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ABSTRACT 

Virtual routers are software entities, i.e. user space processes, 
emulating IP routers on one or several (Linux) computers. Virtual 
routers can be used for both networking research and education. In 
contrast to simulation, virtual routers process packets in real-time 
and the virtual router code is similar to code in real routers. In the 
case of research, larger network test-beds can be built using a 
relatively small number of computers. New functionalities such as 
new queuing mechanisms are supported by a modular software 
architecture and can be tested in a rather safe environment 
compared to kernel space implementations. Virtual routers can 
also be used as a tool aiming to allow students to perform virtual 
experiments within a computer networks course. Students can 
create and experiment with arbitrary virtual IP network 
topologies. The web-based user interface allows students to 
interact remotely with the emulated routers, but simultaneously it 
is very similar to commonly available configuration interfaces of 
network devices in reality. This enables students to configure 
routers like in the real world but also to experiment in a much 
more robust and safe environment.  

Categories and Subject Descriptors  

C.2.6 Internetworking 

General Terms  

Management, Measurement, Performance, Design, 
Experimentation. 

Keywords  

Network Emulation, Performance Evaluation, Networking, 
Distance Learning 

1. Introduction 
The strengths and drawbacks of network simulators, like the ns 
network simulator [6], lie in the use of a mathematical model to 
simulate a network, a node or a link between two nodes. Since 
there is no relationship between real time and the time ns uses 
internally, ns can be used to run huge simulations with thousands 
of nodes and links. The simulation simply will last longer, but is 
nevertheless mathematically correct. The use of such a model 
includes a rather abstract view of a network consisting of nodes 
and links. These properties are sufficient to simulate the traffic 
flow of thousands of nodes within a huge network.  

For the development of new network protocols, however, 
protocol implementations should be closer to real system 
environments and real-time packet processing is desirable in order 
to support a larger variety of performance evaluations. In 
particular, it would be advantageous if new functionalities can be 
tested in real environments with typical applications and network 
scenarios. Another requirement appears for networking education. 
Students should be able to perform practical networking 
experiments, but at least for early steps safe and robust laboratory 
environments are desirable.  

Both of these application scenarios, i.e. research and education, are 
supported by a concept called virtual routers. Virtual routers 
emulate IP routers and can support flexibility and robustness by a 
modular software architecture and user space processing. We 
propose to use emulated routers not only for research and 
development, but also for distance learning allowing students to 
perform computer network experiments remotely and within a 
safe environment. This allows students to prepare themselves for 
later experiments that are performed remotely with real network 
devices [3]. Remote exp eriments are very popular in various areas 
such as nano-science [7], engineering [8][9], computer networks 
[10] etc.  

This paper discusses related work in Section 2. It then introduces 
the implementation architecture of virtual routers in Section 3. 
Section 4 evaluates the performance of virtual routers using several 
different scenarios. Section 5 shows how virtual routers can be 
used for networking research and Section 6 shows how students 
can use virtual routers in a web-based networking course. Section 
7 concludes the paper. 

2. Related Work 
The emulation of network devices or routers is not new. Emulab 
[17] is an ongoing project providing a large test-bed for the 
emulation of networks. The test-bed can be accessed remotely and 
provides mechanisms to use ns2 scripts [6] for the configuration 
of the test network. The Emulab approach is very flexible and 
powerful, but requires a large set of computers and network 
devices. Similar to the Emulab approach, several other approaches, 
even usually on a smaller scale,  use single computers to emulate 
specific routers [4][5][16]. The Click modular router is a highly 
modular and well performing software router implementation, 
which allows the emulation of a very flexible, easy to configure 
router on a single computer.  



To reduce the hardware resource consumption, some of these 
approaches support the partitioning of the hardware into multiple 
logically completely independent computers using virtual 
machines (e.g. VMware), allowing the execution of multiple 
routers on a single computer. Another approach is to virtualize a 
host’s process network and file-system namespace [22]. In 
contrast virtual routers do not require partitioning the hardware 
platform, but are designed to be run in parallel in user space and to 
use high level communication channels for interconnections. While 
this requires a modification of applications, it also allows 
providing simpler interfaces. 

