routers

6. Virtual Routers for Distance Learning
6.1 Overview
Virtual routers offer a platform for rapid development,
prototyping and testing of new communication subsystems but
also can serve as a platform for distance learning. Virtual routers
not only help to keep the costs for building large experimentation
networks very low but also offer a robust environment for
performing network device configuration exercises. In order to be
able to use virtual routers for web-based distance learning courses,
it was required to extend virtual routers by an appropriate web-
based user interface. The goal was to offer students an
environment in which they could conveniently create or import
their own network topologies, perform the required interface and
routing table configurations in order to get the network running,
and to perform tests whether the router configurations have been
correct.

The work described hereafter has been performed in the Swiss
Virtual Campus [1] program, which supports a series of projects
in order to develop learning material for distance learning over the
Internet. Within the project Virtual Internet and Telecommuni-
cations Laboratory of Switzerland [2], a set of modules has been
developed and tested that allow students to perform practical
exercises remotely from any Internet workstation instead of being
present in a laboratory room. Typically more specialized modules
follow introductive ones. A recommended order of modules is
provided and helps the student to successfully advance in her
learning experience.

The different modules being developed by various project partners
can be classified as remote and virtual exercises. In the case of
remote exercises, students work with real devices that are located
in a university’s laboratory room. Students control and configure
the behaviour of the devices using web technologies from any
workstation connected to the Internet. Students working on
remote exercises need certain knowledge and experience level since
potential mistakes during network device configuration can cause
significant error states. These might cause that the devices will not
be accessible over the Internet or in the worst case must be reset
manually. Therefore, there is a need for students with a lower
knowledge level to gain the experiences they need for performing
such advanced modules in a more smooth way.

For this reason, a second class of modules is required, which are
called virtual modules. In the case of virtual modules, the
experimentation environment does not exist in reality, but it is
emulated or simulated. This allows offering a much safer and
robust experimentation environment. Students can make errors
without the need to manually reset any devices.

The virtual routers have been embedded in a virtual exercise
module, which introduces the students to IP networks, addressing
and routing in particular. At this early learning stage the student
does not need a fully featured, expensive commercial router.
Thanks to its modularity we can just use the core components of
the virtual router (addressing and forwarding) together with the
virtual network diagnosis utilities ping and traceroute to obtain a
powerful exercise platform for students.

The user interface to the virtual routers has been adapted to match
the routers in reality more closely and thus optimally prepare the
student for the more specialized modules to follow later in the
course. This interface is accessible via a web browser and offers
the possibility to create and modify a network as well as select
and configure routers. The student lays out her network by
placing and interconnecting routers on a design board (Figure 14).
After she completed the layout, the appropriate resources (virtual
routers, communication channels) need to be allocated before the
configuration and testing can take place. The student configures a
router via a command line interface, where the command line input
and the command / reply history (browsable) have been separated.
This command line interface gives the student a very close to
reality experience when configuring the routers of her network
(Figure 15). The student mainly will use ifconfig or route
commands to setup the interfaces of the router (e.g., assigning IP
addresses and network masks) and to configure the static routing
table of each router. To validate her network configuration, the
student can use the traceroute and ping commands.

Figure 14 : Create/Change Network Applet

Figure 15 : Configuration Applet

6.2 Implementation Architecture
This subsection describes the implementation architecture of the
web-based virtual router configuration interface [23]. Figure 16
shows two computers: a client where the student has launched a
web browser and a server including a web server, a Java program
called administrator, and the virtual routers. The student navigates
through dynamic web pages generated using PHP and
downloads/executes Java applets that are embedded in the web
pages. The different tasks (i.e. network design, router selection
and router configuration) have been realized in different applets.
The student switches between them according to the current task
she performs. These applets share common data such as the
network configuration. Due to Java security restrictions, the data

can not be saved on the client computer. Therefore, they are
transmitted to the administrator program which stores the data
and provides it for subsequent applets. The Java applets on the
client computer then open TCP connections to the administrator
program running on the server and exchange request / response
messages. The most important commands are for saving data to
files at the server, allocation of virtual router resources, retrieval of
virtual network topology data, and closing a session.

Figure 16 : Implementation Architecture

The administrator program is the interface between the applet
running on the client and the virtual routers. It shares common
data with the component for dynamic web page creation.
Moreover, it receives commands from the applet and translates it
into appropriate configuration API calls to the designated virtual
router. However, there is no 1:1 relationship between commands
issued by the student and commands sent to virtual routers. As
depicted in Figure 17, a command from the applet triggers a
sequence of virtual router API commands. Figure 17 shows the
example of deleting a virtual router interface via the configuration
applet. After receiving this user command, the administrator
program causes the virtual router to disconnect the specified
interface and then to delete it.

ack

ack

t

applet admin router

ifconfig if<number> delete

ifconfig if<number>disconnect

ifconfig if<number> delete

if<number> deleted

Figure 17 : Message Exchange between Client, Server, and

Virtual Routers

Since the virtual exercise module allows configuring emulated
routers via a web-based command line interface, the student
desiring to perform the exercise only needs a web browser on her
client computer. With these minimal requirements, the course
module can be easily accessed by all students and can be deployed

with low costs. The course module has been tested within a
regular computer network laboratory course and will be further
improved based on the student’s feedback.

