UNIVERSITY OF BERN

BACHELOR THESIS

Management of SDN/NFV based Mobile

Networks
Author: Mentors:
Balz ASCHWANDEN Dr. Eryk SCHILLER
Dr. Thiago GENEZ
Supervisor:

Prof. Dr. Torsten BRAUN

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science in Computer Science

in the

Communication and Distributed Systems Group (CDS)
Institute of Computer Science

August 13, 2019

https://www.unibe.ch
mailto:balz.aschwanden@students.unibe.ch
mailto:schiller@inf.unibe.ch
mailto:genez@inf.unibe.ch
mailto:torsten.braun@inf.unibe.ch
http://www.cds.unibe.ch
http://www.inf.unibe.ch/index_eng.html

iii

Declaration of Authorship

I, Balz ASCHWANDEN, declare that this thesis titled, “Management of SDN/NFV
based Mobile Networks” and the work presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

UNIVERSITY OF BERN

Abstract

Faculty of Science
Institute of Computer Science

Bachelor of Science in Computer Science

Management of SDN/NFV based Mobile Networks

by Balz ASCHWANDEN

The ever-increasing global Internet traffic challenges network providers. In order
for them to meet these demands, they have to embrace Network Function Virtu-
alization (NFV). While Radio Access Network (RAN) implementations are being
improved rapidly, many operators still have to work with legacy technologies (e.g.
Universal Terrestrial Radio Access Network (UTRAN)/GSM EDGE Radio Access
Network (GERAN)), where a large burden still rest with the Evolved Packet Core
(EPC). Therefore, network providers have to over-provision their data centers to ac-
count for peak demand but cannot downsize the infrastructure when demand is
low, because powering machines up or down takes too long. This leads to wasted
resources. In this thesis, we use container technology, a special form of virtualiza-
tion, to implement NFV and to develop an elastic version of EPC. The EPC is pro-
vided by the OpenAirInterface (OAI) 5G Project. An elastic EPC scales out or in,
depending on demand, and saves resources in times of low traffic. We design a
containerized EPC and provide evaluation considerations for the tools we use for
management, monitoring, virtualization, and traffic generation. Our work shows
that two choices by OAI pose an obstacle for implementing a fully elastic EPC with
current container orchestration providers. The first is the reliance of OAI on IP ad-
dresses instead of DNS. The second is Stream Control Transmission Protocol (SCTP),
which is not fully supported in all major container orchestration implementations.
We also demonstrate the limits of the OAI System Emulation (oaisim), a Radio Ac-
cess Network (RAN) simulation utility provided by OAI To address these issues,
we have developed our own scaling engine which can use the advantages of estab-
lished container orchestration implementations where possible, but addresses the
shortcomings where necessary. Results are promising, but further reserach needs to
be undertaken in order to acheave a fully elastic EPC.

HTTPS://WWW.UNIBE.CH
https://www.philnat.unibe.ch/index_eng.html
http://www.inf.unibe.ch/index_eng.html

Contents

Declaration of Authorship

Abstract

1 Introduction

T.1 OVervVIEW v v o e e e e e e e e e e
1.2 Contributions e e
1.3 ThesisStructure e e

2 State of the Art

LTENetwork e
NEVand SDN e e
NEVand EPC e
OpenAirlnterface (OAI)

2.1
2.2
2.3
24

3 Related Works
Containerizationand Scaling

3.1
3.2
3.3
34
3.5
3.6

Scaling

Algorithms for EPC

ETSI Compatible Implementationof EPC
Existing NFV Architecture Frameworks
Container Orchestration and ETSI Standards
Monitoring

3.6.1
3.6.2

Key Performance Indicators
Measuring Key Performance Indicators

4 Architecture and Implementation

Architecture L
Monitoring Implementation,
Containerization and Scaling
Load Balancing
Autoscaling Logic o oo
Architecture Design L L o

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

Docker

-Compose ...

Data Generation e e e e

5 Testing and Results

51

5.2

Testing
511
512

5.1.3

Containerized EPC
Scaling EPC with balancerpy
Tracking User Attachment
Scaling using balancer.py andiperf3
Increasing and decreasing traffic

Startup Time and Elasticity

vii

iii

viii

5.3 Performance of balancerpy
54 IssuesEncountered

6 Conclusion and Outlook
6.1 Conclusion e e
6.2 Future Work e

A Autoscaling Engine
Al Implementation - balancerpy
A.2 Configuration File - balancer.cfg.

B Docker EPC Containers
B.1 Docker-compose.yml o ..
B.2 DockerfileforDB
B3 DBSQLDump.
B4 DockerfileforHSSo
B.5 HSSconfiguration.
B.6 HSSstartscript o
B.7 Docker filefor MMEo
B.8 MME configuration o o L
B9 MMEstartscript L o
B.10 Docker file for SPGW e
B.11 SPGW configuration, .
B.12 SPGW startscript oo

C Additional Configuration
C1 eNBconfiguration.
C.2 Prometheus configuration
C.3 Nginx configuration for DB Load Balancing
C.4 Nginx configuration for HSS Load Balancing
C.5 Nginx configuration for MME Load Balancing
C.6 Nginx configuration for SPGW Load Balancing

D Traffic Sniffing Utility
D.1 Implementation SMAINPY .« o v
D.2 Underlying utility class - tracker_new.py
E List of tools in architecture

F Balancer.py logs

G Balancer.py logs
G.1 Traffic Test Bash Script
G.2 DockerInstance Counter

Bibliography

39
39
39

41
41
47

49
49
52
53
57
59
60
61
64
69
69
73
76

77
77
80
80
81
81
81

83
83
83

91

93

99
99
100

103

iX

List of Figures

2.1
2.2
2.3
24

3.1
3.2

3.3

4.1
4.2
4.3
44
4.5
4.6
4.7

51
52

High-Level overview of LTE network.[12] 5
EPC elements and their interaction.[12] 6
Complementary characteristics of NFVand SDN.[3] 7
Isolation and Resource Sharing in VM and Container.[29] 10
ETSI MANO Function Blocks.[45] 13
Visualization of the different Planes and Elements taken from ETSI

GANAL[A5] . o o 14
Containerized NFV running on OpenStack.[46] 14
Componentoverview L oo 20
Example of the Grafana visualization of Prometheus time series. 21
Data flow from lefttoright:, 21
ETSIMANO including AE. 26
Detailed View of NF Architecture. 27
Interplay between oaisim and the different EPC 28
Data flow from lefttoright: 29
Planned and deployed Docker container instances 34

Reaction time until the number of planned instances is reached 35

Chapter 1

Introduction

1.1 Overview

Global network traffic is increasing on a daily basis. In large parts, this is due to
the gaining popularity of the Internet of Things (IoT). A forecast by Cisco predicts
a 46 times increase in global Internet traffic from 2017 to 2022. By 2022, the annual
rate of mobile data traffic will be more than 100 times larger than in 2012.[1] This
rapid increase in mobile network traffic and IoT devices are the main challenges
that network providers are facing today.[2] This challenge is further increased by
the fact that most network infrastructure is dominated by proprietary, tailored hard-
ware appliances. These appliances are costly to acquire, difficult to integrate into an
existing infrastructure and challenging to scale. Due to all these difficulties, network
providers find it hard to adapt to a changing environment. If they want to keep up
with the increasing demands, they have to look at new technologies to optimize their
infrastructure. A Whitepaper by the European Telecommunications Standards Insti-
tute (ETSI) suggests Network Function Virtualization (NFV) as a solution to cope
with these issues.[3, 4]

NFV brings several advantages. By leveraging virtualization technologies, ap-
plications can be run on standardized hardware instead of custom hardware appli-
ances. This simplifies the entire hardware life-cycle as well as organizing the physi-
cal layout of a data center. Because virtualized applications can run in cluster mode,
where one piece of hardware can compensate for the failure of another, NFV can also
be resistant to hardware failures. Since every aspect of a network can be depicted
in software, testing and rollback scenarios become easy to handle as well. With cus-
tom hardware, the hardware has to be acquired and installed in the data center and
testing is limited to a dedicated testing setup, which consists of expensive hardware
and is often not representative of the production environment. With NFV, the state
of a network is entirely represented as machine readable text. This text can be used
by several computer programs to automatically configure an environment. This in
turn simplifies switching between different setups and configurations.

NFV does not only simplify testing and hardware lifecycles, it assists network
providers in one more important area: Scaling. Since hardware appliances are time-
consuming to change, they cannot be moved into or out of a data center on demand.
This leads to data centers often being over-provisioned to buffer peak demand.[5]
Virtual Machines (VMs) and containers can be started and stopped much faster than
traditional hardware appliances. This allows for just-in-time provisioning of net-
work resources. By eliminating the need for an overprovisioned data center, NFV
can help reducing the number of running services, saving resources and ultimately
reducing expenses.

Several projects aim at leveraging NFV to assist network providers in optimiz-
ing 4G/LTE and implementing 5G. These projects range from providing functions

2 Chapter 1. Introduction

that can be deployed on an existing infrastructure (e.g. GNF, formally known as
GLANF[6]) to a complete implementation of LTE networks. Open EPC[7] and Ope-
nAirInterface (OAI)[8] are two recent efforts of the latter. To the best of our knowl-
edge, Open EPC has only licensed code for commercial deployment available. OAI
which has been developed by EURECOM, on the other hand, is an open source Soft-
ware Defined Radio (SDR) implementation of LTE including both RAN and EPC.
Previous studies have also shown that OAI can be deployed on a cloud infrastruc-
ture.[9]

Uptake of container technology grows within the IT industry and more possi-
bilities are suddenly available to network providers. These possibilities grow even
further, if one does keep in mind that edge devices such as wireless routers and
switches have become smarter and more powerful over time as well.[10] Moving
network functionality away from central data centers and closer to the user would
not only increase performance — and thus user experience — it would also reduce traf-
fic and processing-time in the data center. Container technology is essential for this
undertaking, as VMs — even optimized ones — often have to run on custom hardware
and take too long to be provisioned in order to satisfy the rapidly changing topol-
ogy at the network edge. Containers, on the other hand, can be created and started
within seconds and can run on commodity hardware.[10]

Today’s mobile networking infrastructure in Switzerland is largely based on Long
Term Evolution (LTE), which is one type of the fourth generation (4G) implementa-
tion of mobile phone technology, often referred to as 4G/LTE or 4G LTE. This is
the most commonly used version of 4G worldwide.[11] LTE is based on three main
components: The User Equipment (UE), the Evolved UMTS Terrestrial Radio Ac-
cess Network (E-ULTRAN) and the Evolved Packet Core (EPC).[12] The move to
a 5G network is the next technological challenge network providers are facing. In
preparation to this change, several infrastructure components are being updated but
as [13] point out: while Radio Access Network (RAN) implementations are being
improved rapidly, many operators still have to work with legacy hardware, with a
large burden still rest with the EPC. EPC was not designed with elasticity in mind.
This means that a traditional EPC cannot scale to traffic demand and is vulnerable
to hardware failure.[13]

The future holds a number of challenges for network providers. However, we
now have an overview of several ways to meet these challenges — both from a tech-
nological as well as an architectural point of view. In this thesis, we will address the
problem of overprovisioning by focusing on the EPC, one of the main components
of LTE. By its nature, EPC has to be overprovisioned because all traffic has to be
routed through. As such, there is a strong need to redesign the EPC.[14] It is the one
element of LTE that can profit the most from a NFV and scaling approach.

For this thesis, we start out with the code provided by OAI, isolate and con-
tainerize the individual components and scale them according to demand. We will
also use OAI System Emulation (oaisim), a simulation tool provided by OAI to do
simulated testing against our virtualized EPC.[15]

1.2 Contributions

The goal of this thesis is to provide, evaluate, and implement a containerized EPC.
Our implementation of the OAI EPC in Docker allows for several EPC core compo-
nents to be running in parallel. This allows for load balancing between the different

1.3. Thesis Structure 3

instances of these core components, allowing for optimal resource allocation with re-
gards to situational requirements. A fully elastic EPC is not possible at the moment
due to the design decisions made by OAI However, we provide a valid prove of
concept and propose a list of changes which could be implemented to the OAI EPC
to make fully elastic EPC possible. Through our work we also expose the limitations
of popular container orchestration solutions like Kubernetes, docker-swarm and
docker-compose when confronted with an application that operates on the lower
levels of the networking stack. OAI uses protocols which are not supported by Ku-
bernetes. It also relies heavily on IP-address-based instead of DNS-based routing,
which causes a problem with all of the build-in scaling solutions for Kubernetes as
well as docker-swarm and docker-compose. To overcome these obstacles, we lever-
age several of the existing components of docker-compose to implement our own
orchestration solution. This solution includes monitoring of network traffic as well
as fully configurable auto-scaling features.

In our solution, we implemented an autoscaling engine as well as a monitoring
solution. The monitoring solution uses cAdvisor[16] and Prometheus[17] to gather
information about the load on individual EPC containers. To react to this load, we
built a custom autoscaling engine called balancer.py. It collects information about
EPC performance from Prometheus and uses this data to determine whether run-
ning instances of an EPC component should be stopped or new instances should be
added. Changing the number of running instances is done by leveraging the man-
agement tools of docker-compose inside balancer.py.

We tested the functionality of our EPC using the OpenAirInterface System Em-
ulation (oaisim), a virtualization tool created by OAI which provides a virtualized
eNB and UE.[18] We also used iperf[19] to test how fast our engine could react to
changing network traffic demands. We found that our solution outperforms tradi-
tional approaches using VMs by a large margin in terms of start up time and there-
fore also in terms of flexibility.

1.3 Thesis Structure

The rest of this thesis is organized as follows: Chapter 2 provides an overview over
of the key concepts that form the foundation of our thesis, while Chapter 3 looks
at the state of research in the area of NFV with a focus on auto-scaling as well as
the tools commonly available. Chapter 4 illustrates our choices of architecture and
implementation of the EPC and our auto-scaling engine. Chapter 5 introduces our
testing and results, Chapter 6 our conclusions and ideas for future research in the
areas of NFV and virtualization.

Chapter 2

State of the Art

2.1 LTE Network

LTE is one type of 4G. However, it is the most popular implementation and often
referred to as 4G/LTE. Other 4G networks are Evolved High Speed Packet Access
(HSPA+) and Worldwide Interoperability for Microwave Access (WiMax).[11] The
Third Generation Partnership Project (3GPP) initiated LTE with the goal of provid-
ing a high data rate, low latency and packet optimized radio access technology sup-
porting flexible bandwidth deployments. The network architecture was designed
with the goal to support packet-switched traffic with seamless mobility and great
quality of service. LTE is based on three main components, as illustrated in Fig-
ure 2.1: User Equippment (UE), Evolved-UMTS Terrestrial Radio Access Network
(E-UTRAN) and Evolved Packet Core (EPC).[12]

The E-UTRAN handles the radio communication between UE and EPC and has
the evolved NodeB (eNB) as its only component. Each eNB acts as a base station,
controlling the UEs in a given area that is divided into one or more cells. The EPC
consists of a Home Subscriber Server (HSS), a Mobility Management Entity (MME),
a Serving Gateway (SGW) and a Packet Data Network Gateway (PGW).[20] The last
two are often bundled together as a Serving Packet Gateway (SPGW). This is also
the case for the OAI implementation of EPC. The interactions between the different
EPC elements and E-UTRAN are illustrated in Figure 2.2.

When an UE wants to connect to an EPC, it sends an attach request message to
the MME via its eNB. The MME will then authenticate the UE with the help of the
HSS. Once the UE is authenticated, secure communication is established and a data
tunnel is set up. This is called the default bearer. OAI uses a mix of different General
Packet Radio Service (GPRS) Tunneling Protocols (GIPs) for its bearers. GTPV2-C is
used for S11, the interface between the MME and SPGW. GTPV1-U is used for the S1

—

EU - Servers
) E-UTRAN EPC PDNs

Signals
Traffic

FIGURE 2.1: High-Level overview of LTE network.[12]

6 Chapter 2. State of the Art

MME Signals
Traffic
i 510
Seafl____ >
51-MME
E-UTRAN S11
$1-U Servers
S5/58 .

FIGURE 2.2: EPC elements and their interaction.[12]

user plane external interface (S1-U), which is defined between eNodeB and SPGW.
See [21] for an example configuration.

For this process to function an IP address is assigned from the PGW to the UE
and the tunnel endpoint identifier values for the bearer are exchanged between eNB,
MME, SGW, and PGW. At the end of this process, a tunnel for the UE from eNB
to PGW is established and the UE can receive data from a Packet Data Network
(PDN).[14] A very good illustration of the attachment process is provided by [22].
They also show how traffic between the different components can be intercepted by
listening on the appropriate interfaces.

2.2 NFV and SDN

Network Function Virtualization (NFV) is a network architecture concept that uses
virtualization to abstract entire classes of network node functions into building blocks
that may connect or chain together to create communication services. Unlike tradi-
tional Network Functions, they do not necessarily depend on particular hardware
but can run on cloud computing infrastructure. Examples of NFV are load bal-
ancers, firewalls, and intrusion detection devices.[23] Advantages of NFV include
the reduced cost and overall dependency toward a hardware vendor, as NFV can
run on commodity hardware. The biggest advantage, however, is the increased flex-
ibility and reduced time to deploy new network services. This flexibility also allows
for quick scaling of services to address changing demands.[24]

NFV enables dynamic modification of Network Services (NSs), enabling a ser-
vice provider to quickly react to user demand. Maintaining infrastructure for peak
requirements is one of the main cost factors for cloud infrastructures.[25] This factor
can be greatly reduced by using dynamically deployed NFV. Traditionally, Quality
of Service (QoS) was guaranteed by oversizing the capacity of Network Functions
(NF). However, this leads to a system that is optimized for peak performance and

2.2. NFV and SDN 7

gfna;if}tive Creates.network
ks \ software | SrepErione
mnoyatiye Sslis innovation
applications | Networks :

by third

parties.

o eretwork" '

- . Reduces CAPEX, OPEX,
3 unc.t o Space & Power
Virtualisation

Consumption.

FIGURE 2.3: Complementary characteristics of NFV and SDN.[3]

overprovisioned for every other situation. NFV enables a service provider to de-
liver optimal performance to the user while at the same time optimizing resource
allocation on the backend.[5]

NFV is often used in combination with Software Defined Networking (SDN)
with which it shares many key concepts. Both NFV and SDN are software-based
approaches to networking with the goal of being scalable, agile and innovative.[26]
When SDN first emerged, its main focus was on separating data plane from control
plane. The data plane is concerned with moving packets through a network as fast as
possible. The control plane is concerned with the logic of where the packets should
be routed to. This, in turn, enables administrators to configure and reconfigure an
entire net-work from a central point of control. Furthermore, it reduces vendor lock-
in by separating controllers from data plan devices. And last but not least, it reduces
costs because controllers and applications can be run on standardized server hard-
ware. This concept was soon adopted to various products and technologies.[27] The
emergence of NFV can be seen as being part of the same idea, but both technolo-
gies are independent and can be implemented separately. However, they tend to
complement each other, as Figure 2.3 illustrates.[28]

Before NFV, applications were running on bare metal machines. As servers grew
in capacity, bare metal applications were no longer able to exploit the abundance of
resources.[29] Scaling was also an issue, as every new service had to run on propri-
etary hardware, which had to be integrated in an existing facility. This led to a rapid
increase in complexity.[3] Virtual Machines (VMs) soon replaced bare metal. VMs
offer many benefits: By running the OS virtualized they are independent of the ini-
tial hardware and can be deployed easily. This also reduces complexity in the data
center because appliances can be replaced with standardized hardware.

The operator still has to deploy and manage an entire OS, however. This is a good
deal of work, if the operator wants to scale into the thousands of machines. Here is
where container technology comes into play. The technology behind containers —
Linux containers — was initially introduced in 2008.[30] But it has been popularized
by Docker which made containers much more portable and easier to use.[31] To use
Docker, one only needs to install it on a Linux server and tell it which image to
run. An image is a Docker term for the service the container should run. Docker

8 Chapter 2. State of the Art

containers can be built with a straight-forward yaml syntax,[32] making VMs much
more complicated to deploy in comparison.[31]

Yaml stands for YAML Ain’t Markup Language. It is a data serialization language
which can be used by all programming languages.[32] Yaml has a strong focus on
readability and has grown in popularity over the last few years. It is often used as a
format for configuration files. This is also the case for Docker.

The following is an example of the yaml syntax. It shows the beginning of the
build instruction for the MySQL database Docker container we use as backend for
our HSS. The complete source of this file can be found on GitHub.[33] We added
comments starting with % to explain the meaning of the different instructions. The
full reference to these instructions can be found on the Docker website.[34]

% Docker Containers can be built based on other, existing
% containers by specifying a so called base image.
% The FROM instruction tells Docker to use the mysql

% container version 5.6 and as a base image.
% It can be red as "Use the container image FROM mysql with

» % version 5.6

FROM mysql:5.6

% The MAINTAINER instruction server no other purpose than
% to give contact information for users of a

% given container.

MAINTAINER Yan Grunenberger <yan@grunenberger.net>

% Lines starting with # are comments and are being

5 % ignored when building the container image.

CUSTOMIZE YOUR FIRST SIM DETAILS

% ARG is used to declare variables for later use.
ARG IMSI="901550000000000"

ARG MSISDN="6789"

20 ARG KI=0x912e7221941577d£083e1591d35f4c42

ARG OPC=0x4487d12562bd21df3b076852f4d74eec
ARG APN='"internet ’

CUSTOMIZE YOUR HSS DETAILS
ARG REAIM='"openair4G .eur’

» ARG MME="mme. openair4G . eur’

##t#HAHAH A HAH A HSHAHH#H##EH#E Docker build instructions

0 % Set environment variables.
31 % Do not confuse with ARG which defines variables but

% does not make them available in the environment.

33 ENV MYSQL_USER=root

)
s3]

ENV MYSQL_ROOT_PASSWORD=1linux

36 % RUN specifies a command to be executed

% inside a container. However, this one will be ignored

% because of the leading # character

#RUN apt—get update && apt—get —qy install curl

#RUN curl \

https:// gitlab .eurecom. fr/oai/openair—cn/raw/develop/src/oai_hss/db/
oai_db.sql \

—o /docker—entrypoint—initdb .d/oai_db.sql

% ADD is used to copy a file from the build machine
% into the container

s ADD oai_db.sql /docker—entrypoint—initdb.d/oai_db.sql

2.3. NFV and EPC 9

As we can see, these build instructions are easy to comprehend and write. But
not only the usability is better, containers are also advantageous from a resource
management point of view. This stems mostly from the location of the virtualization
layer and the way that operating system resources are used.[29, 35] To find out more,
we have to take a closer look at how the two concepts work.

VMs rely on a hypervisor usually installed directly on a bare-metal system. Once
the software is installed, VMs can be deployed. Each VM will receive its unique op-
erating system and applications. Each VM is running fully isolated and is not aware
of other VMs running along-side. With containers, the case is different. Containers
do not rely on a hypervisor. A host operating system is installed on a bare-metal
system or in a VM and the container layer is installed in this VM. Once this is set up,
container instances can be deployed. Isolation is different than in the case of a VM
— each containerized application shares the same underlying operating system.[35]
This also results in a vastly improved startup time compared to VMs.[2, 36]

Studies analyzing resource utilization in containers and VMs mostly show a fa-
vorable outcome for containers. This is also the case in a recent study on power
consumption in virtualized environments. Docker containers did not have lower en-
ergy consumption than VMs, the consumption also increased more slowly when the
workload was increasing. Due to the quick startup time, containers can also be shut
down and started on demand, leading to significantly reduced energy consumption
compared to a VM.[37]

Due to the limited isolation, containers can share a great deal of resources. They
are regarded as more resource-efficient. They are also created and started much
faster than a VM. All this leads to containers being embraced by cloud providers.
This is nicely illustrated in Figure 2.4.

With all this being said, containers have also downsides when compared with
VMs. Due to the shared resources — mainly the same kernel space —, the underlying
OS would also crash all hosted containers. Also, as isolation is less strong compared
to VM, this could open up attack vectors. This is likely to change soon thanks to the
gVisor project by Google, which is a container sandbox runtime focused on security,
efficiency, and ease of use.[38, 39]

2.3 NFV and EPC

Glasgow Network Functions (GNF) is a promising project combining the advantages
of NFV and SDN using Docker and OpenFlow.[6] It supports every UNIX version
and does not depend on a specific programming environment. A GNF Manager
exposes a REST API for centralized orchestration — separating coordination logic
(Manager) and operation logic (Agent).[4] GNF could be used to solve three ma-
jor concerns in today’s networking infrastructure: IoT DDoS mitigation, distributed
on-demand measuring and troubleshooting of network connectivity and Roaming
Network Functions for the 5G network.[2]

Arteaga et al. apply the gained elasticity capacity to the Evolved Packet Core
(EPC), more precisely, to the Mobile Management Entity (MME).[5] Performance is
measured in terms of Mean Response Time (MRT) and scaling out/in is achieved
by adding additional instances of MME Service Logic (SL) behind a MME front-end
that acts as a load balancer.

Jain et al. have identified the LTE Evolved Packet Core (EPC) as the main compo-
nent in need of a redesign.[14] For this redesign, several new architectures have been
proposed, which incorporate Software Defined Networking (SDN) and Network

10 Chapter 2. State of the Art

Virtual machines versus containers

VIRTUAL MACHINES CONTAINERS

VM1 VM2 VM3

Docker Engine

Host operating system Host operating system
Host hardware Host hardware

N

FIGURE 2.4: Isolation and Resource Sharing in VM and Container.[29]

Function Virtualization (NFV). The authors continue by reviewing several related
papers and criticizing them for not following through on their research by provid-
ing a complete EPC implementation. This is where the authors go one step further
and provide two reference implementations of EPC that they published as an open-
source project for testing and further research. The authors compare two different
implementations of LTE EPC: One using SDN and another using NFV. Both provide
the basic elements of an EPC consisting of HSS, MME, SGW and PGW. They then go
on testing these two implementations. Testing is done with two types of traffic: con-
trol traffic (mainly UE attach-requests) and data traffic (mainly TCP). The authors
find the NFV implementation of EPC performing better in a network with heavy
signaling traffic and vice versa; the SDN implementation has the upper hand when
it comes to data traffic.

2.4 OpenAirlnterface (OAI)

The OpenAirInterface (OAI) Software Alliance (OSA) is a non-profit consortium fos-
tering a community of industrial as well as research contributors for open source
software and hardware development for the core network (EPC), access network
and user equipment (EUTRAN) of 3GPP cellular networks.[15] The EPC provided
by OAI is one of only few open source EPC implementations. It has been studied
before and was successfully used in a fully cloudified mobile network infrastruc-
ture.[9]

OALI also provides the OpenAirInterface System Emulation (oaisim). This tools
allows for simulation and emulation of an OpenAirLTE network, including eNB and
UE virtualization.[18] It allows a researcher or developer to test functionality of the
OAI EPC without the use of expensive hardware.

11

Chapter 3

Related Works

3.1 Containerization and Scaling

There are, broadly speaking, two types of scaling. Scaling up/down (or vertical scal-
ing) that implies adding resources to an existing machine, e.g., growing or shrinking
a VM by manipulating resources like CPU or RAM that are allocated to that ma-
chine. The advantage of this approach is its simplicity regarding the architectural
implementation. If a problem demands it, a more powerful machine is used. How-
ever, this approach comes with the added complexity of reducing the size of a VM
— which is not easily accomplished. (See e.g. [5, 13, 25]). Scaling out/in (horizontal
scaling), on the other hand, has a simplified life cycle. A VM or — more commonly —
a container is created and added to the pool of workers charged with a task. Once
the container is no longer needed, it is simply destroyed. The released resources
can be used for another task. Of course, this adds architectural complexity. A static
frontend has to be provided for clients who want to use this service. This is most
commonly accomplished with a load balancing service. An example for this is JUJU,
an open source modelling tool for operating software in the cloud, developed by
Canonical.[40]

3.2 Scaling Algorithms for EPC

Scaling in the context of IT services referrers to the process of changing the amount
of resources allocated to a service. Several scaling strategies have already been pro-
posed in the literature. The different categories for scaling are (1) reactive, when
a certain performance threshold is not reached, (2) predictive scaling based on his-
toric data before the system overloads and (3) machine-learning based.[41] The first
two strategies can lead to oscillations, when performance is just around the defined
threshold and because historic data can differ from actual events, strategy 2 is not al-
ways optimized (e.g. can over-provision the NF). Lastly, machine learning is based
on trial and error that can negatively impact QoS.[41] Arteaga et al. propose an
adaptive scaling mechanism that is utilized by an agent to carry out improvement
strategies of the scaling policy.[5]

Carella et al. have noted that requirement changes against a network can be de-
scribed in two different categories: Predictable and unpredictable events.[42] They
tirst describe what information can be deduced by knowing the time of the day and
the day of the year (e.g. different peaks around the beginning of a working day
than at midnight.) The resource demands can be planned ahead of time and can
be deduced from network utilization and other factors. By applying an optimiza-
tion strategy consisting of these two factors, Carella et al. show that it is possible to

12 Chapter 3. Related Works

save up to 60% of resources compared to a traditional approach that involves static
allocation of resources.[42]

While VMs have a startup time of several minutes, containers do the same in a
few seconds.[2, 36] This fundamentally changes the way resources are provisioned,
as services can now be started on demand without the end-user noticing it. This
makes much pre-container research uninteresting for our work, as there is a huge
difference between real-time and ahead-of-time resource allocation.[41, 43] Yet this
research is still relevant when it comes to the underlying data center operations of
providing seemingly endless numbers of VMs or Docker hosts to users. However,
scaling follows different strategies, when used with containers than it would with
VMs.

