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Abstract 
This paper presents a peer-to-peer based authentication and 
authorization infrastructure to minimize authentication 
delays when mobile users roam across different wireless 
networks. The basic idea is to avoid exchanging security 
information between networks visited by a roaming user 
and the user’s home authentication, authorization, and 
accounting (AAA) server that is typically located in the 
home network possibly far away from the visited network. 
Instead, authentication and authorization of a roaming user 
shall be supported by an AAA server in the visited network. 
We propose that the AAA server that is responsible for 
authentication and authorization in a newly visited network 
locates the AAA server in the previously visited network 
and retrieves the required security information from that 
AAA server. The AAA servers can be organized in a peer-
to-peer manner and peer-to-peer mechanisms can be 
applied for searching and transferring security information 
between them. We propose several mechanisms for quickly 
locating the previously responsible AAA server in order to 
decrease authentication delays. The performance of these 
mechanisms is evaluated by simulations. Real performance 
measurements show the rather low performance overhead 
of application level forwarding used in peer-to-peer 
networks.  

1 Introduction 

Efficient authentication, authorization and accounting 
(AAA, [3], [11]) for roaming users in mobile wireless 
environments is a demanding challenge. In particular, 
authentication and authorization need to be performed in 
real-time in order to provide seamless access to roaming 
users in wireless networks. Accounting issues are not as 
time-critical as authentication and authorization and 
therefore accounting is not investigated by this paper.  

Usually, information for verifying the identity of a user is 
stored at an AAA server in the user’s home network 
(AAAH). The AAAH stores all information about the user 
such as subscribed services, security information etc. In a 
typical AAA scenario, a user visiting a foreign network 
may contact the foreign AAA agent (AAAF) and ask for 
granting access to network resources (service request). The 
AAAF is the local AAA entity in the visited foreign 
network that needs to check whether the user is authorized 
to access the local network. To validate the service request, 
the AAAF takes over the role of an AAA client and sends 
an authentication request to the AAAH. The AAAF is able 

to identify the AAAH based on the user identification and 
home realm information provided by the mobile user to the 
AAAF in the service request. The AAAH has to answer 
incoming authentication requests and may deliver challenge 
information back to the AAAF. Then, the AAAF challenges 
the user and will receive a user authentication response 
from it. The AAAF forwards the authentication response to 
the AAAH and the AAAH will evaluate it. In case of a 
successful authentication, the AAAH will notify the AAAF 
about that and the AAAF may grant resource access by the 
user.  

An important problem of this procedure is the significant 
delay, when users are roaming rather far away from the 
AAAH. The authentication and authorization procedure 
should be repeated when a user enters a new network and 
needs to be re-authenticated. The message exchange 
overhead between visited network (user and AAAF) and 
the home network (AAAH) may be substantial and the 
message exchange delay might exceed acceptable delays of 
real-time applications or even the duration when a user is 
visiting a network. In the latter case, a user might have 
already left the visited network before access to it has been 
granted. For example, typical round trip times measured 
using ping between Europe and the US west coast over 
lightly loaded research networks are in the range of 200 ms. 
Message exchange for authentication and authorization 
often requires several round trip times.  

A solution to this problem might be the introduction of 
AAA brokers, to which an AAAH can delegate the 
authentication decision. These AAA brokers are closer to 
the roaming user and can therefore reduce the delay of the 
authentication message exchange. However, this requires 
that the AAA brokers have enough knowledge to perform 
the authentication and authorization process. Of course, the 
AAAH should not give symmetric long-term passwords to 
the AAA broker for authenticating a user, but similar as in 
cellular networks such as GSM or UMTS, the AAAH can 
pre-compute authentication data such as [random number 
(nonce), corresponding authentication result] and deliver 
these so-called authentication vectors to the AAA broker 
[1].  Alternatively, short-term keys or one-time passwords 
can also be used for authentication. In general, we call the 
security information that needs to be transferred from 
AAAH to the AAA broker “security context” hereafter. 
Note that we focus on user authentication but not on device 
authentication in this paper.  

The security context allows an AAA broker to perform a 
decision on behalf of the AAAH whether a user’s request 
for getting resource access can be permitted or not. Since 
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the AAA broker owns and controls the security context we 
call this entity security context controller (SCC) hereafter. 
Frequently, those security context controllers not only take 
over AAA broker functions but also might serve as AAAH 
for users belonging to their own domain. In the following, 
we therefore assume that SCCs include both AAA brokers 
and AAAH entities. Security context information is 
therefore exchanged between SCCs only. If a security 
context includes authentication vectors or one-time 
passwords, a SCC must keep track which authentication 
vectors or one-time passwords have already been used.  