There are other more specific approaches to emulate the typical 
behavior of a special network device (e.g. a WAN Router) or a 
specific link. NistNet [21] uses Linux kernel modules to emulate 
the behavior of a specific link and allows the emulation of WANs 
within a standard laboratory LAN. 

Another approach to reduce the amount of required equipment has 
been proposed by Wang et al. [18]. They use an address mapping 
scheme in the kernel to route packets multiple times through the 
same host. This allows studying the impact of multiple hops on a 
single computer.  

Also ns2 [6] supports the interconnection of real network devices 
with simulated environments and allows to route packets through 
a simulated network. However, since it is a simulator, ns2 has a 
completely different architecture and completely different 
interfaces than normal IP routers. Especially the completely 
different user interface is a drawback in the context of a course 
teaching the configuration of IP routers. 

The Click [16] router provides a very flexible, modular software 
architecture, which consists of packet processing elements, placed 
in-line along a forwarding path. The user specifies the elements 
and their order on that forwarding path. A packet follows the 
forwarding path and is processed by each element on that path. 
Although the modular structure allows for a very fine-grained, 
highly detailed router configuration process, the system design 
(one Click router requires one dedicated running kernel, i.e. one 
computer), makes the Click router unsuitable for our distant 
learning environment, where we require cost-effective and resource 
preserving solutions for configuring multiple routers.  

A system for simultaneous utilization of available network 
components by different users is presented by X-Bone [19][20]. 
It is intended for automated deployment, management and 
monitoring of IP overlay networks. The separation of the network 
components is achieved by introducing the overlays. Access 
control of users is done via certificates. Thus different 
configuration scenarios can be set up on the same network 
components to be used later during exercises by students.  Also in 
this approach the network components must exist in reality to be 
usable. Additionally, the manual configuration of interfaces and 
routing tables does not scale well for networks with many 
components. 

The existing approaches for emulation of network devices in the 
literature offer interesting and useful concepts for specific tasks, 
while the virtual routers aim to provide an extendable, cost-
effective, and widely usable platform, which has already been used 
in active networking and QoS research as well as in hands-on 
courses. 

3. Virtual Routers  

3.1 Virtual Router Networks 
Virtual routers are small entities (Unix user space processes) that 
are emulating single IP routers [11]. Links that are normally used 
to connect real routers are replaced by communication channels 
between these entities in order to create larger networks. Each 
virtual router runs as an independent process not interfering with 
other virtual routers and only exchanging packets by 
communication channels.  

Figure 1 illustrates the interconnection of several virtual routers 
(VR) that are distributed to three different computers. The type of 
the communication channels between the virtual routers depend on 
whether they run on the same or on different computers. Virtual 
routers running on the same computer are interconnected by inter-
process communication channels, while virtual routers running on 
different computers are interconnected by channels based on UDP 
tunnels. Up to 64 virtual routers have been created on a single 
computer for various research experiments [13].  
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Figure 1 : Network of Virtual Routers 

Virtual routers shall behave like real routers and therefore have to 
process traffic in real time. Like normal routers they have to 
receive packets, process, and forward them. Virtual routers can 
also be connected to real networks. This allows to route traffic 
generated by real end systems over a network consisting of both 
real and emulated sub-networks. For the interconnection of virtual 
routers to real networks, so-called softlink devices (Figure 2) have 
been implemented. A softlink device behaves like other network 
devices within a computer, e.g. an Ethernet device. However, 
packets transmitted over a softlink device are not transmitted over 
a real network but to a virtual router that is connected to the 
softlink device via file system I/O. In the other direction, packets 
from a virtual router can be sent to the IP stack on top of the 
softlink device. If in the scenario depicted in Figure 2 a web server 
transmits a packet to a remote web client (web browser), the 
packet is sent via the socket, TCP/IP stack, and the local softlink 



device (sol0). Virtual router 1 receives the packet and forwards it 
via an UDP tunnel to virtual router 2. Virtual router 3 receives it 
via an inter-process communication channel from virtual router 2 
and forwards the packet to virtual router 4, again via an UDP 
tunnel. Virtual router 4 delivers the packet to the softlink device at 
the receiving end system and the web client receives the packet 
from the socket it is connected to. 
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Figure 2 : Softlink Device 