3.3 ETSI Compatible Implementation of EPC

Many researchers have proposed an additional ETSI MANO compliant element to
introduce auto-scaling into the system. Several of them aim at making their pro-
posed scaling implementation ETSI NFV MANO compatible and ETSI itself moved
into this direction by its propositions in ETSI GANA. Dutta et al. propose additional
functions, namely QoE Assessor (QA), Resource Usage Monitor (RUM) as well as
Elasticity Decision Maker (EDM) and integrate them within the ETSI Service Man-
ager (SM) and Service Orchestrator (SO).[25] Carella et al. propose an Auto-scaling
Engine (AE) and integrate it into ETSI NFV as an additional functional element.[42]
Their implementation has been published as an open source project with the name
Open Baton.[44] Their AE consists of three main components: The detector (detect-
ing KPIs and reports if they are no longer acceptable), the decision maker (notified
by the detector, decides whether scaling action needs to be undertaken or not (either
because not necessary or not possible)) and the executor (executing scaling action,
initializing cool-down counter). We will take inspiration from the latter approach
and use it to implement our own auto-scaling logic.

3.4 Existing NFV Architecture Frameworks

Containers are superior to VMs in terms of resource utilization and startup time.[35,
36] As they run fewer processes than VMs, they are also easier to manage. However,
even the simplest systems will likely increase in complexity when it increases in
size. ETSI realized this from the start and the ETSI MANO includes definitions for
ways to connect and load balance the different NFVs. Figure 3.1 shows the ETSI
MANO reference. We will now look at some of the important elements of the ETSI
framework and how they apply to our study.

ETSI NFV MANO leveraged cloud orchestration and management to improve
NFV. The MANO architecture has to be integrated into an existing system, providing
an open Representational State Transfer (REST) Application Programming Interface
(API) to make user requests for VNFs easy to automate. The three ETSI NFV MANO
Function Blocks are illustrated in 3.1. They consist of:

1. Virtualized Infrastructure Manager (VIM), which controls and manages the
underlying infrastructure components such as storage and network resources

3.5. Container Orchestration and ETSI Standards 13

D e e e)
. I
Os-Nfvo :
= 0SS/BSS ; i NFV Orchestrator (NFVO) p—
- I !
- I T !
: H | N ' N ' !
' : | S == Or-Vnim —t— 112 :
' - ! T « > H
' s 1 prm— / - =/,_x_.. "
: ' I NS VNF = L NFV NFVI :
' - : Catalog | ('*"i"\'t! Instances | | Resources | "
: ' [' i
' ' I 5 I
' ' I ' |
de . 1 VeEnVnim ’ |
! > 1 1 |
: T ' | VNF Manager :
' : - l (VNEM) -
. :
' > e || vent-vnim T -
1
' VNF - Vifm-Vi !
' I |
: ? I I
- ’ [!
' - Vin-N{ Or-Vi i
' | ! Virtualised
' : i i ; !
2 N NIVI Infrastructure | i
=L NFVI - Manager i '
| (VIM) !
1 NFV-MANO :
f e oo m i o o' o s o @ U G G s G a5 b G5 G G S G W i ab Gb & @
S ® Exccution reference points |-~ Onber reference points === Main NFV reference points

FIGURE 3.1: ETSI MANO Function Blocks.[45]

2. NFV Orchestrator (NFVO), which bridges MANO with the Operations Sup-
port Systems (OSS) and Business Support Systems (BSS) elements. It autho-
rizes infrastructure resource requests and is in charge of on-boarding new Net-
work Services (NS).

3. VNF Manager, which is in charge of VNF instance life cycles.

ETSINFV MANO provides clear guidelines for implementing functional compo-
nents that can react to outside demands — it is designed for automation. However,
because its concern is the implementation of a flexible architecture, it does not go into
detail about the optimization aspects. This is, where ETSI GANA comes into play.
ETSI GANA is designed for autonomy. Automation is about workflow reduction,
whereas autonomy, or rather autonomic management emphasizes learning, reason-
ing, and adaptation e.g., the ability to scale a service in or out depending on current
demand. GANA introduces the autonomic Decision-Making-Element (DE), which
is responsible for adaptive control of a system and its resources. DE can control
Managed Entities (MEs) such as NFVs to improve the overall efficiency of a sys-
tem. The role of DEs is further generalized with the concept of the Knowledge Plane
(KP). The role of a KP is to have a high-level model of the network’s tasks. It should
collaborate with the DEs at the lower layers.

3.5 Container Orchestration and ETSI Standards

When ETSI MANO was first released, containers were not as widely used as today.
Nakajima shows, that many of the roles proposed by ETSI MANO can be fulfilled
by containers.[46] Figure 3.3 illustrates how containers are used for NFV and how
OpenStack is taking over the part of NFVO and other ETSI MANO elements.

14 Chapter 3. Related Works

Hierarchy of Decision
Elements (DEs)
‘ Knowledge Plane
Qg“ "-E B - { Level Routing Management DE
/ =)/ n:
/ m Other Network Level DEs Network Level DEs
/ e.g. rk Level QoS DE (GANA Level-4)
Administrator/Network
Operator

NE (router, terminal, switch,
gateway, base-station, etc.)

- Outer Control Loop
-

NE (router, host, switch,
gateway, base-station, etc.)

Node_Main_DE |t

J

Node_Main_DE

f
"L

Node Level DEs
(GANA Level-3)

Network Element (NE) Function-Level DE, e.g. QoS) Function Level DEs
Management DE | (GANA Level-2)

d ““““ (,/ """") 1 @
Managed Entities (MEs|
Resources, i.e. Protocols, Stacks & Managed Entities (MEs) l [Mtnued E o " M,B ;;::)Actletz:l)n&
Mechanisms, and Applications) o spectic upper DES, - B

,,,,,,,,,,,,,,,,,,,,,,,,,) Reterence)

ey)

FIGURE 3.2: Visualization of the different Planes and Elements taken
from ETSI GANA.[45]

Architecture Framework

*
NFV M and O
-{ 0SS/BSS i
T - or-vnfm
_—
Ve-Vnim Service, VNF and
h VNF
| e ey e = e
Virtual Network Function l VNF T VNF2 1 VNI
FROT= NFV Infrastructure = i
Virtual Virtual | Virtual | 5
Computi Stora Network
[~ Virtualisation Layer] = M o
Vi] T | Mana '
l 1 Hardware resources \‘\,
eeeasey | Computing Storage -
I KVM, Xenbonlainers Hardware m openstack
Tt Taccution reference powts ' —=t= Main NFV reference points

Other refereace poiats
Software

OpenSource

FIGURE 3.3: Containerized NFV running on OpenStack.[46]

3.6. Monitoring 15

We argue that any container orchestration tool can replace OpenStack. As Ku-
bernetes (originally developed by Google) is the most popular orchestration tool, it
makes sense to use it in this example.[31]

Kubernetes is a container orchestration tool designed to run as a cluster with a
central Master and a number of nodes, which are VMs or bare-metal machines. To
deploy applications, you then create so-called deployments (with deployment con-
figurations). Using this configuration information, the Kubernetes master schedules
the applications into individual nodes in the cluster. It also monitors these instances
and will replace instances if they go down. This feature is called a self-healing mech-
anism.[47]

With every deployment, Kubernetes creates a pod to host the application in-
stance. A pod is a Kubernetes abstraction that represents a group of one or more
application containers (such as Docker), and some shared resources for those con-
tainers. Once the pod is up and running, we have to expose it to the Internet. We do
this explicitly because although every pod has a unique IP address, pods can stop
working (either due to scaling, malfunction or a failed up-date and the old version
of a pod has to be replaced with a new one). When the master spins up a new pod,
it will have a new IP address. We need a way to explicitly assign this. The way of
doing it in Kubernetes is with services. A service in Kubernetes is an abstraction
which defines a logical set of pods and a policy by which to access them.[48]

To the best of our knowledge, Kubernetes is currently the only orchestration tool
offering IP-based load balancing out of the box. With its design of nodes and service
endpoints, Kubernetes offers a simple way for administrators to scale a service out
and in. Unfortunately, by the time of this writing, Kubernetes does not support the
SCTP protocol yet. This means that there is no way to expose ports that will route
this traffic to the outside.[49] This is a problem because freeDiameter (an open source
tool used by OAI)[50] and OALI are relying on it. We were able to compile OAI EPC
without SCTP, but that was of no use. Although the No_SCTP option is already set
in the preference file provided by OAI, OAI EPC still depends on SCTP for the S1
interface between MME and eNB.

Fortunately, docker-swarm and docker-compose (both developed by Docker Inc.)
are both valid alternatives to Kubernetes. They share many of the core concepts but
lack the IP address-based automatic load balancing Kubernetes provides. We will
get back to this in Chapter 4.

3.6 Monitoring

3.6.1 Key Performance Indicators

To access the performance of a network as well as the Quality of Service (QaS) per-
ceived by the user, Key Performance Indicators (KPIs) are measured and evaluated.
Several KPIs have been proposed for LTE in general and for the EPC in particular.
ETSI defines KPIs for the EPC within the 3GPP Project and makes a distinction be-
tween the following three types of KPIs: Accessibility, Mobility and Utilization.[51]
This is the full list of defined KPIs as defined by ETSI:

16 Chapter 3. Related Works

1. Accessibility KPIs
e EPS Attach Success Rate

o Dedicated EPS Bearer Creation Success Rate
e Dedicated Bearer Set-up Time by MME (Mean)

e Service Request Success Rate
2. Mobility KPIs

e Inter-RAT Outgoing Handover Success Rate (EPS— GSM)

o Inter-RAT Outgoing Handover Success Rate (EPS— UMTS)

e Inter-RAT Outgoing Handover Success Rate (EPS— CDMA2000)
o Inter-RAT Incoming Handover Success Rate (GSM— EPS)

¢ Inter-RAT Incoming Handover Success Rate (UMTS— EPS)

o Inter-RAT Incoming Handover Success Rate (CDMA2000— EPS)
e Tracking Area Update Success Rate

3. Utilization KPI

o Mean Active Dedicated EPS Bearer Utilization

In addition to these, researchers often use throughput,[52, 53] latency, or one-
way delay (OWD), as indicators for network performance.[52, 54] Latency is defined
by 3GPP in two ways: control-plane latency and user-plane latency. Control-plane
latency is the time required by the call-setup procedure and user-plane latency is the
one-way transmission time of an IP data packet from the UE to the RAN edge-node
or vice versa.[54, 55] Studies on EPC performance usually focus on the second of
these two definitions and analyze user-plane latency (e.g. in [54] and [56]). Other
research also used EPC Mean Response Time (MRT) to indicate the QoS.[5] KPIs can
also include Received Power, Handover Time and Round-trip time.[57]

3.6.2 Measuring Key Performance Indicators

Unfortunately, neither Kubernetes nor Docker (neither docker-compose nor docker-
swarm) offer a native way of measuring network related KPIs to the level of de-
tail we require. Also, popular monitoring tools such as Jaeger[58] have to be inte-
grated into the source code — this goes beyond the scope of this thesis. This forces
researchers to fall back on tools outside of the framework (e.g. in Medel et al., where
iperf is used to assess the performance of a Kubernetes setup.)[59] However, some
of the information received from the Docker daemon can still be used to know the
state of the network. Docker offers the stats command, which lets the user query
several metrics, for instance information about CPU and memory usage as well as
net I/O. Throughput and latency in production networks can be measured directly
on the UE, for example by using an Android App.[52]

Another popular measure is the use of iperf[19], which is used for synthetic traf-
fic generation and system profiling for LTE networks (see e.g. in [60] and [14, 60] or
for networks in general [59, 61, 62]). For us, the work done by Jain et al. is particu-
larly interesting.[14] The authors compare performance for signaling and data-plane
traffic in SDN-based versus NFV-based EPCs. By using throughput as well as re-
sponsiveness (establishment of UE attach/detachment) the authors combine KPIs in
the sense defined by ETSI with more traditional network performance indicators.[14]

3.6. Monitoring 17

After gathering all this information, it seems clear that using iperf assessing the
performance of a network is inevitable. Hence, this is a tool we will use as well. For
signaling traffic, Jain et al. used a custom RAN simulator.[14] We hope to achieve
the same or similar effect by using the oaisim tool provided by OAL[8] There is
research on a dedicated OAI traffic generator by Hafsaoui et al., but to the best of
our knowledge, it has never been publicly available.[56]

19

Chapter 4

Architecture and Implementation

4.1 Architecture

To design our architecture, we have to consider several factors. For implementing
VNF we have to take the MANO reference architecture by ETSI into account,[3, 45]
and, since we also want for our implementation to be able to be self-optimizing (au-
tonomic), we have to consider the ETSI proposal for Generic Autonomic Networking
Architecture (GANA).[63]. We provide a fully working load-balancing engine which
is able to control docker-compose to start/stop Docker containers based on demand
on the EPC.

A detailed list of all the used technologies is provided in Appendix E. Figure 4.1
also shows an overview over the used components. They are the following;:

e Configuration: Controls the behavior of the load balancer. Information about
the number of container instances as well as thresholds are configured here.

e Load Balancer: Controls docker-compose to start/stop Docker containers. Queries
information about performance from Prometheus. Takes into account perfor-
mance over a range of time as well as information in the configuration file to
determine the optimal number of running Docker containers. The goal is to
have to optimal number of Docker containers for OpenAirInterface EPC run-
ning. This load balamcer has been written and implemented by us for this
thesis.

o docker-compose: Orchestration of different Docker containers. Ensures con-
tainers are in the correct virtual network. Starts and stops containers.

e Docker container: Core technology to containerize services. Controlled by
docker-compose. Several Docker containers are running at the same time.

e OpenAirInterface EPC: EPC provided by the OpenAirInterface organization.
The different functionalities of OpenAirInterface EPC are running in different
Docker containers. OAI EPC has been modified by us to be run in individual
Docker containers with dynamic commands that are run at startup.

e cAdvisor: Collects performance metrices from Docker containers and makes
them available to Prometheus.

e Prometheus: Collects information from cAdvisor. Makes it available as time
series.

e Graphana: Can visualize the information collected by Prometheus.

20 Chapter 4. Architecture and Implementation

OpenAirinterface EPC

r Y
b d
cAdvisor Docker Container
Y
¥
Graphana Prometheus docker-compose

Configuration Load Balancer

FIGURE 4.1: Component overview

4.2 Monitoring Implementation

There are several ways to monitor distributed applications such as cloudified apps
or the EPC in question. The most common ones are the ELK Stack and a combina-
tion of Prometheus and Grafana. ELK is an acronym for three components: Elastic
Search, LogStash and Kibana.[64] Elastic Search and its indexing components are
quite resource intensive and it is not recommended to run the whole ELK stack on
a single laptop. Luckily, Prometheus and Grafana are simpler to set up and are less
resource intense.

Prometheus is an open source monitoring solution originally developed by sound-
cloud.[17] It is part of the Cloud Native Computing Foundation (CNCF) and as such
well equipped to handle the various demands brought forward by containerized ap-
plications.[65] The main component we use for our work is the ability to collect time
series exposed by endpoints. This information can then be displayed as a dashboard
(using Grafana). They can also be queried using the extensive Prometheus API. See
4.2 for an example.

To get our monitoring data, we use cAdvisor originally developed by Google and
now available as open source software on GitHub.[16] It hooks into the processes
used by Docker and exports the information in a form readable by Prometheus. This
gives us time series information about the most important Docker performances in-
cluding network I/O and CPU usage. Other authors have used similar approaches,
e.g., Dutta et al., used built-in tools of OpenStack for monitoring.[25] Figure 4.3
shows the data flow in our architecture. cAdvisor is running in a Docker container
which collects metrics from all running containers. This data is then collected by
Prometheus which promotes it to Grafana and exposes it over an APL

4.2. Monitoring Implementation 21

B8 Docker and system monitoring - Refresh every 5m £

Network Traffic CPUUsage # Used Disk Space. w Avallable Memory Disk /O
oo 93168

s5%

698 sbls
50% No data points. No data points. No data points. No data points.

5% 46568
4o

23308
35%

0% 08

Received Network Traffic per Container

1700

Memory Swap per Container

1700

Memory Usage per Container Limit memory
To1Me Metric ~ Current

prometheus_api_ whoami_3 0B
3B

prometheus_aplwhoami_2 0B

FIGURE 4.2: Example of the Grafana visualization of Prometheus
time series.

-

!

I rim

OPEN AR —

—— INTERFACE

OAl EPC

|

[Prometheus AFI]

FIGURE 4.3: Data flow from left to right:
OAI EPC: Running in different Docker containers.
cAdvisor: Collecting data from OAI EPC Docker containers and exposing it
to be collected by Prometheus.
Prometheus: Collecting data from cAdvisor. Forwarding it to Grafana
and exposing it over the Prometheus API (symbol image).

22 Chapter 4. Architecture and Implementation

4.3 Containerization and Scaling

As explained in section 3.2, scaling strategies can be categorized into three groups:
reactive, predictive and machine-learning based. The latter two require existing data
to model their approaches. We do not posses an existing data model which could
be used for a predictive or a machine-learning based strategy. Therefore, we have
to use the first strategy: reactive scaling. When choosing reactive scaling, we have
to keep in mind the danger of oscillation, which in this context refers to an ongoing
and disproportionate adaptation of allocated resources around certain edge cases.

When scaling a service, we will consider the following parameters for each ser-
vice: traffic received and sent, memory, and CPU usage. These values are measured
in a given interval, e.g. 10 minutes. Also, minimum and maximum sizes can be
specified to control the number of instances a service should have. The received in-
formation will be divided by the number of running instances and compared against
two thresholds. If the result exceeds the upper threshold, scaling out will occur. If
the result is below the lower threshold, scaling in will occur.

Two mechanisms are in place to avoid oscillation. First, performance will be
measured in a defined time interval. Using the average performance will give us
a more accurate picture of the overall load on a system. It will also prevent over-
reacting to sudden spike or drop in traffic. Measuring performance is done lever-
aging Prometheus’ functionality. Prometheus can output performance of a KPI at a
given time or it can aggregate it over a given interval. Our balancer utility is writ-
ten in such a way that the interval is configurable. Second, a so called cool down
timer will be set every time scaling for a service occurs. No scaling actions will be
performed during the count down of the cool down timer. This reduces the impact
of possible oscillation effects. In our current implementation, the cool down timer is
the amount of time our balancer will wait after every scaling action. This wait time
can be configured to further optimize the scaling algorithm.

Arteaga et al. patched the MME to divide it into its different functions and used
part of it as a load balancer.[5] Doing the same with OAI is out of scope for this
thesis. Also, such an approach has the disadvantage of having to patch every part
of the EPC one would like to scale. By using a generic load-balancing server — such
as nginx in our case — we hope to find a more generic approach.

We know from previous work that containerization of OAI is feasible.[66] How-
ever, in order to adapt OAI to our work we have to overcome several challenges.
First, we have to implement the individual OAI EPC components as Docker contain-
ers. The Docker container provided by the OAI organization has not been updated
for over two years. Also, it is running all the services in one instance and can, there-
fore, not be scaled based in it’s individual components.[67] Fortunately, we are able
to profit from an open source implementation.[68] However, these containers were
not designed with scalability in mind. Several variables such as host name and cer-
tificate are determined and/or generated when building the container. In order to
take the advantage of the fast container startup time, building has to be completed
ahead of time. Individual instances of the underlying build can then be spawned.
Building on demand is time-consuming and inefficient. Therefore, we have to patch
the open source implementation to allow for several elements to be determined at
runtime, making for a more flexible installation.[69]

1

4
5
6
8
9
10

4

4.4. Load Balancing 23

4.4 Load Balancing

We use docker-compose to document and implement our architecture. To simplify,
docker-compose is like docker-swarm but without the ability to distribute containers
on multiple machines. Since implementing EPC on a cluster is not needed for a
proof of concept, we do not add this additional layer of complexity. As it stands,
docker-compose offers a sufficiently good orchestration and command line utility to
implement our EPC and to scale it out/in according to traffic demands. However,
scaling our architecture over a cluster would be a good follow-up to current research.

Load balancing is a fundamental requirement for containerized deployments,
where scaling is achieved by running several instances of a service next to each other.
A load balancer has to make sure that load is evenly distributed across all running
instances. As expected, Docker and Kubernetes offer several tools to achieve this
essential feature. Unfortunately, we are limited in the choices we can use because
OAI EPC and eNB require both the SCTP protocol and hardcoded IP addresses to
function properly. This in turn means that we can use neither Kubernetes services
nor the Docker HAProxy, an open source load balancing and proxying for TCP and
HTTP-based applications.[70] Instead we have to fall back to using a more elaborate
setup with a dedicated load balancing server.

Docker-compose does offer load balancing based on service names, e.g. a ser-
vice named Home Subscriber Server (HSS) in the docker-compose with two instances
will have both instances running behind a single service name. The default load bal-
ancing strategy is Round Robin, see Docker Hub for a more detailed example.[71]
This feature would eliminate the need to implement our own load balancing. Unfor-
tunately, we failed to make OAI EPC work with Docker name spaces. Only IP ad-
dresses can be specified in the relevant configuration. However, we can still leverage
Docker load balancing by putting it behind a proxy load balancer. For this, we are
using the official nginx Docker container.[72] Nginx has been used for other cloud
related research[73] and offers streaming support for a variety of inputs.[74] Nginx
streaming setup is straightforward; working with OAI is causing some problems
though. Nginx streaming is port-based and as not all the ports used by OAI EPC
are documented, this needs some testing. In the end, the setup is simple; the service
name can be used when defining a backend service for nginx, which will pick up on
new instances when reloaded. This solves the issue of service discovery. By reload-
ing the server instead of restarting it, we make sure that active connections will not
be interrupted.

The following nginx.conf is an example configuration file and shows how Docker
name space can be used to redirect traffic to different instances of the same NFV. We
added comments marked with %.

user nginx;

> worker_processes 1;

error_log /var/log/nginx/error.log warn;
pid /var/run/nginx. pid;

events {
worker_connections 1024;

}

> % The following is the only element we have to configure
3 % nginx will listen to the port defined in ’listen

’

% and forward the traffic to a service named ’'db’

24 Chapter 4. Architecture and Implementation

15 % Docker namespace can be used here.
16 stream {

17 server {

18 listen 3306;

19 proxy_pass db:3306;

Using this method, we were able to use the standard Docker container without
modification. When starting the container, we will link the appropriate configura-
tion file into the container. Every nginx container is assigned to a fixed IP address.
OAI NFV can use this address and will then be redirected to an available container.

4.5 Autoscaling Logic

The goal of our autoscaling logic is to enable elasticity, which is the capability to
dynamically scale the allocation of cloud resources to the current demand. Rapid
elasticity was originally defined by NIST.[75] We can distinguish four distinct ver-
sions of elasticity: no elasticity, horizontal elasticity (allocated resources), vertical
elasticity (allocated instances), and overall elasticity (both horizontal and vertical).
There is also a proposed classification by Galante et al. for elasticity depending on
the optimization goal and some detection algorithms which could be integrated in
the AE.[42, 76] It is important to note that action only needs to be taken when a KPI
deteriorates and its performance is no longer accepted.

cAdvisor is collecting KPIs from SPGW, MME, HSS and SQL, which form the
EPC. The information is forwarded to Prometheus from which it is then exported to
Grafana for visualization. The autoscaling logic is the only element not implemented
as a Docker container. It is instead implemented as a program running on the Docker
host. See Appendix A. The autoscaling engine queries information from Prometheus
and interacts with docker-compose via the open API. See Figure 4.7 for a run down
of the data flow.

UE and eNB are virtualized using the oaisim tool provided by OAI We use this to
collect information about the state of the EPC and whether it needs to be scaled out
or in. In line with the KPIs presented already and in accordance with the measure-
ments we get from cAdvisor we use the following KPIs to decide whether we shall
scale a service or not: Network traffic, CPU usage, memory usage. These factors
along with the number of already existing service instances will determine whether
or not a new instance will be added or an existing one removed. As the autoscaling
unit is running outside Docker on the host machine, it can seamlessly interact with
the docker-compose command line utility to trigger a scaling action.

The code example in Listing 4.5 shows our interaction with the Prometheus API:
The method named get_traffic_received takes the name of a docker image and a
time interval as input. It does construct the query for Prometeus and sends it to
the send_request method. This method is then calls the Prometheus API and asks
information for the docker image specified in query_string. This will be used as a
loop to query Prometheus regularly and to react to changing traffic load. The imple-
mentation can be enhanced with more KPIs and a more complex scaling algorithm
in future work.

1 def send_request(query_string):

2 """Send a request to the Prometheus API and return the response or
None. """

try:
4 response = requests. get(

4.6. Architecture Design 25

url=prometheus_url,
params={
"query": query_string,
b
)

response_parsed = json.loads(response.content)
try:
result = response_parsed['data’]["result”]J[0]["value "][1]
except IndexError:
Prometheus returned empty response for this query
result = None
return result

def get_traffic_received (image, interval):
"""Query Prometheus API for network traffic information.
Return received and sent traffic size for a given interval or None.

query_string =
"sum(rate (container_network_receive_bytes_total {{image=\"{}\"}}[{}]))
format(image, interval)
result = send_request(query_string)
return result

n

4.6 Architecture Design

Figure 4.4 shows the relationship between ETSI MANO and our implementation,
which uses docker for many of the underlying functions and adds our own au-
toscaling engine to control the docker containers running OAI EPC. This graphi-
cal representation is inspired by Nakajima et al.[46] Docker containers and docker-
compose are used for the underlying infrastructure and MANO logic. The full
docker-compose file which includes all containers and their source repositories can
be found in Appendix B. OAl is providing the network functions and, as proposed
by Carella et al., an Autoscaling Engine (AE) has been added, using the open API of

docker-compose to trigger scaling actions.[42] This AE consists of cAdvisor, Prometheus,

Grafana and our custom Logic Unit written in Python. Appendix E shows a more
detailed overview over the tools used and their role in the architecture.

Several Docker containers are necessary to realize this functionality. We have
different containers for the following tools:

e Cadvisor (part of AE)

Prometheus (part of AE)

Grafana (part of AE)

MySQL (backend for HSS)

phpMyAdmin (User interface for MySQL)
e HSS

e MME

e SPGW

We will now go through this architecture step by step. The basic ETSI MANO
Functional Blocks are NFVO, VNFM and VIM.[45] The roles of NFVO and VIM will

26 Chapter 4. Architecture and Implementation

- N\
P MFV
—> 0SS/BSS < Orchestrator <
'y Fy
Autoscaling
v ¥ Engine
l\-_ EMS R
VYNF

Manager(s) i,
¥ >
OPEN AIR VNF A
[y

i N v oo}
¥ cAdvisor

Virtualised
docker VNFI Infrastructure [«

Manager

J (. J

|/

h 4

Y
h 4

FIGURE 4.4: ETSI MANO including AE.
Red: Parts provided by Docker with docker-compose as orchestrator.
Blue: Parts provided by OAL
Green: Autoscaling Engine (AE) with its components.

be under the responsibility of docker-compose. Docker-compose is responsible for
controlling and managing the infrastructure as well as the network. However, as
explained in section 4.4, we will leverage docker-compose networking to implement
our own load balancing.