The SCC should be selected such that it covers a certain 
area, where a user is expected to roam. When the user 
moves to another network, re-authentication can be 
performed between the user and the (close) SCC. SCCs can 
be organized hierarchically (cf. Figure 1): The SCCs are 
interconnected by the network operator and form a tree. 
SCCs on a lower level cover small areas but are close to the 
users. SCCs on a higher level control larger areas but are 
farther away from the users. On the other hand, an SCC on 
a higher level covers a rather large area and increases the 
probability that it can serve a roaming user for a rather long 
time. This avoids the case that new security contexts need 
to be requested from the AAAH. Previous work [2] has 
calculated the optimal location of such a SCC in a 
hierarchically organized network in order to minimize the 
authentication delay for roaming users.  

AAAH

SCC on 
higher level

SCC on 
lower level

Areas controlled by SCC  
Figure 1: SCC Hierarchy 

In [2] it has been assumed that in case a user leaves the 
area, for which a SCC is responsible, a new SCC must be 
determined by the AAAH and the security contexts need to 
be transferred to the newly selected SCC from the AAAH. 
In this paper, we propose an extension of the concept that 
allows security context transfer between SCCs without the 
involvement of the AAAH. This leads to decreasing the 
authentication delay and in particular avoids the transfer of 
security contexts from an AAAH that may be far away 
from the SCCs. It also allows to move the SCCs (AAA 
broker functionality) even closer to the user, because we 
can afford to change AAA brokers more frequently due to 
the fact that security contexts do not need to be retrieved 
from the (far away) AAAH. In particular, we make use of 
concepts that have been used in peer-to-peer (P2P) 
networks. Mechanisms for efficient searches and data 
replication have been developed by several peer-to-peer 
networks and those concepts can help to solve the problems 
addressed above.  

In Section 2 we present traditional architectures and 
procedures for mobile user authentication. Section 3 

presents our novel authentication architecture based on a 
peer-to-peer network established between authentication 
entities. Section 4 presents performance measurements of 
application level forwarding as used in peer-to-peer 
networks and performance evaluations based on a 
simulation of the authentication architecture. Section 5 
concludes the paper and gives some examples for other 
applications that can take advantage of the P2P search 
mechanisms discussed in this paper.  

2 Authentication and Authorization 
Architecture for Mobile Networks 

Figure 2 shows the message flow for the authentication of a 
mobile user using SCCs. The service request by the user is 
received by an AAA client (AAAF), which forwards an 
authentication request to the next SCC. The SCC requests 
the security context from the corresponding AAAH and 
challenges the user with authentication information via the 
AAAF. The SCC compares the authentication response 
with an expected response derived from the authentication 
information and gives the result to the AAAF. The 
specification of a concrete protocol is beyond the scope of 
the paper. We rather focus on the general principles for an 
architecture supporting mobile user authentication. 
However, we believe that the Diameter protocol [4], which 
is based on peer-to-peer paradigms, provides a good basis, 
because it is very flexible and allows being adapted rather 
easily. Protocol issues of security context transfer have 
been discussed in [8] and [9]. 

AAA Client (AAAF) AAAHMobile Node

Serv ice Request

Security Context
Response

User Authentication
Challenge

User Authentication
Response

Authentication Request

SCC

Security Context Request

Authentication Challenge

Authentication Response

Authentication Reply

User Authentication Reply

 
Figure 2 : Authentication Message Exchange 

Figure 3 shows the interconnection of the authentication 
entities. Users connect their end systems to a wireless 
network and send a service request to the visited wireless 
network, e.g. wireless network 1. The AAA client that is 
responsible for wireless network 1 takes the user’s service 
request and sends an authentication request towards the 
AAAH of the user. The request includes the AAAH as a 
destination address, but it will be intercepted by SCC 1, 
which may ask the AAAH to transfer the security context to 
itself. Note that such a security context transfer is already 
performed in today’s cellular networks between different 
providers that have established roaming agreements. For 
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authentication, SCC 1 may challenge the user using a 
random number (nonce) and compare the response with the 
pre-computed authentication values stored in its security 
context. Next, the user may move from wireless network 1 
to wireless network 2. Again, the responsible AAA client 
will receive the service request and forward the 
authentication request towards the AAAH. SCC 1 still 
controls the security context for the user and will be able to 
challenge the user without any interaction with the AAAH.  