3.2 Implementation Architecture 
Figure 3 shows the implementation architecture of a virtual router. 
The lower part consists of the core components required for 
packet forwarding and routing. IP packets are received and 
transmitted via interfaces (dashed boxes). Interfaces consist of 
several configurable subcomponents such as network address 
translators (NATs), queuing systems (e.g., traffic conditioners for 
Differentiated Services, token bucket filters, schedulers etc.), rate 
limiters, and interconnection handlers. Interconnection handlers 
interconnect a virtual router with other virtual routers or softlink 
devices. The packets received from an interface are processed by a 
programmable filter and the forwarding unit. Packets might be for-
warded to other interfaces or to higher-layer components / 
protocols. A virtual router can be extended by dynamically 
loadable objects such as an active router extension (Python Based 
Active Router, PyBAR), a graphical user interface (command line 
interface), a traffic monitoring component (dump), and virtual 
network diagnosis utilities (ping, traceroute). 
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Figure 3 : Virtual Router Implementation Architecture 

The central unit of each Virtual Router is an event scheduler, 
where most of the router’s components are registered and which 
takes care of scheduling events in a fair way. 

A general problem of running multiple routers on a single 
computer is the undesired synchronization between different 
processes. Initial tests showed oscillation effects between 
different routers, caused by interferences between the operating 
system’s process scheduler and the event schedulers of the virtual 
routers. It was possible to reduce this effect by increasing the 

frequency of context switches, performed by the kernel’s process 
scheduler. The most significant improvement to avoid these side 
effects however, was the modification of the router’s event 
scheduler. Instead of processing events in a fixed order, the 
processing order of almost simultaneous events was randomized, 
which eliminated the oscillation effects.  

Besides handling the interconnections between virtual routers, the 
queuing system is another important part  of the virtual router 
interface. It consists of a set of components such as queues, 
filters, shapers, schedulers etc. All these components are 
implemented within a framework of C++ classes, which allows the 
easy implementation of new types of queues or new schedulers. 
These components can be loaded, combined and configured during 
run time.  This allows replacing the complete queuing system of a 
virtual router during runtime without the need to shut down a 
running network emulation process. In particular, this has been 
used by the active networking mechanisms, but is also useful for 
the rapid prototyping of packet schedulers. The current 
implementation offers a set of components like a generic classifier, 
a token bucket filter, a drop tail queue, a random early detection 
queue (RED), a weighted fair queuing scheduler, a simple round 
robin scheduler, and a priority round robin scheduler. To allow the 
establishment of Differentiated Services networks some additional 
components have been developed like a RED queue with three 
drop precedence values, a special marker for Differentiated 
Services, and a Priority Weighted Fair Queuing scheduler for the 
implementation of Expedited [14] and Assured Forwarding [15]. 

3.3 Application Programming Interface (API) 
Virtual routers provide a high degree of flexibility: Interface 
components can be created and modified dynamically, higher layer 
objects can be loaded dynamically, filters are programmable, and 
routing tables can be adapted. To support this flexibility, virtual 
routers support different configuration interfaces by API 
channels. The configuration program such as a graphical user 
interface, has to establish an API channel to the virtual router and 
can exchange configuration messages over this duplex channel. The 
communication is based on virtual router control blocks (VCRBs) 
and virtual router response blocks (VRRBs). A virtual router 
receiving a configuration command within a VCRB, parses the 
control block, executes the configuration command, and returns the 
configuration result via a VRRB. Note that the configuration 
program and the virtual router that communicate via an API 
channel can run on different computers. Currently implemented 
commands support adding and deleting virtual router interfaces, 
retrieving interface information, changing interface characteristics 
and queuing systems. In addition routing table entries, loadable 
objects, filters, and protocol stacks can be added, deleted and read. 
Also, IP packets can be delivered for further processing to the 
virtual router.  