The VNFM is in charge of the lifecycle management of VNF instances. Here we
have a mix of docker-compose and our own small Autoscaling Engine (AE). The AE
will decide on how many instances of a service should run at a given time and when
scaling should occur. This information will then be passed down to docker-compose,
which will start/stop the actual containers. This brings us to the NFV Infrastruc-
ture (NFVI), where we rely on Docker container engines running on Ubuntu 16.04.
Docker will provide the necessary abstraction to run different containerized Virtual
Network Functions (VNF). These functions are provided by OAI and are split into
individual containers. The load balancing will be done by nginx, as described in
section 4.4. Finally, OSS/BSS as well as the Element Management System (EMS) are
taken on by docker-compose again.

4.7 Docker-Compose

Figure 4.5 shows the NFV architecture in more detail with the different elements of
EPC containerized. The goal of the Figure is to show which parts of our work are
running inside docker as containerized applications and which are running on the
host machine. In this Figure, we also see a more detailed overview of the differ-
ent elements of the AE. Of these elements, the AE was developed by us. cAdvisor,
Prometheus and Grafana were implemented by us to collect data from the EPC and
the EPC itself was modified from the work done by [33] to allow for a more modular
setup where parameters can be passed into a docker container without rebuilding
the whole image. Details with regards to the docker containers can be found in Ap-
pendix B. The original configuration of oaisim was also changed, to work with our

4.7. Docker-Compose 27

7 S
4

WAN

SqaL
A
SPGW
EPC
T Y
> MME b > HSS

-

z -

oaisim)
cAdvisor | Prometheus | Grafana

Autoscaling
Element h
» Docker-Compose
. l L

FIGURE 4.5: Detailed View of NF Architecture.
Red: Services running inside Docker containers.
Blue: Services running natively on the host machine.

EPC. Details of the configuration of the eNB simulated by oaisim can be found in
Appendix C.

The entire setup was done using docker-compose. This allows for easy replica-
tion of the setup to replicate our work and to do further research. This is also an
advantage over a possible implementation in Kubernetes or Docker-Swarm. Since
docker-compose only relies on Docker being installed, setup is easy and the EPC
including monitoring can be started by typing docker-compose up on a Linux ma-
chine.

The elements not included in the Docker setup are user equipment (UE) and
radio access network (RAN), eNB in our case. Both are provided by oaisim, but
could be replaced with the appropriate hardware. In its basic form, oaisim does
simulate an eNB with attached UE. Successful attachment to EPC through oaisim
results in a new network interface being created on the computer running oaisim. It
is usually named oipl and can be used to route traffic through the EPC. Figure 4.6
shows the interplay between oaisim and the different EPC components managed by
docker-compose.

The EPC itself consists of SPGW, MME, HSS and an SQL database all running

28 Chapter 4. Architecture and Implementation

SQL
¥
oip1 y'y
> SPGW
EPC

(({ })) T ¥

< > > MME < » HSS
o @ \ /

oaisim
docker-compose

FIGURE 4.6: Interplay between oaisim and the different EPC
1: Attachment of UE to EPC.
2: After attachment, traffic is handled by SPGW.

inside Docker containers. Performance information about every container is being
collected by cAdvisor and forwarded to Prometheus. The only element not running
as a Docker container is our Autoscaling Engine (AE), which uses the APIs exposed
by Prometheus and by docker-compose. The API exposed by Prometheus is used
to query performance information. The API exposed by docker-compose is used
to react to the information received from the Prometheus API to scale individual
services. The full docker-compose file and detailed information about the different
Docker containers is provided in Appendix B.

4.8 Data Generation

Data traffic is generated using iperf[19], which is a popular tool used by many re-
searchers as established earlier. We are using the oaisim simulator to simulate both
eNB and Unified Software Radio Peripheral (USRP) and create a virtual interface.
This can then be used to route traffic from the testing machine running oaisim and
the dockerized EPC to a public iperf server. By using the --bandwith option on the
client we can determine how much traffic should be generated (e.g. iperf3 --bandwidth
100M will equal a traffic of 100Mbit/second, --bandwidth 0 will send unlimited traf-
fic.). Additional streams can be specified with the -P option and the number of de-
sired streams. For our testing, we will initialize bursts of traffic over a given period
of time and observe the reaction of our EPC.

Unfortunately, the unlimited traffic option is not feasible right now with oaisim,

4.8. Data Generation

29

OPEN AR — 0.0

= INTERFALCE

Autascaling Engine }(* .
L]
l x

[Prometheus API] Grafana

)

5

docker-compose

FIGURE 4.7: Data flow from left to right:
OAI EPC: Running in different Docker containers.
cAdvisor: Collecting data from OAI EPC Docker containers and exposing it
to be collected by Prometheus.
Prometheus: Collecting data from cAdvisor. Forwarding it to Grafana
and exposing it over the Prometheus API (symbol image).
Autoscaling Engine: Collecting data from Prometheus APL
Calling docker-compose to scale infrastructure.

30 Chapter 4. Architecture and Implementation

since packet size is limited to 1000 kilobytes. This limit is set as a parameter. How-
ever, increasing it over the threshold of 1000 KB leads to arbitrary crashes of oaisim.
These settings can be found in several places the perf_oai.bash on the official OAI
GitLab Repository is a good example.[77]

31

Chapter 5

Testing and Results

5.1 Testing

The goal of the following series of tests is twofold. First, we will show we have
build a fully functional EPC inside individual docker containers. Second, we will
test the reaction time of our system by showing how our setup can react to changing
network traffic.

Testing was done on Ubuntu 16.04 with Kerner 4.13 (4.13.0-45-generic). To vir-
tualize RAN and UE, we are using OpenAirInterface System Emulation (oaisim).
Oaisim is built according to the instructions found in the OAI Wiki.[18] EPC is built
by opening a terminal window, changing into the appropriate directory and running
docker-compose. Our AE controls EPC startup and shutdown. For traffic simula-
tion, we use iperf3.[19]

Due to the complex setup with 10+ Docker containers, testing is done in several
steps. First, we show how our containerized EPC can be used with oaisim. We start
the EPC and use oaisim for UE attachment. Second, we repeat this process with
our own load balancing solution to show that it provides the same functionality as
docker-compose. We also show how traffic between UE and EPC can be inspected
to gather further information about the UE attachment.

As explained in Chapter 4.8, packet size and traffic are limited with the current
version of oaisim provided by OAIL However, by using iperf3 to inject traffic directly
into our system we can work around this limitation and provide a scenario in which
we can test how fast our system can react to changing requirements. This is done in
Section 5.1.3.

5.1.1 Containerized EPC

For a basic testing setup, we build and start the Docker containers manually to start
EPC. Once the EPC is running, oaisim is started in a different terminal window by
running the run_enb_ue_virt_s1 executable. We configured oaisim to attach a single
UE to EPC at startup. When this connection is established, the EPC network is ac-
cessed through the oip1 interface. Traffic going through this interface will be routed
through the EPC. Presented in 5.1 are the commands to reproduce our experiment
assuming both git repositories for OAI oaisim and EPC have been cloned to the test
machine. After these steps have been performed, traffic can be routed into the EPC
network using the oipl interface. EPC logs demonstrating setup and attachment
have been omitted due size. (Over 2000 lines of logs.)

Build EPC

> cd ~/docker—openairinterface—epc/
5 docker—compose build —mno—cache

5 # Build oaisim

32 Chapter 5. Testing and Results

¢ cd ~/openairinterface5g/

7 source oaienv

s cd cmake_targets/

9 ./build_oai —¢ —UE —oaisim

11 # Run EPC
12 cd ~/docker—openairinterface —epc/
3 docker—compose up

In a different terminal window

16 cd ~/openairinterface5g/cmake_targets/tools
17 sudo —E ./run_enb_ue_virt_s1 \

s —config—file \

19 ~/docker—openairinterface —epc/oaisim/\
20 enb.band?. generic. oaisim.local_mme. conf

» # Basic test in a different terminal window
3 ping google.com —I oipl

LISTING 5.1: Terminal commands to start and test a dockerized EPC.

5.1.2 Scaling EPC with balancer.py

The setup described in Section 5.1.1 provides a fully functional EPC with each of its
components running in different Docker containers. However, the setup does not
yet offer the desired scaling functionality. As explained in Chapter 3, we are cur-
rently unable to leverage the automatic scaling functions provided by the different
container orchestration providers. Therefore, we wrote a custom utility called bal-
ance.py which uses performance metrics gathered from cAdvisor and Prometheus
to decide whether EPC is running with the optimal amount of instances or it should
be scaled in or out. See Appendix A for a more detailed look at balance.py. A log
file demonstrating setup and signaling traffic between the EPC components can be
found in Appendix F.

Tracking User Attachment

Using the technique outlined in [22], we can intercept network traffic to detect the
initial context setup between EPC and UE. This will allow us to detect the unique
identifiers of the different components.

To simplify this process, we wrote a tool based on work by Schiller.[78] The ex-
ample in Listing 5.2 shows the process of identifying the TEID of ENB and MME
by sniffing network traffic. Details with regards to the traffic sniffing utility can be
found in Appendix D. The traffic sniffing utility works by listening on the interface
that is created by oaisim. It will listen to the attachment request coming from the UE
virtualized by oaisim.

1
2 # Run EPC using balance.py

5 cd ~/docker—openairinterface—epc/
. python balance.py

¢ # In a different terminal window

7 # This will start our traffic sniffing utility
s cd ~/docker—openairinterface—epc/traffic

9 sudo python main.py

11 # In a different terminal window

20

N

5.1. Testing 33

cd ~/openairinterface5g/cmake_targets/tools
sudo —E ./run_enb_ue_virt_s1 \
—config—file \
~/docker—openairinterface —epc/oaisim/\
enb.band?7. generic.oaisim .local_mme. conf

traffic/main.py does sniff the initial

attachment traffic and will print out the TEIDs.
The following are the results when using our

standard setup:

ENB TEID is 00000001

s MME TEID is 86ab21c3

LISTING 5.2: Terminal commands to start and test a dockerized EPC
with load balancer.

5.1.3 Scaling using balancer.py and iperf3

By using the load generating capabilities of iperf3, we can test our system under
load. The question we are trying to answer here is the following: How fast can
new instances of SPGW be deployed, when the load balancing algorithm detects an
increase or decrease in network traffic?

When testing the reaction time of our balancer.py, we have to take into account
the following fact: There will be a delay between the time, when the system rec-
ognizes a change and the time, when a new instance of a service is deployed. To
observe this difference, we log ever scaling action that is executed by balancer.py.
At the same time, we measure the number of running docker containers through an
independent utility running outside of balancer.py. This container instance counter
script is only needed to assure accuracy of our experiment and is not part of the over-
all architecture. The traffic generated by iperf3 fluctuates between 10 and 300MBit
per second. The detailed traffic numbers are omitted from the test results. The objec-
tive of this test was to identify the reaction time of our setup and not the maximum
throughput. We are also limiting the maximum number of deployable instances of
SPGW to 27. The reason for this is a simple hardware constraint. More than 27
instances, and our host would become unresponsive. This is not something we con-
sider a problem because in production, more powerful hardware would be used -
ideally a cluster of some kind.

The autoscaling engine balancer.py as well as its exact settings can be found in
Appendix A. Both the traffic generation utility, including the exact parameters for
the traffic generated, and the docker container instance counting script can be found
in Appendix G.

Increasing and decreasing traffic

We explained our autoscaling engine balancer.py in a Section 4.5. It uses KPIs to
decide whether an instance of a service should be added or removed. However,
much like VMs, containers need some time to start up. Hence, we expect to see a
difference between the number of planned instances (the number of containers de-
termined optimal by balancer.py) and the number of deployed instances (the num-
ber of containers running on a host). Figure 5.1 shows the difference between the
number of deployed instances and the number of instances determined as optimal
for the working of the system by balancer.py. We can clearly see the delay the sys-
tem has in adopting to the new demands. However, we also notice that these delays
are very small, generally speaking. Figure 5.2 shows a detailed look at the reaction

34 Chapter 5. Testing and Results

Planned and Deployed Instances

40

2
-;g 35
2 30
=
~
25 =T
é // Tee
20 D -
el 2T = ~
“ T ~
£ 15 . S
Y— 2T o
o o s
s

T 10 //’ s
o ~
e ,I_/I S
s 5 P R S
= P A ‘\.._‘

0

13:24:58 13:27:50 13:30:43 13:33:36 13:36:29 13:39:22 13:42:14 13:45:07
Time
Planned Instances Deployed Instances Traffic in MByte/10

FIGURE 5.1: Planned and deployed Docker container instances

time for this scenario. Here we observe an average reaction time in between three
and five seconds for starting a new container and an average time between eleven
and thirteen seconds for shutting down an existing container. Both reaction times
are much faster than booting an existing VM.

5.2 Startup Time and Elasticity

Before a docker container can be used, it has to be built.[79] Building the components
of OAI EPC includes compilation of the different elements. Compilation time for the
entire EPC takes well over an hour. However, each docker container only has to be
built once. After building, several copies of the same container can be used without
the need of rebuilding. Building a docker container can be accomplished well before
the time of its actual use. It can be compared to compiling a binary file which can
then be distributed to several systems. Therefore, we do not take build time into
account when giving performance information about our setup. Because they are
not part of OAI EPC, we will also ignore performance information with regards to
cAdvisor, Prometheus and Graphana. They are running separately to EPC and, apart
from collecting performance information, do not influence the running EPC.

When it comes to startup time, we have to differentiate between two variables:
The startup time of the docker container and the time the program running inside the
container is ready to be used. The second is determined by the start up time of the
OAI EPC component running inside an individual container.. The first is extremely
fast and can be measured using the series of commands shown in Listing 5.3.

Provide an initial measurement and start containers
date —utc && docker—compose up

3 Sun Jul 7 07:33:58 UIC 2019

11

Measure startup time of all containers
docker ps —q | xargs docker inspect \
—format="{{.Name}}:{{. State.StartedAt}}’

spgw_1: 2019—-07—-07T07:34:11.205097303Z

mme_1: 2019-07-07T07:34:09.257947645Z

hss_1: 2019-07—-07T07:34:07.933439931Z

db_1: 2019-07-07T07:34:01.894049977Z

phpmyadmin_1: 2019-07—-07T07:34:06.206968141Z

LISTING 5.3: Measuring startup time for docker containers.

5.3. Performance of balancer.py 35

Reaction Time
16

14
12
10
09

07

Seconds

05
03
02

00
13:24:58 13:27:50 13:30:43 13:33:36 13:36:29 13:39:22 13:42:14 13:45:07

Time

Reaction Time

FIGURE 5.2: Reaction time until the number of planned instances is
reached

As we can see from these results, startup time for all containers is within well
under 30 seconds. Average startup time for Linux VMs has been estimated at over
90 seconds.[80] As expected, our containerized solution is outperforming VMs in
terms of startup time by a significant amount. This advantage still persists when we
take into account the following: Once a docker container is started, it does not mean
that the program running inside the container is ready to be used. Our measure-
ments show that it takes on average 40 seconds from the time the docker-compose
command was executed to the time EPC starts accepting connections. Starting an
individual instance of an EPC service like SPGW takes much less time. This number
stayed consistent when running docker-compose on its own as shown in Listing 5.1
as well as inside our load balancing utility as shown in Listing ??. Therefore, we are
still outperforming a setup using a VM. Before the 90 seconds it takes for the VM to
boot completely, we have already established a fully functional EPC.

Furthermore, we can work with the short startup time of Docker containers for
scaling the EPC. We can manipulate allocated resources by adding or removing in-
stances of a certain part of the EPC. This makes elasticity for EPC within containers
a much more feasible approach then accepting the large startup overhead added by
a VM. Our load balancing utility performs as expected, with startup and shutdown
times of SPGW containers well within the 30 second mark.

5.3 Performance of balancer.py

As shown in our experiments in Section 5.1.3, reaction time for our balancer.py is
lower than the startup time for an entire EPC, beating VM startup time by a large
margin. These results stay consistent even with a large number of containers and
were independent of the overall traffic load on the system. Shut down time for
individual containers was slightly higher than start up time, but stayed consistent
as well. These results show the great potential container technologies such as Docker
bring to infrastructure projects.

36 Chapter 5. Testing and Results

The overall performance of the scaling algorithm could certainly be improved.
However, as previously mentioned in Section 3.2, scaling algorithms are a complex
undertaking. They are not the main focus of this thesis.

5.4 Issues Encountered

We faced several issues during our work with the OAI EPC. Some of them were re-
lated to design decisions and technologies used by OAI, others to our setup. The first
major roadblock was the use of SCTP by OAI EPC. We first encountered the issue
when working on setting up Kubernetes services for the individual EPC compo-
nents. Although some of the EPC components, such as HSS, have settings to disable
the use of SCTP, they will still attempt to set up these connections and crash, if they
do not succeed. The relevant settings can be found on the OAI gitlab repository.[8]
OAI EPC uses freeDiameter[50] to control SCTP traffic which is needed for the S1
interface between MME and eNB. Both freeDiameter and OAI EPC can be compiled
without SCTP and the setting can be disabled in the OAI configuration.[50] Nev-
ertheless, this still leads to a crashing HSS. OAI does not respect this setting and
still required SCTP to be enabled. By the time of this writing, Kubernetes does not
support SCTP yet.[49] More details about the relationship between SCTP and Ku-
bernetes can be found in section 4.4. Patching OAI to work without SCTP is out of
scope of this thesis. We, therefore, had to opt for another container orchestration tool
and chose docker-compose. It is not only popular with the open-source community,
but it can also be integrated easily with docker-swarm.

Contrary to Kubernetes, docker-compose does not block SCTP traffic between
different containers. However, we faced other issues: When using multiple instances
of a service, docker-compose will load-balance them based on the service name.[71]
Unfortunately, OAI EPC mostly uses IP addresses and not DNS names. MME for
instance requires an IP address for the location of SPGW, making it impossible to
use the Docker DNS resolution.[15] We showed our workaround in Chapter 4.8.
However, this proved only successful in balancing the database back end for HSS
as well as the HSS itself. SPGW could not be properly balanced because it requires
binding to a specific IP address - 192.168.142.30 in our case — and not to 0.0.0.0 or
localhost. Attempts at patching the appropriate code in EPC did not resolve the
issue. This prevents the initiation of multiple SPGW container instances as they
cannot bind to the same IP address/port simultaneously.

Nginx, the load balancing server of our choice also prevented us from scaling
MME. This was due to an issue with SCTP and nginx. The issue was very likely
related to a problem with OAI EPC and Linux Kernel 4.13. However, we decided
to not pursue the issue any further. Because of the design choices made by OAI,
we ended up with an only partial elastic EPC. Nevertheless, we now have build
instruction for docker-compose to build a fully functional EPC with some elastic
parts that can be scaled out/in.

This brings us to the next issue we encountered. The different tools provided
by OAI can be used in several combinations. The most common scenario is using
OAI EPC and eNB with physical USRP and UE.[81] However, RAN and UE can also
be virtualized using oaisim.[82] This is very convenient as it eliminates the need for
an extensive and costly physical setup. Basic testing using ping or curl works well.
Unfortunately, oaisim crashed in our testing as soon as the iperf3 client established
a connection with a public iperf3 server. This scenario repeated with TCP and with
UDP connections as well as different bandwidth options. We did our best generating

5.4. Issues Encountered 37

load using different tools as alternatives to iperf3, including scapy, a build tool for
custom pakets,[83] and curl but cannot provide any significant results due to oaisim
being unreliable.

39

Chapter 6

Conclusion and Outlook

6.1 Conclusion

In this thesis, we provide a containerized implementation of OAI EPC that is ETSI
MANO compliant. We complete this implementation with state of the art perfor-
mance measuring on the container level and provide a scaling logic by leveraging
the API provided by docker-compose. We can query standardized performance met-
rics and react to them in an automated fashion. Every element of our implemen-
tation is built using Docker and docker-compose making it easy to reproduce our
setup on an appropriate system. It is also worth nothing that we haven’t come across
a publication were EPC performance is accessed using cAdvisor and Prometheus.
Hence, to the best of our knowledge, we are the first to implement such a monitor-
ing stack for EPC.

A single instance of OAI EPC is containerized in several Docker container and
can be deployed. We encountered several issues trying to make the EPC fully elastic.
What we mean by that is updating the existing EPC in a way that every one of its
individual components can be scaled independently. We realised soon that such an
undertaking was out of scope for a bachelor thesis. The reason for this are in part the
limitations of existing container orchestration solutions, which do not fully support
certain protocols and/or IP based scaling of services, and in part the design decisions
made by the developers of OAI EPC. We developed a custom scaling solution to
work around some of these issues. We also settled on scaling an individual element
of the EPC: the SPGW.

6.2 Future Work

The issues we encountered by building our implementation show that a lot of work
still needs to be done by all players involved to seamlessly integrate NFV with con-
tainer orchestration applications. NFV required for EPC is often structured in a way
that prohibits using the more powerful features of container networking. In partic-
ular the reliance on IP addresses instead of DNS names poses an obstacle.

NFV still has the potential to offering enormous benefits to networking providers.
However, we are convinced that many of the issues we faced in our work could be
avoided by first focusing on the edge of the network or on individual network func-
tions not directly related to EPC. These can be integrated into the container network-
ing logic.

Our current EPC implementation is not fully elastic. Making it possible to run
several MME and SPGW instances in parallel would be an interesting follow up.
The same can be said for patching oaisim. Another area to focus on could be the
container orchestration tool of choice. We are currently using docker-compose and

40 Chapter 6. Conclusion and Outlook

a single machine for our test setup. This includes oaisim, EPC and AE. Scaling EPC
to a cluster using docker-swarm or another orchestration tool would provide a valu-
able follow-up to our thesis.

We only use a limited set of KPIs and a straight forward scaling logic. We suggest
exploring additional KPIs such as connection time between MME and UE as well as
more powerful scaling algorithms in future work. Our balancing tool is very flexible
and a more complex scaling logic could easily be introduced.

25
26
27
28
29

30

41

Appendix A

Autoscaling Engine

A.1 Implementation - balancer.py

#!/usr/bin/python3

import requests
import subprocess
import json

import time

import sys

import os

import configparser
import logging
import datetime

For more information about prometheus metrices see:
https://github.com/dashpole/cadvisor/blob/1
dcd0Ocee2b05590a8b5515f5c41a80905d2fclc2/metrics/prometheus.go

_ROOT = os.path.abspath(os.path.dirname(__file__))
CFG = configparser.ConfigParser ()

CFG.read (os.path.join (_ROOT, "balancer.cfg"))
verbosity = 0

logger = logging.getLogger("balancer")
ch = logging.StreamHandler ()

5> logger .addHandler (ch)

logger.setLevel (logging .NOTSET)
if verbosity == 0:
logger.setLevel (logging .ERROR)

if verbosity == 1:
logger.setLevel (logging .WARNING)
if verbosity == 2:

logger.setLevel (logging .INFO)
if verbosity == 3:
logger.setLevel (logging . DEBUG)

def result_to_int(result_str):
"""Parse result received by prometheus query and return rounded value
as int or 0."""
if result_str:
result_int = int(result_str.split(".")[0])
return result_int
return 0

5 def send_request(query_string , prometheus_url):

44

60

84
85
86
87
88
89
90
91

92

93

94
95
96

97

42

Appendix A. Autoscaling Engine

def

def

"""Send a request to the Prometheus API and return the response or
None. """
try:
response = requests.get(url=prometheus_url, params={"query":
query_string})
logger .debug(
"Response HITP Status Code: {status_code}".format(
status_code=response.status_code
)
)
logger .debug(
"Response HITTP Response Body: {content}".format(content=
response.content)

except requests.exceptions.RequestException:
logger . warning ("HTTP Request failed")
raise

https://stackoverflow .com/questions /40059654 /python—convert—a—bytes—
array—into—json—format
bytes_value = response.content
bytes_to_str = bytes_value.decode("utf8").replace("’", """)
response_parsed = json.loads(bytes_to_str)
try:
result = response_parsed["data"]["result"]J[0]["value"][1]
except IndexError:
Prometheus returned empty response for this query
result = None

return result

get_traffic_received (image, interval, prometheus_url):
"""Query Prometheus API for network traffic information.
Return received and sent traffic size for a given interval or None.

eg: sum(rate (container_network_receive_bytes_total {image="
networkstatic/iperf3"}[10m]))

nwoon

query_string = ’‘sum(rate(container_network_receive_bytes_total {{image

="{}"}{}])) . format(

image, interval
)

result = send_request(query_string , prometheus_url)

result = result_to_int(result)
logger.info (" Traffic received for image {}: {}.".format(image, result)
)

return result

get_traffic_sent(image, interval , prometheus_url):
"""Query Prometheus API for network traffic information.
Return received and sent traffic size for a given interval or None.

Eg.: sum(rate(container_network_transmit_bytes_total {image="
networkstatic/iperf3"}[10m]))
query_string = ’‘sum(rate(container_network_transmit_bytes_total {{image

="{}"}{}])) 7. format(

image, interval
)

result = send_request(query_string , prometheus_url)
result = result_to_int(result)

A.1. Implementation - balancer.py 43

98 logger.info("Traffic sent for image {}: {}.".format(image, result))

99 return result

100

101

102 def get_cpu_usage(image, interval, prometheus_url):

103 """Query Prometheus API for cpu usage information.

104 Return usage for a given interval or None.

105

106 Eg.: sum(rate(process_cpu_seconds_total {image="networkstatic/iperf3
“}[10m]))

107

108 query_string = ’‘sum(rate(process_cpu_seconds_total {{image="{}"}}[{}]))
" format (

109 image, interval

110)

11 result = send_request(query_string , prometheus_url)

112 result = result_to_int(result)

113 logger.info ("CPU usage for image {}: {}.".format(image, result))

114 return result

115

116

117 def get_memory_usage(image, interval , prometheus_url):

118 """Query Prometheus API for memory usage information.

119 Return usage for a given interval or None.

120

121 Eg.: sum(rate (container_memory_usage_bytes{image="networkstatic/iperf3
“}[10m]))

122

123 query_string = ’‘sum(rate (container_memory_usage_bytes {{image
="{}"}1}H{}])) . format(

124 image, interval

125)

126 result = send_request(query_string , prometheus_url)

127 result = result_to_int(result)

128 logger.info ("Memory usage for image {}: {}.".format(image, result))

129 return result

130

131

132 def get_scale_to (

133 section , traffic_received , traffic_sent, memory_used, cpu_used,
size_current

134)

135 """Parse traffic , cpu and memory usage depending on the number of
instances

136 (size) and return a touple if scaling should occure and if so to what
size.

137

138

139 scaling_should_occure = False

140 size_difference = 0

141

142 traffic_received = traffic_received / size_current

143 # print(" Traffic per instance: {}".format(traffic_received))

144 traffic_sent = traffic_sent / size_current

145 memory_used = memory_used / size_current

146 cpu_used = cpu_used / size_current

147

148 # Scale out

149 if traffic_received > int(CFG[section]["traffic_received_limit_upper"
1):

150 size_difference += 1

151 # if traffic_sent > int(CFG[section]["traffic_sent_limit_upper"]):

size_difference += 1

44 Appendix A. Autoscaling Engine

153 # if memory_used > int(CFG[section]["memory_used_limit_upper"]) :

150 # size_difference += 1

155 # if cpu_used > int(CFG[section][" cpu_used_limit_upper"]):

156 # size_difference += 1

157

158 # Scale in

159 if traffic_received < int(CFG[section]["traffic_received_limit_lower"
D:

160 size_difference —= 1

161 # if traffic_sent < int(CFG[section |[" traffic_sent_limit_lower"]):

162 # size_difference —= 1

163 # if memory_used < int(CFG[section]["memory_used_limit_lower"]) :

164 # size_difference —= 1

165 # if cpu_used < int(CFG[section]["cpu_used_limit_lower"]):

166 # size_difference —= 1

167

168 size_ideal = size_current + size_difference

169 # logger . warning (

170 # "size_ideal: {}\nsize_current: {}\nsize_difference: {}".format(
size_ideal , size_current, size_difference)

171 #)

172 if size_ideal > int(CFG[section]["size_max"]):

173 size_ideal = int(CFG[section]["size_max"])

174 if size_ideal < int(CFG[section]["size_min"]):

175 size_ideal = int(CFG[section]["size_min"])

176 if size_ideal != size_current:

177 scaling_should_occure = True

178 if int(CFG[section]["scale_service"]) == 0:

179 scaling_should_occure = False

180

181 logger.info ("Ideal size for {} is {}.".format(section, size_ideal))

182 return scaling_should_occure, size_ideal

184
1855 def scale_service(service, size_ideal):

186 """Call docker—compose to scale the service in

187 question to the appropriate size.