Security Context Controllers

AAA Clients

End Sy stem

Wireless
Network 1

AAAH

SCC 1
SCC 2

Wireless
Network 3

Wireless
Network 2

 
Figure 3: Authentication Architecture 

Next, the user moves to wireless network 3. SCC 2 will 
intercept the authentication request from the AAA client of 
wireless network 3 and detect that no security context for 
that user is locally available. To get the security context, 
SCC 2 has two options: The first (and traditional one) is to 
request the security context from the user’s AAAH. Again, 
this may add significant delay to the authentication and 
authorization process. The other option is to search among 
other SCCs, whether they store a valid security context of 
the user. For example, SCC 2 may detect that SCC 1 stores 
such a security context. In that case, the security context 
can be transferred quickly from SCC 1 to SCC 2 and the 
authentication process can proceed without contacting the 
AAAH.  

3 Peer-to-Peer Network Technology for 
Security Context Transfer 

3.1 Motivation 

To support fast security context transfer we propose to 
make use of peer-to-peer mechanisms for several reasons: 

• P2P networks have been invented in order to 
efficiently search resources such as audio files. 
Instead of exchanging audio files, we propose to 
use P2P mechanisms for locating and transferring 
security contexts between SCCs. As in other P2P 
networks, the peer nodes store (key, value) pairs. 
In our case, the key is a unique identifier for a user 
and its security context. The value is the current 
node storing the security context for this user.  

• P2P networks support replication and caching. The 
transfer of security contexts from an AAAH to an 
SCC can be considered as creating a replicate of 
the user’s security context at the SCC. One has to 
make sure that authentication vectors are not used 
multiple times but only once for authentication. 

Security contexts for a single user with different 
valid authentication vectors can exist at various 
SCCs simultaneously.  

• P2P networks are able to organize themselves and 
adapt to changing network conditions. This allows 
that SCCs discover each other and set up a robust 
network in order to exchange authentication 
messages. Such a network should also tolerate 
node failures and to allow adding new nodes 
dynamically.  

• P2P networks can be used to realize closed user 
groups. In particular, the set of SCCs need to 
communicate in a secure manner preferably using 
strong authentication and encryption mechanisms 
for security context transfer.  

3.2 Peer-to-Peer Based Authentication 
Architecture  

We propose to organize the SCCs in a peer-to-peer 
network. SCCs could detect each other using P2P 
mechanisms such as limited broadcast searches or via 
bootstrap nodes as required for Gnutella [7]. The result of 
the detection phase should be a mesh of SCC nodes with 
P2P links between the nodes. Preferably, nodes that are 
within the same administrative domain or sub-domain and 
that are geographically close establish links to each other. 
We also assume that the SCCs can establish secure links to 
each other based on standard authentication and encryption 
mechanisms such as IP Security [10]. The SCCs build some 
kind of secure P2P network and can be assumed to trust 
each other as it is the case in today’s cellular networks.  

Each node might be responsible for managing and storing 
the security contexts of a set of nodes assigned to it. In this 
case, it acts as an AAAH, e.g. the node indicated by a circle 
in Figure 4 might be the AAAH for the roaming user 
represented by the mobile end system.  