7. Summary and Conclusions
The paper described the concept of virtual routers, which can be
used to emulate multiple routers on a single computer. The virtual
routers as the basic underlying components have been successfully
used for several research purposes, in particular for research
projects in the area of Quality-of-Service management and
monitoring as well as active networking. Virtual routers are also
very useful in order to provide safe, robust but realistic
experimentation environments for students in a networking class.
Students can prepare themselves for later experiments with real
network devices.

8. Acknowledgements
The work described in this paper has been partially supported by
the Swiss National Science Foundation project 2100-055789.98.

9. References
[1] Swiss Virtual Campus, www.swissvirtualcampus.ch,

October 2003

[2] Virtual Internet and Telecommunications Laboratory of
Switzerland, www.vitels.ch , October 2003

[3] M. Steinemann, T. Jampen, S. Zimmerli, T. Braun:
Architectural Issues of a Remote Network Laboratory,
Networked Learning 2002 (NL 2002), Berlin, May 1-4, 2002

[4] B. White, J. Lepreau, S. Guruprasad: Lowering the Barrier to
Wireless and Mobile Experimentation, First Workshop on
Hot Topics in Networks (HotNets-I), 28-29 October 2002,
Princeton, New Jersey, USA

[5] Yongguang Zhang and Wei Li: An Integrated Environment for
Testing Mobile Ad-Hoc Networks, Third ACM International
Symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc 2002, Lausanne, July 9-11, 2002

[6] Network Simulator, www.isi.edu/nsnam/ns, October 2003

[7] M. Guggisberg, P. Fornaro, T. Gyalog and H. Burkhart: An
Interdisciplinary Virtual Laboratory on Nanoscience,
Electronic Notes in Future Generation Computer Systems,
Elsevier, Vol. 1 (2001)

[8] D. Bühler, W. Küchlin, G. Gruhler, G. Nusser: The Virtual
Automation Lab - Web-based Teaching of Automation
Engineering Concepts, 7th Annual IEEE International Confer-
ence on the Engineering of Computer Based Systems,
Edinburgh, April 2000

[9] A. Böhne, N. Faltin, B. Wagner: Self-directed Learning and
Tutorial Assistance in a Remote Laboratory, Interactive
Computer Aided Learning Conference, September 25-27,
2002, Villach, Austria

[10] R. Sontag: Berufsbegleitend lernen: Informations- und
Kommunikationssysteme, it+ti: Informationstechnik und
Technische Informatik, Oldenbourg Verlag, 3/2001, pp. 167

[11] F. Baumgartner, T. Braun: Virtual Routers: A Novel
Approach for QoS Performance Evaluation, QofIS'2000,
September 25-26, 2000, Berlin, Germany

[12] F. Baumgartner, T. Braun, B. Bhargava: Design and
Implementation of a Python-Based Active Network Platform
for Network Management and Control,
IFIP TC6 4th International Working Conference (IWAN
2002), Zürich, December 2002

[13] F. Baumgartner, T. Braun, B. Bhargava: Virtual Routers: A
Tool for Emulating IP Routers, 27th Annual IEEE Conference
on Local Computer Networks, Tampa, November 6-8, 2002

[14] B. Davie et al.: An Expedited Forwarding PHB, RFC 3246,
March 2002

[15] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski: Assured
Forwarding PHB Group, RFC 2597, June 1999

[16] E. Kohler, R.Morris, B.Chen, J.Jannotti and M.F. Kaashoek:
The Click Modular Router, ACM Transactions on Computer
Systems, Vol 18, No. 3, page 263-297, August 2000

[17] B.White, J.Lepreau, L.Stoller, R.Ricci, S.Guruprasadm
M.Newboldm M.Hiber, C.Barb and A.Joglekar: An
Integrated Experimental Environment for Distributed
Systems and Networks, Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation, USENIX
Association, pages 255-270, Dec 2002

[18] S.Y.Wang and H.T.Kung: A simple methodology for
constructing extensible and high-fidelity TCP/IP network
simulators. In IEEE Infocom, March 1999

[19] J.Touch: Dynamic Internet Overlay Deployment and
Management using the X-bone. In Proceedings of ICNP,
pages 59-68,2000

[20] J.Touch and S.Hotz: The X-bone. Third Global Internet Mini
Conference in conjunction with Globecom’98, Sydney,
Australia, November 1998.

[21] Nistnet http://snad.ncsl.nist.gov/itg/nistnet, October 2003

[22] S. Guruprasad, L.Stoller, M.Hibler and J. Lepreau: Scaling
Network Emulation with Multiplexed Virtual Routers, In
Final Program and Poster Abtracts of Sigcomm, August 2003

[23] F. Baumgartner, T. Braun, E. Kurt, M Steinemann and A.
Weyland: Implementation of a Distance Learning Module
Based on Emulated Routers, in Proceedings of the 13.
ITG/GI-Fachtagung Kommunikation in verteilten Systemen
(KiVS 2003), Leipzig, Germany, March 25-28, 2003, pp. 71-
80