188 Return docker—compose exit code.

189

190 and = [

191 "docker—compose" ,

192 "up",

193 "—detach",

194 "—scale",

195 "{}={}".format(service, size_ideal),

196]

197 logger .debug(cmd)

198 #print (" Scaling to {} instances now: ({:%H:%dV%S}".format(size_ideal,
datetime . datetime .now ()))

199 print ("{} {:%H:%M:%S}".format(size_ideal , datetime.datetime.now()))

200 proc = subprocess.Popen (

201 cand, bufsize=—1, stdout=subprocess.PIPE, stderr=subprocess.PIPE

202)

203 out, err = proc.communicate ()

204 rc = proc.returncode

205 if rc !'= 0:

206 logger . warning (

207 "Error while scaling service {} to size {}.".format(service,
size_ideal)

208)

209 stop_epc ()

210 sys.exit(err.decode("utf8"))

211 return rc

A.1. Implementation - balancer.py 45

214 def start_epc():

215 """Run docker—compose in detach mode to start

216 the dockerized EPC.

217 Must be started with the root of our EPC repo

218 as working directory in order for the docker—

219 compose file to be found.

220

21 and = ["docker—compose", "up", "—detach"]

222 proc = subprocess.Popen(

223 cand, bufsize=—1, stdout=subprocess.PIPE, stderr=subprocess.PIPE

224)

225 out, err = proc.communicate ()

26 rc = proc.returncode

227 if rc !'= 0:

228 logger . warning (

229 "Error while starting docker containers. Stopping running
instances"

230)

231 stop_epc ()

232 sys.exit(err.decode("utf8"))

233 logger . warning ("Container(s) started")

234 logger . warning (err.decode("utf8"))

235 return rc

236

237

238 def stop_epc():

239 """Run docker—compose to stop funning containers.

240 Same restrictions as for start_epc apply."""

241 proc = subprocess.Popen(

242 ["docker—compose", "stop"],

243 bufsize=—1,

244 stdout=subprocess.PIPE,

245 stderr=subprocess.PIPE,

246)

247 out, err = proc.communicate ()

248 rc = proc.returncode

249 if rc != 0:

250 logger.warning ("Error while shutting down instances.")

251 sys.exit(err.decode("utf8"))

252 logger .warning (" Container(s) stopped")

253 logger.warning (err.decode("utf8"))

254 return rc

257 def reload_loadbalancer (container_name) :

258 """Reload nginx inside docker container. Return exit code of
subprocess. """

259 and = ["docker", "container", "exec", container_name, "nginx", "—s", "
reload"]

260 proc = subprocess.Popen(

261 cnd, bufsize=—1, stdout=subprocess.PIPE, stderr=subprocess.PIPE

262)

263 out, err = proc.communicate ()

264 rc = proc.returncode

265 if rc != 0:

266 logger.warning ("Error reloading nginx.")

267 return rc

268

269

270 def balance(section):

271 """Run our balancer logic.

46

Appendix A

. Autoscaling Engine

Some information with regards to the output:
* Traffic information is in bytes
service = CFG[section]["service"]
logger.info ("Balance service {}".format(service))
traffic_received = get_traffic_received (
CFG[section]["docker_image"],
CFG[section]["interval"],
CFG[section]["prometheus_url"],

)

traffic_sent = get_traffic_sent(
CFG[section]["docker_image"],
CFG[section]["interval"],
CFG[section]["prometheus_url"],

)

memory_used = get_memory_usage (
CFG[section]["docker_image"],
CFG[section]["interval"],
CFG[section]["prometheus_url"],

)

cpu_used = get_cpu_usage (
CFG[section]["docker_image"],
CFG[section]["interval"],
CFG[section]["prometheus_url"],

)
scaling_should_occure, size_ideal = get_scale_to(
section ,
traffic_received ,
traffic_sent,
memory_used,
cpu_used,
int (CFG[section]["size_current"]),
)
Update cooldown timer
timer = int(CFG[section]["cool_down_timer"])
if timer > 0:
timer —= 1
CFG[section]["cool_down_timer"] = str (timer)

if scaling_should_occure:
if timer > O:

logger.debug("Timer is {}. Not scaling.".format(timer))
return str (int (CFG[section]["size_current"]))

logger . info (

"Ideal size is {}, current is {}. Scaling service {}.".format(
size_ideal , int(CFG[section]["size_current"]), service
)
)
rc = scale_service (service, size_ideal)
if rc !'= 0:

logger . warning (

"Error: Could not scale service {} to size {}.".format(

service , size_ideal

)
)

return str(int (CFG[section]["size_current"]))

CFG[section]["cool_down_timer"] = CFG[section]["

cool_down_timer_max"]
CFG[section]["size_current"] = str(size_ideal)

A.2. Configuration File - balancer.cfg 47

logger . info (
"Service {} scaled to {}.".format(
service , int(CFG[section]["size_current"])
)
)

reload_loadbalancer (CFG[section]["load_balancer"])
return str (int (CFG[section]["size_current"]))

def start_traffic_generation (mode_option):

"""Start iperf3 traffic generation with a given mode as argument.
Possible options for mode are:
% full: Maximum throughput for a given time
x raise: Raise traffic in a determined interval
x fall: Start from high traffic and go down
* static: Raise, stay at a level and don’t change
* fluctuate: Fluctuate around a given value to test balancing around a
threashold
and = [
"docker—compose",
"run",
"—detach",
"__ym"
"iperf3_client",
"/code/traffictest.sh",
"{}".format(mode_option),
]
logger .debug(cmd)
proc = subprocess.Popen (
cmd, bufsize=—1, stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
out, err = proc.communicate ()
rc = proc.returncode
return rc
if __name__ == "__main__"
"""Start dockerized EPC and continue to
query the prometheus API
try:
start_epc ()
time.sleep (int (CFG[CFG. sections () [0]]["wait_time"]))
start_traffic_generation("raise_and_fall")
while True:
time.sleep (int (CFG[CFG. sections () [0]]["wait_time"]))
for section in CFG.sections ():
CFG[section]["size_current"] = balance(section)
except KeyboardInterrupt:
logger . warning ("\nShutting down...")
stop_epc ()
except:
stop_epc ()
raise

A.2 Configuration File - balancer.cfg

[DEFAULT]

prometheus_url: http://localhost:9090/api/vl/query
interval: 5s

size_max: 30

size_min: 1

48 Appendix A. Autoscaling Engine

size_current: 1
wait_time: 5

cool_down_timer = 0
cool_down_timer_max = 3

5 MB

traffic_received_limit_upper = 4000000
2.5 MB

traffic_received_limit_lower = 2000000
traffic_sent_limit_upper = 5000000
traffic_sent_limit_lower = 2500000
memory_used_limit_upper = 55040
memory_used_limit_lower = 27520
cpu_used_limit_upper = 500
cpu_used_limit_lower = 0

2 # Set to 1 to enable scaling for this service
3 scale_service = 0

s # Workaround to introduce traffic to the system and start new instances

of spgw

[spgw]

service = spgw2

docker_image = networkstatic/iperf3
load_balancer = n/a

scale_service 1

[hss]
service: hss
scale_service =1

[mme]
service: mme

load_balancer: n/a

[spgw]

service: spgw

load_balancer: n/a

FHoH o H o o H o H H K

docker_image: docker—openairinterface—epc_backend_hss
load_balancer: docker—openairinterface—epc_hss_1

docker_image: docker—openairinterface —epc_backend_mme

docker_image: docker—openairinterface —epc_backend_spgw

1
5

3

26

Appendix B

Docker EPC Containers

The code for the epc containers is based on the work done by Grunenberger.[68]

B.1 Docker-compose.yml

version: ‘2’

services:
HEHHHH AR HEHHHHHHH AR HHH
Monitring Services
HEHHHHHRHHHHHHHHHHRHHH
cadvisor:
image: google/cadvisor:latest
container_name: oai_cadvisor
ports:
— 8080:8080
volumes:
— /:/rootfs:ro
— /var/run:/var/run:rw
— /sys:/sys:ro
/var/lib /docker/:/var/lib/docker:ro
— /dev/disk/:/dev/disk:ro
networks:
— monitoring
prometheus:
image: prom/prometheus
container_name: oai_prometheus
ports:
— 9090:9090
volumes:
— ./prometheus.yml:/ etc/prometheus/prometheus.yml
networks:
— monitoring
grafana:
image: grafana/grafana
container_name: oai_grafana
ports:
— 3000:3000
networks:
— monitoring

HHHH#HHHH R SRS H A

Traffic Generator

H#HHHH SRR

iperf3_server:
image: networkstatic/iperf3
container_name: oai_iperf3_server
ports:

49

63

66

70

99
100
101
102
103
104
105

106

Appendix B. Docker EPC Containers

50
— 5201:5201
command: ["—s"
networks:
default:

iperf3_client:
depends_on:
— iperf3_server
build: iperf3_client
container_name: oai_iperf3_client
command: /code/traffictest.sh
volumes :

— /tmp/iperf_status:/tmp/iperf_status
— ./iperf3_client/traffictest.sh:/code/traffictest.sh

networks:
default:

HHHHH #8444
EPC Network
HEHHHHHHH A HHRH

HHEHH
DB
#HH##H#H
db:
build: db
environment:
— MYSQL,_ROOT PASSWORD=1linux
networks:
default:
volumes:

— ./db/oai_db.sql:/docker—entrypoint—initdb .d/oai_db.sql

balance_db:
image: nginx
networks:
default:
ports:
— 3306:3306
volumes:

— ./balance/balance_db.conf:/etc/nginx/nginx. conf

depends_on:
_ vgb"

phpmyadmin :
image: phpmyadmin/phpmyadmin
links:
— db:db
ports:
— 8088:80
environment:
— MYSQL,_ROOT PASSWORD=1linux
— MYSQL_USER=root
— MYSQL_PASSWORD=1linux
#iH#HH#H
HSS
HH A
backend_hss:
build: hss
volumes:

— ./hss/hss.conf:/usr/local/etc/oai/hss.conf:ro

depends_on:
— "balance_db"

155
156
157
158
159
160
161
162
163
164
165

166

168

169

B.1. Docker-compose.yml 51

I o o oH o o

hss:
image: nginx
ports:
— 3868
volumes :
— ./balance/balance_hss.conf:/etc/nginx/nginx. conf
depends_on:
— "backend_hss"
networks:
default:
epc:
ipv4_address: 192.168.142.10
domainname: openair4G.eur
hostname: hss

H#t#HHHH
MME
H##HHHH
mme:
build: mme
volumes:
— . /mme/mme. conf:/usr/local/etc/oai/mme.conf:ro
depends_on:
— "hss"
networks:
default:
epc:
ipv4_address: 192.168.142.20
domainname: openair4G.eur
hostname: mme

balance_mme:
image: nginx
ports:
— 2123:2123
volumes:
— ./balance/balance_mme. conf:/ etc/nginx/nginx. conf
depends_on:
HERHHHHH
SPGW
HHHIHAHH
Spgw :
build: spgw
privileged: true
volumes :
— /1lib /modules:/ 1lib /modules
— ./spgw/spgw.conf:/usr/local/etc/oai/spgw.conf:ro
depends_on:
networks:
default:
epc:
ipv4_address: 192.168.142.30
domainname: openair4G.eur
hostname: spgw
ports:
— 2152
— 2123

spgw2:
build: spgw
privileged: true

R W N e

52 Appendix B. Docker EPC Containers

volumes :
— /1lib /modules:/ 1lib /modules
— ./spgw/spgw2.conf:/usr/local/etc/oai/spgw.conf:ro
depends_on:
networks:
default:
epc:
domainname: openair4G.eur
hostname: spgw2
ports:
— 2152
— 2123
Spgw :
image: nginx
volumes :
— ./balance/balance_spgw .conf:/ etc/nginx/nginx.conf
depends_on:
— "backend_spgw"

HAHHHHHHHHRHH
Networks
HHHHHHHHHHHH
networks:
monitoring :
driver: bridge
epc:
driver: bridge
ipam:
driver: default
config:
— subnet: 192.168.142.0/24
gateway: 192.168.142.1

B.2 Docker file for DB

FROM mysql:5.6
MAINTAINER Yan Grunenberger <yan@grunenberger.net>

CUSTOMIZE YOUR FIRST SIM DETAILS

ARG IMSI="901550000000000"

ARG MSISDN="6789"’

ARG KI=0x912e7221941577df083e1591d35f4c42
ARG OPC=0x4487d12562bd21df3b076852f4d74eec
ARG APN='"internet ’

CUSTOMIZE YOUR MMVE DETAILS
ARG REAIM='openair4G.eur’

5 ARG MME="mme. openair4G . eur’

H##H#H S HH R R Docker build instructions

7 ENV MYSQL,_ROOT_PASSWORD=1inux

#RUN apt—get update && apt—get —qy install curl

#RUN curl https:// gitlab .eurecom. fr/oai/openair—cn/raw/develop/src/oai_hss
/db/oai_db.sql —o /docker—entrypoint—initdb.d/oai_db.sql

ADD oai_db.sql /docker—entrypoint—initdb.d/oai_db.sql

Customize the SQL based on the arguments passed on build time

B.3. DB SQL Dump 53

o # MME settings

RUN sed —i s/’mme.openair4G.eur’/$MME/g /docker—entrypoint—initdb.d/

oai_db.sql
RUN sed —i s/’openaird4G.eur’/$REALM/g /docker—entrypoint—initdb .d/oai_db
.sql

SIM card record
RUN sed —i s/’oai.ipv4’/$APN/g /docker—entrypoint—initdb.d/oai_db.sql

35 # RUN sed —i s/208920100001100/$IMSI/g /docker—entrypoint—initdb .d/oai_db.

[
hq

sql
RUN sed —i s/33638020000/$MSISDN/g /docker—entrypoint—initdb.d/oai_db.
sql

5 # RUN sed —i s/0x8baf473f2f8fd09487cccbd7097c6862/$KIl/g /docker—entrypoint

w

—initdb.d/oai_db.sql

s # RUN sed —i s/0xe734f8734007d6c5ce7a0508809e7e9¢/$0OPC/g /docker—

entrypoint—initdb .d/oai_db.sql
B.3 DB SQL Dump

— phpMyAdmin SQL Dump
— version 4.8.0.1

3 — https:/ /www. phpmyadmin. net/

5 — Host: db

, — Generation Time: Jun 23, 2018 at 01:09 PM

— Server version: 5.6.40
— PHP Version: 7.2.4

SET SQL MODE = "NO_AUTO_VALUE_ON_ZERO";
SET AUTOCOMMIT = 0;

> START TRANSACTION;
3 SET time_zone = "+00:00";

/%!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER _SET_CLIENT x/;
/%!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS = /;
/%!40101 SET @OLD_COLLATION CONNECTION=@@COLLATION_CONNECTION = /;
/%!40101 SET NAMES utf8mb4 =x/;

— Database: ‘oai_db”’

CREATE DATABASE oai_db;
USE oai_db;

’ ‘

— Table structure for table ‘apn

33 CREATE TABLE ‘apn’ (

@ W

“id“ int(11) NOT NULL,

‘apn—name’ varchar (60) NOT NULL,

‘pdn—type * enum(’IPv4’, IPv6’, ' IPv4v6’, IPv4_or_IPv6 ') NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latinl ;

> — Table structure for table ‘mmeidentity ’

54 Appendix B. Docker EPC Containers

15 CREATE TABLE ‘mmeidentity *© (

46 ‘idmmeidentity © int (11) NOT NULL,

7 ‘mmehost’ varchar(255) DEFAULT NULL,

48 ‘mmerealm’ varchar(200) DEFAULT NULL,

49 ‘UE-Reachability * tinyint (1) NOT NULL COMMENI ’Indicates whether the MME
supports UE Reachability Notifcation’

50) ENGINE=MyISAM DEFAULT CHARSET=latinl;

By o

553 — Dumping data for table ‘mmeidentity

56 INSERT INTO ‘mmeidentity © (‘idmmeidentity *, ‘mmehost’, ‘mmerealm”’, ‘UE-
Reachability *) VALUES

57 (1, ’'mme.openair4G.eur’, ’‘openair4G.eur’, 0),

55 (46, 'mme.openair4G.eur.openair4G.eur’, ‘openairdG.eur’, 0);

3 — Table structure for table ‘pdn’

o6 CREATE TABLE ‘pdn‘ (

67 ‘id“ int(11) NOT NULL,

68 ‘apn’ varchar (60) NOT NULL,

69 ‘pdn_type’ enum(’IPv4’, IPv6’, IPv4v6’, IPv4_or_IPvé6 ') NOT NULL DEFAULT
"IPv4 "’ ,

70 ‘pdn_ipv4“ varchar(15) DEFAULT '0.0.0.0",

71 ‘pdn_ipv6 * varchar(45) CHARACIER SET latinl COLLATE latinl_general_ci
DEFAULT ’0:0:0:0:0:0:0:0 ",

72 “aggregate_ambr_ul’ int(10) UNSIGNED DEFAULT ‘500000007,

73 “aggregate_ambr_dl‘ int (10) UNSIGNED DEFAULT 100000000,

74 ‘pgw_id‘ int(11) NOT NULL,

75 “users_imsi ‘ varchar (15) NOT NULL,

76 “qeci” tinyint (3) UNSIGNED NOT NULL DEFAULT ‘97,

77 ‘priority_level * tinyint(3) UNSIGNED NOT NULL DEFAULT ‘15",

78 ‘pre_emp_cap’ enum('ENABLED’ , "DISABLED’") DEFAULT 'DISABLED’,

79 ‘pre_emp_vul‘ enum(ENABLED’ , 'DISABLED’) DEFAULT 'DISABLED’,

80 ‘LIPA—Permissions * enum(’'LIPA—prohibited *, "LIPA—only *, "LIPA—conditional
’) NOT NULL DEFAULT ’LIPA—only’

s1) ENGINE=MylSAM DEFAULT CHARSET=latinl ;

83 —

st — Dumping data for table ‘pdn’

57 INSERT INTO ‘pdn‘ (‘id‘, ‘apn’, ‘pdn_type’, ‘pdn_ipv4’, ‘pdn_ipv6‘, *
aggregate_ambr_ul’, ‘aggregate_ambr_dl’, ‘pgw_id’, ‘users_imsi’, ‘qci’,
‘priority_level *, ‘pre_emp_cap’, ‘pre_emp_vul’, ‘LIPA—Permissions ")
VALUES

ss (1, ’internet’, ’IPv4’, ’0.0.0.0", ’0:0:0:0:0:0:0:0", 50000000, 100000000,
1, ’901550000000000”, 9, 15, 'DISABLED’, 'ENABLED’, ’'LIPA—only’),

g0 (60, ’internet’, ’'IPv4’, ’0.0.0.0°, ’0:0:0:0:0:0:0:0", 50000000,
100000000, 1, ’208930100001111", 9, 15, ’'DISABLED’, 'ENABLED’, ’'LIPA—
only) ;

914 — Table structure for table ‘pgw’

B.3. DB SQL Dump

55

95 —
96

97 CREATE TABLE ‘pgw’ (

98 “id’ int(11) NOT NULL,

9 ‘ipv4‘ varchar (15) NOT NULL,

100 “ipv6 * varchar (39) NOT NULL

101) ENGINE=MyISAM DEFAULT CHARSET=latinl ;

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

Dumping data for table ‘pgw’

INSERT INTO ‘pgw’ (‘id‘, ‘“ipv4‘, ‘ipv6 ‘) VALUES

(1

, ’127.0.0.1", ’0:0:0:0:0:0:0:1");

Table structure for table ‘terminal—info’

CREATE TABLE ‘terminal—info ‘ (

“imei varchar (15) NOT NULL,
“sv’ varchar (2) NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latinl1 ;

Table structure for table ‘users’

127 CREATE TABLE ‘users’ (

128

129

136

“imsi‘ varchar (15) NOT NULL GCOMMENT ’IMSI is the main reference key.’,

‘msisdn’ varchar (46) DEFAULT NULL COMMENT ’'The basic MSISDN of the UE (
Presence of MSISDN is optional).”,

“imei’ varchar (15) DEFAULT NULL COMMENT ’International Mobile Equipment
Identity ~,

“imei_sv ’ varchar (2) DEFAULT NULL COMMENT ’International Mobile
Equipment Identity Software Version Number’,

‘ms_ps_status * enum('PURGED’ , "NOT_PURGED’) DEFAULT 'PURGED’ COMMENT ’
Indicates that ESM and BMM status are purged from MME,

‘rau_tau_timer * int(10) UNSIGNED DEFAULT ’1207,

‘ue_ambr_ul“ bigint (20) UNSIGNED DEFAULT ‘50000000’ COMMENI ’The Maximum
Aggregated uplink MBRs to be shared across all Non-GBR bearers
according to the subscription of the user.’,

‘ue_ambr_dl“ bigint (20) UNSIGNED DEFAULT ‘100000000" GOMMENT ’The
Maximum Aggregated downlink MBRs to be shared across all Non-GBR
bearers according to the subscription of the user.’,

“access_restriction * int(10) UNSIGNED DEFAULT ‘60" COMMENT ’'Indicates
the access restriction subscription information. 3GPP TS.29272
#7.3.317,

‘mme_cap’ int(10) UNSIGNED ZEROFILL DEFAULT NULL COMMENT ’"Indicates the
capabilities of the MME with respect to core functionality e.g.
regional access restrictions.’,

‘mmeidentity_idmmeidentity * int(11) NOT NULL DEFAULT ‘0,

‘key’ varbinary (16) NOT NULL DEFAULT ‘0" COMMENI 'UE security key’,
‘RFSP—Index * smallint (5) UNSIGNED NOT NULL DEFAULT ’1’ GOMMENT 'An index
to specific RRM configuration in the E-UIRAN. Possible values from 1

to 2567,

‘urrp_mme’ tinyint (1) NOT NULL DEFAULT ‘0’ GOMMENI 'UE Reachability
Request Parameter indicating that UE activity notification from MME has
been requested by the HSS.’,

1
@

56 Appendix B. Docker EPC Containers

‘sqn’ bigint (20) UNSIGNED ZEROFILL NOT NULL,
‘rand * varbinary (16) NOT NULL,
‘OPc” varbinary (16) DEFAULT NULL COMMENT ‘Can be computed by HSS’

5) ENGINE=MyISAM DEFAULT CHARSET=latinl ;

8 — Dumping data for table ‘users’

INSERT INTO ‘users’ (‘imsi‘, ‘msisdn’, ‘imei’, ‘imei_sv’, ‘ms_ps_status’,
‘rau_tau_timer ‘, ‘ue_ambr_ul’, ‘ue_ambr_dl’, ‘access_restriction ’,
mme_cap’, ‘mmeidentity_idmmeidentity *, ‘key’, ‘RFSP—Index’, ‘urrp_mme’,

‘sqn’, ‘rand’, ‘OPc’) VALUES

> (’901550000000000", '6789’, ’35609204079200’, NULL, 'PURGED’, 120,

50000000, 100000000, 47, 0000000000, 1, O
x912e7221941577df083e1591d35f4c42, 1, 0, 00000000000000000351, 0x00, O
x8caac204d4ff07140c23ea7f2e191e12),

(’208930100001111", ’6789", ’356113022094149’, NULL, 'NOT_PURGED’, 120,
50000000, 100000000, 47, 0000000000, 46, O
x8baf473f2f8fd09487cccbd7097c¢6862, 1, 0, 00000000000000001727, 0
x90b69a4032fc642fc17bfd3462aed44d , 0xe734f8734007d6c5ce7a0508809e7e9¢) ;

— Indexes for dumped tables

’

— Indexes for table ‘apn

ALTER TABLE ‘apn’
ADD PRIMARY KEY (“id ‘),
ADD UNIQUE KEY ‘apn—name’ (‘apn—name’);

7 — Indexes for table ‘mmeidentity ’

ALTER TABLE ‘mmeidentity ’
ADD PRIMARY KEY (‘idmmeidentity) ;

— Indexes for table ‘pdn’

ALTER TABLE ‘pdn’
ADD PRIMARY KEY (“id“, ‘pgw_id‘, ‘users_imsi ‘),
ADD KEY ‘fk_pdn_pgwl_idx’ (‘pgw_id’),
ADD KEY ‘fk_pdn_usersl_idx* (‘users_imsi‘);

— Indexes for table ‘pgw’

; ALTER TABLE ‘pgw’

ADD PRIMARY KEY (“id),
ADD UNIQUE KEY ‘ipv4”’ (‘ipv4’),
ADD UNIQUE KEY ‘ipv6‘ (“ipv6’);

— Indexes for table ‘terminal—info”’

ALTER TABLE ‘terminal—info ’
ADD UNIQUE KEY ‘imei’ (‘imei”);

— Indexes for table ‘users’

B.4. Docker file for HSS

196 —

197 ALTER TABLE ‘users

198 ADD PRIMARY KEY (“imsi’, mmeidentity_idmmeidentity *),

199 ADD KEY ‘fk_users_mmeidentity_idx1l‘ (‘mmeidentity_idmmeidentity *) ;
200

201 —

200 — AUTO_INCREMENT for dumped tables

203 —

204

205 —

206 — AUTO_INCREMENT for table ‘apn’

207 —

208 ALTER TABLE ‘apn’

200 MODIFY “id “ int(11) NOT NULL AUTO_INCREMENT;

210

211 —

212 — AUTO_INCREMENT for table ‘mmeidentity ’

213 —

214 ALTER TABLE ‘mmeidentity *

215 MODIFY ‘idmmeidentity © int(11) NOT NULL AUTO INCREMENT, AUTO_INCREMENT
=47;

217 —
218 — AUTO_INCREMENT for table ‘pdn’

219 —

20 ALTER TABLE ‘pdn’

221 MODIFY ‘id“ int(11) NOT NULL AUTO_INCREMENT, AUTO INCREMENT=61;

24 — AUTO_INCREMENT for table ‘pgw’

26 ALTER TABLE ‘pgw’

227 MODIFY ‘id“ int(11) NOT NULL AUTO_INCREMENT, AUTO INCREMENT=4;
228 COMMIT;

230 /%!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER SET_CLIENT x/;

231 /%!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET RESULTS */;
232 /140101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION x/;

B.4 Docker file for HSS

FROM ubuntu:16.04
> MAINTAINER Yan Grunenberger <yan@grunenberger.net>

dependencies and downloads

6 ENV DEBIAN_FRONTEND noninteractive
7 RUN apt—get update

s RUN apt—get —yq dist—upgrade

9

10 # General utilities

11 RUN apt—get —qy install git wget apt—utils autoconf \
12 automake \

13 bison \

14 build—essential \

15 cmake \

16 cmake—curses—gui \

17 doxygen \

18 doxygen—gui\

19 debhelper \

20 flex \

21 gdb \

58 Appendix B. Docker EPC Containers

22 pkg—config \

23 subversion \

2¢ libconfig8—dev \
5 libgerypt—dev \
2% libidn2 —0—dev \
27 libpg—dev \

25 libidn11—dev \
29 libmysqlclient—dev \
30 libpthread —stubsO—dev \
31 libsctpl \

32 libsctp —dev \

33 libxml2—dev \

32 libssl —dev \

35 libtool \

36 libgmp—dev \

37 libtasnl —6—dev \
35 libpll—kit—dev \
3 libtspi—dev \

w0 libtspil \

i1 libidn2 —0—dev \
2 libidnll—dev \
13 openssl \

4 mercurial \

15 python—dev \

16 ssl—cert \

7 swig

50 WORKDIR /root
51 RUN wget https://ftp.gnu.org/gnu/nettle/nettle —2.5.tar.gz
52 RUN tar —xzf nettle —2.5.tar.gz

5+ WORKDIR /root
55 RUN wget http://mirrors.dotsrc.org/gcrypt/gnutls/v3.1/ gnutls —3.1.23. tar .xz
56 RUN tar —xJf gnutls —3.1.23.tar.xz

55 WORKDIR /root

59 RUN git clone https://gitlab.eurecom. fr/oai/freediameter.git —b eurecom
—-1.2.0

60

61 # other mirror : ftp://ftp.lysator.liu.se/pub/security/lsh/nettle —2.5.tar.
gz

62 WORKDIR /root

63 RUN c¢d nettle —2.5/ && ./configure —disable—openssl —enable—shared —
prefix=/usr && make —j ‘nproc’ && make check && make install

64

65 WORKDIR /root

66 RUN c¢d gnutls —3.1.23/ && ./configure —prefix=/usr && make —j ‘nproc’ &&
make install

67

es # Run freediameter (hard dependencies on gnutls)

© WORKDIR /root/freediameter

70 RUN mkdir build && cd build && cmake —DCMAKE_INSTALL_PREFIX:PATH=/usr ../
&& make —j ‘nproc’ && make install

72 # cloning directory

3 WORKDIR /root

72 RUN mkdir .ssh

75 RUN ssh—keyscan github.com >> .ssh/known_hosts

76 COPY id_rsa .ssh/id_rsa

77 COPY id_rsa.pub .ssh/id_rsa.pub

7s RUN git clone git@github .com:aschwanb/openair—cn. git

79

~

B.5. HSS configuration 59

so ####H#HHHH A # A #H START OF CUSTOMIZATION

g2 #### CUSTOMIZE YOUR DATABASE PARAMETERS
83 ARG MYSQLHOSINAME=db . openair4G . eur

84 ARG MYSQLUSER=root

85 ARG MYSQLPASSWORD=1inux

86 ARG MYSQLDATABASE=0ai_db

CUSTOMIZE YOUR BUILD PARAMETER
59 ARG OAIBRANCH=develop

o
%

CUSTOMIZE YOUR OPERATOR KEY
92 ARG OPKEY=63bfa50ee6523365ff14c1f45f88737d

o+ #### CUSTOMIZE YOUR HSS HOSINAME (used in certificates)
95 ARG HSS CN_NAME=hss . openair4G . eur

o7 #H#H##H#HHHH#HH#E A A END OF CUSTOMIZATION

cloning directory

100 WORKDIR /root/openair—cn

01 RUN git checkout $OAIBRANCH

102

103 # install_asnlc_from_source

104 #WORKDIR /root

105 #RUN apt—get —qy install autoconf automake bison build—essential flex gcc
libtool

s #RUN git clone https://gitlab .eurecom. fr/oai/asnlc. git

107 #RUN cd asnlc && ./ configure && make && make install

108

109 # compiling OAI HSS executable oai_hss

110 WORKDIR /root/openair—cn/build/hss

111 RUN mkdir build

112 WORKDIR /root/openair—cn/build/hss/build

113 RUN cmake —DOPENAIRCN_DIR=/root/openair—cn ../

114 RUN make —j “nproc”’

115

116 RUN mkdir —p /usr/local/etc/oai/freeDiameter

117 # RUN cp /root/openair—cn/etc/hss.conf /usr/local/etc/oai/

118 RUN cp /root/openair—cn/etc/hss_fd.conf /usr/local/etc/oai/freeDiameter/

119 RUN cp /root/openair—cn/etc/acl.conf /usr/local/etc/oai/freeDiameter/

120

121 ENV MYSQLUSER=root

122 ENV MYSQILPASSWORD=1inux

123 ENV MYSQLDATABASE=0ai_db

124 ENV MYSQLHOSINAME=db . openair4G . eur

126

127 ENV OPKEY=63bfa50ee6523365ff14c1f45f88737d
128

129 ENV HSS CN_NAME=hss . openair4G . eur

130 #ready to work

131 WORKDIR /root

132 COPY start.sh /root/start.sh

133 RUN chmod +x /root/start.sh

134 ENTRYPOINT "/root/start.sh"

B.5 HSS configuration

| HERFHEHFHAHAHBHAH R AR RS AR AR AR AR AR AR AR AR R R AR H R AR AR AR RS

N

N

B W

9l

60 Appendix B. Docker EPC Containers

Licensed to the OpenAirInterface (OAI) Software Alliance under one or
more

contributor license agreements. See the NOTICE file distributed with

this work for additional information regarding copyright ownership.