Security
Context

Controller

SCC 1

SCC 2

SCC 3

AAAHSCCx

SCCy

 
Figure 4 :  P2P Organization of Security Context Controllers 

In Figure 4, we assume that our user is at first in the area 
managed by SCC1. SCC1 will request the security context 
from AAAH. During the security context transfer from 
AAAH via SCCx to SCC1, pointers to the current security 
context held at SCC1 will be stored along the forwarding 
path, i.e. at AAAH and SCCx. After receiving the security 
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context, SCC1 will broadcast the presence of the security 
context to its neighbours. This broadcast message should 
contain the following information: user_ID, timestamp, 
SCC_ID, TTL. In order to limit the broadcast traffic we 
propose to limit the broadcast range, e.g. to two hops. 
Limiting the broadcast range can easily be achieved by the 
TTL (Time To Live) value. Each forwarding hop needs to 
decrement the TTL value and is not allowed to forward 
messages with TTL=0. The timestamp can be used to detect 
multiple receptions of a single message. Received messages 
should be stored in a cache with a lifetime that is 
sufficiently large to detect duplicated messages, e.g. a few 
seconds. Broadcasting the presence of security contexts 
should be repeated after a certain time interval (broadcast 
interval). Simultaneously, broadcast receivers should delete 
received broadcasts after another interval (broadcast 
expiration interval) that is a multiple of the broadcast 
interval in order to tolerate broadcast message loss. This 
mechanism ensures that only current pointer information (a 
pointer to the SCC that has been used most recently by the 
user) is kept at the neighbour nodes and it avoids that 
outdated information is stored at some SCC. SCC1 should 
also periodically inform AAAH about that it is still 
controlling the user’s security context (update interval). 
This update refreshes the pointer information along the path 
between the current SCC (SCC1) and AAAH, e.g. at SCCx. 
Since it might happen that multiple SCCs are controlling a 
security context of a particular user, a timestamp with the 
last authentication time for the user should be added. If a 
SCC along the path towards the AAAH receives updates 
from different SCCs, only the update with the most recent 
authentication time should be forwarded to the AAAH. 
Again, the pointer information expires at the nodes along 
this path after an interval that is a multiple of the update 
interval (update expiration interval). When the user now 
moves to an area controlled by SCC2, SCC2 should already 
know that SCC1 was the previous SCC controlling the 
security context. Instead of requesting the security context 
from AAAH, the security context can be requested from 
SCC1. Only in the case that the security context can not be 
used any more for authentication, e.g. if all authentication 
vectors have been used, the new SCC should request a new 
security context from the AAAH.  

In our architecture, the security context does not need to be 
transferred completely from the previous SCC to the new 
SCC. The previous SCC might send only a part of it to the 
new SCC and keep some authentication vectors. Only the 
SCC possessing an authentication vector is allowed to use it 
for authentication. By transferring an authentication vector 
to another SCC, the sending SCC forwards the right to use 
the authentication vector to the receiving SCC. Transferring 
only a part of the authentication vectors might be helpful 
for situations where the previous SCC might be contacted 
again by the respective user after the security context 
transfer has been completed. This might happen if the user 
moves back again to the area controlled by the previous 
SCC. Another reason might be that some pointer 
information to the current SCC has not been updated 
properly. In that case, there might be some pointer 
information still pointing to the previous SCC but not to the 
new SCC. In this case, we can avoid redirection and 
support authentication by those kept authentication vectors. 

Therefore, SCC1 should keep these authentication vectors 
and store that it has transferred the security context to SCCs 
for a longer time interval (larger than the update expiration 
interval and the broadcast expiration interval), because it 
might happen that other nodes do not become notified about 
the security context transfer to SCC2. Then, these nodes 
might answer a request message with a pointer to SCC1. 
SCC1 should in that case either use his stored and unused 
authentication vectors or redirect to SCC2.  

After the security context transfer, SCC2 informs the 
AAAH that it is now controlling the user’s security context. 
If the information travels along the path SCC1 – AAAH, all 
other pointer information to this security context is updated. 
For example, SCCx replaces the pointer information to the 
user’s security context and points to SCC2 instead of 
SCC1. The information might alternatively travel from 
SCC2 via SCCy (but not via SCCx) to the AAAH. In that 
case, SCCx might still include some pointer information to 
SCC1. If it should happen that due to that pointer 
information another security context transfer request 
reaches SCC1, it still can support such a request and 
transfer some unused authentication vectors that have been 
kept before and that have not been transferred to SCC2. 
Also the user might travel back to an area controlled by 
SCC1 after some time. In that case, the kept and unused 
authentication vectors can be used to support a quick 
authentication without security context transfer from SCC2 
to SCC1.  

It may also happen that the user moves to an area with an 
SCC that did not receive a broadcast message from the 
previously responsible SCC. This might happen if the user 
switched off his end system after leaving the previous 
network and switches it on in a network that is far away 
from the previous one. In that case, the responsible SCCs 
are far away from each other and do not receive broadcasts 
from each other. The same happens if the user stays within 
the same geographical area but moves to another network 
provider. For example, the user might first be connected to 
a WLAN, but might then move out of the WLAN range and 
connect to a cellular network. This will result in a network 
provider change and possibly the newly responsible SCC is 
not in the close neighbourhood of the previous SCC. It 
might also be the case that the user moves very quickly to 
an area that is out of the broadcast range.  