4. Virtual Router Performance 
4.1 Link and Queuing Delay  
In contrast to a network simulator a virtual router processes 
packets in real time. Therefore, changes to the processing speed or 
the load on the computer will directly affect the packet delay. 
Special queues can be applied to increase the link delay, but there 
is no possibility to decrease it below the value defined by the 
computer’s processing power. This is why it is important to keep 
link delays as small and constant as possible. Figure 4 provides an 
example of measured delays on the Internet. The values were 
obtained by measuring the round trip time within the research 
networks of Germany (D), Switzerland (CH), two virtual router 
networks and in a Linux based Differentiated Services laboratory 
network at the University of Bern. 

 hops RTT [ms] per hop [ms] congestion 
D 15 38 2.53 unknown 
D 15 32 2.13 unknown 
CH 8 4.5 0.56 Small 
VR 8 2.1 0.26 No 
VR 16 4.3 0.29 No 
Linux-DS 8 75.46 9.433 Heavy 

Figure 4 : Delays in different networks 

Since the measurements within the virtual router networks were 
performed in an unloaded network (i.e., network with a low 
traffic) the delay was caused only by the link delay and the packet 
forwarding within the virtual routers. However, compared to the 
delay values of other measurements shown in Figure 4 the delays 
are reasonably small. The delay values for the heavy congested 
Linux network demonstrate the impact of queuing delay, causing 
obviously much more delay than the link layer.  
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Figure 5 : Delay of a virtual router FIFO queue using a 4 

Mbps link 

Similar to the Linux routers, also the virtual router queuing system 
is the main reason for packet delays. To demonstrate that impact, 
Figure 5 shows the packet delay caused by the FIFO queue of the 
virtual router interface for different transmission rates. The 
interface speed was 4 Mbps. While the delay is very small as long 
as the queue stays empty, it increases drastically if the incoming 
bandwidth increases or exceeds the interface capacity. Since only 
slightly more packets are sent than the queue is able to process, 

the length of the queue - and therefore the delay - increases slowly 
when the experiment proceeds. Once the maximum queue length 
has been reached and the queue started to drop packets, the delay 
remains constant. 

4.2 Impact of Processing Overhead to Delay 
Besides the general increase in the link delay due to additional 
communication overhead, the current workload of the computer 
affects the forwarding delay. Therefore, the number of virtual 
routers involved in processing a packet might change the per hop 
delay. To measure this delay for an increasing number of routers 
and for different connections between virtual routers, a chain of 16 
virtual routers has been set up on one (dual processor 800 MHz 
Pentium III computer running Linux) and on two computers (dual 
processor 800 MHz Pentium III computer plus a single processor 
400 MHz Pentium II, both running Linux) as shown in Figure 6. 
Ping has been used for the measurement of the round trip times to 
different routers. 
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Figure 6 : 16 virtual routers on one computer (upper part) 

and on two computers (lower part) 

To study the impact of heavier load, the experiments have been 
performed for two load scenarios. In the first load scenario, the 
virtual router network was unloaded, while in the second load 
scenario additional UDP traffic caused some additional processing 
load on the virtual routers.  

Figure 7 and Figure 8 show the average round trip times and 
variances for 100 pings for an increasing number of hops using the 
virtual router configurations on one and two computers. In the 
scenario without additional workload (Figure 7), a straight linear 
correlation between the number of hops and the round trip time, 
with a very small variance, can be seen. The round trip times for 
the distributed case are higher than the round trip times measured 
in the single computer scenario (non distributed), but also increase 
linearly. Obviously, virtual routers cause equal link delays during 
packet forwarding and packet transport. In the distributed 
scenario using two computers, packets have to be additionally 
encapsulated into UDP packets and forwarded over a local area 
network to the computer hosting the other virtual routers. 
Additional packet processing and especially the transport over the 
local area network cause higher delays. 
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Figure 8 : round trip times in a loaded virtual router network 

As it can be seen in Figure 8, the correlation between the hop 
count and the round trip time is nearly linear, even if the workload 
on the virtual routers (and of the whole computer) changes due to 
additional traffic. The round trip times are slightly increasing 
compared to Figure 7, because of the need to transport additional 
packets. In addition, Figure 8 shows a small increase in variance. 
The linear correlation between the number of hops and the round 
trip times is important, since it shows that the individual virtual 
routers run rather independently from each other, causing similar 
link and packet forwarding delays and not interfering with other 
routers on the same computer. Comparing the delays in the 
different scenarios, constant per hop delays for the different 
scenarios are discovered, even if the absolute delay values between 
the scenarios vary. Since virtual router delays depend on the 
processing power, the workload of the computer and the speed of 
the local area network, an absolute guarantee for fixed delays is not 
possible. However, since the delays and their variances are small 
this limitation is acceptable. Furthermore, additional buffering 
between the virtual routers can increase the delay between virtual 
routers to a specific value and might also be used to compensate 
variances. 