The OpenAirlnterface Software Alliance licenses this file to You under

the Apache License, Version 2.0 (the "License"); you may not use this
file

except in compliance with the License.

You may obtain a copy of the License at

#

http:/ /www. apache.org/licenses/LICENSE—2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

For more information about the OpenAirinterface (OAI) Software Alliance:
contact@openairinterface.org
HAHHAHHHHAHHHHAHHAH AR AR R AR H R H AR R R A R R R R R R R A R R

HSS :

{

MySQL mandatory options

MYSQL_server = "balance_db"; # HSS S6a bind address

MYSQL _user = "root"; # Database server login
MYSQL_pass = "linux"; # Database server password
7 MYSQL_db = "oai_db"; # Your database name

o ## HSS options

OPERATOR key = "63bfa50ee6523365ff14c1£f45f88737d "; # OP key matching
your database
OPERATOR _key = "1006020f0a478bf6b699f15c062e42b3"; # OP key matching your

database
#OPERATOR key = "11111111111111111111111111111111"; # OP key matching your
database
3 RANDOM = "true"; # True random or only

pseudo random (for subscriber vector generation)

Freediameter options
FD_conf = "/usr/local/etc/oai/freeDiameter/hss_fd.conf";

b
B.6 HSS start script

#!/bin/bash

MySQL database configuration

sed —i "s/@MYSQL_user@/$MYSQLUSER/g" /usr/local/etc/oai/hss.conf

sed —i "s/@MYSQL_pass@/$MYSQLPASSWORD/g" /usr/local/etc/oai/hss.conf
sed —i "s/127.0.0.1/$MYSQLHOSINAME/g" /usr/local/etc/oai/hss.conf

sed —i "s/oai_db/$MYSQLDATABASE/g" /usr/local/etc/oai/hss.conf

sed —i "s/db.openair4G.eur /$MYSQLHOSINAME/g" /usr/local/etc/oai/hss.conf

Operator key (OP)
sed —i "s/1006020f0a478bf6b699f15c062e42b3 /$OPKEY/g" /usr/local/etc/o0ai/

hss. conf

HSS Configuration

5 sed —i "s/hss.openair4G . eur/$HSS_ CN_NAME/g" /usr/local/etc/oai/hss.conf

B.7. Docker file for MME 61

1« sed —i "s/hss.openair4G.eur/$HSS CN_NAME/g" /usr/local/etc/oai/
freeDiameter/hss_fd . conf

15 sed —i "s/hss.openair4G.eur/$HSS CN_.NAME/g" /usr/local/etc/oai/
freeDiameter/acl.conf

17 # Generation of certificate for diameter

18 cd /root

19 if [[! —=d /root/demoCA]];then

20 mkdir demoCA && touch demoCA/index.txt && echo 01 > demoCA/serial

21 openssl req —new —batch —x509 —days 3650 —nodes —newkey rsa:1024 —out
hss.cacert.pem —keyout hss.cakey.pem —subj /CN=$HSS CN _NAME/C=FR/ST=
PACA/L=Aix/O=Eurecom /OU=-CM

2 openssl genrsa —out hss.key.pem 1024

23 openssl req —mew —batch —out hss.csr.pem —key hss.key.pem —subj /CN=
$HSS_ CN_NAME/C=FR/ST=PACA/L=Aix /O=Eurecom /OU=CM

24 openssl ca —cert hss.cacert.pem —keyfile hss.cakey.pem —in hss.csr.pem —

out hss.cert.pem —outdir . —batch
5 mv /root/hss.cakey.pem /usr/local/etc/oai/freeDiameter/
26 mv /root/hss.cert.pem /usr/local/etc/oai/freeDiameter/
27 mv /root/hss.cacert.pem /usr/local/etc/oai/freeDiameter/
28 mv /root/hss.key.pem /usr/local/etc/oai/freeDiameter/

20 fi

31 # Start hss
2 sleep 15 && /root/openair—cn/build/hss/build/oai_hss

B.7 Docker file for MME

1 FROM ubuntu:16.04

> MAINTAINER Yan Grunenberger <yan@grunenberger.net>
5 ENV DEBIAN_FRONTEND noninteractive

1+ RUN apt—get update

5 RUN apt—get —yq dist—upgrade

6

7 # General utilities

s RUN apt—get —qy install git wget apt—utils

9

10 # cloning directory

1 WORKDIR /root

12 RUN mkdir .ssh

13 RUN ssh—keyscan github.com >> .ssh/known_hosts
14 COPY id_rsa .ssh/id_rsa

15 COPY id_rsa.pub .ssh/id_rsa.pub

i RUN git clone git@github.com:aschwanb/openair—cn. git
17

18 WORKDIR /root/openair—cn

19 RUN git checkout develop

20

21 WORKDIR /root

79

23 # Fixing default mysql root password to "linux". This is the default
assumed by OAI building scripts

2¢ RUN echo ’‘mysql-server mysql—server/root_password password linux’ |
debconf—set—selections

25 RUN echo ’“mysql-server mysql—-server/root_password_again password linux’ |
debconf—set—selections

26 RUN echo ’‘phpmyadmin phpmyadmin/dbconfig—install boolean true’ | debconf—
set—selections

27 RUN echo ’phpmyadmin phpmyadmin/app—password—confirm password linux
debconf—set—selections

28 RUN echo ’‘phpmyadmin phpmyadmin/mysql/admin—pass password linux’ | debconf

—set—selections

a

62 Appendix B. Docker EPC Containers

29 RUN echo ’phpmyadmin phpmyadmin/mysql/app—pass password linux’ | debconf—
set—selections
30 RUN echo ’phpmyadmin phpmyadmin/reconfigure—webserver multiselect apache2’
| debconf—set—selections
31
» # (Build script — MME dependencies...)
33 # (from build_helper) Remove incompatible softwares
32 RUN apt—get —qy —purge remove libgnutls—dev \
“libgnutlsxx2?” \
3 nettle—dev \
37 nettle—bin
38
39 # (from build_helper) Compilers, Generators
0o RUN apt—get —qy install autoconf \
41 automake \
12 bison \
i3 build—essential \
1 cmake \
15 cmake—curses—gui \

16 doxygen \

17 doxygen—gui\
i flex \

19 gdb \

50 pkg—config

51

> # (from build_helper) git/svn
55 RUN apt—get —qy install git \
52 subversion

U1

56 # (from build_helper) librairies

57 RUN apt—get —qy install libconfig8—dev \

55 libgeryptll—dev \

59 libidn2 —0—dev \

60 libidn1ll—dev \

61 libmysqlclient—dev \

2 libpthread —stubsO—dev \

63 libsctpl \

61 libsctp —dev \

65 libssl—dev \

66 libtool \

67 mysql—client \

6s mysql-server \

¢ openssl

70

71 # (from build_helper) compile nettle from source

7 RUN apt—get —qy install \

73 autoconf \

74 automake \

75 build—essential \

76 libgmp—dev

77 WORKDIR /root

7s # other mirror : ftp://ftp.lysator.liu.se/pub/security/lsh/nettle —2.5.tar.
gz

79 RUN wget https://ftp.gnu.org/gnu/nettle/nettle —2.5.tar.gz

s0 RUN tar —xzf nettle —2.5.tar.gz

51 RUN c¢d nettle —2.5/ && ./configure —disable—openssl —enable—shared —
prefix=/usr && make —j ‘nproc’ && make check && make install

82

53 # (from build_helper) install_gnutls_from_source $1

s1 WORKDIR /root

85 RUN apt—get —qy install \

ss autoconf \

s7 automake \

B.7. Docker file for MME

63

ss build—essential

89 # libtasnl —6-dbg \ libp11—kit0—dbg \
o0 RUN apt—get —qy install libtasnl—6—-dev \
o1 libpll—kit—dev \

92 libtspi—dev \

93 libtspil \

94 libidn2 —0—dev \

95 libidnl11l—dev

96 RUN wget http://mirrors.dotsrc.org/gcrypt/gnutls/v3.1/gnutls —3.1.23.tar .xz

97 RUN tar —xJf gnutls —3.1.23.tar.xz

98 RUN cd gnutls —3.1.23/ && ./configure —prefix=/usr && make —j ‘nproc’ &&
make install

99

100 # (from build_helper)

100 RUN apt—get —qy install autoconf \

102 automake \

103 bison \

104+ build—essential \

105 cmake \

106 cmake—curses—gui \

107 debhelper \

08 flex \

109 g++ \

110 gce \

1 gdb \

112 libgerypt—dev \

113 libidn11—dev \

114 libmysqlclient—dev \

115 libpg—dev \

116 libsctpl \

117 libsctp —dev \

118 libxml2—dev \

119 mercurial \

120 python—dev \

1 ssl—cert \

> swig

125 WORKDIR /root

126 RUN git clone https://gitlab.eurecom. fr/oai/freediameter. git —b eurecom
—-1.2.0

127 WORKDIR /root/freediameter

128 RUN mkdir build && cd build && cmake —DCMAKE_INSTALL PREFIX:PATH=/usr ../
&& make —j ‘nproc’ && make install

129

130 # PHPmyadmin for the MME database management

151 WORKDIR /root

12 RUN apt—get —qy install phpmyadmin \

133 python—pexpect \

134 php \

135 libapache2—mod—php

136

157 RUN apt—get —qy install check \

138 phpmyadmin \

139 python—dev \

110 python—pexpect \

141 unzip

142

143 # install_asnlc_from_source

144 WORKDIR /root

145 RUN apt—get —qy install autoconf automake bison build—essential flex gcc
libtool

146 RUN git clone https://gitlab .eurecom. fr/oai/asnlc. git

64 Appendix B. Docker EPC Containers

147 RUN c¢d asnlc && ./configure && make && make install
148

199 # install_libgtpnl_from_source

150

151 WORKDIR /root

152 RUN apt—get —qy install autoconf \

153 automake \
154 build—essential \
155 libmnl—dev

157 RUN git clone git:// git.osmocom.org/libgtpnl
158 RUN cd libgtpnl && autoreconf —fi && ./configure && make —j ‘nproc’ && make
install && ldconfig

159

160 RUN apt—get —qy install ethtool \

161 iproute \

162 vlan \

163 tshark

164

165 # compiling OAI mme executable

166 WORKDIR /root/openair—cn/build /mme

17 RUN c¢cp CMakeLists.template CMakeLists. txt

168 RUN echo ’“include (${CMAKE _CURRENT SOURCE DIR}/../ CMakelLists. txt)’ >>
CMakelLists. txt

160 RUN mkdir build

170 WORKDIR /root/openair—cn/build /mme/build

171 RUN cmake —DOPENAIRCN_DIR=/root/openair—cn ../

172 RUN make —j “nproc”’

173

172 # Configuration files

175 RUN mkdir —p /usr/local/etc/oai/freeDiameter

176 # RUN cp /root/openair—cn/etc/mme.conf /usr/local/etc/oai/

177 RUN ¢p /root/openair—cn/etc/mme_fd.conf /usr/local/etc/oai/freeDiameter/

178

172 ENV HSS CN_NAME=hss . openair4G . eur

150 ENV MME (N NAME=mme. openair4G . eur

151 ENV MME_IPV4_ADDRESS FOR S1. MME="192.168.142.20"

152 ENV HSS_IPV4_ADDRESS="192.168.142.10"

183

181 #ready to work

155 WORKDIR /root

1856 COPY start.sh /root/start.sh

137 RUN chmod +x /root/start.sh

183 ENTRYPOINT "/root/start.sh"

B.8 MME configuration

HEHFHHHAHHHAHHAAFH AR AR AR R AR AR R AR AR AR AR AR R AR RS

> # Licensed to the OpenAirinterface (OAI) Software Alliance under one or
more

5 # contributor license agreements. See the NOTICE file distributed with

. # this work for additional information regarding copyright ownership.

5 # The OpenAirlnterface Software Alliance licenses this file to You under

o # the Apache License, Version 2.0 (the "License"); you may not use this
file

7 # except in compliance with the License.

s # You may obtain a copy of the License at

o #

0 # http:/ /www. apache.org/licenses/LICENSE—2.0

1 #

12 # Unless required by applicable law or agreed to in writing, software

29

40
41

12
43
44

56

B.8. MME configuration 65

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

For more information about the OpenAirlnterface (OAI) Software Alliance:

contact@openairinterface.org

HERAFHAHFH AR FHHHFHHHAHRHAHHH AR R A AR A A H R AR A AR AR A A H R R AR R A AR R AR AR R AR RS

REALM = "openair4G.eur";
YOUR REAILM HERE
PID_DIRECTORY "/var/run";
Define the limits of the system in terms of served eNB and served UE

When the limits will be reached, overload procedure will take place.
MAXENB = 23

power of 2
MAXUE

power of 2

16;

RELATIVE_CAPACITY = 10;
EMERGENCY_ATTACH_SUPPORTED = "no";
UNAUTHENTICATED_IMSL SUPPORTED = "no";

EPS network feature support
EPS_NETWORK_FEATURE_SUPPORT_IMS_VOICE_OVER_PS_SESSION_IN_S1 "no
" # DO NOT CHANGE
EPS_NETWORK_FEATURE_SUPPORT_EMERGENCY_BEARER_SERVICES _IN_S1_MODE "no
" # DO NOT CHANGE

EPS_NETWORK_FEATURE_SUPPORT_LOCATION_SERVICES_VIA_EPC = "no
a # DO NOT CHANGE
EPS_NETWORK_FEATURE_SUPPORT_EXTENDED_SERVICE_REQUEST = "no

" # DO NOT CHANGE

Display statistics about whole system (expressed in seconds)
MME_STATISTIC_TIMER = 10;

IP_CAPABILITY = "IPV4Vé6";
UNUSED, TODO

INTERTASK_INTERFACE :
{

max queue size per task

ITTI_QUEUE_SIZE = 2000000;
he
S6A :
{
S6A_CONF = "/usr/local/etc/oai/freeDiameter/
mme_fd.conf"; # YOUR MME freeDiameter config file path
HSS HOSTNAME = "hss";
THE HSS HOSINAME
he
———— SCTP definitions
SCTP :

{

Number of streams to use in input/output

66 Appendix B. Docker EPC Containers

63 SCTP_INSTREAMS
64 SCTP_OUTSTREAMS = 8;

65 b

66

67 # ——— SIAP definitions

68 S1AP

6 {

70 # outcome drop timer value (seconds)
71 S1IAP_OUTCOME_TIMER = 10;

72 I

Il
o]
N

74 # ——— MME served GUMMEIs

75 # MME code DEFAULT size = 8 bits

76 # MME GROUP ID size = 16 bits

77 GUMMEIL LIST = (

78 {MCC="208" ; MNC="93"; MME GID="4" ; MMECODE="1"; }
YOUR GUMME CONFIG HERE

79);

81 # ——— MME served TAlIs

82 # TA (mcc.mnc: tracking area code) DEFAULT = 208.34:1

83 # max values = 999.999:65535

84 # maximum of 16 TAlIs, comma separated

85 # !l Actually use only one PLMN

86 TAI_LIST = (

87 {MCC="208" ; MNC="93"; TAC = "1"; }

YOUR TAI CONFIG HERE

88)

89

90

91 NAS :

92 {

93 # 3GPP TS 33.401 section 7.2.4.3 Procedures for NAS algorithm
selection

94 # decreasing preference goes from left to right

95 ORDERED_SUPPORTED_INTEGRITY_ALGORITHM_LIST = ["EIA2" , "EIA1" , "
EIAO0"];

9% ORDERED_SUPPORTED_CIPHERING_ALGORITHM_LIST = ["EEA0" , "EEA1" , "
EEA2" |;

97

98 # VM TIMERS

9 # T3402 start:

100 # At attach failure and the attempt counter is equal to 5.

101 # At tracking area updating failure and the attempt counter is
equal to 5.

102 # T3402 stop:

103 # ATTACH REQUEST sent, TRACKING AREA REQUEST sent.

104 # On expiry:

105 # Initiation of the attach procedure, if still required or TAU
procedure

106 # attached for emergency bearer services.

107 T3402 = 1

in minutes (default is 12 minutes)

109 # T3412 start:
110 # In EMM-REGISTERED, when EMM-CONNECIED mode is left.
111 # T3412 stop:

112 # When entering state EMM-DEREGISTERED or when entering EMM-
CONNECTED mode.
113 # On expiry:

114 # Initiation of the periodic TAU procedure if the UE is not
attached for

116
117

118
119

120

122
123
124
125
126

127

129

146

148
149
150

151

152

B.8. MME configuration 67

emergency bearer services. Implicit detach from network if the
UE is
attached for emergency bearer services.
T3412 = 54
in minutes (default is 54 minutes, network dependent)
T3422 start: DETACH REQUEST sent
T3422 stop: DETACH ACCEPT received
ON THE 1st, 2nd, 3rd, 4th EXPIRY: Retransmission of DETACH
REQUEST
T3422 = 6
in seconds (default is 6s)

T3450 start:

ATTACH ACCEPT sent, TRACKING AREA UPDATE ACCEPT sent with GUTI,
TRACKING AREA UPDATE ACCEPT sent with TMSI,

GUTI REALLOCATION COMMAND sent

T3450 stop:

ATTACH COMPLEIE received , TRACKING AREA UPDATE COMPLEIE received
, GUTI REALLOCATION COMPLEIE received

ON THE 1st, 2nd, 3rd, 4th EXPIRY: Retransmission of the same
message type

T3450 = 6

in seconds (default is 6s)

T3460 start: AUTHENTICATION REQUEST sent, SECURITY MODE COMMAND
sent

T3460 stop:

AUTHENTICATION RESPONSE received , AUTHENTICATION FAILURE
received ,

SECURITY MODE COMPLEIE received , SECURITY MODE REJECT received

ON THE 1st, 2nd, 3rd, 4th EXPIRY: Retransmission of the same
message type

T3460 = 6

in seconds (default is 6s)

T3470 start: IDENTITY REQUEST sent
T3470 stop: IDENTITY RESPONSE received
ON THE 1st, 2nd, 3rd, 4th EXPIRY: Retransmission of IDENTITY
REQUEST
T3470 = 6
in seconds (default is 6s)

ESM TIMERS

T3485 = 8
UNUSED in seconds (default is 8s)

T3486 = 8
UNUSED in seconds (default is 8s)

T3489 = 4
UNUSED in seconds (default is 4s)

T3495 = 8

UNUSED in seconds (default is 8s)
};

NETWORK_INTERFACES :
{

MME binded interface for S1-C or SI-MME communication (S1AP),
can be ethernet interface, virtual ethernet interface, we don’t advise
wireless interfaces

MME_INTERFACE_NAME_FOR_S1_MME = "eth0";

YOUR NEIWORK CONFIG HERE

MME_IPV4_ADDRESS_FOR_S1_MME
YOUR NEIWORK CONFIG HERE

"0.0.0.0/24";

68 Appendix B. Docker EPC Containers

156 # MME binded interface for S11 communication (GTPV2-C)
157 MME_INTERFACE_NAME_FOR S11_MME = "eth0";
YOUR NEIWORK CONFIG HERE
158 MME_IPV4_ADDRESS_FOR_S11_MME = "0.0.0.0/24";
YOUR NEIWORK CONFIG HERE
159 MME_PORT_FOR_S11_MME = 2123;
YOUR NEIWORK CONFIG HERE
160 },'
161
162 LOGGING :
163 {
164 # OUIPUT choice in { "CONSOLE", "SYSLOG", ‘path to file ‘", "‘IPv4@

’

: "TCP port num’"}

165 # ‘path to file * must start with ’.” or '/’

166 # if TCP stream choice, then you can easily dump the traffic on
the remote or local host: nc —1 ‘TCP port num’ > received. txt

167 OuUTPUT = "CONSOLE";

168 #OUTPUT = "SYSLOG";

169 #OUTPUT = "/tmp/mme.log";

170 #OUTPUT = "127.0.0.1:5656";

171

172 # THREAD_SAFE choice in { "yes", "no" } means use of thread safe
intermediate buffer then a single thread pick each message log one

173 # by one to flush it to the chosen output

174 THREAD_SAFE = "yes";

" "

176 # COLOR choice in { "yes", "no" } means use of ANSI styling codes
or no
177 COLOR = "yes";

179 # Log level choice in { "EMERGENCY", "ALERT", "CRITICAL", "ERROR",
"WARNING", "NOTICE", "INFO", "DEBUG", "TRACE"}

180 SCTP_LOG_LEVEL = "TRACE";
181 S11_LOG_LEVEL = "TRACE";
182 GTPV2C_LOG_LEVEL = "TRACE";
183 UDP_LOG_LEVEL = "TRACE";
184 S1AP_LOG_LEVEL = "TRACE";
185 NAS_LOG_LEVEL = "TRACE";
186 MME_APP_LOG_LEVEL = "TRACE";
187 S6A_LOG_LEVEL = "TRACE";
188 UTIL_LOG_LEVEL = "TRACE";
189 MSC_LOG_LEVEL = "ERROR";
190 ITTI_LOG_LEVEL = "ERROR";

191 MME_SCENARIO_PLAYER LOG_LEVEL = "TRACE";

193 # ASN1 VERBOSITY: none, info, annoying

194 # for SIAP protocol

195 ASN1_VERBOSITY = "none";
196 be

197 TESTING :

198 {
199 # file should be copied here from source tree by following command
: run_mme —install -mme-files

200 SCENARIO_FILE = "/usr/local/share/oai/test/mme/no_regression.xml";

201 };

202 };

203

204 S-GW

205 {

206 # S-GW binded interface for S11 communication (GIPV2-C), if none
selected the ITTI message interface is used

207 SGW_IPV4_ADDRESS_FOR_S11 = "192.168.142.30/8";

YOUR NEIWORK CONFIG HERE

208

209

N

B.9. MME start script 69

b
B.9 MME start script

#!/bin/bash
MME Configuration

3 sed —i s/'"mme.openair4G.eur"/$MME CN NAME/g /usr/local/etc/oai/mme.conf

sed —i s/"yang.openair4G.eur"/$MME CN.NAME/g /usr/local/etc/oai/
freeDiameter /mme_fd. conf

5 sed —i s/"mme. openairdG.eur"/$MME CN.NAME/g /usr/local/etc/oai/

5
3
4
5
6

13
14

15

freeDiameter /mme_fd. conf
sed —i s/"hss.openaird4G.eur"/$HSS CN_ NAME/g /usr/local/etc/oai/
freeDiameter /mme_fd. conf

set IP addr

sed —i s/"192.168.11.17"/"$MME_IPV4 ADDRESS_FOR_S1 MME"/g /usr/local/etc/
oai/mme. conf

sed —i s/"127.0.0.1"/"$HSS_IPV4_ADDRESS"/g /usr/local/etc/oai/freeDiameter
/mme_fd . conf

Generation of certificate for diameter
cd /root
if [[! —d /root/demoCA]];then
mkdir demoCA && touch demoCA/index.txt && echo 01 > demoCA/serial
openssl req —new —batch —x509 —days 3650 —nodes —newkey rsa:1024 —out
mme. cacert.pem —keyout mme. cakey.pem —subj /CN=$MME CN NAME/C=FR/ST=
PACA/L=Aix /O=Eurecom /OU=CM
openssl genrsa —out mme.key.pem 1024
openssl req —new —batch —out mme. csr.pem —key mme.key.pem —subj /CN=
$MME_CN_NAME/C=FR/ST=PACA/L=Aix/O=Eurecom /OU-CM
openssl ca —cert mme. cacert.pem —keyfile mme.cakey.pem —in mme. csr.pem —
out mme. cert.pem —outdir . —batch
mv /root/mme. cakey.pem /usr/local/etc/oai/freeDiameter/
mv /root/mme. cert.pem /usr/local/etc/oai/freeDiameter/
mv /root/mme. cacert.pem /usr/local/etc/oai/freeDiameter/
mv /root/mme.key.pem /usr/local/etc/oai/freeDiameter/
fi

o # Start mme
7 sleep 17 && /root/openair—cn/build /mme/build /mme

B.10 Docker file for SPGW

FROM ubuntu:16.04

MAINTAINER Yan Grunenberger <yan@grunenberger.net>
ENV DEBIAN_FRONTEND noninteractive

RUN apt—get update

RUN apt—get —yq dist—upgrade

7 # General utilities

RUN apt—get —qy install kmod git wget apt—utils

Adding OAI certificates

RUN mkdir —p /usr/local/share/ca—certificates/eurecom

RUN echo —n | openssl s_client —showcerts —connect gitlab.eurecom. fr:443
2>/dev/null | sed —ne ’/—BEGIN CERTIFICATE—/,/—END CERTIFICATE—/p’ > /
usr/local/share/ca—certificates/eurecom/eurecom. crt

RUN update—ca—certificates

cloning directory

70 Appendix B. Docker EPC Containers

16 WORKDIR /root

17 RUN mkdir .ssh

is RUN ssh—keyscan github.com >> .ssh/known_hosts

19 COPY id_rsa .ssh/id_rsa

20 COPY id_rsa.pub .ssh/id_rsa.pub

21 RUN git clone git@github .com:aschwanb/openair—cn. git

27

23 WORKDIR /root/openair—cn
2¢ RUN git checkout develop

26 WORKDIR /root

s # Fixing default mysql root password to "linux". This is the default
assumed by OAI building scripts

29 RUN echo ’‘mysql-server mysql-server/root_password password linux’ |
debconf—set—selections

50 RUN echo ’‘mysql-server mysql-server/root_password_again password linux’ |
debconf—set—selections

31 RUN echo ’‘phpmyadmin phpmyadmin/dbconfig—install boolean true’ | debconf—
set—selections

32 RUN echo ’phpmyadmin phpmyadmin/app—password—confirm password linux
debconf—set—selections

33 RUN echo ’phpmyadmin phpmyadmin/mysql/admin—pass password linux’ | debconf
—set—selections

31 RUN echo ’‘phpmyadmin phpmyadmin/mysql/app—pass password linux’ | debconf—
set—selections

35 RUN echo “phpmyadmin phpmyadmin/reconfigure—webserver multiselect apache2’

| debconf—set—selections

T

36

37 # (Build script — MME dependencies ...)