If the broadcast mechanism is not successful, the new SCC 
does not know the previous SCC. In such a case, it has to 
forward a security context request towards the AAAH. If 
the request passes a node with some pointer information, 
that node might return the pointer information to the 
requesting SCC. For example, we assume in Figure 4 that 
our user disconnects from SCC1, switches its device off, 
moves to SCC3, and re-connects to the new network. We 
also assume that broadcasts are only sent to direct 
neighbours. In this case, SCC3 does not know the previous 
SCC and forwards the request via SCCy towards AAAH. 
At SCCx the request meets security context pointer 
information describing that SCC1 is the current SCC. SCCx 
returns this information to SCC3. SCC3 contacts SCC1 in 
order to retrieve the security context from SCC1 and 
becomes the newly controlling SCC of the user. It should 
then also notify AAAH about the security context transfer. 
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By analysing this notification message, SCCy and SCCx 
will then have pointer information for the user’s security 
context. The pointer points to SCC3 then.  

Note that the mechanism described in this section only 
makes sense, if the AAAH is far away from the previous 
and the new SCC as well as the SCC with the pointer 
information (SCCx in the example above) and if these three 
SCCs are rather close to each other. Otherwise, it would be 
more efficient to directly request a new security context 
from AAAH. The SCC with pointer information should 
estimate and decide which of these two alternatives is 
better. This may be performed based on hop count 
information. A simple decision could be based on the 
evaluation of the estimated distances between the different 
nodes. If the distance of the deciding node to the AAAH is 
larger than the sum of the two distances from the deciding 
node to the new and previous SCC respectively, the node 
should decide to redirect the service context request to the 
previous SCC. 

The proposed mechanism is very similar to mechanisms 
proposed in peer-to-peer networks. In such systems key-
value pairs are stored at those nodes with IDs that are 
resulting by applying a hash function to the key. Each key 
has a root node and that root node may be responsible for 
storing a certain set of keys. One example is the Oceanstore 
[6] peer-to-peer file system. Each file has a unique ID and 
that ID is mapped to the node ID of the file’s root node. 
The root node then holds an entry pointing to the node 
storing that file and nodes requesting the file may easily 
contact the root node in order to learn which node is storing 
the file by applying the hash function to the unique file ID. 

4 Performance Evaluation 

4.1 Application Level Forwarding Performance 

In our investigations we assumed that application level 
message forwarding between SCCs does not add significant 
delay compared to IP level forwarding, if both application 
and network level forwarding use approximately the same 
paths. In this section we investigate the impact of 
application level message forwarding compared to IP level 
forwarding and the experiments discussed below will 
confirm our assumption. Propagation delays will more and 
more dominate communication delays in the future while 
the processing of messages will take less and less time with 
increasing processing power in intermediate and end 
systems.  

For our measurements we used ten Linux PCs in a common 
LAN at INRIA Sophia Antipolis (France) and one Linux 
PC located at University of Bern (Switzerland). Both 
organizations are connected to their national research and 
education networks (RENATER and SWITCH), which are 
interconnected via the multi-gigabit pan-European data 
communications network GÉANT. Figure 5 shows the 
message round trip times of the performed experiments. In 
the first experiment (2 local hosts), TCP messages have 
been exchanged between two hosts of the same LAN (0.2 
ms). Forwarding TCP messages between two hosts via  
eight intermediate hosts (10 local hosts) increases the round 

trip time to 3.6 ms. The round trip time on ICMP level 
(ping) between one host at Sophia Antipolis and one host at 
Bern via twelve routers in between (1 local, 1 far host 
(ping)) increases the delay to 30.2 ms. The round trip time 
on application level between the two hosts (1 local, 1 far 
host) is the same. In the last experiment, the TCP messages 
have been first transmitted from a host at Sophia Antipolis 
via eight hosts at Sophia Antipolis, before the message is 
transmitted to the host at Bern (9 local hosts, 1 far host). 
The response is returned along the reverse path. The delay 
of eight intermediate hosts adds very little delay (< 4 ms) 
compared to the IP level forwarding delay of approximately 
30 ms. The results show that application level forwarding 
overhead is very low and that the delay added by the 
network is dominant.  
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Figure 5: Application Level Forwarding Delay 

4.2 Performance of P2P Based Authentication 

For the evaluation of the P2P based authentication 
mechanism, we now assume to have a large grid (1000 x 
1000) of 1 million SCC nodes. Each node has coordinates 
(x, y) with x, y ∈ [0…999] indicating its location in the 
grid. Each node has four neighbours and we assume that 
node (500, 500) is the AAAH for the user’s service context. 
This structure is very similar to the CAN [5] peer-to-peer 
network, where each node has also four direct neighbours.  