To examine the impact of the topology size on packet forwarding 
and link delay, similar router chains were established but with 16, 
32 and 64 routers. As before, the round trip times were measured 
first using an unloaded environment. Only the single computer 

scenario with running all virtual routers on one computer has been 
evaluated. Figure 9 shows increasing round trip times and 
variances for the 16, the 32 and the 64 virtual router chain. The 
three graphs showing the round trip times match perfectly (the 
graphs overlap) and show nearly no variances. Obviously, the 
number of running entities does not significantly affect the link 
and the packet forwarding delay. Similarly to the previous 
experiments, now additional traffic has been sent over the network 
and the round trip times were measured again. Figure 10 shows the 
measured delays and variance values for the different chains. In 
contrast to the experiment described above, the larger topology 
causes a longer per hop delay than networks with 16 and 32 
virtual routers. Moreover, larger workload increases the variance 
of the round trip times. It is not surprising that the largest 
variances occur in the network with 64 virtual routers, since the 
additional packets to be forwarded have a stronger impact.  

This behavior limits of course the number of virtual routers, which 
can be emulated on a single host. The maximum number not only 
depends on the processing power but also on the traffic load 
within the emulated network, the bandwidth of virtual router 
interfaces, the complexity of their queuing systems and of course 
on the required accuracy of the results. The concrete number of 
virtual routers differs significantly with the type of experiment. A 
higher link bandwidth between the virtual routers or more load on 
the emulated network will reduce this number. Therefore it is 
important to design experiments in a way that allows controlling 
the impact of the shared platform the virtual routers are running 
on. 

Although, virtual routers can not provide the perfect predictive 
behavior as a pure simulation can do, processing speed and CPU 
load also might have an impact on real network devices. Therefore, 
a less idealized and less predictive evaluation scenario might be 
more realistic. In any case, the results show, that the behavior of 
virtual routers is realistic enough to use them a useful tool for 
research or educational experiments or for development purposes. 
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Figure 9 : round trip times with different numbers of virtual 
router entities in an unloaded network 
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virtual router entities in a loaded network 

5. Virtual Routers for Networking Research 
5.1 Evaluation of Queuing Components 
The queuing components of a virtual router can be used to 
configure Differentiated Services networks or to establish 
mechanisms to protect certain flows against others. Figure 11 
shows how several queuing components can be combined to set 
up a specific traffic conditioning system to protect TCP flows 
against aggressive UDP traffic. Incoming packets are processed by 
a classifier  checking the packet’s protocol identifier. TCP traffic is 
put to queue 1 while any other packets are put to queue 2. The 
token bucket filter causes queue 1 _to drop packets when exceeding 
a certain packet rate. The scheduler reads packets from queue 2 
directly. The scheduler applies absolute priority for queue 1, 
which is configured with a token bucket rate of 2 Mbps. Figure 11 
shows the achieved throughput values. The interface of the virtual 
router was limited to a total bandwidth of 4 Mbps. The test starts 
with TCP traffic only, after a few seconds, a UDP source starts 
transmission. During the test the UDP source was switched on 
and off repeatedly in order to visualize the impact of UDP on 
TCP. The UDP packets would have suppressed the TCP flows 
bandwidth completely without the sophisticated queuing system. 
Due to the queuing system, however, the TCP flows get at least 2 
Mbps bandwidth.  
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Figure 11 : Protection of TCP flows by the virtual router 

queuing system 

Although the original idea of virtual routers was to provide a 
platform for the development and evaluation of mechanisms such 
as network management and Quality of Service routing, the 

architecture also offers a suitable test-bed for traffic 
measurements. In [13] we have shown that performance 
evaluation results achieved with virtual routers are quite similar to 
results obtained using simulation with ns.  