3 # (from build_helper) Remove incompatible softwares
3 RUN apt—get —qy —purge remove libgnutls—dev \

0 ’libgnutlsxx2?’ \

i1 nettle—dev \

2 nettle—bin

(from build_helper) Compilers, Generators
5 RUN apt—get —qy install autoconf \

16 automake \

7 bison \

18 build—essential \

19 cmake \

50 cmake—curses—gui \

'

51 doxygen \

52 doxygen—gui\
55 flex \

51 gdb \

55 pkg—config

56

57 # (from build_helper) git/svn
5s RUN apt—get —qy install git \
59 subversion

61 # (from build_helper) librairies

2 RUN apt—get —qy install libconfig8—dev \
63 libgeryptll—dev \

64 libidn2 —0—dev \

65 libidnll—dev \

66 libmysqlclient—dev \

67 libpthread —stubsO—dev \

68 libsctpl \

6 libsctp —dev \

70 libssl—dev \

B.10. Docker file for SPGW 71

71 libtool \

72 mysql—client \
73 mysql-server \
74 openssl

76 # (from build_helper) compile nettle from source

77 RUN apt—get —qy install \

78 autoconf \

79 automake \

80 build—essential \

libgmp—dev

52 WORKDIR /root

g3 # other mirror : ftp://ftp.lysator.liu.se/pub/security/lsh/nettle —2.5.tar.
gz

s¢ RUN wget https://ftp.gnu.org/gnu/nettle/nettle —2.5.tar.gz

85 RUN tar —xzf nettle —2.5.tar.gz

86 RUN cd nettle —2.5/ && ./configure —disable—openssl —enable—shared —
prefix=/usr && make —j ‘nproc’ && make check && make install

o)

87

ss # (from build_helper) install_gnutls_from_source $1

39 WORKDIR /root

90 RUN apt—get —qy install \

91 autoconf \

92 automake \

93 build—essential

o1 # libtasnl —6-dbg \ libp11—kit0—dbg \

os RUN apt—get —qy install libtasnl—6—-dev \

9 libpll—kit—dev \

7 libtspi—dev \

98 libtspil \

99 libidn2 —0—dev \

00 libidn11—dev

101 RUN wget http://mirrors.dotsrc.org/gcrypt/gnutls/v3.1/gnutls —3.1.23.tar .xz

12 RUN tar —xJf gnutls —3.1.23.tar.xz

13 RUN cd gnutls —3.1.23/ && ./configure —prefix=/usr && make —j ‘nproc’ &&
make install

104

105 # (from build_helper)

106 RUN apt—get —qy install autoconf \
107 automake \

108 bison \
100 build—essential \
110 cmake \

111 cmake—curses—gui \
112 debhelper \

113 flex \
14 g+ \
115 gee \
16 gdb \

117 libgcrypt—dev \

118 libidn11—dev \

119 libmysqlclient—dev \
120 libpg—dev \

21 libsctpl \

122 libsctp —dev \

123 libxml2—dev \

24 mercurial \

125 python—dev \

126 ssl—cert \

127 SWig

128

129 # Run freediameter (hard dependencies on gnutls)
130 WORKDIR /root

72 Appendix B. Docker EPC Containers

131 RUN git clone https://gitlab.eurecom. fr/oai/freediameter.git —b eurecom
—-1.2.0

132 WORKDIR /root/freediameter

133 RUN mkdir build && cd build && cmake —DCMAKE_INSTALL_PREFIX:PATH=/usr ../
&& make —j ‘nproc’ && make install

134

135 # PHPmyadmin for the MME database management

136 WORKDIR /root

137 RUN apt—get —qy install phpmyadmin \

133 python—pexpect \

139 php \

140 libapache2-—-mod—php

122 RUN apt—get —qy install check \
143 phpmyadmin \

144 python—dev \

145 python—pexpect \

146 unzip

148 # install_asnlc_from_source

1129 WORKDIR /root

150 RUN apt—get —qy install autoconf automake bison build—essential flex gcc
libtool

I RUN git clone https://gitlab.eurecom. fr/oai/asnlc. git

> RUN cd asnlc && ./configure && make && make install

5

3

51 # install_libgtpnl_from_source

1
1
1
1
155

156 WORKDIR /root

157 RUN apt—get —qy install autoconf \

158 automake \

159 build—essential \

160 libmnl—dev

161

162 RUN git clone git:// git.osmocom.org/libgtpnl

163 RUN cd libgtpnl && autoreconf —fi && ./configure && make —j ‘nproc’ && make
install && ldconfig

167 RUN apt—get —qy install autoconf \

168 automake \

169 bison \

170 build—essential \
171 cmake \

172 cmake—curses—gui \
173 doxygen \

174 doxygen—gui\

175 flex \

176 gcexml \

177 gdb \

178 git \

179 pkg—config \

180 subversion

182 RUN apt—get —qy install guile —2.0—dev \

183 libconfig8 —dev \
184 libgeryptll—dev \
185 libgmp—dev \

186 libhogweed? \

187 libgtk —3—dev \

188 libidn2 —0—dev \

189 libidn11—dev \

190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211
212

213

14
15
16
17

18

NONNN NN

19
220
221
222
223
224

225

B.11. SPGW configuration 73

libpthread —stubsO—dev \
libtool \

libxml2 \

libxml2—dev \

mscgen \

openssl \

python

RUN apt—get —qy install ethtool \
iperf \
iproute \
vlan \
tshark

RUN apt—get —qy install python—dev \
python—pexpect \

unzip

compiling OAI mme executable
WORKDIR /root/openair—cn/build/

WORKDIR /root/openair—cn/build/spgw

RUN cp /root/openair—cn/build/spgw/CMakeLists.template ./CMakeLists. txt

RUN echo ’include (${CMAKE CURRENT SOURCE DIR}/../ CMakeLists. txt)’ >> ./
CMakelLists . txt

RUN mkdir build

WORKDIR /root/openair—cn/build/spgw/build

RUN cmake —DOPENAIRCN_DIR=/root/openair—cn ../

RUN make —j ‘nproc”’

RUN mkdir —p /usr/local/etc/oai/freeDiameter
RON cp /root/openair—cn/etc/spgw.conf /usr/local/etc/oai/
RUN apt—get —qy install iptables

ENV SGW_IPV4_ADDRESS_FOR_S1U_S12_54 UP="192.168.142.30"
ENV PGW_INTERFACE_NAME_FOR SGI="eth1"

27 #ready to work

WORKDIR /root
COPY start.sh /root/start.sh
RUN chmod +x /root/start.sh

31 ENTRYPOINT "/root/start.sh"

B.11 SPGW configuration

HAHHHHAHHAHHHHAH R R R R R R R R R R R R R R R R R

Licensed to the OpenAirInterface (OAI) Software Alliance under one or
more

contributor license agreements. See the NOTICE file distributed with

this work for additional information regarding copyright ownership.

The OpenAirlnterface Software Alliance licenses this file to You under

the Apache License, Version 2.0 (the "License"); you may not use this
file

except in compliance with the License.

You may obtain a copy of the License at

H H H

http:/ /www. apache.org/licenses/LICENSE—2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

H H o H H H

#
5 #
#
#

74

Appendix B. Docker EPC Containers

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

30

]

#
#

HEHHAHHHHAHHHHHH R H R H R R R R A R R R R R R R R R

For more information about the OpenAirlnterface (OAI) Software Alliance:

S-GW :

contact@openairinterface.org

NETWORK_INTERFACES :

{

S-GWN binded interface for S11 communication (GIPV2-C), if none

selected the ITTI message interface is used

SGW_INTERFACE_NAME_FOR_S11 = "eth0";
STRING, interface name, YOUR NEIWORK CONFIG HERE
SGW_IPV4_ADDRESS_FOR_S11 = "192.168.142.30/24";
STRING, CIDR, YOUR NEIWORK CONFIG HERE

S-GWN binded interface for S1-U communication (GIPV1-U) can be

ethernet interface, virtual ethernet interface, we don’t advise
wireless interfaces

SGW_INTERFACE_NAME_FOR_S1U_S12_54 UP = "eth0";
STRING, interface name, YOUR NEIWORK CONFIG HERE, USE "lo" if S

-GW run on eNB host

SGW_IPV4_ADDRESS_FOR_S1U_S12_54_UP = "192.168.142.30/24";
STRING, CIDR, YOUR NEIWORK CONFIG HERE
SGW_IPV4_PORT_FOR_S1U_S12_S4_UP = 2152;

INTEGER, port number, PREFER NOT CHANGE UNLESS YOU KNOW WHAT

YOU ARE DOING

S-GW binded interface for S5 or S8 communication, not

implemented, so leave it to none

¥

SGW_INTERFACE_NAME_FOR S5 S8 UP = "none";
STRING, interface name, DO NOT CHANGE (NOT IMPLEMENTED YET)
SGW_IPV4_ADDRESS_FOR_S5_S8_UP = "0.0.0.0/24";

STRING, CIDR, DO NOT CHANGE (NOT IMPLEMENTED YET)

INTERTASK_INTERFACE :

{

b

max queue size per task
ITTI_QUEUE_SIZE = 2000000;
INTEGER

LOGGING :

{

’

the

OUIPUT choice in { "CONSOLE", "SYSLOG", ‘path to file ‘", "‘IPv4@

: 'TCP port num’"}

7

‘path to file * must start with ".” or '/’
if TCP stream choice, then you can easily dump the traffic on

remote or local host: nc —1 ‘TCP port num’ > received. txt
OUTPUT = "CONSOLE";
see 3 lines above
#OUTPUT = "SYSLOG";
see 4 lines above
#OUTPUT = "/tmp/spgw.log";
see 5 lines above
#OUTPUT = "127.0.0.1:5656";

see 6 lines above

B.11. SPGW configuration 75

THREAD_SAFE choice in { "yes", "no" } means use of thread safe
intermediate buffer then a single thread pick each message log one
56 # by one to flush it to the chosen output
57 THREAD_SAFE = "no";

59 # COLOR choice in { "yes", "no" } means use of ANSI styling codes

or no

60 COLOR = "yes";

61

62 # Log level choice in { "EMERGENCY", "ALERT", "CRITICAL", "ERROR",
"WARNING" , "NOTICE", "INFO", "DEBUG", "TRACE"}

63 UDP_LOG_LEVEL = "TRACE";

64 GTPVIU_LOG_LEVEL = "TRACE";

65 GTPV2C_LOG_LEVEL = "TRACE";

66 SPGW_APP_LOG_LEVEL = "TRACE";

67 S11_LOG_LEVEL = "TRACE";

68 bs

6 };

71 P-GW =
72 |
73 NETWORK_INTERFACES :
74 {
75 # P-GW binded interface for S5 or S8 communication, not
implemented, so leave it to none
76 PGW_INTERFACE_NAME_FOR_S5_S8 = "none";
STRING, interface name, DO NOT CHANGE (NOT IMPLEMENTED YET)

78 # P-GW binded interface for SGI (egress/ingress internet traffic)
79 PGW_INTERFACE_NAME_FOR_SGI = "eth0";

STRING, YOUR NETWORK CONFIG HERE
80 PGW_MASQUERADE,_SGI = "yes";

STRING, {"yes", "no"}. YOUR NEIWORK CONFIG HERE, will do NAT
for you if you put "yes".
81 UE_TCP_MSS_CLAMPING = "no";
STRING, {"yes", "no"}.
2)

84 # Pool of UE assigned IP addresses

85 # Do not make IP pools overlap

86 # first IPv4 address X.Y.Z.1 is reserved for GIP network device on
SPGW

87 # Normally no more than 16 pools allowed, but since recent GIP kernel
module use, only one pool allowed (TODO).

88 IP_ADDRESS_POOL :

89 {
90 IPV4_LIST = (
91 "172.16.0.0/12"
STRING, CIDR, YOUR NEIWORK CONFIG HERE.
9);
93 };

95 # DNS address communicated to UEs

9% DEFAULT _DNS_IPV4 ADDRESS = "8.8.8.8";
YOUR NEIWORK CONFIG HERE

97 DEFAULT _DNS_SEC_IPV4_ADDRESS = "8.8.4.4";
YOUR NEIWORK CONFIG HERE

99 # Non standard feature, normally should be set to "no", but you may
need to set to yes for UE that do not explicitly request a PDN address
through NAS signalling

100 FORCE_PUSH_PROTOCOL_CONFIGURATION_OPTIONS = "no";

STRING, {"yes", "no"}.

102

N

76 Appendix B. Docker EPC Containers

UE MTU = 1500
INTEGER
b2

B.12 SPGW start script

#!/bin/bash
sed —i 5/"192.168.11.17"/"$SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP"/g /usr/
local/etc/oai/spgw. conf

3 sed —i s/"eth3"/"$PGW_INTERFACE NAME FOR SGI"/g /usr/local/etc/oai/spgw.

conf

5 # Start spgw

sleep 15 && /root/openair—cn/build/spgw/build/spgw

Appendix C

Additional Configuration

C.1 eNB configuration

Active_eNBs = ("eNB_Eurecom_LTEBox") ;

5 Asnl_verbosity = "annoying";

eNBs =

(
{
////////// ldentification parameters:

eNB_ID = 0xe00;
cell_type = "CELL MACRO_ENB";
eNB_name = "eNB_Eurecom_LTEBox";

// Tracking area code, 0x0000 and Oxfffe are reserved values

tracking_area_code = "1";
mobile_country_code = "208";
mobile_network_code = "93";

////////// Physical parameters:
component_carriers = (

{
node_function
eNodeB_3GPP";
node_timing
synch_to_ext_device";
node_synch_ref

frame_type
tdd_config
tdd_config_s
prefix_type
eutra_band
downlink_frequency
uplink_frequency_offset

Nid_cell =

N_RB_DL
Nid_cell_mbsfn
nb_antenna_ports = 2;
nb_antennas_tx
nb_antennas_rx
tx_gain
rx_gain

> # Asnl_verbosity, choice in: none, info, annoying

2680000000L;

= —120000000;

77

101
102
103
104
105
106

107

ue_TimersAndConstants_n311

ue_TransmissionMode

}

78 Appendix C. Additional Configuration
prach_root = 0;
prach_config_index = 0
prach_high_speed = "DISABLE";
prach_zero_correlation 1;
prach_freq_offset = 23

pucch_delta_shift 1;
pucch_nRB_CQI = 1lg
pucch_nCS_AN 0;
pucch_nl_AN = 32;
pdsch_referenceSignalPower = 0;
pdsch_p_b = 0;
pusch_n_SB = 1;
pusch_enable64QAM = "DISABLE";
pusch_hoppingMode = "interSubFrame";
pusch_hoppingOffset = 0;
pusch_groupHoppingEnabled = "ENABLE";
pusch_groupAssignment = 0;
pusch_sequenceHoppingEnabled = "DISABLE";
pusch_nDMRS1 = 0;
phich_duration = "NORMAL";
phich_resource = "ONESIXTH";
srs_enable = "DISABLE";
/* srs_BandwidthConfig =g
srs_SubframeConfig =p
srs_ackNackST =1
srs_MaxUpPts =053 //
pusch_p0_Nominal = —108;
pusch_alpha = "AL1";
pucch_p0_Nominal = —108;
msg3_delta_Preamble = 6;
pucch_deltaF_Formatl = "deltaF2";
pucch_deltaF_Formatlb = "deltaF3";
pucch_deltaF_Format2 = "deltaF0";
pucch_deltaF_Format2a = "deltaF0";
pucch_deltaF_Format2b = "deltaF0";
rach_numberOfRA_Preambles = 64;
rach_preamblesGroupAConfig = "DISABLE";

/ *
rach_sizeOfRA_PreamblesGroupA = g
rach_messageSizeGroupA = ;
rach_messagePowerOffsetGroupB =
rach_powerRampingStep = 2;
rach_preamblelnitialReceivedTargetPower = —100;
rach_preambleTransMax = 10;
rach_raResponseWindowSize = 10;
rach_macContentionResolutionTimer = 48;
rach_maxHARQ_Msg3Tx = 4;
pcch_default_PagingCycle = 128;
pcch_nB = "oneT";
bcch_modificationPeriodCoeff = 2g
ue_TimersAndConstants_t300 = 1000;
ue_TimersAndConstants_t301 = 1000;
ue_TimersAndConstants_t310 = 1000;
ue_TimersAndConstants_t311 = 10000;
ue_TimersAndConstants_n310 = 20;

108
109
110
111
112

113

114
115
116
117
118
119
120
121
122
124

125

144

147
148
149
150
151

5

152

153
154
155
156
157
158
159
160
161
162
163
164
165
166

167

C.1. eNB configuration

79

)

srbl_parameters

{

timer_poll_retransmit = (ms) [5, 10, 15, 20,... 250, 300, 350,
500]

timer_poll_retransmit = 80;

timer_reordering = (ms) [0,5, 100, 110, 120, ,200]
timer_reordering = 35;

timer_reordering = (ms) [0,5, 250, 300, 350, ,500]
timer_status_prohibit = 0;

poll_pdu = [4, 8, 16, 32 , 64, 128, 256, infinity (>10000)]
poll_pdu = 4;

poll_byte = (kB)

[25,50,75,100,125,250,375,500,750,1000,1250,1500,2000,3000, infinity

(>10000)]
poll_byte =

max_retx_threshold = [1, 2,

max_retx_threshold =

}

———— SCTP definitions

SCTP :

{
Number of streams to use
SCTP_INSTREAMS = 2;
SCTP_OUTSTREAMS = 2;

};

////////// MME parameters :

99999;

in input/output

mme_ip_address = ({ ipv4 = "192.168.142.20";
ipvé = "192:168:30::17";
active = "yes";
preference = "ipv4";
}
)
NETWORK_INTERFACES :
{
ENB_INTERFACE_NAME_FOR_S1_MME = "br—3cb0e0ddb8a9";
ENB_IPV4_ADDRESS_FOR_S1_MME = "192.168.142.1/24";
ENB_INTERFACE_NAME_FOR_S1U = "br—3cb0e0ddb8a9";
ENB_IPV4_ADDRESS_FOR_S1U = "192.168.142.1/24";
ENB_PORT_FOR_S1U = 2152; # Spec 2152
b
log_config
global_log_level ="trace";
global_log_verbosity ="medium";
hw_log_level ="info";
hw_log_verbosity ="medium";
phy_log_level ="trace";
phy_log_verbosity ="medium";
mac_log_level ="trace";
mac_log_verbosity ="medium";

168
169
170
171
173

174

80 Appendix C. Additional Configuration
rlc_log_level ="trace";
rlc_log_verbosity ="medium";
pdcp_log_level ="trace";
pdcp_log_verbosity ="medium";
rrc_log_level ="trace";
rrc_log_verbosity ="medium";
gtpu_log_level ="debug";
gtpu_log_verbosity ="medium";
udp_log_level ="debug";
udp_log_verbosity ="medium";
osa_log_level ="debug";
osa_log_verbosity ="low";

}i
}
)

C.2 Prometheus configuration

global:

How frequently to scrape targets by default.

scrape_interval: 15s

The labels to add to any time series or alerts when communicating with
external systems (federation, remote storage, Alertmanager).

external_labels:
monitor: ‘epc—monitor’

A list of scrape configurations.
scrape_configs:

— job_name: ’‘prometheus’
scrape_interval: 5s
static_configs:

— targets: [’localhost:9090]

— job_name: ’cadvisor’
scrape_interval: 5s
static_configs:

— targets: [’cadvisor:8080]

C.3 Nginx configuration for DB Load Balancing

user nginx;
worker_processes 1;
error_log

pid /var/run/nginx . pid ;

events {
worker_connections 1024;

}

stream {
server {
listen 3306;
proxy_pass db:3306;

/var/log/nginx/error.log warn;

5 # https://nginx.org/en/docs/stream/ngx_stream_proxy_module. html

C.4. Nginx configuration for HSS Load Balancing

81

C.4 Nginx configuration for HSS Load Balancing

user nginx;

5 worker_processes 1;

5 error_log /var/log/nginx/error.log warn;

pid /var/run/nginx. pid;

events {
worker_connections 1024;

}

https://nginx.org/en/docs/stream/ngx_stream_proxy_module . html
stream {
server {
listen 3868;
proxy_pass backend_hss:3868;
J
)

C.5 Nginx configuration for MME Load Balancing

user nginx;

3 WOI'keI'_pI'OCESSGS 1;

error_log /var/log/nginx/error.log warn;
pid /var/run/nginx. pid;

events {
worker_connections 1024;

}

5 # https://nginx.org/en/docs/stream/ngx_stream_proxy_module. html

stream {
server {
listen 218235,
proxy_pass mme:2123;
)
)

C.6 Nginx configuration for SPGW Load Balancing

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log warn;
pid /var/run/nginx. pid;

events {
worker_connections 1024;

}

5 # https://nginx.org/en/docs/stream/ngx_stream_proxy_module . html

stream {

Appendix C. Additional Configuration

82
server {
listen 2123;
proxy_pass spgw:2123;
}
server {
listen 2152;
proxy_pass spgw:2152;
}

W N

W N

SIS

Appendix D

Traffic Sniffing Utility

D.1 Implementation - main.py

#!/bin/env python

import logging
import tracker_new

"

if __name == "__main__

global logger

logger = logging.getLogger(mylogger”)
ch = logging.StreamHandler ()
ch.setLevel (logging .DEBUG)

logger .addHandler (ch)

logger.setLevel (logging .INFO)

"

iface = "br—3cb0e0ddb8a9’

(enb_teid , mme_teid) = tracker_new.trace_pkt(iface, 0)
logger.info ("ENB TEID is %s" % enb_teid)

logger.info ('MME TEID is %s" % mme_teid)

D.2 Underlying utility class - tracker_new.py

This class is largely based on the work done by Dr. Eryk Schiller.

i

Packet sniffer in python using the pcapy python library

Project website
http://oss.coresecurity.com/projects/pcapy.html

s

import socket

import logging

from scapy.all import =

from struct import *

import datetime

import pcapy

import sys

from libmich.asnl.processor import

s from types import x

logger = logging.getLogger(__name__)
ch = logging .StreamHandler ()
ch.setLevel (logging .DEBUG)
logger.addHandler (ch)

s logger.setLevel (logging .DEBUG)

83

46

84

Appendix D. Traffic Snitfing Utility

5 # generate_modules ({ "S1AP’: "S1AP_36413—c10 "})

load_module ("S1AP")

db = {}

inner = {}

ASN1. ASN10bj.CODEC = PER
PER.VARIANT = A’
pdu = GLOBAL.TYPE['S1AP-PDU’ |

def decode_string (buf):

def

def

error = 0

try:
error = 0

pdu. decode (buf) ;
val = pdu()

except:

error = 1;

return error

get_val_from_tuple(text, tup):

index = 0

if not isinstance (tup, tuple):

return 1,

try:

index = tup.index(text);

except:
return 1,

if index + 1 >= len(tup):

return 1,

else:
return 0,

index+1

get_enb_gtp_teid () :

error = 0
index = 0

pdu_val
error , index

if error:
return

pdu ()

get_val_from_tuple (’initiatingMessage ', pdu_val)

inm = pdu_val[index]

if not isinstance (inm, dict):

return

if not ’value
return

error , index
value '])

’

in inm:

get_val_from_tuple (’InitialContextSetupRequest ’, inm[’

86
87
88
89

90

92

97

100
101

102

103
104
105
106
107
108
109
110
111

112
113
114
115
116
117

118

119

140

D.2. Underlying utility class - tracker_new.py 85

if error:
return

icsr = inm[’value '][index]

if not isinstance(icsr, dict):
return

if not ’'protocollEs’ in icsr:
return

for item in icsr[’protocollEs "]:
if not isinstance (item, dict):
continue
else:
if ’‘value’ in item:
errl, indl = get_val_from_tuple ("E-
RABToBeSetupListCtxtSUReq ’, item [value '])
if errl:
continue
else:
x = item[’value][ind1]
for y in x:
if isinstance(y, dict):
if ’‘value’ in y:
z = y[’value]
err2, ind2 = get_val_from_tuple ("E—
RABToBeSetupltemCtxtSUReq ", z)

if err2:
continue
else:
if isinstance(z[ind2], dict):
if "eRAB-ID’ in z[ind2] and ’'gTP—
TEID’ in z[ind2]:
if isinstance(z[ind2][e—RAB-
ID’], int) and isinstance(z[ind2]["gTP-TEID’], str):
if not z[ind2][’e—RAB-ID’]
in db:
logger .debug(’'#####44H4##H#H#H#H####HHHE)
logger .debug("Adding
e—RAB-ID to db")
logger .debug(’'######H4H4##H#H##H####HHHE)
db[z[ind2]['e—RAB-ID

db[z[ind2]["e-RAB-ID"]]["’
ENB-TEID "] = z[ind2]['gTP-TEID’]. encode("hex ")
logger.debug(“s*xx’)
logger .debug(db)
logger.debug(“*x*xx”)

def get_mme_gtp_teid () :
error = 0

index = 0

pdu_val = pdu()
error , index = get_val _from_tuple(’successfulOutcome’, pdu_val)

if error:
return

inm = pdu_val[index]

142
143

145
146

148

149
150
151
152
153
154
155
156

157

182

184

189

190
191
192

193

86 Appendix D. Traffic Snitfing Utility
if not isinstance (inm, dict):
return
if not ’value’ in inm:
return
error , index = get_val_from_tuple(’InitialContextSetupResponse ', inm[’
value '])
if error:
return
icsr = inm|[’value "][index]

if not isinstance (icsr, dict):
return

if not ’'protocollEs’ in icsr:
return

for item in icsr[’protocollEs "]:
if not isinstance (item, dict):
continue
else:
if ’‘value’ in item:
errl, indl = get_val_from_tuple ("E-RABSetupListCtxtSURes ",
item [’ value '])
if errl:
continue
else:
x = item|[’value ’'][ind1]
for y in x:
if isinstance(y, dict):
if ’value’ in y:
z = y[’value]
err2, ind2 = get_val_from_tuple ("E-
RABSetupltemCtxtSURes ", z)

if err2:
continue
else:
if isinstance(z[ind2], dict):
if "eRAB-ID’ in z[ind2] and ’'gTP—
TEID’ in z[ind2]:
if isinstance (z[ind2][’e—RAB-
ID’], int) and isinstance(z[ind2][gTP-TEID'], str):
if not z[ind2][’e—RAB-ID’]
in db:
db[z[ind2]['e—RAB-ID

db[z[ind2]["e—RAB-ID"]][’
MME-TEID "] = z[ind2]['gTP-TEID"]. encode(hex ")
logger .debug('#####H#H4H#H####H#####HHHHA)
logger.debug("Adding e—
RAB-ID to db")
logger .debug(
TSRS
logger.debug(“sxxx")
logger .debug(db)
logger.debug(“***x")

226
227
228
229

230

NN N NN NN NN
@ W W W W W W W W

244
245
246
247
248
249

D.2. Underlying utility class - tracker_new.py 87
#function to parse a packet
def parse_packet(packet)
#parse ethernet header
eth_length = 14
eth_header = packet[:eth_length]
eth = unpack(’!6s6sH’” , eth_header)
eth_protocol = socket.ntohs(eth[2])
#Parse IP packets, IP Protocol number = 8
if eth_protocol == 8 :
logger .debug("Packet with EITH Protocol 8")
#Parse IP header
#take first 20 characters for the ip header
ip_header = packet[eth_length:20+eth_length]
#now unpack them :)
iph = unpack ("!BBHHHBBH4s4s” , ip_header)
version_ihl = iph[0]
version = version_ihl >> 4
ihl = version_ihl & OxF
iph_length = ihl x 4
ttl = iph[5]
protocol = iph[6]
s_addr = socket.inet_ntoa(iph[8]);
d_addr = socket.inet_ntoa (iph[9]);
logger .debug(’Version : ' + str(version) + ' IP Header Length
" + str(ihl) + 7~ TIL : ’ + str(ttl) + ~ Protocol : ’ + str(protocol) +
" Source Address : ' + str(s_addr) + ’ Destination Address "+ str(
d_addr))