In case a mobile user changes the network and the 
broadcast mechanism does not help to resolve the previous 
SCC, we have to search for the previous SCC by 
transmitting a security context request message towards the 
AAAH (see Figure 6). If the request meets on its path 
towards the AAAH a node knowing the previous SCC, it 
can return an answer to the new SCC. Otherwise the request 
arrives at the AAAH, the AAAH transfers a new security 
context to the new SCC, and the old security context will 
automatically expire.  

In the following evaluation we assume that the costs for 
retrieving the security context from the AAAH are equal to 
2 * N, with N = number of hops between new SCC and 
AAAH. The costs for retrieving the security context from 
the previous SCC are equal to 2 * (N’ + d) with N’ = 
number of hops between the new SCC and a node with 
pointer information to find the previous SCC and d = the 
number of hops between the old and the new SCC.  

In the evaluation we selected arbitrary pairs of SCC nodes, 
i.e. a new SCC and a previous SCC. The path from the SCC 
nodes to the AAAH is selected according to three different 
forwarding strategies: 
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a) Adapt x coordinate first (x first) 

b) Random forwarding (random) 

c) Anchor based random forwarding (anchor) 

With all strategies message forwarding makes always 
progress towards the AAAH (see Figure 6). With the x first 
approach, the message is forwarded such that a node with 
the same x coordinate as the destination is reached as fast as 
possible. This mechanism should allow that the search 
message finds some pointer information at the nodes with 
the same x coordinates as the AAAH. The forwarding 
decision is done in a deterministic way. However, if the 
new and old SCC differ in the y coordinate and differ both 
significantly from the x coordinate of the AAAH, it takes 
rather long until a search message can meet some pointer 
information.  

Random forwarding makes random decisions whether to 
make progress in x or in y direction. A new SCC having 
completely different y coordinates than the previous SCC 
might quickly find the pointer information set along the 
path from the previous SCC and the AAAH. On the other 
hand, two nodes close to each other may establish two 
completely different paths to the AAAH.  

Anchor based random forwarding visits always some 
anchor nodes. Anchor nodes might be nodes with special 
coordinates, e.g. x/y coordinates which are multiples of 5 as 
depicted in Figure 6. The path from a SCC to the AAAH 
should always visit one of the next anchor nodes towards 
AAAH. The path between anchor points is random. If a 
message has reached an anchor node, there are up to three 
candidates for selecting the next anchor point. Also this 
selection is random. For our evaluation we used two levels 
of anchor points: The lower level includes anchor points 
with x and y coordinates that can be divided by 10. The 
higher level includes anchor points with x and y coordinates 
that can be divided by 100. A message is always forwarded 
to the next higher level anchor point. On the path towards 
that higher level anchor point, low level anchor points must 
be visited.  

AAAH

prev ious SCC

new SCC

x

y

x f irst

random

anchor

anchor node

 
Figure 6: Grid-like organization of SCC nodes 

In Figure 6, the top left node has coordinates (0, 0), the 
previous SCC has coordinates (9, 8) and the new SCC has 
coordinates (8, 9). The two SCCs are two hops away from 
each other. (2, 1) are coordinates of the AAAH. The 

distance from the SCCs to the AAAH is therefore 9 – 2 + 8 
– 1 = 8 – 2 + 9 – 1 = 14 respectively. Using random 
forwarding, at node (6, 4) the security context request from 
the new SCC meets a node with pointer information for the 
user’s security context. The distance between this node and 
the new SCC is 8 - 6 + 9 – 4 = 7. The costs for retrieving a 
security context from AAAH are 2 * 14 = 28. The costs for 
retrieving the security context from the previous SCC are 2 
* 7 + 2 * 2 = 18. Retrieving the security context from the 
previous SCC is 35 % less costly than retrieving the 
security context from AAAH.  