5.2 Active Networking 
Another application area for virtual routers is the development of 
new networking mechanisms and protocols. In particular, we have 
used the open and extensible platform for implementing an active 
network architecture and testing that in a virtual router based test-
bed. The active router platform developed is based on the Python 
language and is called Python Based Active Router (PyBAR) [12]. 
The PyBAR architecture is based on the standard Python virtual 
machine and can be connected to several network nodes, e.g. Linux 
routers but also to virtual routers. In addition to a rather thin 
NodeOS (platform adaptor) layer written in C++, the system 
consists of a set of native or interpreted library and extension 
modules and a central core written in Python to execute received 
code. Received packets are forwarded either to a specific service 
handler, provided by an extension module, or are processed by the 
core. The NodeOS provides communication facilities for the 
PyBAR core and the extension modules. The PyBAR core and 
extension modules can be loaded dynamically as an object 
according to Figure 3. The NodeOS provides several interfaces to 
the routers based on Python’s ability to use native code. This 
allows the addition of new functions like traffic conditioning, 
encapsulation or monitoring components directly to the IP routers 
kernel. In case of running PyBAR on top of a virtual router, 
PyBAR can take advantage from the large set of virtual router 
traffic conditioning functions and the flexibility to configure 
arbitrary queuing components at the virtual router interfaces. 
Figure 13 shows examples for commands provided by the 
platform adaptor interface.  These commands can be called by a 
program executed by PyBAR. 
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Figure 12 : Python Based Active Router 

 

 

 

 



command Description 

version returns information about the platform the 
system is currently running on 

getCaps returns capabilities of the Internet router, 
the PyBAR is attached to 

attach connects the PyBAR system to Internet 
routing device 

getInterfaces returns a list of interfaces 

getRoutingtable returns a list of routes 

addRoute adds a routing rule to routing table 

delRoute deletes a route from the routing table 

getQcomps query information about the traffic 
conditioning system 

addQcomp add a queuing component 
linkQcomp connect two queuing components 
queryQcomp query information for a specific 

component 
configQcomp configure a component 
configTC configuration of the traffic conditioning 

components 
 

Figure 13 : Platform adaptor interface for virtual routers 

6. Virtual Routers for Distance Learning 
6.1 Overview 
Virtual routers offer a platform for rapid development, 
prototyping and testing of new communication subsystems but 
also can serve as a platform for distance learning. Virtual routers 
not only help to keep the costs for building large experimentation 
networks very low but also offer a robust environment for 
performing network device configuration exercises. In order to be 
able to use virtual routers for web-based distance learning courses, 
it was required to extend virtual routers by an appropriate web-
based user interface. The goal was to offer students an 
environment in which they could conveniently create or import 
their own network topologies, perform the required interface and 
routing table configurations in order to get the network running, 
and to perform tests whether the router configurations have been 
correct. 

The work described hereafter has been performed in the Swiss 
Virtual Campus [1] program, which supports a series of projects 
in order to develop learning material for distance learning over the 
Internet. Within the project Virtual Internet and Telecommuni-
cations Laboratory of Switzerland [2], a set of modules has been 
developed and tested that allow students to perform practical 
exercises remotely from any Internet workstation instead of being 
present in a laboratory room. Typically more specialized modules 
follow introductive ones. A recommended order of modules is 
provided and helps the student to successfully advance in her 
learning experience. 

The different modules being developed by various project partners 
can be classified as remote and virtual exercises. In the case of 
remote exercises, students work with real devices that are located 
in a university’s laboratory room. Students control and configure 
the behaviour of the devices using web technologies from any 
workstation connected to the Internet. Students working on 
remote exercises need certain knowledge and experience level since 
potential mistakes during network device configuration can cause 
significant error states. These might cause that the devices will not 
be accessible over the Internet or in the worst case must be reset 
manually. Therefore, there is a need for students with a lower 
knowledge level to gain the experiences they need for performing 
such advanced modules in a more smooth way.  

For this reason, a second class of modules is required, which are 
called virtual modules. In the case of virtual modules, the 
experimentation environment does not exist in reality, but it is 
emulated or simulated. This allows offering a much safer and 
robust experimentation environment. Students can make errors 
without the need to manually reset any devices. 