#UDP packets
if protocol == 17 :
logger .debug("Packet with protocol 17")
u = iph_length + eth_length
udph_length = 8
udp_header = packet[u:u+8]

#now unpack them :)
udph = unpack ("'HHHH , udp_header)

source_port = udph[0]
dest_port = udph[1]

length = udph[2]

checksum = udph[3]

logger.debug(’“Source Port !
Port : ' + str(dest_port) + ’ Length :
+ str (checksum))

7

+ str(length) +
h_size = eth_length + iph_length + udph_length
data_size = len(packet) — h_size

#get data from the packet
2152 GPRS

if data_size > 8 and source_port == 2152 and dest_port

2152:

+ str(source_port) +

" Dest
" Checksum : ’

284
285

286

288
289
290
291
292
293
294
295
296
297
298
299
300
301

302

306

88

Appendix D. Traffic Snitfing Utility

gprs_header = packet[h_size:h_size+8]
gprsh = unpack (’!BBH4s’, gprs_header)

gprs_flags = gprsh[0]
gprs_type = gprsh[1]

gprs_size = gprsh[2]
gprs_teid = gprsh[3]
T-PDU = 0xff

if gprs_type == 0xff:

logger.debug("GPRS size: " + str(gprs_size))
data_size = len(packet) — h_size — 8
data = packet[h_size + 8:]

if len(data) > 20:
inner_ip_header = data[0:20]

inner_iph = unpack (’!BBHHHBBH4s4s’

inner_ip_header)

inner_version_ihl = inner_iph[0]
inner_version = inner_version_ihl >> 4
inner_ihl = inner_version_ihl & O0xF

inner_iph_length = inner_ihl x 4

inner_ttl = inner_iph[5]

inner_protocol = inner_iph[6]

inner_s_addr = socket.inet_ntoa(inner_iph[8]);
inner_d_addr = socket.inet_ntoa (inner_iph[9]);

7

logger.debug(’Inner source IP addr: + str(

inner_s_addr) + ’ Innder dest IP addr: ’ + str (inner_d_addr) + ’‘Source

’

IP addr: = +
+ gprs_teid.

str(s_addr) + ’ Dest IP addr: ’~ + str (d_addr) + ’ TEID:
encode ("hex”))

index = gprs_teid.encode("hex”)

if not index in inner:
inner[index] = {}

index
index
index
index

inner
inner
inner
inner

["inner_s_addr '] = inner_s_addr
["inner_d_addr’] = inner_d_addr
["s_addr’] = s_addr

[
[
[
[["d_addr’] = d_addr

e —

logger.debug(“s*xx”)
logger .debug(db)

for key, value in inner.iteritems():
logger.debug("%s: %s" % (key, value))

logger .debug(“s*xxx”)

try:

enb_teid = db[5]["ENB-TEID"]
mme_teid = db[5]["MME-TEID"]
return enb_teid , mme_teid
except KeyError:
logger .debug("KeyError while parsing db content")

pass

326

346
347

348

D.2. Underlying utility class - tracker_new.py

89

logger.debug(’‘Data : ~ + data)

elif protocol == 132
logger.debug("Packet with protocol 132")
logger.debug(’‘received sctp packet’)
u = iph_length + eth_length
sctp_length = 12

sctp_header = packet[u:u+12]
sctph = unpack(’!HH4s4s’, sctp_header)

source_port = sctph[0]

dest_port = sctph[1]

verification_tag = sctph[2].encode(hex")
checksum = sctph[3].encode(hex”)

7 7

logger.debug(’"Source port:
Destinarion port: ' + str(dest_port) + ’ Verification Tag:
verification_tag + ’ Checksum: ’~ + ‘Ox’ + checksum)

+ str(source_port) +

7

+ ‘0x” +

u += sctp_length

while len(packet) — u >= 4:
chunk_header = packet[u:u+4]

chknh = unpack("!BBH’, chunk_header)

chunk_type = chknh[0]
chunk_flags = chknh[1]
chunk_length = chknh[2]

chunk_pad = 0

if chunk_length % 4:
chunk_pad = 4 — chunk_length % 4

#logger .debug(’‘Chunk type: “ + str(hex(chunk_type)) + ~’
Chunk flags: ’ + str(hex(chunk_flags)) + ~ Chunk size: ~ + str(
chunk_length))

DATA = 0, data hader should be inside, chunk should fit
a packet
if chunk_type == 0 and u + 12 <= len(packet) and u +
chunk_length <= len(packet):
chunk_data = packet[u+4:u+4+12]
chdth = unpack("!IHHI", chunk_data)

chunk_data_transmission_sequence_number = chdth[0]
chunk_data_stream_identifier = chdth[1]
chunk_data_stream_sequence_number = chdth[2]
chunk_data_payload_protocol_identifier = chdth[3]

logger.debug(’'Transmission Sequence Number’ + str (
chunk_data_transmission_sequence_number) + ’ Stream Identifier: ’~ + s
(chunk_data_stream_identifier) + ’Stream Sequence Number: ’~ + str(
chunk_data_stream_sequence_number) + ’ Payload Protocol Identifier:
str (chunk_data_payload_protocol_identifier))

if chunk_data_payload_protocol_identifier == 18:
buf=packet[u+4+12:u+chunk_length]
error = decode_string (buf)
if not error:

tr

T+

400

401
402

103
404
405

106
407
408

109

411

'
G

90

Appendix D. Traffic Snitfing Utility

get_mme_gtp_teid ()
get_enb_gtp_teid ()

u += chunk_length + chunk_pad

#some other IP packet like IGMP
return None, None

def trace_pkt(iface, vlevel=0):

if

logger.setLevel (logging .ERROR)
if vlevel == 1:
logger.setLevel (logging .WARNING)
if vlevel == 2:
logger.setLevel (logging .INFO)
if vlevel >= 3:
logger.setLevel (logging .DEBUG)

Check access level
if os.geteuid () != O:
exit ("You need to have root privileges to run this script.\n"
"Please try again, this time using ’‘sudo’.\n"
"Exiting .")
open device
Arguments here are:
device
snaplen (maximum number of bytes to capture _per_packet_)
promiscious mode (1 for true)
timeout (in milliseconds)
cap = pcapy.open_live(iface, 65536 , 1 , 1000)
sniff (iface=iface, prn=pkt_callback)
logger .debug("Start packet capture now.")
while (1)
try:
(header, packet) = cap.next()
logger.debug("Header: %s\nPacket: %s" % (type(header), type
(packet)))
logger.debug("Header: %s\nPacket: %s" % (str (header), str(
packet)))
(enb_teid , mme_teid) = parse_packet(packet)
if enb_teid and mme_teid:
return enb_teid , mme_teid
except KeyboardInterrupt:
logger.debug("\nKeyboard Interrupt.\nShutting down.")
sys.exit ()
except error as e:
logger .debug(e)
pass

"

name__ == _main_

Docker bridge docker—openairinterface—epc_epc
iface = "br—3cb0e0ddb8a9”’
trace_pkt(iface, 3)

Appendix E

91

List of tools in architecture

The following presents a detailed explanation of the different tools and their role in

our implementation.

/ff- 5G
OPEN AIR

—— INTERFACE

Name: OpenAirInterface

Description: The OpenAirInterface Software Alliance (OSA)

is a non-profit consortium fostering a community of industrial as
well as research contributors for open source software and hardware
development for the core network (EPC), access network

and user equipment (EUTRAN) of 3GPP cellular networks.

Usage: The OpenAirInterface implementation of EPC forms

the basis of our architecture. We also use the OpenAirInterface

Simulator for eNodeB and UE.
Source: https://www.openairinterface.org

Name: Docker
Description: Docker is probably the most popular

container solution available today.
Usage: Docker containers are used to separate

the different EPC elements from each other.
Source: https://www.docker.com

Name: Docker-Compose

Description: Compose is a tool for defining

and running multi-container Docker applications.

Usage: Docker-Compose is used to manage the

relation between the different containers. We also leverage the
docker-compose command line to scale in/out by running
several instances of a given docker container.

Source: https://docs.docker.com/compose/

Name: Python

Description: Python is a general-purpose
programming language.

Usage: We use Python to write most of our
balancing and sniffing functions.

Source: https://www.python.org

https://www.openairinterface.org
https://www.docker.com
https://docs.docker.com/compose/
https://www.python.org

92

Appendix E. List of tools in architecture

Name: cAdvisor (Container Advisor)

Description: cAdvisor provides container users

an understanding of the resource usage and performance
characteristics of their running containers.

Usage: cAdvisor is used to export performance metrices

from individual containers and make them available
to monitoring tools such as prometheus.

Source: https://github.com/google/cadvisor

Name: Prometheus
Description: Prometheus is a monitoring system

and a time series database.
Usage: Prometheus does scrape the information

exposed by cAdvisor. It is also used to querie performance metrices
for later use by balance.py
Source: https://prometheus.io

Name: Grafana
Description: Grafana is an open source

metric analytics and visualization suite.
Usage: Grafana is used to provide a graphical
front end for the data collected in Prometheus. It is not directly

used to determine whether a service should be scaled or not.
Source: https://grafana.com

https://github.com/google/cadvisor
https://prometheus.io
https://grafana.com

93

Appendix F

Balancer.py logs

/home/setup /.local/lib/python2.7/ site —packages/requests/__init__.py:83:
RequestsDependencyWarning: Old version of cryptography ([1, 2, 3]) may
cause slowdown.

warnings . warn(warning, RequestsDependencyWarning)

Container(s) started

Starting oai_cadvisor

Starting oai_iperf3_server

Starting docker—openairinterface —epc_db_1

Starting oai_prometheus

Starting oai_grafana

[5A[2K

Starting oai_cadvisor ... [32mdone[0m
[5B[3A[2K

Starting docker—openairinterface—epc_db_1 ... [32mdone[0m

5 [3BStarting docker—openairinterface—epc_balance_db_1

Starting docker—openairinterface —epc_phpmyadmin_1

15 [3BA[2K

16 Starting oai_grafana ... [32mdone[0m

17 [3B[4A[2K

18 Starting oai_prometheus ... [32mdone[0m

19 [4B[6A[2K

20 Starting oai_iperf3_server ... [32mdone[0m

21 [6BStarting oai_iperf3_client

» [3A[2K

5 Starting docker—openairinterface—epc_balance_db_1 ... [32mdone[0Om

24 [3BStarting docker—openairinterface —epc_backend_hss_1

5 [3A[2K

26 Starting docker—openairinterface—epc_phpmyadmin_1 ... [32mdone[0m
27 [3B[2A[2K

28 Starting oai_iperf3_client ... [32mdone[0m
2 [2B[1A[2K

30 Starting docker—openairinterface —epc_backend_hss_1 ... [32mdone[0Om
31 [1BStarting docker—openairinterface—epc_hss_1

2 [1A[2K

33 Starting docker—openairinterface—epc_hss_1 ... [32mdone[0m
3¢ [1BStarting docker—openairinterface —epc_mme_1

35 [1A[2K

36 Starting docker—openairinterface —epc_mme_1 ... [32mdone[0m

Bl

IS

[1BStarting docker—openairinterface—epc_spgw2_1
Starting docker—openairinterface —epc_spgw_1

[2A[2K

Starting docker—openairinterface —epc_spgw2_1 ... [32mdone[0m

[2B[1A[2K

Starting docker—openairinterface —epc_spgw_1 ... [32mdone[0m
s [1B

Balance service hss

Traffic received for image docker—openairinterface—epc_backend_hss: 30.
Traffic sent for image docker—openairinterface —epc_backend_hss: 16.
Memory usage for image docker—openairinterface—epc_backend_hss: 33162.

94 Appendix E Balancer.py logs

s CPU usage for image docker—openairinterface—epc_backend_hss: 0.

Ideal size for hss is 1.

Balance service mme

Traffic received for image docker—openairinterface—epc_backend mme: 0.
Traffic sent for image docker—openairinterface —epc_backend_mme: 0.
Memory usage for image docker—openairinterface—epc_backend_mme: 0.
CPU usage for image docker—openairinterface—epc_backend_mme: 0.

5 Ideal size for mme is 1.

Balance service spgw

Traffic received for image docker—openairinterface—epc_backend_spgw: 0.
Traffic sent for image docker—openairinterface —epc_backend_spgw: 0.
Memory usage for image docker—openairinterface—epc_backend_spgw: 0.
CPU usage for image docker—openairinterface—epc_backend_spgw: 0.

Ideal size for spgw is 1.

> Balance service hss
5 Traffic received for image docker—openairinterface—epc_backend_hss: 32.

Traffic sent for image docker—openairinterface—epc_backend_hss: 18.

5 Memory usage for image docker—openairinterface—epc_backend_hss: 37645.

CPU usage for image docker—openairinterface—epc_backend_hss: 0.

7 Ideal size for hss is 1.
s Balance service mme

Traffic received for image docker—openairinterface —epc_backend_mme: 0.
Traffic sent for image docker—openairinterface —epc_backend_mme: 0.
Memory usage for image docker—openairinterface—epc_backend_mme: 0.

CPU usage for image docker—openairinterface—epc_backend_mme: 0.

Ideal size for mme is 1.

Balance service spgw

Traffic received for image docker—openairinterface—epc_backend_spgw: 0.
Traffic sent for image docker—openairinterface —epc_backend_spgw: 0.
Memory usage for image docker—openairinterface—epc_backend_spgw: 0.
CPU usage for image docker—openairinterface—epc_backend_spgw: 0.

Ideal size for spgw is 1.

Balance service hss

Traffic received for image docker—openairinterface—epc_backend_hss: 33.
Traffic sent for image docker—openairinterface—epc_backend_hss: 19.

5 Memory usage for image docker—openairinterface—epc_backend_hss: 37900.

CPU usage for image docker—openairinterface—epc_backend_hss: 0.

5 Ideal size for hss is 1.

Balance service mme
Traffic received for image docker—openairinterface —epc_backend_mme: 0.

s Traffic sent for image docker—openairinterface —epc_backend_mme: 0.

Memory usage for image docker—openairinterface—epc_backend_mme: 0.
CPU usage for image docker—openairinterface—epc_backend_mme: 0.
Ideal size for mme is 1.

> Balance service spgw
; Traffic received for image docker—openairinterface—epc_backend_spgw: 0.

Traffic sent for image docker—openairinterface—epc_backend_spgw: 0.

5 Memory usage for image docker—openairinterface —epc_backend_spgw: 0.

CPU usage for image docker—openairinterface—epc_backend_spgw: 0.

Ideal size for spgw is 1.

Balance service hss

Traffic received for image docker—openairinterface —epc_backend_hss: 33.
Traffic sent for image docker—openairinterface—epc_backend_hss: 19.
Memory usage for image docker—openairinterface—epc_backend_hss: 37885.

» CPU usage for image docker—openairinterface—epc_backend_hss: 0.
5 Ideal size for hss is 1.

Balance service mme

Traffic received for image docker—openairinterface —epc_backend_mme: 0.
Traffic sent for image docker—openairinterface—epc_backend_mme: 0.
Memory usage for image docker—openairinterface —epc_backend_mme: 0.

s CPU usage for image docker—openairinterface—epc_backend mme: 0.

Ideal size for mme is 1.
Balance service spgw

111
112
113

114

Appendix E Balancer.py logs

95

Traffic received for image docker—openairinterface —epc_backend_spgw: 0.

Traffic sent for image docker—openairinterface —epc_backend_spgw: 0.
Memory usage for image docker—openairinterface—epc_backend_spgw: 0.
CPU usage for image docker—openairinterface —epc_backend_spgw: 0.

5 Ideal size for spgw is 1.

Balance service hss

7 Traffic received for image docker—openairinterface —epc_backend_hss: 33.

Traffic sent for image docker—openairinterface —epc_backend_hss: 19.
Memory usage for image docker—openairinterface—epc_backend_hss: 37876.
CPU usage for image docker—openairinterface—epc_backend_hss: 0.

Ideal size for hss is 1.

Balance service mme

Traffic received for image docker—openairinterface —epc_backend_mme: 0.
Traffic sent for image docker—openairinterface —epc_backend_mme: 0.

5 Memory usage for image docker—openairinterface —epc_backend_mme: 0.

CPU usage for image docker—openairinterface—epc_backend_mme: 0.
Ideal size for mme is 1.
Balance service spgw

Traffic received for image docker—openairinterface —epc_backend_spgw: 0.

Traffic sent for image docker—openairinterface —epc_backend_spgw: 0.
Memory usage for image docker—openairinterface—epc_backend_spgw: 0.
CPU usage for image docker—openairinterface —epc_backend_spgw: 0.

3 Ideal size for spgw is 1.

Balance service hss

Traffic received for image docker—openairinterface—epc_backend_hss: 39.

Traffic sent for image docker—openairinterface —epc_backend_hss: 24.
Memory usage for image docker—openairinterface—epc_backend_hss: 37998.
CPU usage for image docker—openairinterface—epc_backend_hss: 0.

Ideal size for hss is 1.

Balance service mme

Traffic received for image docker—openairinterface —epc_backend_mme: 0.
Traffic sent for image docker—openairinterface —epc_backend_mme: 0.

5 Memory usage for image docker—openairinterface—epc_backend_mme: 0.

CPU usage for image docker—openairinterface —epc_backend_mme: 0.

5 Ideal size for mme is 1.
» Balance service spgw
Traffic received for image docker—openairinterface —epc_backend_spgw: 0.

Traffic sent for image docker—openairinterface —epc_backend_spgw: 0.
Memory usage for image docker—openairinterface—epc_backend_spgw: 0.
CPU usage for image docker—openairinterface —epc_backend_spgw: 0.
Ideal size for spgw is 1.

Balance service hss

Traffic received for image docker—openairinterface—epc_backend_hss: 39.

Traffic sent for image docker—openairinterface—epc_backend_hss: 24.
Memory usage for image docker—openairinterface—epc_backend_hss: 38000.
CPU usage for image docker—openairinterface—epc_backend_hss: 0.

Ideal size for hss is 1.

Balance service mme

Traffic received for image docker—openairinterface —epc_backend_mme: 0.
Traffic sent for image docker—openairinterface —epc_backend_mme: 0.
Memory usage for image docker—openairinterface—epc_backend_mme: 0.
CPU usage for image docker—openairinterface —epc_backend_mme: 0.

Ideal size for mme is 1.

Balance service spgw

Traffic received for image docker—openairinterface —epc_backend_spgw: 0.

Traffic sent for image docker—openairinterface —epc_backend_spgw: 0.
Memory usage for image docker—openairinterface—epc_backend_spgw: 0.
CPU usage for image docker—openairinterface —epc_backend_spgw: 0.
Ideal size for spgw is 1.

Balance service hss

Traffic received for image docker—openairinterface—epc_backend_hss: 39.

Traffic sent for image docker—openairinterface—epc_backend_hss: 24.
Memory usage for image docker—openairinterface—epc_backend_hss: 37996.

96 Appendix E Balancer.py logs

172+ CPU usage for image docker—openairinterface —epc_backend_hss: 0.

175 Ideal size for hss is 1.

176 Balance service mme

177 Traffic received for image docker—openairinterface—epc_backend_mme: 0.
178 Traffic sent for image docker—openairinterface—epc_backend_mme: 0.

179 Memory usage for image docker—openairinterface—epc_backend_mme: 0.

150 CPU usage for image docker—openairinterface —epc_backend_mme: 0.

181 Ideal size for mme is 1.

122 Balance service spgw

153 Traffic received for image docker—openairinterface —epc_backend_spgw: 0.
84 Traffic sent for image docker—openairinterface—epc_backend_spgw: 0.

1855 Memory usage for image docker—openairinterface—epc_backend_spgw: 0.

155 CPU usage for image docker—openairinterface —epc_backend_spgw: 0.

17 Ideal size for spgw is 1.

155 Balance service hss

189 Traffic received for image docker—openairinterface—epc_backend_hss: 39.
190 Traffic sent for image docker—openairinterface—epc_backend_hss: 24.

191 Memory usage for image docker—openairinterface—epc_backend_hss: 37988.
192 CPU usage for image docker—openairinterface—epc_backend_hss: 0.

193 Ideal size for hss is 1.

192 Balance service mme

195 Traffic received for image docker—openairinterface—epc_backend _mme: 0.
196 Traffic sent for image docker—openairinterface—epc_backend_mme: 0.

197 Memory usage for image docker—openairinterface—epc_backend_mme: 0.

198 CPU usage for image docker—openairinterface —epc_backend_mme: 0.

199 Ideal size for mme is 1.

200 Balance service spgw

200 Traffic received for image docker—openairinterface —epc_backend_spgw: 0.
202 Traffic sent for image docker—openairinterface—epc_backend_spgw: 0.

203 Memory usage for image docker—openairinterface—epc_backend_spgw: 0.

204 CPU usage for image docker—openairinterface —epc_backend_spgw: 0.

205 Ideal size for spgw is 1.

206 Balance service hss

207 Traffic received for image docker—openairinterface —epc_backend_hss: 40.
208 Traffic sent for image docker—openairinterface—epc_backend_hss: 24.

209 Memory usage for image docker—openairinterface—epc_backend_hss: 37978.
210 CPU usage for image docker—openairinterface —epc_backend_hss: 0.

211 Ideal size for hss is 1.

212 Balance service mme

213 Traffic received for image docker—openairinterface —epc_backend_mme: 0.
214 Traffic sent for image docker—openairinterface—epc_backend_mme: 0.

215 Memory usage for image docker—openairinterface—epc_backend_mme: O.

216 CPU usage for image docker—openairinterface —epc_backend_mme: 0.

217 Ideal size for mme is 1.

218 Balance service spgw

219 Traffic received for image docker—openairinterface —epc_backend_spgw: 0.
20 Traffic sent for image docker—openairinterface—epc_backend_spgw: 0.

221 Memory usage for image docker—openairinterface—epc_backend_spgw: 0.

22 CPU usage for image docker—openairinterface —epc_backend_spgw: 0.

23 Ideal size for spgw is 1.

24 Balance service hss

25 Traffic received for image docker—openairinterface —epc_backend_hss: 40.
26 Traffic sent for image docker—openairinterface—epc_backend_hss: 24.

27 Memory usage for image docker—openairinterface—epc_backend_hss: 37970.
28 CPU usage for image docker—openairinterface —epc_backend_hss: 0.

29 Ideal size for hss is 1.

230 Balance service mme

1 Traffic received for image docker—openairinterface—epc_backend mme: 0.
32 Traffic sent for image docker—openairinterface—epc_backend_mme: 0.

33 Memory usage for image docker—openairinterface —epc_backend_mme: 0.

1 CPU usage for image docker—openairinterface —epc_backend_mme: 0.

55 Ideal size for mme is 1.

36 Balance service spgw

Appendix F. Balancer.py logs

37 Traffic received for image docker—openairinterface—epc_backend_spgw: 0.
3 Traffic sent for image docker—openairinterface—epc_backend_spgw: 0.
Memory usage for image docker—openairinterface—epc_backend_spgw: 0.

200 CPU usage for image docker—openairinterface —epc_backend_spgw: 0.

211 Ideal size for spgw is 1.

242

243 Shutting down...

214 Container(s) stopped

245 Stopping docker—openairinterface—epc_spgw2_1

246 Stopping docker—openairinterface—epc_spgw_1

247 Stopping docker—openairinterface —epc_mme_1

218 Stopping docker—openairinterface—epc_hss_1

229 Stopping docker—openairinterface—epc_backend_hss_1

20 Stopping docker—openairinterface —epc_phpmyadmin_1

251 Stopping docker—openairinterface—epc_balance_db_1

252 Stopping docker—openairinterface—epc_db_1

253 Stopping oai_iperf3_client

251 Stopping oai_cadvisor

255 Stopping oai_prometheus

256 Stopping oai_grafana

257 Stopping oai_iperf3_server

28 [2A[2K

259 Stopping oai_grafana ... [32mdone[0m
260 [2B[4A[2K

261 Stopping oai_cadvisor ... [32mdone[0m
262 [4B[8A[2K

NONN
N !

o3 Stopping docker—openairinterface—epc_phpmyadmin_1 ... [32mdone[0m
0+ [8B[3A[2K

¢s Stopping oai_prometheus ... [32mdone[0m
6 [3B[5A[2K

¢7 Stopping oai_iperf3_client ... [32mdone[0m
6s [5B[13A[2K

e Stopping docker—openairinterface—epc_spgw2_1 ... [32mdone[0m
70 [13B[12A[2K

71 Stopping docker—openairinterface —epc_spgw_1 ... [32mdone[0m
72 [12B[1A[2K

73 Stopping oai_iperf3_server ... [32mdone[0m
72 [1B[11A[2K

275 Stopping docker—openairinterface —epc_mme_1 ... [32mdone[0m
276 [11B[10A[2K

277 Stopping docker—openairinterface—epc_hss_1 ... [32mdone[0m
278 [T0B[9A[2K

279 Stopping docker—openairinterface—epc_backend_hss_1 ... [32mdone[0Om
250 [9B[7A[2K

281 Stopping docker—openairinterface—epc_balance_db_1 ... [32mdone[0m
22 [7B[6A[2K

283 Stopping docker—openairinterface—epc_db_1 ... [32mdone[0m
24 [6B

W N

2(

N

22

N
@

24

99

Appendix G

Balancer.py logs

G.1 Traffic Test Bash Script

#!/bin/bash

Simple utility to hand different options to iperf3
Transmission time is 10 secs (iperf3 default)

Bandwith 0 is unlimitted TCP traffic

Protocoll is TCP (iperf3 default)

mode="$1"

help_string="""\

No mode provided. Possible options for mode are:

full : Maximum throughput for a given time

raise: Raise traffic in a determined interval

fall: Start from high traffic and go down

static: Raise, stay at a level and don’t change

fluctuate: Fluctuate around a given value to test balancing around a
threashold

R S I

5 x raise_and_fall

"

full=(0 000 00000000000D0O0D0D00000000000O0O0O00O0O00O
00000000000OO0O0O0OO0OOOOOOO0O0OO0OO0O0O0)

raise=(100Mbit 200Mbit 300Mbit 400Mbit 500Mbit 600Mbit 700Mbit 800Mbit 900
Mbit 1000Mbit 1100Mbit 1200Mbit 1300Mbit 1400Mbit 1500Mbit 1600Mbit
1700Mbit 1800Mbit 1900Mbit 2000Mbit 2100Mbit 2200Mbit 2300Mbit 2400Mbit
2500Mbit 2600Mbit 2700Mbit 2800Mbit 2900Mbit 3000Mbit)

fall =(300Mbit 2900Mbit 2800Mbit 2700Mbit 2600Mbit 2500Mbit 2400Mbit 2300
Mbit 2200Mbit 2100Mbit 2000Mbit 1900Mbit 1800Mbit 1700Mbit 1600Mbit
1500Mbit 1400Mbit 1300Mbit 1200Mbit 1100Mbit 1000Mbit 900Mbit 800Mbit
700Mbit 600Mbit 500Mbit 400Mbit 300Mbit 200Mbit 100Mbit)

static=(1000Mbit 1500Mbit 2000Mbit 2500Mbit 3000Mbit 3000Mbit 3000Mbit
3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit
3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000
Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit 3000Mbit)

fluctuate=(1000Mbit 1500Mbit 2000Mbit 2500Mbit 3000Mbit 2500Mbit 3000Mbit
2500Mbit 3000Mbit 2500Mbit 3000Mbit 2500Mbit 3000Mbit 2500Mbit 3000Mbit
2500Mbit 3000Mbit 2500Mbit 3000Mbit 2500Mbit 3000Mbit 2500Mbit 3000
Mbit 2500Mbit 3000Mbit 2500Mbit 3000Mbit 2500Mbit 3000Mbit 2500Mbit)

; raise_and_fall=(100Mbit 200Mbit 300Mbit 400Mbit 500Mbit 600Mbit 700Mbit

800Mbit 900Mbit 1000Mbit 1100Mbit 1200Mbit 1300Mbit 1400Mbit 1500Mbit
1600Mbit 1700Mbit 1800Mbit 1900Mbit 2000Mbit 2100Mbit 2200Mbit 2300Mbit
2400Mbit 2500Mbit 2600Mbit 2700Mbit 2800Mbit 2900Mbit 3000Mbit 300Mbit
2900Mbit 2800Mbit 2700Mbit 2600Mbit 2500Mbit 2400Mbit 2300Mbit 2200
Mbit 2100Mbit 2000Mbit 1900Mbit 1800Mbit 1700Mbit 1600Mbit 1500Mbit
1400Mbit 1300Mbit 1200Mbit 1100Mbit 1000Mbit 900Mbit 800Mbit 700Mbit
600Mbit 500Mbit 400Mbit 300Mbit 200Mbit 100Mbit)

s full ()

100 Appendix G. Balancer.py logs

for i in "${full[@]}";do
cand="/usr/bin/iperf3 —c iperf3_server —b $i"
echo "###### $cmd ######", $amd

done
}
raise () {
for i in "${raise[@]}";do
cand="/usr/bin/iperf3 —c iperf3_server —b $i"
echo "###### $cmd ######", $cmd
done
}
fall () {
for i in "${fall[@]}";do
cand="/usr/bin/iperf3 —c iperf3_server —b $i"
echo "###### $cmd ######", $cmd
done
}

v static () {

for i in "${static[@]}";do
cand="/usr/bin/iperf3 —c iperf3_server —b $i"
echo "###### $comd ####H##", $comd

done

)

fluctuate () {
for i in "${fluctuate[@]}";do
cand="/usr/bin/iperf3 —c iperf3_server —b $i"
echo "###### $cmd ######", $cmd
done

}

raise_and_fall () {
for i in "${raise_and_fall[@]}";do
cand="/usr/bin/iperf3 —c iperf3_server —b $i"
echo "###### $cmd ######";, $cmd
done

}

o if [["$mode" == "full"]];then

full

elif [["$mode" == "raise"]];then
raise

elif [["$mode" == "fall"]];then
fall

3 elif [["$mode" == "static"]];then

static

5 elif [["$mode" == "fluctuate"]];then

fluctuate

elif [["$mode" == "raise_and_fall"]];then
raise_and_fall

else
echo "$help_string"

fi

G.2 Docker Instance Counter

#!/bin/bash

; instances=0

G.2. Docker Instance Counter 101

1+ while true;do
inst="$(docker ps | grep ’‘spgw2’ | wc -1 | tr —d '\n”")"

6 if [["$instances" != "$inst"]];then
7 instances="$inst"

8 echo —n "$instances

9 date +9d:%M:%S

10 fi

11 done

103

Bibliography

[1] Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast, 2017-2022,
Feb. 2019. [Online]. Available: https://www.cisco.com/c/en/us/solutions/
collateral / service - provider / visual - networking - index - vni / vni -
forecast-qa.pdf.