The number of nodes that must be traversed before meeting 
a node with a pointer to the security context information 
depends on the distance between new and previous SCC. 
Figure 7 shows the relative costs for retrieving security 
context information for random SCC pairs by applying the 
three algorithms mentioned above in comparison to 
retrieving the security context from AAAH. The relative 
costs can be calculated by (N’ + d) / N. The distance 
between previous and new SCC is given by the number of 
hops. For all simulations, we have chosen the AAAH in the 
middle of a 1000 x 1000 grid of nodes, i.e. at coordinates 
(500, 500). For small distances between previous and new 
SCC, the algorithms with random forwarding perform 
better than the deterministic algorithm (“x first”). We also 
see that the anchor based random forwarding performs 
always better than any other algorithm even for large 
distances such as 100 hops between old and new SCC. The 
purely random based mechanism performs well for small 
distances, but for large distance values this algorithm 
performs worse than the deterministic one. One should take 
into mind that in the case of a roaming user, the probability 
that two SCCs are far away from each other is rather low, 
since those SCCs usually cover very large geographic areas. 
Also different networks operated by different providers in 
the same country are probably not too far away from each 
other in the peer-to-peer network. Even if two SCCs are 
less than 10 hops away from each other, a performance gain 
of more than 4 can be achieved compared to the traditional 
case when the security context is retrieved from the AAAH. 
For large distances, the mechanism does not perform worse 
than the traditional one.  

A further improvement of the concept is the instantiation of 
several SCCs that are responsible for the security context of 
a particular user. In this case, the authentication vectors 
might be distributed over these multiple SCCs. The 
probability that a security context transfer request meets a 
node with pointer information to one of these SCCs 
increases with the number of SCCs. In our evaluation we 
put 1, 10, 20, 40, and 80 SCCs that all have the same 
distance to the new SCC and that have a security context 
for the roaming user. Figure 8 shows significant 
performance gains by distributing a security context to a 
rather low number of SCCs, but we see that distributing the 
security contexts to more SCCs has certain limitations. 

Finally, we analyse the required cache memory in the SCCs 
to support our mechanism. If we again assume a grid of 
1000 * 1000 nodes, the average number of intermediate 
nodes between any 2 nodes of the grid is 667. The number 
667 can be calculated by selecting any possible 
combination of node pairs in a 1000 * 1000 grid and 



 

7 

calculating the average distance over all combinations. 
Assuming randomly roaming users, 667 nodes (from 1 
million nodes) have to store pointers to a user’s current 
SCC. Assuming 109 users, user IDs and SCC addresses of 
128 bits length each, this requires 2 * 128 bits * 667 * 109 = 
19.4 TB memory in total and 19.4 MB memory at each 
SCC in average. 

0

0.2

0.4

0.6

0.8

1

1.2

1 101

distance between old and new SCC

x first

anchor

random

0 100

 
Figure 7: Relative Costs of Security Context Transfer based on P2P 

techniques compared to traditional approach 
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Figure 8: Relative Costs of Security Context Transfer with several 

previous SCCs and using anchor forwarding compared to traditional 
approach 

5 Conclusions and Outlook 

We have presented an architecture for mobile user 
authentication and authorization based on a peer-to-peer 
organization of AAA entities. The architecture is based on 
security context transfer between the previous and the new 
security context controller. We have analysed different 
algorithms to find the previous security context controller 
efficiently in order to minimize the delay for the 
authentication process. An algorithm based on anchor 
points and randomly choosing those anchor points as well 
as randomly walking between the anchor points has 
achieved the best performance.  

The three presented algorithms, and in particular, the 
anchor based random forwarding algorithm can also be 
used to solve other problems than presented in this paper.  

• One potential application is mobility management 
by a peer-to-peer network. A mobile end system 
might connect to a foreign network and to close 
peers responsible for this foreign network. Then it 
transmits its new location via the intermediate 
peers towards a root peer that keeps track of its 
location. Other peers that desire to determine the 
mobile node’s position also transmit search 
request messages towards the root peer and might 
meet a peer along the path that already knows its 
position.  

• Another application is the organization of source-
specific multicast trees for P2P based multicast. In 
this case, new group members need to send join 
messages towards the multicast source. In order to 
join the multicast tree, it might be sufficient if the 
join message meets an already existing branch of 
the tree. We expect that the search mechanisms 
based on random decisions will meet the multicast 
tree earlier.  
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