The virtual routers have been embedded in a virtual exercise 
module, which introduces the students to IP networks, addressing 
and routing in particular. At this early learning stage the student 
does not need a fully featured, expensive commercial router. 
Thanks to its modularity we can just use the core components of 
the virtual router (addressing and forwarding) together with the 
virtual network diagnosis utilities ping and traceroute to obtain a 
powerful exercise platform for students. 

The user interface to the virtual routers has been adapted to match 
the routers in reality more closely and thus optimally prepare the 
student for the more specialized modules to follow later in the 
course. This interface is accessible via a web browser and offers 
the possibility to create and modify a network as well as select 
and configure routers. The student lays out her network by 
placing and interconnecting routers on a design board (Figure 14). 
After she completed the layout, the appropriate resources (virtual 
routers, communication channels) need to be allocated before the 
configuration and testing can take place. The student configures a 
router via a command line interface, where the command line input 
and the command / reply history (browsable) have been separated. 
This command line interface gives the student a very close to 
reality experience when configuring the routers of her network 
(Figure 15). The student mainly will use ifconfig or route 
commands to setup the interfaces of the router (e.g., assigning IP 
addresses and network masks) and to configure the static routing 
table of each router. To validate her network configuration, the 
student can use the traceroute and ping commands. 



 
Figure 14 : Create/Change Network Applet 

 

 
Figure 15 : Configuration Applet 

6.2 Implementation Architecture 
This subsection describes the implementation architecture of the 
web-based virtual router configuration interface [23]. Figure 16 
shows two computers: a client where the student has launched a 
web browser and a server including a web server, a Java program 
called administrator, and the virtual routers. The student navigates 
through dynamic web pages generated using PHP and 
downloads/executes Java applets that are embedded in the web 
pages. The different tasks (i.e. network design, router selection 
and router configuration) have been realized in different applets. 
The student switches between them according to the current task 
she performs. These applets share common data such as the 
network configuration. Due to Java security restrictions, the data 

can not be saved on the client computer. Therefore, they are 
transmitted to the administrator program which stores the data 
and provides it for subsequent applets. The Java applets on the 
client computer then open TCP connections to the administrator 
program running on the server and exchange request / response 
messages. The most important commands are for saving data to 
files at the server, allocation of virtual router resources, retrieval of 
virtual network topology data, and closing a session.  

 
Figure 16 : Implementation Architecture 

The administrator program is the interface between the applet 
running on the client and the virtual routers. It shares common 
data with the component for dynamic web page creation. 
Moreover, it receives commands from the applet and translates it 
into appropriate configuration API calls to the designated virtual 
router. However, there is no 1:1 relationship between commands 
issued by the student and commands sent to virtual routers. As 
depicted in Figure 17, a command from the applet triggers a 
sequence of virtual router API commands. Figure 17 shows the 
example of deleting a virtual router interface via the configuration 
applet. After receiving this user command, the administrator 
program causes the virtual router to disconnect the specified 
interface and then to delete it. 

ack

ack

t

applet admin router

ifconfig if<number> delete

ifconfig if<number>disconnect

ifconfig if<number> delete

if<number> deleted

 
Figure 17 : Message Exchange between Client, Server, and 

Virtual Routers 

Since the virtual exercise module allows configuring emulated 
routers via a web-based command line interface, the student 
desiring to perform the exercise only needs a web browser on her 
client computer. With these minimal requirements, the course 
module can be easily accessed by all students and can be deployed 



with low costs. The course module has been tested within a 
regular computer network laboratory course and will be further 
improved based on the student’s feedback. 

7. Summary and Conclusions 
The paper described the concept of virtual routers, which can be 
used to emulate multiple routers on a single computer. The virtual 
routers as the basic underlying components have been successfully 
used for several research purposes, in particular for research 
projects in the area of Quality-of-Service management and 
monitoring as well as active networking. Virtual routers are also 
very useful in order to provide safe, robust but realistic 
experimentation environments for students in a networking class. 
Students can prepare themselves for later experiments with real 
network devices.  
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