[2] R.Cziva and D. P. Pezaros, “Container Network Functions: Bringing NFV to
the Network Edge”, IEEE Communications Magazine, vol. 55, no. 6, pp. 24-31,
2017, 15SN: 0163-6804. DOI: 10.1109/MCOM.2017.1601039.

[3] ETSI, Network Functions Virtualisation (White Paper). 2012. [Online]. Available:
https://portal.etsi.org/nfv/nfv_white_paper.pdf.

[4] R.Cziva, S. Jouet, K.]J. S. White, and D. . Pezaros, “Container-based network
function virtualization for software-defined networks”, 2015 IEEE Symposium
on Computers and Communication (ISCC), pp. 415-420, Jul. 2015. DOI: 10.1109/
ISCC.2015.7405550.

[5] C.H.T. Arteaga, F. Rissoi, and O. M. C. Rendon, “An adaptive scaling mech-
anism for managing performance variations in network functions virtualiza-
tion: A case study in an NFV-based EPC”, 2017 13th International Conference on
Network and Service Management (CNSM), pp. 1-7, Nov. 2017. DOI: 10.23919/
CNSM. 2017 .8255982.

[6] Glasgow Network Functions (GNF). [Online]. Available: https://netlab.dcs.
gla.ac.uk/projects/glasgow-network-functions.

[7] Open EPC. [Online]. Available: https://www.openepc. com.
[8] OpenAirlnterface MME Configuration. [Online]. Available: https://gitlab.

eurecom.fr/oai/openair-cn/blob/develop/etc/mme. conf.

[9] B.Sousa, L. Cordeiro, P. Simdes, A. Edmonds, S. Ruiz, G. A. Carella, M. Corici,
N. Nikaein, A. S. Gomes, E. Schiller, T. Braun, and T. M. Bohnert, “Toward
a Fully Cloudified Mobile Network Infrastructure”, IEEE Transactions on Net-
work and Service Management, vol. 13, no. 3, pp. 547-563, 2016, ISSN: 1932-4537.
DOI: 10.1109/TNSM.2016.2598354.

[10] R.Cziva,S.Jouét, D. Stapleton, E. P. Tso, and D. P. Pezaros, “SDN-Based Virtual
Machine Management for Cloud Data Centers”, IEEE Transactions on Network
and Service Management, vol. 13, no. 2, pp. 212-225, 2016, 1SSN: 1932-4537. DOI:
10.1109/TNSM. 2016 .2528220.

[11] U. Varshney, “4g Wireless Networks”, IT Professional, vol. 14, no. 5, pp. 34-39,
2012, 1sSN: 1520-9202. DOI: 10.1109/MITP.2012.71.

[12] LTE Tutorial. [Online]. Available: https : //www . tutorialspoint . com/1te/
index.htm.

[13] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis, and T.
Magedanz, “EASE: EPC as a service to ease mobile core network deployment
over cloud”, IEEE Network, vol. 29, no. 2, pp. 78-88, 2015, 1SSN: 0890-8044. DOTI:
10.1109/MNET.2015.7064907.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-forecast-qa.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-forecast-qa.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-forecast-qa.pdf
http://dx.doi.org/10.1109/MCOM.2017.1601039
https://portal.etsi.org/nfv/nfv_white_paper.pdf
http://dx.doi.org/10.1109/ISCC.2015.7405550
http://dx.doi.org/10.1109/ISCC.2015.7405550
http://dx.doi.org/10.23919/CNSM.2017.8255982
http://dx.doi.org/10.23919/CNSM.2017.8255982
https://netlab.dcs.gla.ac.uk/projects/glasgow-network-functions
https://netlab.dcs.gla.ac.uk/projects/glasgow-network-functions
https://www.openepc.com
https://gitlab.eurecom.fr/oai/openair-cn/blob/develop/etc/mme.conf
https://gitlab.eurecom.fr/oai/openair-cn/blob/develop/etc/mme.conf
http://dx.doi.org/10.1109/TNSM.2016.2598354
http://dx.doi.org/10.1109/TNSM.2016.2528220
http://dx.doi.org/10.1109/MITP.2012.71
https://www.tutorialspoint.com/lte/index.htm
https://www.tutorialspoint.com/lte/index.htm
http://dx.doi.org/10.1109/MNET.2015.7064907

104 BIBLIOGRAPHY

[14] A. Jain, N. S. Sadagopan, S. K. Lohani, and M. Vutukuru, “A comparison of
SDN and NFV for re-designing the LTE Packet Core”, 2016 IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN),
pp- 74-80, Nov. 2016. DOI: 10.1109/NFV-SDN.2016.7919479.

[15] OpenAirinterface — 5g software alliance for democratising wireless innovation, en-
US. [Online]. Available: https: //www . openairinterface . org/ (visited on
08/02/2019).

[16] Google, cAdvisor. [Online]. Available: https://github.com/google/cadvisor.
[17] Prometheus. [Online]. Available: https://prometheus.io.

[18] OpenAirLTEEmulation - Wiki - oai / openairinterface5g, en. [Online]. Available:
https://gitlab.eurecom.fr/oai/openairinterfacebg/wikis/OpenAirLTEEmulation
(visited on 07/02/2019).

[19] Iperf. [Online]. Available: https://iperf.fr.

[20] E Lobillo, Z. Becvar, M. A. Puente, P. Mach, F. L. Presti, E. Gambetti, M. Gold-
hamer, J. Vidal, A. K. Widiawan, and E. Calvanesse, “An architecture for mo-
bile computation offloading on cloud-enabled LTE small cells”, 2014 IEEE Wire-
less Communications and Networking Conference Workshops (NCNCW), pp. 1-6,
Apr. 2014. DOI: 10.1109/WCNCW. 2014 .6934851.

[21] lionelgo, Contribute to OPENAIRINTERFACE /openair-cn development by creating
an account on GitHub, original-date: 2017-09-08T14:46:56Z, May 2019. [Online].
Available: https://github.com/0PENAIRINTERFACE/openair-cn (visited on
05/21/2019).

[22] E. Schiller, “MEC Caching Prototype”, ICT - Information and Communication
Technologies, Tech. Rep., Jan. 2017.

[23] Wikipedia, Network function virtualization. [Online]. Available: https://en.
wikipedia.org/wiki/Network_function_virtualization.

[24] sdx, “What is NFV — Network Functions Virtualization — Definition?”,

[25] S. Dutta, T. Taleb, and A. Ksentini, “QoE-aware elasticity support in cloud-
native 5g systems”, 2016 IEEE International Conference on Communications (ICC),
pp. 1-6, May 2016. DOI: 10.1109/ICC.2016.7511377.

[26] sdx, Which is Better — SDN or NFV? [Online]. Available: https://www.sdxcentral.

com/networking/nfv/definitions/which-is-better-sdn-or-nfv/.

[27] . Burke, What is SDN? The answer now includes automation and virtualization.
[Online]. Available: https://searchnetworking.techtarget.com/tip/What-
is-SDN-The-answer-now-includes-automation-and-virtualization.

[28] P. Pate, “NFV and SDN: What's the Difference?”, 2013. [Online]. Available:
https : //www . sdxcentral . com/articles /contributed/nfv - and - sdn -
whats-the-difference/2013/03/.

[29] P. Brey, “Containers vs. Virtual Machines (VMs): What's the Difference?”, 2018.
[Online]. Available: https://blog.netapp.com/blogs/containers-vs-vms/.

[30] LXC (Linux Containers). [Online]. Available: https: //en . wikipedia . org/
wiki/LXC.

[31] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kubernetes”,
IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014, 1SSN: 2325-6095. DOI: 10.
1109/MCC.2014.51.

http://dx.doi.org/10.1109/NFV-SDN.2016.7919479
https://www.openairinterface.org/
https://github.com/google/cadvisor
https://prometheus.io
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OpenAirLTEEmulation
https://iperf.fr
http://dx.doi.org/10.1109/WCNCW.2014.6934851
https://github.com/OPENAIRINTERFACE/openair-cn
https://en.wikipedia.org/wiki/Network_function_virtualization
https://en.wikipedia.org/wiki/Network_function_virtualization
http://dx.doi.org/10.1109/ICC.2016.7511377
https://www.sdxcentral.com/networking/nfv/definitions/which-is-better-sdn-or-nfv/
https://www.sdxcentral.com/networking/nfv/definitions/which-is-better-sdn-or-nfv/
https://searchnetworking.techtarget.com/tip/What-is-SDN-The-answer-now-includes-automation-and-virtualization
https://searchnetworking.techtarget.com/tip/What-is-SDN-The-answer-now-includes-automation-and-virtualization
https://www.sdxcentral.com/articles/contributed/nfv-and-sdn-whats-the-difference/2013/03/
https://www.sdxcentral.com/articles/contributed/nfv-and-sdn-whats-the-difference/2013/03/
https://blog.netapp.com/blogs/containers-vs-vms/
https://en.wikipedia.org/wiki/LXC
https://en.wikipedia.org/wiki/LXC
http://dx.doi.org/10.1109/MCC.2014.51
http://dx.doi.org/10.1109/MCC.2014.51

BIBLIOGRAPHY 105

[32] The Official YAML Web Site. [Online]. Available: https://yaml.org/ (visited
on 06/24/2019).

[33] Y. Grunenberger, Dockerfile for EPC Database. [Online]. Available: https : //
github . com/ ravens /docker - openairinterface - epc/blob/master /db/
Dockerfile.

[34] Dockerfile reference. [Online]. Available: https://docs . docker . com/engine/
reference/builder/#usage.

[35] A. M. Joy, “Performance comparison between Linux containers and virtual
machines”, 2015 International Conference on Advances in Computer Engineering
and Applications, pp. 342-346, Mar. 2015. DOI: 10.1109/ICACEA.2015.7164727.

[36] T.Wei, M. Malhotra, B. Gao, T. Bednar, D. Jacoby, and Y. Coady, “No such thing
as a “free launch”? Systematic benchmarking of containers”, 2017 IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing (PACRIM),
pp- 1-6, Aug. 2017. DOI: 10.1109/PACRIM.2017.8121922.

[37] S.S. Tadesse, C. E. Chiasserini, and F. Malandrino, “Characterizing the power
cost of virtualization environments”, Transactions on Emerging Telecommunica-
tions Technologies, vol. 0, no. 0, 3462, 2018, ISSN: 2161-3915. DOI: 10.1002/ett.
3462.

[38] gVisor, en. [Online]. Available: https://gvisor.dev/ (visited on 07/29/2019).

[39] gVisor - Container Runtime Sandbox. [Online]. Available: https://github.com/
google/gvisor.

[40] C.Ltd., Introduction to Juju Charms. [Online]. Available: https://docs. jujucharms.
com/2.0/en/charms.

[41] P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, “Efficient Auto-Scaling Approach
in the Telco Cloud Using Self-Learning Algorithm”, 2015 IEEE Global Commu-
nications Conference (GLOBECOM), pp. 1-6, Dec. 2015. DOI: 10.1109/GLOCOM.
2015.7417181.

[42] G. A. Carella, M. Pauls, L. Grebe, and T. Magedanz, “An extensible Autoscal-
ing Engine (AE) for Software-based Network Functions”, 2016 IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN),
pp- 219-225, Nov. 2016. DOI: 10.1109/NFV-SDN.2016.7919501.

[43] X.Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau, “Online VNF Scaling in Data-
centers”, 2016 IEEE 9th International Conference on Cloud Computing (CLOUD),
pp- 140-147, Jun. 2016. DOI: 10.1109/CLOUD. 2016.0028.

[44] Open Baton. [Online]. Available: http://openbaton.github.io/index.html.
[45] ETSI, MANO - Network Functions Virtualizatio. [Online]. Available: http://

network-functions-virtualization.com/mano.html.

[46]]. Nakajima, “Building High-Performance NFV Solutions Using Containers”,
2015. [Online]. Available: https://events.static.linuxfound.org/sites/
events/files/slides/Jun_Nakajima_NFV_Container_final.pdf.

[47] Using Minikube to Create a Cluster, en. [Online]. Available: https://kubernetes.
io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/

(visited on 04/28/2019).

[48] Viewing Pods and Nodes, en. [Online]. Available: https : / /kubernetes . io/
docs/tutorials/kubernetes-basics/explore/explore-intro/ (visited on

04/28/2019).

https://yaml.org/
https://github.com/ravens/docker-openairinterface-epc/blob/master/db/Dockerfile
https://github.com/ravens/docker-openairinterface-epc/blob/master/db/Dockerfile
https://github.com/ravens/docker-openairinterface-epc/blob/master/db/Dockerfile
https://docs.docker.com/engine/reference/builder/#usage
https://docs.docker.com/engine/reference/builder/#usage
http://dx.doi.org/10.1109/ICACEA.2015.7164727
http://dx.doi.org/10.1109/PACRIM.2017.8121922
http://dx.doi.org/10.1002/ett.3462
http://dx.doi.org/10.1002/ett.3462
https://gvisor.dev/
https://github.com/google/gvisor
https://github.com/google/gvisor
https://docs.jujucharms.com/2.0/en/charms
https://docs.jujucharms.com/2.0/en/charms
http://dx.doi.org/10.1109/GLOCOM.2015.7417181
http://dx.doi.org/10.1109/GLOCOM.2015.7417181
http://dx.doi.org/10.1109/NFV-SDN.2016.7919501
http://dx.doi.org/10.1109/CLOUD.2016.0028
http://openbaton.github.io/index.html
http://network-functions-virtualization.com/mano.html
http://network-functions-virtualization.com/mano.html
https://events.static.linuxfound.org/sites/events/files/slides/Jun_Nakajima_NFV_Container_final.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Jun_Nakajima_NFV_Container_final.pdf
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/

106

BIBLIOGRAPHY

[49]

[50]

[53]

[54]

[57]

Kubernetes service can’t support SCTP protocol. [Online]. Available: https : //
github.com/kubernetes/kubernetes/issues/44485.

freeDiameter - Requirements. [Online]. Available: http://www.freediameter.
net/trac/wiki/Requirements.

ETSI, “TS 132 455; Telecommunication management; Key Performance Indi-
cators (KPI) for the Evolved Packet Core (EPC); Definitions (3gpp TS 32.455
version 11.0.0 Release 11)”, Tech. Rep., 2012.

M. Lauridsen, I. Rodriguez, L. M. Mikkelsen, L. C. Gimenez, and P. Mogensen,
“Verification of 3g and 4g received power measurements in a crowdsourcing
Android app”, 2016 IEEE Wireless Communications and Networking Conference,
pp- 1-6, Apr. 2016. DOL: 10. 1109/WCNC . 2016 . 7564930.

H. Mfula and J. K. Nurminen, “Adaptive Root Cause Analysis for Self-Healing
in 5g Networks”, 2017 International Conference on High Performance Computing
& Simulation (HPCS), pp. 136-143, Jul. 2017. DOI: 10.1109/HPCS.2017.31.

M. Laner, P. Svoboda, P. Romirer-Maierhofer, N. Nikaein, F. Ricciato, and M.
Rupp, “A comparison between one-way delays in operating HSPA and LTE
networks”, 2012 10th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 286-292, May 2012.

3GPP, “TS 25.913, Requirements for Evolved UTRA and Evolved UTRAN”,
Tech. Rep.

A. Hafsaoui, N. Nikaein, and L. Wang, “OpenAirInterface Traffic Generator
(OTG): A Realistic Traffic Generation Tool for Emerging Application Scenar-
ios”, 2012 IEEE 20th International Symposium on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems, pp. 492-494, Aug. 2012, ISSN:
1526-7539. DOI: 10.1109/MASCOTS.2012.62.

M. Lauridsen, L. C. Gimenez, I. Rodriguez, T. B. Sorensen, and P. Mogensen,
“From LTE to 5g for Connected Mobility”, IEEE Communications Magazine,
vol. 55, no. 3, pp. 156-162, 2017, 1SSN: 0163-6804. DOI: 10 .1109/MCOM. 2017 .
1600773CM.

Jaeger. [Online]. Available: https://www.jaegertracing.io.

V. Medel, O. Rana, J. Bafiares, and U. Arronategui, “Modelling Performance &
Resource Management in Kubernetes”, Dec. 2016, pp. 257-262.

K. Han, S. Li, S. Tang, H. Huang, S. Zhao, G. Fu, and Z. Zhu, “Application-
Driven End-to-End Slicing: When Wireless Network Virtualization Orches-
trates with NFV-based Mobile Edge Computing”, IEEE Access, pp. 1-1, 2018.
DOI: 10.1109/ACCESS.2018.2834623.

R. Riggio, M. K. Marina, J. Schulz-Zander, S. Kuklinski, and T. Rasheed, “Pro-
gramming Abstractions for Software-Defined Wireless Networks”, IEEE Trans-
actions on Network and Service Management, vol. 12, no. 2, pp. 146-162, 2015,
ISSN: 1932-4537. DOI: 10.1109/TNSM.2015.2417772.

L. Cui, E P. Tso, and W. Jia, “Enforcing network policy in heterogeneous net-
work function box environment”, Computer Networks, vol. 138, pp. 108-118,
Jun. 2018, 1SSN: 1389-1286. DOI: https://doi.org/10.1016/j.comnet.2018.
03.029.

https://github.com/kubernetes/kubernetes/issues/44485
https://github.com/kubernetes/kubernetes/issues/44485
http://www.freediameter.net/trac/wiki/Requirements
http://www.freediameter.net/trac/wiki/Requirements
http://dx.doi.org/10.1109/WCNC.2016.7564930
http://dx.doi.org/10.1109/HPCS.2017.31
http://dx.doi.org/10.1109/MASCOTS.2012.62
http://dx.doi.org/10.1109/MCOM.2017.1600778CM
http://dx.doi.org/10.1109/MCOM.2017.1600778CM
https://www.jaegertracing.io
http://dx.doi.org/10.1109/ACCESS.2018.2834623
http://dx.doi.org/10.1109/TNSM.2015.2417772
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2018.03.029
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2018.03.029

BIBLIOGRAPHY 107

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

T. B. Meriem and R. Chaparadza, “GANA - Generic Autonomic Networking
Architecture (White Paper)”, 2016, 1SSN: 979-10-92620-10-8. [Online]. Avail-
able: https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wpl6_
gana_Ed1_20161011.pdf.

An Introduction to the ELK Stack for Logs and Metrics. [Online]. Available: https:
//www.elastic.co/webinars/introduction-elk-stack.

Cloud Native Computing Foundation. [Online]. Available: https://www . cncf .
io.

K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, and T. Braun, “Network Slices
toward 5g Communications: Slicing the LTE Network”, IEEE Communications
Magazine, vol. 55, no. 8, pp. 146-154, 2017, 1SSN: 0163-6804. DOI: 10 . 1109/
MCOM.2017.1600936.

R. Gupta, Oaiindocker. [Online]. Available: https://gitlab.eurecom.fr/oai/
openairinterfacebg/wikis/0AIinDocker.

Y. Grunenberger, Docker-openairinterface-epc. [Online]. Available: https://github.
com/ravens/docker-openairinterface-epc.

B. Aschwanden, Pull request: Add startup script for docker container. [Online].
Available: https: //github.com/ravens/docker - openairinterface-epc/
pull/2.

Dockercloud/haproxy - Docker Hub. [Online]. Available: https://hub.docker.
com/r/dockercloud/haproxy/ (visited on 06/27/2019).

B. Christner, How to scale Docker Containers with Docker-Compose. [Online]. Avail-
able: https://www.brianchristner.io/how-to-scale-a-docker-container-
with-docker-compose/.

Nginx Docker Container. [Online]. Available: https : //hub . docker . com/ _/
nginx/.

W. Yuan, H. Sun, X. Wang, and X. Liu, “Towards Efficient Deployment of
Cloud Applications through Dynamic Reverse Proxy Optimization”, 2013 IEEE
10th International Conference on High Performance Computing and Communica-
tions & 2013 IEEE International Conference on Embedded and Ubiquitous Comput-
ing, pp. 651-658, Nov. 2013. DOL: 10.1109/HPCC. and .EUC.2013.97.

Module ngx_stream_core_module. [Online]. Available: http://nginx.org/en/
docs/stream/ngx_stream_core_module.html.

P. Mell and T. Grance, “The NIST Definition of Cloud Computing”, Recommen-
dations of the National Institute of Standards and Technology, vol. Special Publica-
tion, no. 800-145, 2011.

G. Galante and L. C.E. d. Bona, “A Survey on Cloud Computing Elasticity”,
2012 IEEE Fifth International Conference on Utility and Cloud Computing, pp. 263—
270, Nov. 2012. DOI: 10.1109/UCC.2012. 30.

C. Roux, Cmake_targets/tools/perf_oai.bash - master - oai / openairinterface5g, en.
[Online]. Available: https://gitlab.eurecom.fr/oai/openairinterfacebg/
blob/master/cmake_targets/tools/perf_oai.bash (visited on 05/31/2019).

E. Schiller, FIRE LTE testbeds for open experimentation. Contribute to ejschiller/FLEX
development by creating an account on GitHub, original-date: 2017-01-27T15:07:00Z,
Feb. 2017. [Online]. Available: https://github.com/ejschiller/FLEX (vis-
ited on 07/07/2019).

https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp16_gana_Ed1_20161011.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp16_gana_Ed1_20161011.pdf
https://www.elastic.co/webinars/introduction-elk-stack
https://www.elastic.co/webinars/introduction-elk-stack
https://www.cncf.io
https://www.cncf.io
http://dx.doi.org/10.1109/MCOM.2017.1600936
http://dx.doi.org/10.1109/MCOM.2017.1600936
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OAIinDocker
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/OAIinDocker
https://github.com/ravens/docker-openairinterface-epc
https://github.com/ravens/docker-openairinterface-epc
https://github.com/ravens/docker-openairinterface-epc/pull/2
https://github.com/ravens/docker-openairinterface-epc/pull/2
https://hub.docker.com/r/dockercloud/haproxy/
https://hub.docker.com/r/dockercloud/haproxy/
https://www.brianchristner.io/how-to-scale-a-docker-container-with-docker-compose/
https://www.brianchristner.io/how-to-scale-a-docker-container-with-docker-compose/
https://hub.docker.com/_/nginx/
https://hub.docker.com/_/nginx/
http://dx.doi.org/10.1109/HPCC.and.EUC.2013.97
http://nginx.org/en/docs/stream/ngx_stream_core_module.html
http://nginx.org/en/docs/stream/ngx_stream_core_module.html
http://dx.doi.org/10.1109/UCC.2012.30
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/master/cmake_targets/tools/perf_oai.bash
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/master/cmake_targets/tools/perf_oai.bash
https://github.com/ejschiller/FLEX

108

BIBLIOGRAPHY

[79]

(80]

Docker build, en, Jul. 2019. [Online]. Available: https://docs . docker . com/
engine/reference/commandline/build/ (visited on 07/07/2019).

M. Mao and M. Humphrey, “A Performance Study on the VM Startup Time in
the Cloud”, en, in 2012 IEEE Fifth International Conference on Cloud Computing,
Honolulu, HI, USA: IEEE, Jun. 2012, pp. 423-430, ISBN: 978-1-4673-2892-0 978-
0-7695-4755-8. DOI: 10.1109/CLOUD . 2012 . 103. [Online]. Available: http://
ieeexplore.ieee.org/document/6253534/ (visited on 07/07/2019).

How to Connect OAI eNB (USRP B210) with COTS UE. [Online]. Available:
https://gitlab.eurecom.fr/oai/openairinterfacebg/wikis/HowToConnectCOTSUEwithOATe]

OpenAirInterface HSS Configuration. [Online]. Available: https : / / gitlab .
eurecom.fr/oai/openair-cn/blob/develop/etc/hss_fd.conf.

P. Biondi, Scapy, en. [Online]. Available: https://secdev.github.io/ (visited
on 07/02/2019).

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
http://dx.doi.org/10.1109/CLOUD.2012.103
http://ieeexplore.ieee.org/document/6253534/
http://ieeexplore.ieee.org/document/6253534/
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/HowToConnectCOTSUEwithOAIeNBNew
https://gitlab.eurecom.fr/oai/openair-cn/blob/develop/etc/hss_fd.conf
https://gitlab.eurecom.fr/oai/openair-cn/blob/develop/etc/hss_fd.conf
https://secdev.github.io/

	Declaration of Authorship
	Abstract
	Introduction
	Overview
	Contributions
	Thesis Structure

	State of the Art
	LTE Network
	NFV and SDN
	NFV and EPC
	OpenAirInterface (OAI)

	Related Works
	Containerization and Scaling
	Scaling Algorithms for EPC
	ETSI Compatible Implementation of EPC
	Existing NFV Architecture Frameworks
	Container Orchestration and ETSI Standards
	Monitoring
	Key Performance Indicators
	Measuring Key Performance Indicators

	Architecture and Implementation
	Architecture
	Monitoring Implementation
	Containerization and Scaling
	Load Balancing
	Autoscaling Logic
	Architecture Design
	Docker-Compose
	Data Generation

	Testing and Results
	Testing
	Containerized EPC
	Scaling EPC with balancer.py
	Tracking User Attachment

	Scaling using balancer.py and iperf3
	Increasing and decreasing traffic

	Startup Time and Elasticity
	Performance of balancer.py
	Issues Encountered

	Conclusion and Outlook
	Conclusion
	Future Work

	Autoscaling Engine
	Implementation - balancer.py
	Configuration File - balancer.cfg

	Docker EPC Containers
	Docker-compose.yml
	Docker file for DB
	DB SQL Dump
	Docker file for HSS
	HSS configuration
	HSS start script
	Docker file for MME
	MME configuration
	MME start script
	Docker file for SPGW
	SPGW configuration
	SPGW start script

	Additional Configuration
	eNB configuration
	Prometheus configuration
	Nginx configuration for DB Load Balancing
	Nginx configuration for HSS Load Balancing
	Nginx configuration for MME Load Balancing
	Nginx configuration for SPGW Load Balancing

	Traffic Sniffing Utility
	Implementation - main.py
	Underlying utility class - tracker_new.py

	List of tools in architecture
	Balancer.py logs
	Balancer.py logs
	Traffic Test Bash Script
	Docker Instance Counter

	Bibliography

